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Breast cancer is one of the most common invasive tumors causing high mortality among

women. It is characterized by high heterogeneity regarding its biological and clinical

characteristics. Several high-throughput assays have been used to collect genome-wide

information for many patients in large collaborative studies. This knowledge has improved

our understanding of its biology and led to new methods of diagnosing and treating

the disease. In particular, system biology has become a valid approach to obtain better

insights into breast cancer biological mechanisms. A crucial component of current

research lies in identifying novel biomarkers that can be predictive for breast cancer

patient prognosis on the basis of the molecular signature of the tumor sample. However,

the high dimension and low sample size of data greatly increase the difficulty of cancer

survival analysis demanding for the development of ad-hoc statistical methods. In

this work, we propose novel screening-network methods that predict patient survival

outcome by screening key survival-related genes and we assess the capability of the

proposed approaches using METABRIC dataset. In particular, we first identify a subset

of genes by using variable screening techniques on gene expression data. Then, we

perform Cox regression analysis by incorporating network information associated with

the selected subset of genes. The novelty of this work consists in the improved prediction

of survival responses due to the different types of screenings (i.e., a biomedical-driven,

data-driven and a combination of the two) before building the network-penalized model.

Indeed, the combination of the two screening approaches allows us to use the available

biological knowledge on breast cancer and complement it with additional information

emerging from the data used for the analysis. Moreover, we also illustrate how to

extend the proposed approaches to integrate an additional omic layer, such as copy

number aberrations, and we show that such strategies can further improve our prediction

capabilities. In conclusion, our approaches allow to discriminate patients in high-and

low-risk groups using few potential biomarkers and therefore, can help clinicians to

provide more precise prognoses and to facilitate the subsequent clinical management

of patients at risk of disease.

Keywords: breast cancer, cox regression, high-dimensionality, network-penalized methods, screening

techniques, survival analysis, pathway analysis
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1. INTRODUCTION

Understanding themultidimensional complexity of breast cancer
is an ongoing pursuit for many researchers to model survival
oncological data. Technology advances offer great opportunities
to explain cancer mechanisms, although there are significant
challenges in extracting knowledge from such massive data and
evaluating the findings. In the last years, a huge amount of
genome-wide data collected using a variety of high-throughput
technologies has been made publically available thanks to
the effort of several international projects and consortia. For
example, The Cancer Genome Atlas (TCGA) (Network, 2011,
2012, 2013), the Catalog of Somatic Mutations in Cancer
(COSMIC) (Forbes et al., 2010), The Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) (Curtis
et al., 2012) and many others projects were established to
profile large tumor sets for different omics layers, such as gene
expression, DNA structure and methylation, etc. By using these
types of data, biological interaction networks based on physical
interactions, such as protein-protein interactions, protein-DNA
interactions, and phosphorylation can be also constructed. In
particular, functional interaction networks connect genes with
similar or related functions and are typically inferred from
multiple sources, including co-expression, KEGG pathways,
functional linkage, Gene Ontology (GO) terms, etc. Overall, data
from these databases not only allow to better understand the
deregulation of cellular mechanisms during diseases progression,
but also provide opportunities for developing novel statistical and
computational algorithms for the analysis of patient omic data
and for the interpretation and validation of results.

Despite this progress, many cancer diseases do not have
effective treatments yet. Recently, precision medicine has been
used by clinicians to take all kinds of decisions regarding the
patient management and therapeutic treatments (Huang et al.,
2016). In particular, prognostic biomarkers have been used for
more effective selection of patient subgroups with different
therapeutic strategies. In the recent past, inference was carried
out by looking at a specific omic type, such as gene expression or
DNA structural variations, etc. Nowadays, it is clear that multi-
omic data integration is becoming necessary to investigate the
genomic mechanisms involved in complex diseases (Angelini
and Costa, 2014). From a statistical point of view, one of the
most important challenges in integrating multi-omic profiles is
to cope with the high-dimensionality of the data. To overcome
this issue and optimize model predictions, innovative statistical
approaches have been developed (Pineda et al., 2015). Indeed,
taking more levels into account increases the dimensionality of
the problem and requires additional steps for data compatibility,
normalization, correction and integration (Ritchie et al., 2015;
Bersanelli et al., 2016).

To reduce dimensionality from a high to a moderate scale,
one can use feature screening by ranking the significant
genes based on their marginal associations with the outcome
variable and removing unimportant genes from the bottom
of an ordered list. Feature screening techniques in ultrahigh-
dimensional data analysis were introduced in Fan and Lv
(2008), where the sure independence screening (SIS) and

the SIS screening were proposed when the data come from
an ordinary linear model with normal errors. Then, such
techniques were extended to generalized linear models (Fan
et al., 2009, 2010b). Nonparametric independence screening
in sparse ultrahigh-dimensional additive models was presented
in Fan et al. (2011). In that article, the authors suggested
estimating the nonparametric components marginally with
spline approximation, and ranking the importance of predictors
using the magnitude of nonparametric components. A sure
independent ranking and screening (SIRS) procedure to screen
significant predictors inmulti-indexmodels was proposed in Zhu
et al. (2011). The authors showed that under the assumption of
linearity on the predictor vector, the SIRS satisfies the ranking
consistency property. Finally, a sure screening procedure for
Cox’s proportional hazards model was presented in Fan et al.
(2010a), Zhao and Li (2012) and Song et al. (2014) in order to
understand the association between genomic information and
survival information on oncological patients. In this work, we
present three screening inspired approaches that turn out to be
useful in reducing the dimensionality of the data.

Nevertheless, when the number of variables (i.e., genes or
genomic features) p is much larger than the observations
(i.e., patients) n (p ≫ n), the Cox model (Cox, 1972) cannot
be applied directly. Therefore, alternative methods combining
penalized Cox regressionmodels and variable selection have been
developed. Those methods include ℓ1 and ℓ2 norms (Zou and
Hastie, 2005; Simon et al., 2011; Wu, 2012), the SCAD (Fan
and Li, 2001), the adaptive Lasso (Zou, 2006) and the Dantzig
selector (Candes and Tao, 2007) which have been proposed to
infer parameters in order to further reduce the feature space and
to impose sparsity on the solutions. Such penalized approaches
improve prediction capabilities and interpretability of results
when a large number of variables is present. Similar approaches
might also be used when there exist an underlying structure on
the gene/feature space, for example to account for gene regulatory
mechanisms or patterns of co-expressions. In this framework,
the correlation structure can be specified as constraints to the
Cox model (Zhang et al., 2013; Fröhlich, 2014; Gong et al., 2014;
Sun et al., 2014). Therefore, the regulatory genomic information
is encoded by a network, where genes are depicted as nodes
and their pair-wise relations as edges connecting two nodes.
The network is converted in a Laplacian matrix and is used as
penalty in the Cox regression models. In particular, the network
can represent different types of relationships such as gene
expression correlations, KEGG pathways information, functional
interaction networks or Protein-Protein Interaction networks.
Generally, the Cox regression models built on biological
networks are called “network-based Cox regression models”. For
instance, a comprehensive overview of computational methods
used for biomarkers identification, including rank-based feature
selection methods and major network methodologies used in
system biology was performed in Guo and Wan (2014).

In this article, we combine screening techniques and network-
penalized approaches for building novel methods that select
subsets of genes associated to patients survival in cancer
(see Figure 1). In particular, we use METABRIC training set
containing a long-term follow-up of about 1,000 breast cancer
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FIGURE 1 | Screening-network procedure. (a) BMD-screening, DAD-screening or BMD+DAD-screening are applied to the training dataset T to choose a subset of

genes {xj , j ∈ I}. (b) We use subset {xj , j ∈ I} to incorporate the biological information as networks of interactions. (c) Network-penalized methods are executed on

{xj , j ∈ I}. (d) High-risk genes or potential biomarkers (β̂I 6= 0) are selected (from each screening approach) and are used to separate patients in two groups

(high-and-low risk group). (e–f) The performance of the survival prediction are assessed using a testing dataset D. To make sense of the gene signatures (g) Pathway

analysis is performed on high-risk genes and (h) COSMIC investigation is carried out.

patients (Curtis et al., 2012), after having applied different types
of screenings, we fit a network-penalized model for identifying
gene signatures predicting survival responses. Then, we validate
the capabilities of the proposed methods using about other 1,000
breast cancer patients, from METABRIC testing set. The selected
gene signature provides a powerful tool for the identification of
patients at high-risk of death. We also describe how to extend
the proposed approaches to integrate an additional omic layer,
such as copy number aberrations, and we demonstrate that
such strategies can further improve our prediction capabilities.
We stress that although the retrieved signatures are specific for
breast cancer survival, the proposed approaches can be used for
different types of cancers.

