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Abstract— This paper presents an autonomous robot-to-robot
object handover in the presence of uncertainties and in the
absence of explicit communication. Both the giver and receiver
robots are equipped with an eye-in-hand depth camera. The
object to handle is roughly positioned in the field of view of
the giver robot’s camera and a deep learning based approach
is adopted for detecting the object. The physical exchange is
performed by recurring to an estimate of the contact forces
and an impedance control, which allows the receiver robot
to perceive the presence of the object and the giver one to
recognize that the handover is complete. Experimental results,
conducted on a couple of collaborative 7 DoF manipulators in a
partially structured environment, demonstrate the effectiveness
of the proposed approach.

I. INTRODUCTION

The fourth industrial revolution, often referred to as Indus-
try 4.0, is focused on a next generation smart factories with
highly flexible and reconfigurable facilities, characterized
by more autonomous, safe, and effective robotic systems.
Thus, robots are required to cope with complex tasks in
unstructured environments by leveraging on learning capabil-
ities. The object handover is a typical industrial task involv-
ing cooperative robots, e.g. in logistic applications, where
robots are widely adopted in picking operations. Nowa-
days, collaborative robots are often used in handover with
humans [1], and, in quasi-autonomous production plants,
even with robots, e.g., a logistic robot and an assembler
one. Object handover can be partitioned in two phases, the
pre-handover and the physical exchange phase. The pre-
handover phase includes the object detection, in which the
giver must recognize the presence of the object to hand
over in its workspace, the object grasping, the transportation
and the synchronization, i.e., finding an agreement about the
exchange location and timing [2]. In recent years, interest
in object detection has burst due to the rapid development
of deep learning techniques [3], largely applied to robot
vision. One of the most common deep neural networks is the
Convolutional Neural Network (CNN), that represent the best
trade-off among accuracy and the detection speed. Regarding
the synchronization phase, it can require the giver robot to
explicitly or implicitly communicate to the receiver. Explicit
communication implies to share both sensory data and con-
trol signals among the robots, while implicit communication
occurs when information is acquired only by sensors attached
on the robot, e.g. via a force/torque sensor measuring the
interaction forces, tactile sensors and/or visual sensors [4].
Explicit communication has largely been adopted for cooper-
ative robots, since it allows to easily handle synchronization
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Fig. 1. Experimental setup. Two Panda Emika Franka robots equipped
with depth cameras are used for handing over a shaft.

issues. However, in the presence of many and heterogeneous
agents, the communication network complexity and load can
increase. Even in an industrial scenario with only few ma-
nipulators involved, the communication channel, due to other
devices connected, can experience packet loss and delays,
which are detrimental to performance and can even cause
production scraps. The use of an implicit communication,
even if the control scheme becomes usually more complex
and the performance worse, improves the flexibility and the
scalability of the system.

The physical exchange phase starts at the instant of the first
contact between the receiver robot and the object grasped by
the giver robot and ends when the giver fully releases the
object to the receiver [1]. The physical exchange requires
cooperation among the giver and receiver robots, thus vision
and force feedback can be adopted by the giver in order to
understand if the receiver has grasped the object. Only when
the grasping is safe the giver can start to release the object
and allow the transition to the receiver.

In this paper, a fully autonomous cooperative robotic
object handover strategy, able to cope with large errors
on the object pose and without explicit communication, is
presented. The focus is both on the object detection and on
grip force modulation during the transition from the giver
to the receiver. The object detection phase is handled by
using a learning approach, in particular two different CNNs
have been trained and compared on the same training and
test data. Regarding the physical exchange phase, both visual
sensors and a force estimator based on joint torque sensors
are adopted in order to detect the exchange point and to
modulate the grip force. More in detail, the first contact
of the receiver with the object is detected by resorting to
the force estimator, while the giver opens the gripper when
the estimated force exerted by the receiver reaches a certain
threshold. The proposed approach has been experimentally
validated by considering two collaborative robot manipula-
tors Franka Emika Panda, both equipped with a camera in
eye-in-hand configuration. The camera on the giver robot
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Fig. 2. Functional scheme. 1) Object detection phase. 2) Estimation of the grasping point. 3) Object grasping and motion to the exchange point. 4)
Detection of the giver at the exchange position. 5) Object grasped by the receiver. 6) Object released by the giver.

is an Intel Realsense D435, while the one mounted on the
receiver robot is an Intel Realsense L515 (see Fig. 1).

