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Abstract - The paper deals with a numerical
formulation of Maxwell equations based on the edge
elements and the minimization of the constitutive
error. The formulation provides two dual solutions
which can also be used to have an indication of the
distribution of the numerical error in the solution
domain. The method is applied to the calculation of
transient pulse propagation through conducting
nonlinear magnetic sheets. In this case, an iterative
technique which is very efficient in matching the wave
propagation in the vacuum to the magnetoquasistatic
diffusion inside the conducting material is also

proposed and applied.
I INTRODUCTION

Sheets of ferromagnetic material can effectively be
utilised for the shielding of interferences caused by
transient phenomena in the low-frequency range. In
fact, if the amplitude of the incident field is not so
intense to lead the sheet in the saturation state, screens
of ferromagnetic materials exhibit superior shielding
effectiveness, for a given thickness, with respect to
the common metallic (copper or aluminium) sheets
because their skin depths are thinner. This assumption
is not satisfied for the class of the safety problems
connected to the lightning flashes or nuclear
explosions, when the large external interferences create
violent transients and the ferromagnetic material can
saturate. The analysis of this phenomena can be
particularly complicated because the magnetic
material, even if hysteresis is neglected, shows a non
linear behaviour and has a finite electric conductivity.
The classical finite difference techniques [1] have
extensively been used to solve the appropriate non-
linear diffusion equation for the distribution field
inside the ferromagnetic sheet with all the limitations
associated with stability problems and reduction of the
time-step size, evaluation of the error, refinement of
the grid, treatment of the boundary conditions for 2D
and 3D problems.

This paper deals with a new formulation and solution
of the problem based on the edge elements and on the
minimization of the constitutive error. The
conventional methods enforce the constitutive
relations and only one of the field equation (Faraday's
law or Ampere's law) explicitly, whereas the other one
is satisfied approximately. The approach used here is

based on the minimization of the constitutive error (2,
3] and makes use of a global formulation in terms of
two unknown (electric and magnetic) vector potentials
with which both field equations are automatically and
exactly verified. Thus the solution can be found by
imposing the minimum of a certain functional,
associated with the error in the constitutive equations.

The method provides an immediate information about
the distribution on the local and global errors of the
numerical solution, information that can be used to
refine spatial and temporal discretizations.

The formulation allows for a unified treatment of eddy
current and wave propagation problems. Nevertheless,
the coexistence of vacuum and conducting materials
may lead to an ill conditioned numerical formulation,
due to the presence of regions having properties and
characteristic parameters several orders of magnitude
different. To tackle this difficulty an iterative
technique is proposed and applied to the_ simple
nonlinear conducting slab; its key aspect is based on
an asymptotic expansion about the limit case of
infinite electrical conductivity.

II. FORMULATION

A detailed description of the error based approach to
the solution of full Maxwell equations is given in [3].
Here, we will summarize the main aspects. In
particular, we refer to the following form of Maxwell
equations: 4

VxE = -9B/ot M
VxH = dD¢/dt )]
where
t
D(x, ) = D(x, t) + (j) J(x, 0) dt €))

with the proper boundary and initial conditions and the
monotonic constitutive properties

B = fy(H, x, 1) @

D = f,(E. x, 0 )
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J = fJ(E’ x, l) (6)

Introducing the vector potentials A e F :

a=- [ Ea Y
0
t

F= [ Ha @®
0

the following fields:
E=-0A/dt, H=0F/ot,
B=B +VxA,  D;=D+VxF &)

automatically satisfy Eqgs. (1) and (2) and the initial
conditions

B(x,0)=B (x), D(x,0)=D (x) (10)

From the numerical point of view [3] the vector
potentials A(x,t) and F(x,t) are approximated in space
using edge-element based functions [4] which possess
full continuity inside elements and tangential
continuity acro3s adjacent elements. Piecewise linear
approximation is assumed in time.