More precisely, we propose new multistage computational-
statistical strategies for survival analysis based on the following
steps (see Figure 1). First, we reduce the high-dimensionality of
data by using one of the following types of dimension reduction
techniques: (i) a biomedical-driven screening (BMD-screening);
(ii) a data-driven screening (DAD-screening); (iii) a combination
of BMD-and-DAD-screening (BMD+DAD-screening). These
screening approaches have different advantages and drawbacks.
The BMD-screening is achieved by incorporating in the model

the biomedical knowledge available in literature about breast
cancer and, obviously, it can be performed only when there
is enough evidence available. Nowadays such information can
be often retrieved for previous studies and public databases,
although it is still far from being complete. On the contrary,
the DAD-screening relies only on the observed data. Therefore,
it is suggested when there is limited biomedical information
available. To fill the gap between the two approaches, the
BMD+DAD-screening is introduced to take advantage of the
available biomedical knowledge and also to allow finding
novel elements of investigation that can emerge from data.
Hence, the BMD+DAD screening can be used when there is
partial biological information available and novel information is
expected to be present in the data under analysis. Such situation
represents the most common case. Second, we used penalized
Cox regression methods (such as AdaLnet and ADMMnet) to
incorporate gene regulatory relationships and to select a subset
of potential biomarkers. In carrying out this step we show that
when the BMD+DAD-screening is used we detect novel disease
risk genes that the simple BMD-screening ignores. Third, we
validate the proposed procedure and we evaluate the predictive
power of the selected gene signatures. Finally, we perform a
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pathway analysis based on the screened genes using Human
Experimental/Functional Mapper (Huttenhower et al., 2009),
KEGG pathways and COSMIC to make sense of the potential
biomarkers for breast cancer survival. Moreover, to illustrate
the advantages of multi omic integration, we first compare the
performance of our approaches using only gene expression data,
and then we integrate both gene expression and copy number
aberrations. Our analysis shows that the integration provides a
more comprehensive picture of breast cancer and improves the
results.

Before concluding, we observe that in our previous work
(Iuliano et al., 2016), we proposed a similar strategy based on
the use of biological network into Cox regression penalized
methods. That approach was similar in the spirit to the BMD-
screening, discussed here. While confirming previous results
using an independent dataset, the novelty of this article consists
in the use of DAD and BMD+DAD screenings that allow us
to extend and/or improve the performance of the proposed
strategy, in the identification of novel potential biomarkers, and
in the possibility of integrating multiple omic data types in a
comprehensive analysis.

2. METHODS

In this section, (i) we introduce the Cox proportional hazards
model (Cox, 1972); (ii) we present the three different types of
screening techniques used to reduce the feature space to a subset
of significant variables; (iii) we discuss network-regularized
methods for selecting gene signatures; (iv) we describe the
proposed algorithm; (v) we illustrate the extension of the
algorithm for the integration of two omic data layers; (vi) we
show how to make sense of the retrieved gene signature by using
pathway analysis, and finally (vii) we discuss details about the
implementation of our algorithm.

2.1. Cox Proportional Hazards Model
Let n be the number of subjects (patients), Ti and Ci for i =
1, . . . , n the survival time and the censoring time, respectively.
Moreover, we denote the observed survival time as ti =
min {Ti,Ci}, the censoring indicator as δi = I(Ti ≤ Ci) [where
I(·) represents the indicator function], the regressor vector of p-
variables for the ith subject (i.e. multi-omics observed profiles of
the ith patient over p genes) as xi = (xi1, . . . , xip)

T , i = 1, . . . , n.
We also assume that the survival time Ti and the censoring time
Ci are conditionally independent given the regressors xi and the
censoring mechanism is noninformative. Hence, the observed
data are represented by the triplets {(ti, δi, xi) , i = 1, ..., n}.

Under the assumption of Cox regression (Cox, 1972) the
hazard function h(t|xi) can be written as

h(t|xi) = h0(t) exp
(

xTi β
)

where h0(t) represents the baseline hazard and β = (β1, . . . ,βp)
′

the vector of regression coefficients. In the classical settings, the
regression parameters are estimated by maximizing the Cox’s
log-partial likelihood

ℓ(β) =
n
∑

i=1

δi







xTi β − log





∑

j∈R(ti)
exp(xTj β)











, (1)

whereR(ti) denotes the risk set at time ti (i.e., the set of all patients
who still survived prior to time ti).

When the number of genes p is much larger than the patients
n (p ≫ n), such approach cannot be applied since the solution
become not identifiable. To cope with this issue, improving
prediction performance and the interpretation of the data, several
penalization approaches have been proposed. Such techniques
consist in adding a ℓ1-penalty and/or ℓ2 penalty term to the log-
likelihood (1) in order to reduce the solution space imposing
sparsity and small coefficients for the parameters (Tibshirani,
1996; Tibshirani et al., 1997; Zou and Hastie, 2005).

2.2. Variable Screenings for Cox’s
Proportional Hazards Model
The first step of our strategy is the variable screening of the data
which aimed to reduce the number of variables for a large to a
moderate scale. To this purpose, we assume that only a small
number of these p variables is affecting the survival outcome.
Therefore, we filter out variables that are considered not relevant
for the disease under investigation. To this purpose, we consider
three different types of variable screenings: biomedical screening
(BMD-screening), data-driven screening (DAD-screening) and
the fusion of biomedical and data-driven screening (BMD+DAD-
screening). In the following sections, we define the set {xj, j ∈ I}
as the subset of the screened variables and d = |{xj, j ∈ I}| its
cardinality.

2.2.1. Biomedical-Driven Screening
In this type of screening to identify the subset {xj, j ∈
I} we used only the biological information that has been
accumulated in the literature on the cancer disease under
investigation (Iuliano et al., 2016) and it is available in
some external databases. In particular, as source of biological
information (i.e., genes potentially associated to breast cancer)
we used Human Experimental/Functional Mapper (HEFaIMp)
(Huttenhower et al., 2009). Such web-resource describes the
genes functional activity and gene-gene interactions in over
200 areas of human cellular biology with information from
30,000 genome-scale experiments and summarizes information
from different biological informative sources such as prediction
of protein function and functional modules, cross-talk among
biological processes, and association of novel genes and pathways
with known genetic disorders. HEFaIMp provides a p-value for
each gene that indicates how significant is the relation between
the gene and the disease of interest. Hence, we define with IBMD

the subset of genes selected by using HEFaIMp tool with p-value
less or equal than 0.05 and with dBMD its cardinality. We called
this screening BMD-screening.

Note that, in the BMD-screening, we select the IBMD set
using standard p-value (with significance threshold equal to 0.05)
without controlling for multiple tests, because we use a two-stage
procedure composed by a screening step followed by a variable

Frontiers in Genetics | www.frontiersin.org 4 June 2018 | Volume 9 | Article 206

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Iuliano et al. Screening-Network Methods

selection method (i.e., the network approach described in 2.3).
In this context, the identification of the variables associated to
our pathology is performed in the variable selection step, and
the screening is simply aimed to perform a pre-selection of
the features. Such approach is typically done in the context of
statistical screenings (see Fan and Lv, 2008). However, to further
screen the variables of interest it could be also possible to control
the multiplicity at the screening level, as described in Dmitrienko
et al. (2009).