II. RELATED WORK

The object detection phase concerns finding instances
of objects of interest in a image and locating them with
bounding boxes [3]. At the beginning of the last decade,
Convolutional Neural Networks (CNNs) were firstly applied
to object detection [5] and their use was boosted with the
introduction of the Region-based CNNs (R-CNNs) [6]. A R-
CNN is a two-stage detector: in the first stage a set of object
proposals (object candidate boxes) is extracted, then, in the
second stage, each proposal is fed to a CNN model to extract
features and a classifier is used to detect the object and
identify its class. The major drawback of R-CNN is the slow
detection speed due to the redundant feature computations on
the overlapped object proposals.

Faster R-CNN [7] was the first near-realtime deep learning
detector thanks to the introduction of the Region Proposal
Network (RPN), which enables nearly cost-free region pro-
posals. Even if Faster R-CNN overcame most of the prob-
lems of R-CNN, a further improvement has been achieved
with the first one-stage detector, named You Only Look
Once (YOLO) [8]. Unlike Faster R-CNN, YOLO partitions
the image into regions and predicts bounding boxes and
probabilities for each region at the same time. The first
version of YOLO was characterized by a lower localization
accuracy compared with two-stage detectors. However, the
new versions of YOLO present an improved detection accu-
racy still keeping a high detection speed [9].

Regarding the object handover, during the physical ex-
change phase, the object load is shared by the giver and the
receiver and they must guarantee the object safety. Different
studies have been conducted for the force exchanged by
humans during handover operations. For example, in [10]
it is found that the grip force of both giver and receiver
is modulated during the object exchange, i.e., while the
giver decreases its force, the receiver increases it until the
load is transferred. Then, after the unloading the giver still
applies a grasping force even though its sensed load is almost
zero [11]. These results can be also applied to robot-to-
robot handovers, where techniques for grip force modulation
must be proposed. In [12], the sole communication mean

between the two agents is provided by custom force/tactile
sensors measuring the interaction force and moment. In their
approach, the giver adopts a slipping detection algorithm
that allows to foresee the possibility that the receiver cannot
keep the object orientation and thus dangerous releases are
avoided.

III. PROPOSED STRATEGY

The considered task is the autonomous robot-to-robot ob-
ject handover, in the absence of any explicit communication.
The manipulated objects are a couple of counter-rotating
shafts of different lengths and shapes. It is assumed that
the objects are placed in a box roughly positioned in the
field of view of the giver’s camera. Due to the position
uncertainties, the robot motion cannot be offline planned and
a vision system is adopted in order to detect the presence,
identify the class, and compute the pose of the objects.

The following strategy (shown in Fig. 2) is proposed:

1) When the box containing the objects is completely in
the camera field of view of the giver robot, a CNN
detects the presence, the orientation and the type of the
shafts. The CNN recognizes also the roller bearings,
that are used to determine the shaft axes and estimate
the grasping pose.

2) The position of the grasping point is estimated by
computing the center of the roller bearing bounding
boxes and the shaft axis.

3) The giver grasps the shaft and moves it to the exchange
point, assumed within the field of view of the receiver’s
camera.

4) The receiver robot recognizes, by using an eye-in-hand
camera and a marker attached to the giver gripper, the
giver pose and, thus, the object exchange point.

5) The receiver aligns its gripper to the shaft axis and
moves toward the object until a contact is detected,
then it closes the gripper.

6) The receiver moves the grasped shaft while the giver
compliantly follows its motion. When the force exerted
on the giver exceeds a threshold, the gripper is open
and the shaft is released.

IV. SHAFT DETECTION

To carry out the shaft detector, two CNN-based ap-
proaches, namely Faster R-CNN and YOLOv4, have been
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investigated to compare their performance and select the best
architecture.

A. Faster R-CNN

Faster R-CNN [7] is composed by two modules:

1) The Regional Proposal Network (RPN), which is a
CNN that outputs the region proposals with the highest
probability of object presence.

2) The Fast R-CNN detector. The regions generated by
the RPN are fed to the Fast R-CNN detector in order
to refine them and to determine the class membership
of the object.

In this work, the Inception v21 model has been used since,
thanks to the use of 1×1 convolution, the Inception network
generates a reduced model size, which, in turn, can help to
reduce the overfitting problem.