With time stepping the problem reduces to the
solution of a number of subproblems defined in the
time steps in which the only unknowns are the vector
potentials at final time. Each subproblem is solved by
minimizing a global error functional related to the
constitutive relationship:

A= ‘[:'“' j A(x,t) dvdt a1
£V

where V is the domain of integration, (t .t ,,) is the
k-th time step and:

A(xt) =

H B
o, ( [ fa)-dn + [ fuyab + HeB*-HB) +
H B"

o E
a, ( JI fe(d)ddy + | fp (€)de+E*Dy* - EDy)
DT E
(12)
fDT(E) is the non linear mapping from E to Dy; fyy
and fg are the inverse mappings of fyand fp,» (H*,
B*) and (E*, D,*) are two pairs which satisfy Eqgs.
(3), (4), taking also account of Egs. (5) and (6); oy and
a, are weighting factors. The minimization of A is
here carried out using the Newton-Raphson algorithm.
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As an example, in the linear, isotropic, time-invariant
case (B=pH, J=cE, D=¢E), with zero initial
conditions, we have f,(B)=B/, fg(H)=pH with H* =
0 and B* =0, fDT(E, 1) =[o (1-tg) + e]JE-cA(t),
f(Dp, 1) = (D+oA())/o (t-t,) +&] and the local
error (12) becomes
A= a,{pH2/2 +BZ2n -B-H } +
GE[DT—fDT(E, 0] [E-fg(Dy, D12, (13).

The main advantages of this formulation are that the
numerical solution is obtained via minimization of a
global error functional leading to a symmetric and
positive definite matrix and that an error estimation is
readily available, being the numerical error
concentrated in the constitutive equations. Moreover it
allows for the unified treatment of quasistationary and
wave propagation problems.

I1I. THE PROBLEM

The method is applied to the analysis of a transient
pulse propagation through a nonlinear conducting
magnetic sheet. Although the formulation of Section
11 is intrinsically three-dimensional, here we limit the
study to a one dimensional sample case, because,
anyway, most of the basic features of this kind of
problems are present in these test cases as well. In
particular we refer to an infinite sheet of ferromagnetic
material (Fig. 1) whose thickness d, conductivity o,
nonlinear permeability p(H) and incident electric field
E, are those of [5] and are summarized-in Table I. A
plane wave with the electric field polarized along the x
axis and travelling along z is incident from region 1
on the sheet. It is required to compute the field
transmitted through the sheet in region 3.

In this particular 1D case it is possible to restrict the
analysis to region 2 by imposing the following well
known boundary conditions at z=0 and z=d:
E,(0,1) + LoH,(0, 1) =2 E(t) (14)
Ed,1) - CHyd, =0 a1s) .

where {,, is the impedance of the vacuum.

Table I — Nonlinear slab: relevant data.

d 1.26 x 10*m

c 107 S/m

M [THe B, exp(-| Hl /H)/H,
Min 1.67 x 10*H/m

B, 1S3

H. 120 A/m

E Ei(t) iy

{Ei s SN2 TR 0<t<1/2f

0 otherwise

10* V/m
f 1000 Hz
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Fig. 1 — The nonlinear slab.

The direct enforcement of these boundary conditions is
not convenient in our formulation since the coupling
between the electric and magnetic field at the boundary
leads to a nonsymmetric matrix. In order to keep the
symmetry, at every Newton-Raphson iteration inside a
given time step (ty,;-t;), the following three
subproblems are solved:

I Solution: E,'(0. t.41) = 1,E, 1(d, 44)) =0
II Solution: E, 0. 4,)=0,E d, t.,) =1
IIT Solution: E:m(O, t,,,) =0, E,JI(d, t,,,) =0

Then the three solutions are linearly combined in order
to match boundary conditions (14)-(15).

However, this approach is of limited utility being
restricted of course to 1D cases. In general one has to
face a much more difficult problem due to the different
behaviour of the fields in the vacuum and in the
highly conducting material. In fact, in correspondence
of an element size Ax, the orders of magnitude of the
time steps should be opuAx? and Ax/c in the
conducting region (where the displacement current can
be neglected since fe,<<o) and in the vacuum,
respectively. This means that the time steps required
in the vacuum region are several orders of magnitude
smaller than in the material [1] unless very different
element sizes are used. Thus, the solution of more
realistic 2D and 3D problems might become rather
inefficient.

Even if the problem is one-dimensional, the case has
been treated as a three-dimensional one, using a mesh
consisting of a stack of hexahedral elements along z
(the direction of propagation) and imposing suitable
symmetry conditions (Exn=0 hence Axn=0 at the
two x=constant symmetry planes; Hxn=0 hence
Fxn=0 at the two y=constant symmetry planes) and
zero initial conditions. We have chosen element size
Ax=6.3um and time step At=1ps.

Eimax = 10 kV/m
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E_error
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Fig. 2 — Nonlinear slab. The two estimates -0A/dt
(solid) and o°! VxdF/ot (dashed) of the transmitted
electric field and their difference.

In Fig. 2, we show the electric field at z=d as a
function of the time. The figure also shows the
difference between the two estimates (-dA/dt and
o1 VxdF/at) of the electric field. This quantity is a
useful estimate bf the local error. In fact, the
difference between the results presented here and those
of [1] are less than 1 mV/m.