2.2.2. Data-Driven Screening
In this type of screening to identify IDAD we reduce the feature
space from a large scale dimension p to a relatively moderate
scale d < p by using only information from the data. This type
of knowledge consist of the matrix X that contains single omic
or multi omics patient profiles. Such approach differ from the
BMD-screening where the information on which gene filter out
and which retain in the model was obtained from an external
database.

LetM∗ =
{

1 ≤ i ≤ p :β∗
i 6= 0

}

be the true sparse Cox model.
The maximum marginal likelihood estimator (MMLE) βM

k
, for

k = 1, . . . , p, is defined in Cox model as the maximizer of the
log-partial likelihood with a single covariate

βM
k = argmaxβk

n
∑

i=1

δi







xkiβk − log





∑

j∈R(ti)
exp(xkjβk)











.

(2)
The component-wise estimators can be computed very rapidly
and implemented modularly, avoiding the numerical instability
associated with ultrahigh dimensional estimation problems. The
SIS procedure ranks the importance of features according to the
magnitude of their marginal regression coefficients. Therefore,
we select a set of variables

IDAD = {1 ≤ k ≤ p : |βM
k | ≥ δn} (3)

where δn is a threshold value chosen so that we pick the dDAD
top ranked covariates. The higher correlation, the higher the
ranking position. As often suggested, one may choose ⌊n log n⌋
as threshold to select the most appropriate number of genes to
retain in the model. More in general, the choice of the threshold
may also be either data-driven or model-based. However, the aim
of the screening procedure is to filter out as many noisy variables
as possible, retaining all interesting ones in the model. After that
the penalty in the network-based approach will select the few
most relevant features.

For this reason, in our study we select different thresholds and
we study their effect to optimize data prediction. It is easy to note
that larger dDAD means larger probability of including the true
model M∗ in the final model with indices in IDAD. We called
this screening DAD-screening.

2.2.3. Biomedical-Driven and Data-Driven Screening
In this type of screening to identify IBMD+DAD we merge the
biological information known in literature and the data-driven
knowledge to obtain new insights about cancer diseases by taking
the union of the BMD and DAD sets of genes, i.e., dBMD+DAD =

dBMD ∪ dDAD. Indeed, no cancer has been yet fully characterized
in term of disrupted genes and/or metabolic processes involved
in the disease. In particular, the BMD and DAD screenings
take into account respectively available biological knowledge
(i.e., genes highly correlated to breast cancer as described in
the literature) and genes closely associated with the survival
response (as emerging from the data). The BMD and DAD
screening represent two faces of the same medal and naturally
complement themselves. By using BMD+DAD screening, we
aim to explore the best model that can sufficiently explain the
data in the most parsimonious way in order to (i) make use of
available information, (ii) identify new markers that the BMD-
screening ignores, and (iii) improve the ability to make precise
prognosis, diagnosis and treatments. In fact, although breast
cancer is the most common cancer types analyzed in literature,
still remains a need for a more comprehensive and exhaustive
study to find and investigate novel biomarkers. We called this
screening BMD+DAD-screening.

2.3. Network Approaches After Screening
The second step of our strategy is the application of penalized
methods using the subset of screened variables {xj, j ∈ I} (where
I depends on the type screening performed) as new feature space
to further remove not significant variables from the model. The
Cox penalized partial likelihood is

ℓ(βI) = argminβI

(

n
∑

i=1

δi

{

xT
I,iβI

− log





∑

j∈R(ti)
exp(xT

I,jβI)











+ Pλ(βI )

)

, (4)

where xT
I,i denotes a sub-vector of xi with indices in I , see

Equation (3). βI are the screened regression coefficients. In
particular, we add a penalty function Pλ(βI) on the regression
coefficients βI . In the following section we introduce network-
penalized approaches on the screened genes {xj, j ∈ I} to
incorporate an a-priori biological knowledge into the model and
to predict survival outcomes.

2.3.1. Network-Regularized Cox Regression
The existing relationships among the covariates can be described
in terms of a weighted and undirected graph (network) G =
(V ,E,W) where the vertices V =

{

1, . . . , d
}

represents genes
or covariates, an element (i, j) in the edge set E ⊂ V × V
indicates a relationship between vertices i and j. W = (wij),
(i, j) ∈ E represent the weights (or strength of the relationship)
associated with the corresponding edges. The relationships
between genes can be obtained in terms of gene-gene interaction,
KEGG pathway analysis or protein-protein interaction, or other
functional information and it is normalized in [0, 1] where 0
indicates an absence of relationship and 1 a strong relationship.
More in general, the weight may indicate the probability that
two genes are functionally connected. Such information is
incorporated in the analysis using a penalty function Pλ(βI) in
Equation (4).
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More formally, we introduce the following network penalty
function

Pλ,α(βI ) = λ
[

α ‖βI‖p + (1− α)8(βI )
]

(5)

where λ > 0 (sparsity) and α ∈ (0, 1] (network influence) are
two regularization parameters (Zhang et al., 2013; Guo andWan,
2014). The subset I includes the variables selected by using the
previous screening approaches (BMD-screening, DAD-screening
or BMD+DAD-screening). The penalty function is composed
by two terms. The first part is a ℓp-norm with p ∈ {1, 2}
which induces sparsity or thresholding; the second one 8(·) is a
Laplacian matrix constraint which gives smoothness among two
adjacent coefficients in the network. Generally, 8(·) for every
pair of genes linked by an edge, which is proportional to the
edge weight and the difference between their coefficients is a cost
function. This hypothesis indicates that the two genes should be
correlated. In other words, the regression coefficients should be
similar, i.e., vary smoothly through the network (Zhang et al.,
2013; Sun et al., 2014).

In our work, we use two of themost recent network-based Cox
regression models. The details of each method are listed below.

The first method is based on a-priori network information is
Adaptive Laplacian net (or AdaLnet) (Sun et al., 2014). Denoting
with di =

∑

i :(i,j)∈E wij the degree of vertex i, AdaLnet defines the

normalized Laplacian matrix L = (lij) of the graph G (positive
semi-definite) by

li,j =















1, if i = j and di 6= 0,

− wij√
didj

, if(i, j) ∈ E,

0, otherwise.

The network-constrained penalty in Equation (4) is given by

Pλ,α(βI ) = λ
[

α ‖βI‖1 + (1− α)8(βI )
]

, (6)

where

8(βI ) =
∑

(i,j)∈E
wi,j

(

sgn(β̃i,I)βi,I√
di

−
sgn(β̃j,I)βj,I

√

dj

)2

.

The penalty in Equation (6) is the sum of an ℓ1-penalty that
brings sparsity and a quadratic Laplacian penalty that induces
smoothness between adjacent vertices in the network. The vector

β̃I is obtained from a preliminary regression analysis. The
scaling of the coefficients βI respect to the degree allows the
genes with more connections (i.e., the hub genes) to have larger
coefficients. Hence, small changes of expression levels of these
genes can lead to large changes in the response. An advantage
of using the penalty in Equation (6) consists in representing the
case when two neighboring variables have opposite regression
coefficient signs, which is reasonable in network-based analysis
of gene expression data. Indeed, when a transcription factor (TF)
positively regulate gene i and negatively regulate gene j in a
certain pathway, the corresponding coefficients will result with
opposite sign.

Note that, here λ is the parameter that regularizes by the
likelihood network constraint and α ∈ (0, 1] is the parameter
balancing the network constraint with respect to the sparsity.

The second network penalized method is based on the
Alternating DirectionMethod ofMultipliers (ADMM) algorithm
used to solve a broad range of statistical optimization problems
(Boyd et al., 2011). ADMM is an algorithm that solves convex
optimization problems by breaking them into smaller pieces,
each of which are then easier to handle. The algorithm solves
problems in the form:

minimize f (x)+ g(z) subject to Ax+ Bz = c (7)

with x ∈ Rn×1, z ∈ Rm×1, A ∈ Rp×n, B ∈ Rp×m,and c ∈ Rp×1.
The functions f and g are supposed convex. The optimal value of
the problem Equation (7) will be denoted by

p∗ = inf{f (x)+ g(z)|Ax+ Bz = c}.