B. YOLOv4

YOLO [8] is a popular object detector based on Darknet,
which is an open source neural network framework written in
C and CUDA. The main feature of YOLO is its capability of
making predictions considering object detection as a single
regression problem. YOLOv4 is the latest Darknet based
implementation currently available (February 2021) and it
improves the previous YOLOv3’s average precision of about
10%. YOLOv4 [9] consists of:

1) Backbone: CSPDarknet53 [13], which augments the
learning capacity of CNN;

2) Neck: Spatial Pyramid Pooling additional module [14],
PANet path-aggregation [15];

3) Head: YOLOv3 [16].

C. Dataset and Training

In the considered application, three object classes have
been defined (see Fig. 3(a)):

• Counter-rotating shaft exhaust (CSE);
• Counter-rotating shaft intake (CSI);
• Roller bearing (RB).

Detecting CSE and CSI is useful to identify the shaft’s
type, while RB is used to determine the shaft axes and
estimate the grasping point. A dataset made of 342 images,
of size 640×480, has been built by considering two shafts,
captured at different distances and with different orientation
and background (see Fig. 3(b)).

The dataset has been manually annotated (using the Labe-
lImg tool) and then split in two non-overlapping sets, namely
the training (245 images) and test (97 images) sets. A data
augmentation step has been carried out to create a larger
training set. In particular, for each image, horizontal flipping,
cropping, and zooming have been performed. The augmented
training dataset, made of 980 images, has been used to train
both the Faster R-CNN and YOLOv4 networks.

The annotated training and test data can be down-
loaded at the following URL: https://tinyurl.com/
36rjp2qy

An Intel Xeon 3.7 GHz CPU 32 GB RAM with a NVIDIA
Quadro P4000 8GB GPU has been used to carry out the
training phase, which required about 8 hours for the Faster
R-CNN and 14 hours for the YOLOv4.

1https://github.com/Khaivdo/How-to-train-an-Object-Detector-using-
Tensorflow-API-on-Ubuntu-16.04-GPU

Fig. 3. Our image dataset. a) Object classes of interest. b) Samples with
different orientation and background).

D. Detection Results

To evaluate the detection performance, the mean average
precision (mAP) metric has been considered [17]. The Av-
erage Precision (AP) for each class represents the integral
of the precision-recall curve, measured for a certain value
of the Intersection over Union (IoU). The Intersection over
Union measures the overlap between the predicted bounding
box and the labelled one. The mAP is the AP averaged over
all classes. Table I shows detection results on the test set for
a value of IoU of 0.5.

The detector is implemented in C++ and it runs on
640×480 images coming from the sensor mounted on the
end-effector of the giver robot via the librealsense2

library. The detection process takes on GPU an average time
per image of 58 ms for the Faster R-CNN and 44 ms for
the YOLOv4. On the basis of these results and performance,
the YOLOv4 architecture has been chosen to implement the
shaft detector.

TABLE I

AVERAGE PRECISION FOR IOU VALUE OF 0.5

Network Architecture CSE CSI RB mAP

YOLOv4 0.952 0.966 1.000 0.973

Faster R-CNN 0.928 0.855 1.000 0.914

V. ESTIMATION OF THE GRASPING POINT

Once the shaft has been detected in the image, it is
necessary to compute the position of the grasping point
and the shaft orientation (see Fig. 4). The latter is crucial
to compute the gripper orientation since the shaft must be
grasped by the receiver always from the cogwheel. In order to
identify the orientation, the distance, δ (see Fig. 4), between
the top-left corner of the CSI bounding box and the edge of
the left RB bounding box has been computed.

It is assumed that, for both the shafts, a suitable grasping
point should be located along the longitudinal axis. More in
detail, the best grasping point for the CSE is equidistant
from the center of the two roller bearings, while for the
CSI, it is closer to the cogwheel. A two step procedure
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Fig. 4. Two possible configurations of the shafts. The distance δ is
computed in order to detect the shaft orientation.

Fig. 5. Shafts axes and grasping points: actual ones in blue and estimated
ones in red.

is used to estimate the position of the grasping points: 1)
the shaft axis is estimated by connecting the centers of the
two RB bounding boxes, 2) the grasping point is computed
along this axis (see Fig. 5). It is worth noticing that, due
to possible variations in the detected bounding boxes size,
the grasping point estimation could be not perfect. However,
such uncertainties will be managed in the physical exchange
phase by ensuring a suitable compliance to the robots.

The grasping point is detected in the image frame and,
in order to perform the grasp, must be transformed in a 3D
reference position, expressed in the robot base frame. To
this aim, the RGB camera has been calibrated with a Direct-
Linear-Transformation (DLT) method [18] using a 3D target.