Fig. 3 shows the two estimates of E,(0,t) and their
difference as functions of the time.

Fig. 4 shows the estimates of E, and B, as functions
of z at five different time instants. It is worth noticing
how the estimates E=-dA/dt and H=0F/dt hence
B=f(dF/dt) are discontinuous with respect to the
time but continuous along z. On the other hand, the
two estimates E=c"!VxdF/dt and B=VxA are
piecewise constant along z.

Fig. 5 shows the transmitted field in the case of a
larger amplitude (E;,.,=100kV/m) of the incident
field. It can be noticed that the transmitted field now
exceeds 3-10 E;,, even if the electric field at z=0 is

now less than 1-103 E,;.,, (see Fig. 6). This
deterioration of the shielding action, already pointed
out in [1], is clearly due to the saturation of the
magnetic material that results in an enlargement of
the skin depth. The saturation of the magnetic
material is evident in Fig. 7 where the magnetic field
at z=0 is plotted as a function of the time for the two
different amplitudes of the incident field.
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Fig. 3 — Nonlinear slab. The two estimates -dA/dt
(solid) and o~! VxdF/dt (dashed) of the electric field
and their difference, evaluated at z=0.
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Fig. 4 — Nonlinear slab. Estimates of electric field and
magnetic fields at five different time instants.
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Fig. 5 — Nonlinear slab. Transmitted field, evaluated
for Eipax = 100 kV/m.
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Fig. 6 — Nonlinear slab. Electric field at z=0,
evaluated for Ejpax = 100 KV/m.

cimax = 10 kV/m

0.6
5

ol 1\
E
=.0.2 \
e
@ 1

o e
-0.2
0 0.5 1 1.5
t[ms]
Eimax = 100 kV/m

1.5
= 1
s
@

0.5

4 \
0 0.2 0.4 0.6
t(ms]

Fig. 7 — Nonlinear slab. Magnetic field at z=0,

evaluated for two different amplitudes of the incident

field.




IV. AN ITERATIVE TECHNIQUE

The problem can efficiently be solved by using an
iterative technique, as described hereafter, valid in the
limit od{,>>1, being d the characteristic dimension
of the shield (i.e. in the limit of an almost complete
reflection of the incident field). The space is
subdivided into two regions: region 1 is the vacuum
region outside the shield, while region 2 includes the

shield and the vacuum bounded by the shield (Fig. 8).

The technique goes through the following steps:

1) set Exn=0 at the interface S between region 1 and
region 2;

2) solve the wave propagation in region 1 with Exn
assigned on S, obtaining Hxn on S.

3) solve the field diffusion (magnetoquasistatic limit)
in region 2 with Hxn assigned on S,
obtaining Exn on S

4) repeat steps 2 and 3 until convergence is achieved.

It is worth noticing that the iteration can be applied
also in the presence of nonlinear materials. It should
also be noted that inside the conducting nonlinear
material the displacement current can be neglected and
in the vacuum inside the screen the wavelength is
usually several order of magnitude larger than the size
of the screen, so that the magnetoquasistatic model is

adequate.
Region 1

Fig. 8 — The reference geometry.

As an example, the procedure is applied to the
solution of a linear steady state problem, where a
sinusoidal incident field of amplitude E;,,,= 10 kV/m
and frequency f=1kHz is shielded by a conducting slab
(6=107 S/m, n=10*n,, d=1.26-10%). The above
procedure is used. In this case the solution of the wave
propagation problem in region 1 is given by (14)-(15)
whereas the solution of the diffusion in the conducting
region is obtained analytically. The results of the
iterative procedure, in SI units, are reported in Table
1L

Table II — Linear slab: results of the iterative method.

iteration Real part Imaginary part
1
E(0)= 0 0
E(d)= 0 0
HO)=  -53.08837459 0
Hd)= 0 0
2
E(0) = 0.1045283420  0.1072401147
E(d)= -0.0034339276 -0.0242086716
H(0)=  -53.088097127 0.0002846602
Hd)= 0.0000091151  0.0000642600
3
E(0)= 0.1045283994  0.1072389854
Ed)= -0.0034341513 -0.0242083817
H@O)=  -53.088097127 0.0002846572
Hd)= 0.0000091157  0.0000642592
4
E(0) = 0.1045283994  0.1072389854
E(d)= -0.0034341513 -0.0242083817
H@O)=  -53.088097127 0.0002846572
Hd)= 0.0000091157  0.0000642592
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