An alternative formulation is the following Lagrangian form

Lρ(x, y, z) = f (x)+g(z)+yT(Ax+Bz−c)+(ρ/2)‖Ax+Bz−c‖22
(8)

ADMM consists of the iterations:

xk+1
: =argmin Lρ(x, z

k, yk),

zk+1
: =argmin Lρ(x

k+1, z, yk),

yk+1
: =yk + ρ(Axk+1 + Bzk+1 − c).

(9)

where ρ > 0. The algorithm consists of an x-minimization step,
a z-minimization step, and a dual variable update (see Equation
9). Therefore, the method of multipliers for solving the problem
in Equation (9) has the form

(xk+1, zk+1) : = argminx,z Lρ(x, z, y
k)

yk+1
: = yk + ρ(Axk+1 + Bzk+1 − c).

The algorithm state in ADMM consists of zk and yk, i.e.
(zk+1, yk+1) is a function of (zk, yk). In ADMM form, our
problem can be written as

minimize f (x)+ g(z) subject to x− z = 0 (10)

where f (x) = ℓ(βI) (Equation 1) and g(z) = Pλ,α(βI ) (Equation
5 with p = 1) evaluated on βI . The network penalty function is
given by

Pλ,α(βI) = λ[α‖βI‖1 + (1− α)φ(βI)],

where φ(βI) = βTLβ with L is the Laplacian matrix.
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2.3.2. Laplacian Matrix
The Laplacian matrix that describes the functional relationships
among genes is constructed as done in our previous work (Iuliano
et al., 2016) for genes covered by HEFalMp tool; the matrix
is completed by adding zero weights for all the genes that are
non-covered by HEFaIMp.

2.3.3. Tuning Parameters by k-Fold Cross-Validation
In principle, cross-validation can be used for estimating both α

and λ. However the global procedure can be time-consuming
and often provide only a limited improvement with respect to the
optimization carried out using only one parameter. Therefore, we
fixed α = 0.5 and we estimate λ using cross-validation. To better
understand the rationale of such choice, we note that α ∈ [0, 1]
represents the influence of the network in themodel. Small values
of α will result in no network influence, large values α indicate
strong influence. The choice α = 0.5 assumesmoderate influence
of the network and represents a standard default parameter.

In order to estimate λ, the dataset is partitioned in K = 5
different folds, where four parts are used for finding model’s

coefficients β̂
(−k)

(λ,α) and one part is used for assessing the prediction
on unseen data. This procedure is repeated 5 times, shuffling
the folds. The estimate is obtained by maximizing the cross-
validation log-partial likelihood (CVPL) defined as

CVPL(λ,α) = − 1

n

K
∑

k=1

{ℓ(β̂(−k)

(λ,α))− ℓ(−k)(β̂
(−k)

(λ,α))},

where β̂
(−k)

(·) is the estimate obtained from excluding the kth
part of the data with a given pair of (λ,α), ℓ(·) is the Cox
log-partial likelihood on all the sample and ℓ(−k)(·) is the log-
partial likelihood when the kth fold is left out (van Houwelingen
et al., 2006). To assess the stability of the survival prediction we
performed the five-fold cross-validation 10 times and we take as
estimate the average value of λ.

2.3.4. Survival Analysis
The results of section 2.3.1 consist in a gene signature, i.e., β̂I 6=
0, that can be used to predict patient survival. Survival analysis
is performed using the Kaplan Meier curves after dividing the
patients in two risk groups (high-and-low risk group) on the basis
of the prognostic index computed with the gene signature. The
p-value, used to test the null hypothesis that the survival curves
are identical vs. the alternative that the two groups have different
survival, is calculated by using the log-rank test.

2.4. General Algorithm for the
Screening-Network Survival Prediction
In this section, we present the general procedure used for model’s
prediction.

Algorithm 1. Screening-network survival prediction.
Let define T the training set and D the validation set.

1. Apply screening techniques on T to reduce the dimension of
the variable space from a large scale p to a moderate scale d,
d < p. BMD- or DAD- or BMD+DAD-screening can be used
for such purpose.

(a) Define the subset {xj, j ∈ I} as the subset of the screened
variables.

2. Perform network-based Cox regression methods on {xj, j ∈ I}
in order to select the high-risk cancer genes. Either AdaLnet or
ADMM can be used in this step.

(a) Fix the regularization parameter α = 0.5 to assess the
network influence.

(b) Repeat five-fold cross validation 10 times and take themean
of this estimate as the optimal tuning parameter values
(λ̂I , α̂I).

(c) Use λ̂I and α̂I to fit the corresponding penalized model

and denote the parameter estimate by β̂I .
(d) Select the BMD- or DAD- or BMD+DAD-genes with

regression coefficients β̂I 6= 0.

3. Compute the prognostic index (PI) for each patient i in T, for
i = 1, . . . , n, as

PIIi = xIi β̂I , (11)

where xIi is the vector of screened gene expression value (or
adjusted expression) associated to the i-th patient.

(a) PIIi is used to partition the patients in two subgroups, that
correspond to the high-risk and low-risk prognosis groups,
as follows:

i. Compute the quantile qγ of PIIi , with γ =
0.20, 0.25, 0.30 . . . , 0.80.

ii. Each patient i in T is assigned to the high-risk (or
low-risk) group if its prognostic index PIIi is above (or
below) the qγ -quantile.

iii. The optimal cutoff PI∗,T is selected adaptively on T.
Here, the optimal cutoff is the γ -value that corresponds
to the best separation in high-and-low risk group with
respect to the log-rank test as defined in Iuliano et al.
(2016).

4. Calculate the prognostic index PIDi by using β̂I and PI∗,T .

(a) Each patient i in D is assigned into the high/low-risk group

if its prognostic index PIDi = xDi β̂I is above (or below)
the fixed threshold PI∗,T . The value xDi is the vector of gene
expression value associated to the i-th patient in D.

5. Perform the log-rank test to compare the survival curves
between the patients in the high-risk and low-risk groups
defined by the predicted risk scores PIDi .

(a) The performance measure is the p-value of the test (the
significance level was set at 5%, i.e., p-value< 0.05).

2.5. Multiomics Data Integration
In the above description the matrix X is usually a classical
gene expression matrix. In order to integrate the information
of an additional omic layer we use MANCIE (matrix analysis
and normalization by concordant information enhancement)
(Zang et al., 2016). MANCIE can be applied using two (column-
matched) data matrices and adjusts one (main matrix) using
the other (associated matrix) by identifying and reinforce the
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concordant information in the two matrices and reducing
the discordant information between them. The two data
matrices must contain two omic-profiles on the same set of
samples/patients. For example, one can measure the same
omic profile using different experimental platforms or one can
consider different omic types. The main matrix refers to the
type of data that is considered more relevant whose values are
returned “adjusted.” In this study, MANCIE was used to adjust
mRNAdatamatrix (mainmatrix) using copy number aberrations
(CNAs), as the associated matrix. The resulting adjusted matrix
was used in our algorithm in the case of two omics analysis.

2.6. Pathway Analysis
Using β̂I 6= 0, we perform a pathway analysis based on
KEGG database to make sense of the proposed signatures (http://
www.kegg.jp/ or http://www.genome.jp/kegg/). Therefore, we
associated to each gene the list of KEGG pathway in which it is
annotated and the number of publications that relates it to breast
cancer. We represents our results in terms of a network. In order
to draw such networks we considered only the not isolated genes,
where a gene g is said not isolated if G ∩ K ! {g} (G denoting a
given set of genes and K a given KEGG pathway). Namely, g is
not isolated if there is at least another gene g′ ∈ G belonging to
the same pathways of g. In such cases g and g′ will be connected
by an edge that depend on the pathway K.

In this representation, each node in the network represents
a gene and an edge between two nodes means that the
corresponding genes belongs to the same KEGG pathway. In
particular, we use different colors for different pathways and
three colors to identify the type of screened gene: orange color
for genes selected by HEFaIMp tool with p-value < 0.05, green
color for genes selected by HEFaIMp tool with p-value > 0.05,
purple color for genes that are not explored by HEFaIMp tool.
Triangular-shaped nodes correspond to the genes that have
already been identified in literature as breast-cancer associated
genes. The latter step has been done using the database available
in Cotterill (1999). The number of papers that associates such
genes to breast cancer is also reported in the triangular nodes.