VI. SHAFT HANDOVER

Once the grasping point position and the shaft orientation
have been detected, the giver robot can be commanded to
grasp the shaft in such a way to align the xe axis of its
end-effector reference frame (see Fig. 6) with the shaft axis,
and move it to the exchange point. The motion is performed
by using a closed-loop inverse kinematics algorithm [19].
The exchange point is off-line planned on the basis of work-
cell configuration in such a way the marker attached on the
giver’s gripper is in the field of view of the receiver’s camera.
It is worth noticing that the planned point is related to the
end-effector reference frame, while the shaft tip position is
unknown, due to the uncertainties of the grasping point esti-
mation and the different length of the two shafts. Moreover,
due to the absence of communications, the exchange point is

Fig. 6. Reference frames for the robots’ end-effectors.

unknown to the receiver, thus its motion cannot be planned
off-line and performed via a pure positional control.

The receiver needs an exteroceptive sensor to detect the
presence of the shaft and to align its gripper to the shaft
axis. To this aim, it is equipped with a Intel Realsense
L515 camera, while an Aruco marker [20] is positioned on
the giver robot (Fig. 7). In order to avoid collisions, the
receiver can start its motion only when the giver reaches the
exchange point. Therefore, the camera detects the position
of the center of the marker, by using the OpenCV library,
in two consecutive frames: if the difference between the
detected positions is below a certain threshold for at least 0.5
s, the robot assumes that the giver has reached the exchange
position and starts its motion. Firstly, the receiver aligns
the xe and ye axis of its end-effector reference frame (see
Fig. 6) to the marker frame, then, since the shaft position
with respect to the marker is fixed and assumed known,
moves the end-effector in order to align the ze axis with
the shaft axis. Finally, it moves along the shaft axis and
stops when a contact is detected. Since wrist mounted force-
torque sensors are not present on the Franka Emika Panda
robots, the contact detection is provided by a momentum-
based observer [21].

A. Contact estimation

The wrench acting on the end-effector is estimated via an
observer, based on the generalized momentum

ν = M(q)q̇ , (1)

where M(q) is the robot inertia matrix and q (q̇) is the
vector of joint positions (velocities). By exploiting the robot
dynamic model and the property of the inertia matrix [19]

Ṁ(q) = C(q, q̇) +CT(q, q̇), (2)

where C(q, q̇) is the matrix collecting the Coriolis and
centrifugal terms, the time-derivative of (1) can be expressed
as

ν̇ = CT(q, q̇)q̇ − g(q)− F (q)q̇ + τ + τ e, (3)

where g(q) is the vector of gravity terms, F (q) is the matrix
of the viscous friction terms, τ is the vector of joint torques
and τ e are the torques induced at the joints by the contact
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Fig. 7. Marker detection performed by the receiver robot to detect the
presence of the giver one.

wrench h. An estimate of τ e can be computed as

τ̂ e=Ko

[

(ν(t)− ν(t0)) + (4)

−

∫ t

t0

(CT(q, q̇)q̇ − F q̇ − g(q) + τ + τ̂ e)dς

]

,

where t and t0 are the current and initial time instant respec-
tively, and Ko ∈ IRn×n is a positive definite gain matrix. In
(4), the dynamic parameters identified for the Franka Emika
Panda in [22] have been used, suitably modified to take into
consideration the contribution to the inertia and gravity terms
of the gripper and, only for the giver robot, of the shafts. The
estimation dynamics can be easily derived as

˙̂τ e +Koτ̂ e = Koτ e, (5)

which is a first-order low-pass dynamic system. Under the
assumption of constant or slowly variant contact wrench,
τ̂ e → τ e when t → ∞ for any positive definite gain
matrix Ko. Finally, an estimate of the external wrench can
be obtained as [23]

ĥ = J†T(q)τ̂ e, (6)

where J† is the right pseudo-inverse of the robot Jacobian
matrix. Finally, in order to suppress non-existent small force
and torque estimations owing to unmodeled dynamics and
sensor noise, a dead zone has been implemented, i.e., any
value of force component below 3 N and any value of
moment below 1 Nm estimated by the observer are neglected.
Moreover, to achieve a continuous wrench signal, the same
thresholds have been subtracted from higher estimations.

B. Physical exchange phase

During the physical exchange phase, different behaviors
for the giver and the receiver are required. When the receiver
hits the object, a force along the shaft axis is perceived by
both robots. In this phase, in order to successfully perform
the handover, the giver has to keep constant its position
and orientation, crucial to make possible the grasping of
the receiver, while the receiver must be compliant enough
to avoid large contact forces and mechanical stresses on the
shaft. Then, after the receiver grasps the object, it moves
upward and the giver has to compliantly follow it.