We also use the Catalog Of Somatic Mutations In Cancer
(COSMIC, v84) (Forbes et al., 2010) for exploring the impact of
somatic mutations in breast cancer. We downloaded COSMIC
database from https://cancer.sanger.ac.uk/cosmic/download. We
analyzed genes obtained by the DAD-screening and BMD+DAD-
screening.

2.7. Implementation of the Algorithm
The statistical approach presented in Figure 1 and described in
Algorithm 1 has been implemented as a comprehensive R script
that allows to execute all methods under the sameR environment.
The METABRIC gene expression profiles (Molecular Taxonomy
of Breast Cancer International Consortium) were downloaded
from the European Genome-phenome Archive (EGA). Access to
datasets was approved by the specified Data Access Committee
(DAC). The Illumina probes were annotated with the mappings
from the Bioconductor package illuminaHumanv4.db

(Dunning et al., 2015). Whereas, the METABRIC copy number

aberrations CNAs data were downloaded by cBioPortal for
Cancer Genomics (www.cbioportal.org).

For the BMD-screening, we select a subset of genes that
are involved in breast cancer by using a functional map that
summarize the most relevant interactions in the cancer area of
interest (Huttenhower et al., 2009). This map is used to build the
network-matrix and to identify the weight of the edges among
genes.

We use AdaLnet method which is a pathwise algorithm for
the Cox proportional hazards model, regularized by network
penalty [combination of ℓ1-penalty, ‖βI‖1 and Laplacian matrix
8(βI)] (Simon et al., 2011; Sun et al., 2014). It is implemented
in Coxnet package (version 0.2, 2015-03-21). ADMM is an
algorithm implemented in the ADMMnet package (version
0.1, 2015-12-12). For each method we fix the regularization
parameter α = 0.5 and repeat five-fold cross validation 10
times. Then we take the mean of this estimate as the optimal
tuning parameter values (see Algorithm 1). Then, Survival
package in the R software is used to compare the Kaplan-Meier
survival curves and to derive the significance p-value indicating
the difference between two survival curves. For the integration
of different omic profiles MANCIE package was used (version
1.4, 2016-03-02).

Pathways analysis has been carried out by using the KEGG
database through an integrative R script. RCytoscape (www.
bioconductor.org/packages/release/bioc/html/RCytoscape.html)
has been used to draw the networks (Shannon et al., 2013). Note
that all the scripts are available upon request from the first two
authors.

3. RESULTS AND DISCUSSION

In this section, we present the results obtained using the proposed
approaches using the METABRIC dataset. For such purpose, we
divided the dataset in two parts, training set (T) and testing set
(D) as described in section 3.1 We compared the three screening
procedures (BMD, DAD and DAD+BMD) combined with the
two network Cox regression methods (AdaLnet and ADMM)
with respect to the subset of screened genes (i.e., {xj, j ∈ I}) and
their cardinality d, the potential biomarkers identified (i.e., those

with regression coefficients β̂I 6= 0), and the survival prediction
capabilities. The screened genes and the potential biomarkers
were evaluated on the training set, the latter resulting in a gene
signature able to subdivide patients in high and low risk groups.
The prediction capabilities were evaluated by using Kaplan-Maier
curves and log-rank tests on the testing set. After that the list of
potential biomarkers underwent to a pathway analysis in order
to provide a biological interpretation of the results and illustrate
the relationship with already available biological information. In
discussing the results, we first show those obtained by analyzing
only mRNA expression data, then we show the improvement
observed by integrating mRNAs and CNAs using MANCIE
as described in section 2.5. Overall our results show that the
BMD+DAD-screening is better than BMD or DAD in terms
of predictive power (i.e., smaller p-value for the log-rank test
on the testing set) for breast cancer survival patients and also
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allows to identify as potential biomarkers few genes that the
BMD screening ignores. Moreover, we also demonstrate that
integrating two omic data types improves the predictions.

In the following, AdaLnet method is referred as Coxnet and
ADMM is referred as ADMMnet, according to the R packages
where they are implemented.

3.1. Data Availability
We used METABRIC data to evaluate the performance of our
screening-network approach. This dataset contains clinical traits,
mRNA expression data, CNAs profiles, and SNP genotypes
derived from 1980 breast cancer samples (patients) (Curtis et al.,
2012). In particular in our comparison, we use mRNA expression
data downloaded from The European Genome phenome Archive
(EGA) with number EGAS00000000083 and the copy number
aberrations (CNAs) available on cBioPortal for Cancer Genomics
(http://www.cbioportal.org/). The mRNAs data consist in a
matrix containing 48,803 Illumina expression probes measured
on the Illumina HT-12 v3 platform. The CNAs matrix is coded
using value −2 to indicate homozygous deletion; value −1 to
represent the hemizygous deletion; value 0 meaning neutral/no
change; value 1 showing the gain; value 2 for high level of
amplification. Both the matrices are normalized as discussed
in Curtis et al. (2012). By using these data, we conducted two
types of analysis based on (i) mRNA expression data and (ii)
integration mRNA and CNAs.

As a first step, we divided the patients in two subsets: a
training set T (997 samples) and testing set D (995 samples).
When performing the analysis using only the mRNA expression
data a total of 19,151 genes was retrieved from 48,803 Illumina
expression probes by using a bioconductor annotation data
package (Dunning et al., 2015). When performing the analysis
integrating mRNA and CNAs information a total of 18,006
genes (containing both mRNA and CNAs information) was
considered from 26,298 copy number features summarized at
the gene level. A summary of METABRIC dataset is shown in
Table 1.

Finally, the overall survival (OS) data related to the 1980
patients (long-term follow-up data) were downloaded from
cBioPortal for Cancer Genomics (Q1 = 60.78 months, Median =
Q2= 116.10 months, Q3 = 184.90 months). In particular, the OS-
status indicator was divided in died of disease (deceased=1), living
(censored=0) and died of other causes (censored=0), respectively
(Gao et al., 2013).

TABLE 1 | METABRIC dataset summary: mRNA expression dataset and the

integration of mRNA data CNAs profiles (mRNA+CNAs).

Omics data Training set (T) Testing set (D)

Sample # Genes Sample # Genes

mRNA 997 19,151 995 19,151

mRNA+CNAs 997 18,006 995 18,006

For each case, the samples are divided into two subsets: training set T e testing set D,

respectively.

3.2. Screening-Network Analysis
First, we describes the results obtained using the BMD-screening.
In order to select {xj, j ∈ IBMD} we used HEFalMp tool
(http://hefalmp.princeton.edu/hefalmp) and we selected only
those genes that in the HEFalMp tool have p-value < 0.05
for breast cancer association. In particular, the BMD-screening
selected a total of dBMD = 528 genes when using mRNA
expression data and dBMD = 526 genes when integrating mRNA
and CNAs data (see, Table S1 for the screened gene lists). Such
subsets of genes reflect the bio-medical knowledge about breast
cancer markers available from previous studies. HEFalMp was
also used to build the gene network to be used in the network-
penalized Cox regression method. Then, the network-based Cox
regression methods applied on the training dataset, T, allowed
us to select high-risk genes or potential biomarkers (i.e., those

with regression coefficients β̂IBMD
6= 0). We denoted this gene

signature as BMD-genes (see Table 2 and Table S2). BMD-genes
were used to compute the prognostic index of each patient and
to classify them in low and high risk groups. An optimal cut-
off for the prognostic index was estimated for such purpose.
The significance of the BMD-gene lists was evaluated on the
testing dataset, D, in terms of p-values of the log-rank test
were novel patients were divided in low and high risk groups
according to their prognostic index. Figure 2 shows the Kaplan-
Meier survival curves on the testing set D for each combination
between the BMD-screening and the network-penalized Cox
regression methods, by using only mRNA expression data and
the integration between mRNA and CNA profiles, respectively.
Figures 2A,B refer to Coxnet and Figures 2C,D to ADMMnet.
Table 2 shows additional results of our procedure in terms of
identified markers in the training set T and log-rank test p-value
obtained from the testing set D. Overall such results confirm
those obtained in Iuliano et al. (2016) on an independent datasets.
Moreover, they also show that the integration (mRNA+CNA
data) of two omic types provides a better prediction of patient
survival (i.e., better separation in terms of p-value) than the use
of a single omic layer (mRNA expression data), thus extending
the results of previous work.

To better understand the BMD-genes signature obtained
using mRNA and/or mRNA+CNAs data, we show the heatmap
of the gene expression. In particular, we ordered the patients with
respect to the prognostic index PI and divide them in two risk
classes (i.e., low-risk and high risk) using the optimal cut-off PI∗,

TABLE 2 | Number of BMD-genes selected by using the combination of

BMD-screening and network-penalized Cox methods (Coxnet and ADMMnet)

with regression coefficients β̂IBMD
6= 0 on the training set T.

Omics data Methods # BMD-genes p-value α λ

mRNA Coxnet 38 1.6e-05 0.5 0.07934

ADMMnet 43 8.12e-06 0.5 0.07695

mRNA+CNAs Coxnet 24 1.09e-07 0.5 0.09338

ADMMnet 19 3.3e-08 0.5 0.10170

The tuning parameters (λIBMD
,αIBMD

) and the relative p-values obtained from the testing

set D are also shown.
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FIGURE 2 | Kaplan-Meier plots obtained using mRNA data (left) and the integration of mRNA and CNAs profiles (right). The results refer to the testing set D. For each

case, patients were divided into two groups according to the prognostic index by using BMD-genes with Coxnet (A,B) and ADMMnet (C,D). We use the color blue to

indicate the high-risk group and the color red to show the low-risk group. The p-value is also calculated applying the log-rank test on testing set. The high-risk group

is better separated from the low-risk group by using the integration of mRNA expression data and CNAs profiles (right), compared with using the single omics data

(left). The X-axis represents time and the Y-axis represents survival rate.

as described in section 2.4. Figure S1 shows the Z-score matrix
of the BMD-genes expression in the training (T) and testing (D)
sets, respectively and Figure S2 shows similar heatmaps for the
Z-score matrix of the adjusted BMD-genes expression. In each
figure, the first row refers to the BMD-genes signature obtained
using Coxnet, the second row using ADMMnet.

By inspecting the heatmaps in Figure S1, we identified two
groups of genes (e.g., PPDZK1, LRP2, PCM1, TMEM26, BCL2,
AFF3) and (e.g., FUT3, FGFR4, CDC7, RRM2, SPC25, PKMYT1,
UBE2C, TROAP). The first group contains genes such that the
lower is their expression the worse is the patient prognosis,
the other group contains genes such that the higher is their
expression the worse is the patient prognosis. There are however
other genes for which the separation of the z-scores in the two
risk groups is less evident, as already noticed also in Ahmad
and Fröhlich (2017). Figure S2 shows similar behavior and group
of genes, reducing the noise in the heatmaps. In this case we
identified the same group of genes and few others of interest.
Among the latter, for AURKA the higher is the expression the
worse is the prognosis, as also shown in Jiang et al. (2010).

Second, we show the results obtained using the DAD-
screening. In this case, to select {xj, j ∈ IDAD} we used
the DAD screening to reduce the dimensionality of the full
dataset from p to dDAD < p, for different thresholds dDAD =
100, 200, . . . , 2, 000. Then, as before, we further reduced the

model size down to d′ < dDAD by fitting a network-based
methods for each fixed threshold dDAD. We called DAD-genes
the high-risk gene signature (i.e., those genes with regression

coefficients β̂IDAD
6= 0). Different choices of the threshold

dDAD = 100, 200, . . . , 2, 000 lead us to slightly different, but
usually overlapping, DAD-gene lists. As before, the significance
of the DAD-gene lists were assessed on the testing dataset, D.
From our analysis we observed that the log-rank test p-values
were able to separate the high and low risk group of patients with
a significance lower than 0.01 only for some range of thresholds.
As expected, log-rank p-value associated to the DAD-genes are
not as strong as the corresponding p-values associated to the
BMD-genes, suggesting that DAD-screening is not competitive
in terms of prediction power with respect to the BMD-screening.
Therefore, the information available from the literature should
not be neglected and DAD-screening should be used to find
potential candidate biomarkers and predict survival only when
no other (or very limited) information is available. Anyway,
our results also show that the performance of DAD-screening
improves when two integrated omic types (mRNA+CNAs) are
used instead of the simple gene expression (mRNA) profiles.

Finally, we discuss the results obtained using the BMD+DAD-
screening. In this case, to select {xj, j ∈ IBMD+DAD} we merge the
two above mentioned-screenings {xj, j ∈ IBMD ∪ IDAD} using
different thresholds dDAD = 100, 200, . . . , 2, 000 when adding
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the DAD contribution. Such subsets of genes reflect the bio-
medical knowledge available from previous studies (BMD part)
and also incorporate additional information contained in the
data under analysis (DAD part). Analogously to the previous
cases, we fitted a network-based Cox regression model in order
to further reduce the feature space from dBMD+DAD to d′ and
to select the high-risk genes or potential biomarkers (i.e., genes

with regression coefficients β̂IBMD+DAD
6= 0) . We called this

signature BMD+DAD-genes. As before, the significance of the
BMD+DAD-gene lists was evaluated on the testing dataset, D,
in terms of p-values of the log-rank test for each value of the
threshold.

Moreover, in order to understand the BMD and the
DAD contribution to the BMD+DAD-genes we subdivided the
BMD+DAD-genes in:

a. genes-HEFaIMp-high: BMD+DAD-genes that match the
genes selected by HEFaIMp tool with p-value< 0.05;

b. genes-HEFaIMp-low: BMD+DAD-genes that match the genes
selected by HEFaIMp tool with p-value> 0.05;

c. genes-no-HEFaIMp: BMD+DAD-genes that are not covered
by HEFaIMp tool.

Genes in group (a) are those included in the BMD-screening;
genes in group (b) are presented in HEFaIMp but their evidence
was not sufficiently strong to let them be included in the BMD-
screening. However, our analysis reinforce the evidence that they
could be related to breast cancer. By contrast, genes identified
in group (c) might be important for the process of novel
biomarker discovery since they represent potential biomarkers
not previously identified as associated to breast cancer.

Tables S3, S4 show the results obtained from the
combination of BMD+DAD-screening and network-penalized
methods (Coxnet and ADMMnet) for different thresholds
dDAD = 100, 200, . . . , 2, 000. From these results, we observed that
the log-rank test p-value associated to the BMD+DAD-genes on
the testing dataset is better (i.e., smaller) than the corresponding
p-value obtained using the BMD-genes and DAD-genes in both
cases investigated (mRNA and mRNA+CNAs data). Therefore,
the BMD+DAD-screening outperforms the other two screenings
allowing: (i) better separation between high-and-low-risk groups
and (ii) identification of novel potential biomarkers. Moreover,
our results also confirm that our prediction capability further
improves when two omic layers (mRNA + CNAs) are used
instead of a single omic layer (mRNA). See also Figure S3 for the
combination of BMD+DAD-screening and Coxnet and Figure
S4 for the fusion of BMD+DAD-screening and ADMMnet.