To enforce the desired behaviors to the robots, an admit-
tance control [24] has been implemented.

By defining the planned trajectory as xd = [pd, φd]
T,

where pd and φd are the planned position and orientation,
expressed in Euler angles, of the end-effector, a reference
trajectory xr = [pr, φr]

T, to be fed to the low-level motion
controller, can be computed via the following

Ma∆ẍe +Da∆ẋe +Ka∆xe = STT

A (φ)ĥ
e
, (7)

where Ma, Da and Ka are, respectively, the virtual inertia,
damping and stiffness matrices imposed to the end-effector,

ĥ
e

is the estimated contact wrench (6) expressed in the end-
effector frame. ∆xe is the difference between the desired
and reference pose expressed in the end-effector frame, i.e.

∆xe =

[

pe
d − pe

r

φdr

]

=

[

RT

e (pd − pr)
φdr

]

, (8)

where Re is the rotation matrix expressing the orientation of
the end-effector in the robot base frame, and φdr is the vector

of Euler angles extracted from the matrix RT

dRr, where Rd

and Rr are the rotation matrices expressing the planned and

reference orientation, respectively. The matrix TT

A (φ) in (7)
is defined as

TT

A (φ) =

[

I3 O3

O3 T (φ)

]

,

where T (φ) is the matrix that maps the time derivative of
the Euler angles φ of the end-effector to the angular velocity
[19], I3 and O3 are the 3×3 identity and null matrices,
respectively. Finally, S is a (6×6) diagonal selection matrix
of ones and zeros, whose (i, i) element is 0 (1) if the robot
must be rigid (compliant) with respect to the i-th component

of the wrench ĥ
e
. For the receiver robot, the matrix S has

been set as Sr = I6, while, for the giver, in order to enforce
the above described behavior, it has been set as a matrix with
all zeros except for the element (1,1) given by

Sg(1, 1) =
1− sgn(f̂e

g,x)

2
, (9)

where sgn(·) is the sign function and f̂e
g,x is the estimated

force acting on the giver end-effector along the axis xe

expressed in the robot end-effector frame. In other words,
such a condition means that the giver robot is commanded
to be compliant with respect to force along the axis −xe and
rigid with respect to other forces and moments (see Fig. 6).

The other matrices in (7) have been set as Ma =
diag{15I3, 0.5I3}, Da = diag{30I3, I3} and Ka =
diag{45I3, 1.5I3}.

Fig. 8 reports the estimated forces acting on the two robots
along the shaft axis. In detail, the receiver detects the first

contact when the force f̂r,z , i.e. the estimated force acting
on the receiver end-effector along the axis ze, overcomes a
threshold, fr,th, that has been set as −1 N (see Fig. 8(b)).
Once the contact is detected, the receiver closes the gripper
and starts to move compliantly followed by the giver robot.

During this phase, a force along the shaft axis, f̂g,x, is ex-
perienced on the giver’s end-effector (Fig. 8(a)), it decreases
until the threshold fg,th = −3 N is reached. At the same

time, the force f̂r,z increases until reaching the gravitational
force due to the shaft’s mass (Fig. 8(b)). Once the threshold
is reached, the giver opens the gripper and the object is fully
released to the receiver. A video of the whole task can be
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(b)

Fig. 8. Estimated contact forces along the shaft axis: (a) force f̂e
g,x acting

on giver robot, (b) force f̂e
r,z acting on receiver robot. Vertical dashed lines

delimit the physical exchange phase. Horizontal dashed red lines represent
the thresholds.

found at: https://youtu.be/bLfm3qG2ooE.
The results for the CSE handover are not reported for the

sake of brevity, since they are analogous to those showed
above.

VII. CONCLUSIONS

An approach for achieving autonomous execution of robot-
to-robot object handover task has been developed and exper-
imentally validated in a partially structured environment and
in the absence of explicit communication between the robots.
The proposed approach requires only visual and joint torque
sensors and can be easily extended to industrial scenarios
for flexible production. More in detail, visual measures are
adopted for detecting the presence of the object both in
the giver and in the receiver workspace, while an observer
which exploits the joint torque measurements is adopted for
modulating the grip force of the two robots. The proposed
strategy can be exploited for different objects by extending
the classes detected by the CNN trained on a new dataset
with other images and by defining different grasp poses.
Future work will be devoted to involve a human operator
in the task, and extend the approach to mobile manipulators.
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