Then, Tables S5, S6 show the list of BMD+DAD-genes
selected from each screening-network approach by using mRNA
expression data and the integration of mRNA and CNAs data,
respectively. Tables S5, S6 also show the number of times each
gene in the signature was selected when changing the threshold
and the network methods. We observed that the BMD+DAD-
genes create a consensus gene-set signature that is quite robust
with respect to the choice of the threshold and can be potentially
highly associated with breast cancer prognosis. In particular,
AFF3,ARVCF,AURKA, BCL2,C17orf78, EXPH5, FEZF2, FGFR4,
FUT3, LRP2, PDZK1, PKMYT1, REL, SPC25, TMEM26, TROAP,

UBE2C were identified by using both mRNA expression data
and mRNA+CNAs data. For these genes the frequency of the
occurrence is equal to 20 corresponding to the number of
threshold used in our analysis. Finally, to further evaluate the
robustness of gene signatures we used Venn diagrams (see
Figure 3). From this figure we observed that the overlaps between
screening and network methods is quite good, although there
are specificities that explain the better performance of one
combination with respect to another. Moreover, Figure 3 also
show that the BMD+DAD-screening selects novel potential
disease risk genes that the simple BMD-screening ignores.

A more comprehensive analysis of these candidate genes is
described out in the following section.

3.3. Pathway Exploration
In order to better understand and interpret the inferred gene
signatures, in this section we report the results of the KEGG
pathways analysis performed on the not-isolated genes in the
signature (as described in section 2.6). To this purpose we
considered the BMD+DAD gene lists identified using Coxnet and
ADMMnet models with both mRNA data and the integration
of mRNA+CNAs to build the final pathway networks reported
in Figures 4, 5. We used such networks to easily visualize the
gene-gene interactions and the KEGG pathways involved in
such interactions. Each node corresponds to a gene and the
edges represent the KEGG pathways shared by the linked genes.
Different colors for nodes have been used to indicate genes-
HEFaIMp-high (orange), genes-HEFaIMp-low (green) or genes-
no-HEFaIMp (purple) as defined in section 3.2. Therefore orange
nodes represent the BMD contribution to the signature and green
and purple nodes the DAD contribution, not yet captured in the
BMD list. Note that some of the genes colored in orange might
be also be retrieved from the data under analysis (as DAD-genes),
however in this context we want to underline and make sense of
the novel information not yet considered.

Figure 4 shows the gene-networks built on the genes
identified by Coxnet and ADMMnet respectively using mRNA
data. From the color of the nodes, we can infer that most of
(but not all) the genes come from the BMD contribution (i.e.,
orange nodes). Hence, confirming that the BMD+DAD screening
allows us to identify few genes that the BMD screening ignores.
Moreover, our analysis allows us to further investigate the KEGG
pathways the involved genes belong to. In particular, a gene
shown in both networks is BCL2, which accordingly to Cotterill
(1999) has already been mentioned in 122 publications showing
its importance in breast cancer. BCL2 functions to prevent
apoptosis and it is a tumor-related gene that has the potential
to further improve individualization of patient management, by
predicting response to chemotherapy, hormonal therapy and
radiotherapy (Joensuu et al., 1994; Hamilton and Piccart, 2000).
In addition, as showed in both the networks in Figure 4, BCL2
is involved in the KEGG focal adhesion pathway together with
MYL12B and ERBB2. Extensive studies relate the KEGG focal
adhesion pathway to breast cancer since it plays critical roles in
integrin-mediated signal transduction and also participates in
signaling by other cell surface receptors. KEGG focal adhesion
pathway is also involved in angiogenesis during embryonic
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FIGURE 3 | Venn diagrams are used to illustrate (A) the intersection of BMD-genes by using Coxnet and ADMMnet with mRNA expression data and the integration of

mRNA data and CNAs profiles; (B) the intersection of BMD+DAD-genes by using Coxnet and ADMMnet with mRNA expression data and the integration of mRNA

data and CNAs profiles; (C) the intersection of BMD-genes and BMD+DAD-genes by using Coxnet with mRNA expression data and the integration of mRNA data and

CNAs profiles; (D) the intersection of BMD-genes and BMD+DAD-genes by using ADMMnet with mRNA expression data and the integration of mRNA data and CNAs

profiles.

development and cancer progression (Parsons, 2003; Cohen
and Guan, 2005). In Zhao and Guan (2011), the authors also
show the role of this pathway in cells migration and metastatic
breast cancer. From the color of the three genes involved in
this pathway (in both the networks in Figure 4), it results that
even if MYL12B is not in the genes-HEFaIMp-high list (the
node color is purple), it can play an important role in breast
cancer. Indeed, MYL12B is involved in the regulation of cell
morphology and recent studies have shown the link between
such gene and cancer progression (Gurda et al., 2015). Another
relevant gene reported in both networks is the fibroblast growth
factor receptor-4 (FGFR4), which has been widely investigated
as one of the major causes of disease progression in estrogen-
and progesterone-receptor-positive tumors and in tumors with

high lymph-node involvement (Jaakkola et al., 1993), confirming
its relationship with breast cancer. Other cancer biomarkers
have been reported in both networks with exactly the same
pathway edges, which underline their important role in the
disease and the accuracy of our algorithm. For example, CDC7
and PKMYT1 belong to the KEGG cell cycle pathways which
is one of the most commonly disrupted pathways in cancer
(Chang et al., 2003; Kastan and Bartek, 2004). Similarly RRM2
and ADCY2 belong to the KEGG purine metabolism pathway
whose disruption is often linked with transformation and
progression of cancer (Weber, 1983; Pedley and Benkovic,
2017). Overall, our results show that from the pathway analysis
of the gene signatures using mRNA data, it is possible to
investigate not only the genes involved in the progression of the
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FIGURE 4 | mRNA expression data: BMD+DAD-screening network using Coxnet (left) and ADMMnet (right) methods with mRNA expression data and the integration

of mRNA data and CNAs profiles. Non isolated genes are represented as nodes in the network, then a link a drawn between two (adjacent) genes when the two

genes belong to the same KEGG pathway. We use different colors for KEGG pathways and three colors to identify the type gene: orange color for

genes-HEFaIMp-high, green color for genes-HEFaIMp-low, purple color for genes-no-HEFaIMp. Triangular-shaped nodes indicate the genes identified in literature as

breast-cancer associated genes. The number of papers is also reported in the triangular nodes.

disease but also the relative pathways which may include novel
biomarkers.

Figure 5 shows the networks corresponding to the genes
identified by Coxnet and ADMMnet respectively using the
integration of mRNA data and CNAs values. The majority of
the nodes identified in those networks are green (i.e., with
p-value > 0.05) which means that by using integrated data
both Cox-methods select an higher number of DAD genes
than before. It is worthy to note that the two networks are
almost identical except for Coxnet that selects one more gene
(OR6YI) from the KEGG olfactory transduction pathway (see
Figure 5, Coxnet). This pathway has a functional role in the
development and/or progression of melanoma and it may
even contribute to tumorigenesis (Ranzani et al., 2017). Both
networks report OR5I1, OR10AD10, and OR8S1 as part of the
KEGG olfactory transduction pathway and they are olfactory
receptors that have been linked with the promotion of cancer
cell invasiveness and metastasis emergence (Sanz et al., 2014).
The KEGG neuroactive ligand receptor interaction pathway has
been identified in all the four networks (Figure 5). However,
a new gene is reported in both the data integration networks
that was not reported in the mRNA network, i.e., GLRA1. Such
gene has been mentioned in several cancer studies as involved
in cancer development (Murakami and Hirano, 2008; Kreisler
et al., 2010). Two new pathways have been identified by using
the integrated data: KEGG cytokine cytokine receptor interaction
pathway and KEGG mapk signaling pathway. Both pathways are
essential for cancer-immune evasion inmelanoma cells since they
regulate a variety of cellular activities including proliferation,
differentiation, survival, and death (Lin and Karin, 2007; Kim and
Choi, 2010).

In conclusion, we can confirm that by using either mRNA
data or the integration of mRNA data and CNAs values, our
algorithm is able to identify genes already known to be associated
with breast cancer as well as new potential candidate markers
and disrupted pathways. As a consequence, either methods can
be used for the analysis of cancer pathways depending on the
availability of the biological information about the disease under
investigation.

3.4. Further Analysis of Potential Breast
Cancer Biomarkers
In order to further exploit the relevance of the potential novel
biomarkers we have identified with our analysis, we present a
gene enrichment integrating somatic mutation using the genes-
HEFaIMp-low and no-genes-HEFaIMp lists. Our aim is to better
understand the biological relevance and make sense of the
genes that were ignored when using the BMD-screening, but
were found significant using the BMD+DAD-screening. More
precisely, we match the two sublists of BMD+DAD-genes with
the Catalog Of Somatic Mutations In Cancer COSMIC (Forbes
et al., 2010).

Exploring this additional source of information, some high-
risk mutated genes (variant type-missense mutations) in breast
cancer are retrieved. Among genes-HEFaIMp-low, an interesting
protein coding gene is EXPH5 (Exophilin 5). This protein has
been identified as an important prognostic gene for breast cancer.
In particular, this gene is connected to the missense variant
(GAG→GTG) which is associated with differential methylation,
gene expression, and survival of TCGA breast cancer patients
(Shilpi et al., 2017). Another important protein coding gene
is FGFR4 (Fibroblast Growth Factor Receptor 4) which is an
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FIGURE 5 | Integration of mRNA data and CNAs profiles:

BMD+DAD-screening network using Coxnet (top) and ADMMnet (bottom)

methods with mRNA expression data and the integration of mRNA data and

CNAs profiles. Non isolated genes are represented as nodes in the network,

then a link a drawn between two (adjacent) genes when the two genes belong

to the same KEGG pathway. We use different colors for KEGG pathways and

three colors to identify the type gene: orange color for genes-HEFaIMp-high,

green color for genes-HEFaIMp-low, purple color for genes-no-HEFaIMp.

Triangular-shaped nodes indicate the genes identified in literature as

breast-cancer associated genes. The number of papers is also reported in the

triangular nodes.

essential kinase critical for the proliferation and survival of basal-
like breast cancer cells. In particular, this gene mediates cancer
cell survival via the activation of PI3K/AKT signaling. Moreover,
FGFR4 and FGF19 autocrine signaling may serve as a novel
potential therapeutic target for the treatment of refractory basal-
like breast cancers (Tiong et al., 2016). GLP1R (Glucagon Like
Peptide 1 Receptor) is a further protein coding gene expressed
in human breast cancer tissue. In particular, the activation of
GLP1R attenuates breast cancer cells proliferation by inhibiting
NF-κB activation and target gene expression (Hirata et al., 2013).
Moreover, the protein coding gene MSX2 (Msh Homeobox 2) is
also implicated in breast cancer. It is an important regulator of
melanoma cell invasion and survival. Its cytoplasmic expression
was identified as prognostic biomarker in malignant melanoma
patients (Gremel et al., 2011). Finally, the protein coding gene
TMEM26 (Transmembrane Protein 26) is another important
gene expressed in ERα-positive and -negative breast cancer cell
lines. In particular, patients who received aromatase inhibitor
treatment tend to have a higher risk of recurrence when the
expression of TMEM26 is low. Moreover, TMEM26 negatively
regulates the expression of integrin β1, which is an important

factor involved in endocrine resistance (Nass et al., 2016). Among
no-genes-HEFaIMp, an important protein coding gene is ACTL9
(Actin Like 9). An important paralog of this gene is ACTL7A
which is implicated in diverse cellular processes, including
vesicular transport, spindle orientation, nuclear migration, and
chromatin remodeling. In particular, this gene is involved in a
risk locus for breast cancer at 9q31.2 (chromosomal position) that
provide evidence of an association between variants mapping to
6q25.1 (chromosomal position) and breast cancer risk in subjects
of European ancestry (Fletcher et al., 2011). Another important
protein coding gene is MYL12B (Myosin Light Chain 12B).
Myosin regulatory subunit plays an important role in regulation
of both smoothmuscle and nonmuscle cell contractile activity via
its phosphorylation and it is implicated in cytokinesis, receptor
capping, and cell locomotion. In particular, it is predominantly
expressed in Triple-Negative Breast Cancer (Ziegler et al., 2014).
Among its related pathways there are the Semaphorin interactions
and Focal Adhesion pathways. An important paralog of this
gene is MYL12A. The protein coding gene SLC22A25 is also
detected by COSMIC. This gene has been identified as hub gene
into the mechanisms of gene regulation during breast cancer
(Emmert-Streib et al., 2014). An important paralog of this gene
is SLC22A9.

4. CONCLUSIONS

In this work, we combine variable screening procedures and
network-penalized Cox models for high-dimensional survival
data aimed to reduce the size of initial dataset to a moderate size
and to determine pathway structures and potential biomarkers
involved in cancer progression. By using these approaches, it
is possible to obtain a deeper insight of the gene-regulatory
networks and investigate the gene signatures related to the
breast cancer survival time in order to understand how patient
molecular features can influence survival in cancer. Breast cancer
is used as illustrative example, however the proposed methods
can be used for different types of cancers.

We illustrate the capabilities of our approaches to predict
patient survival using METABRIC dataset. First we used one
out of three different screenings methods: biomedical driven
screening, data-driven screening and a combination of the
two. Then, using the biological network, as prior information
network, we performed network-based Cox model to identify
specific signatures of genes and the corresponding pathways
associated to breast cancer prognosis. Finally we used Kaplan-
Meier curve and log-rank test to validate the goodness of
the prediction. Hence, while the screening methods recruit
the features with the best marginal utility to reduce the
dimensionality of the data, the network incorporates the pathway
information used as a prior knowledge network into the survival
analysis. Overall, we can conclude that (i) the BMD-screening
confirms previous results on independent dataset (Iuliano et al.,
2016); (ii) the DAD-screening shows good performance in
absence of any previous information but it is sub optimal with
respect to the BMD-screening; (iii) the BMD+DAD-screening
allows to discover novel potential biomarkers for breast cancer
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that are disregarded by the BMD-screening and improve the
BMD-screening in terms of prediction capabilities. Moreover,
we also illustrate how to extend the proposed methodologies,
initially sought for gene expression data, to the case when two
omic data types are available on the same set of patients. In
particular, we compared the results obtained by our procedures
using only mRNA expression values with those obtained by
integrating mRNAs and CNAs. From our results, we can
conclude that the use of two omic layers always outperforms the
results obtained with a single omic.

Finally, we investigated the potential relevance of the
BMD+DAD-genes we have detected. Our results show that they
are often connected known cancer genes and are significantly
enriched in biological processes and pathways that are involved
in breast cancer, or annotated in cancer mutations databases
such as COSMIC. Although this computational analysis does
not guarantee that such genes can be considered biomarkers,
they make sense of biological processes involved in breast cancer
progression and provide a strong suggestion toward the need of
future studies for their biological validation.

It is clear that the proposed procedures can be applied to
different cancer types to obtain a more accurate investigation of
the development and progression of the disease. In fact, from
one hand breast cancer represents one of the types of cancer for
which there is a wide knowledge accumulated in the literature.
Nevertheless, the BMD+DAD-screening shows that there is still
space for improvements and for novel discoveries. On the other
hand, the information available for some types of cancers might
not be so accurate. Therefore, methods such as DAD-screening
might be useful to provide a good level of analysis.

The results obtained in this work open interesting scenarios
for future developments. First, we have shown that the use
of two omic layers improves prediction capabilities, therefore
the integration of data from multiple omics (e.g., structural
variations, methylation or other epigenetic markers and/or
metabolomics) into the screening procedure could also provide
a more accurate investigation and prevent the limitations of
current methods. The possibility of combine together different
types of omics or other co-data is expected to further improve
the results. Second, in order to support clinicians with a more
concrete and biomedical perspective, the proposed procedures
should be further extended in order to include also clinical and

therapeutical information for each patients. Such information
will allow to better stratify the patients in a study and can
provide a better characterization of the diseases. Unfortunately,
to this regard we note that standard network methods such as
Coxnet and ADMMnet do not include procedures for patients
stratification in current implementation. This limitation has to
be addressed in future works. Third, in order to facilitate the use
of the proposed methodology for the analysis of different cancer
datasets, it is necessary to implement an interactive user-friendly
interface where all preprocessing and normalization steps, as well
as the those described in Algorithm 1 can be carried out in terms
of a easy point-and-click approach.
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