
1. Introduction
Natural evolution of lowland rivers typically involves the continuous elongation of their axis, the formation of 
simple or compound loops, and the occurrence of cutoffs. Cutoff is the bypass of a meander loop by a shorter 
straight path and the consequent formation of an abandoned reach, the so-called oxbow lake. Meander cutoffs in 
alluvial valleys form either by the progressive narrowing of the neck until the two opposite limbs meet, or by the 
formation of a chute channel directly across the meander neck itself.

Lewis and Lewin (1983) reserve the term “neck cutoff” to cases in which the opposite limbs of the bend were 
considerably less than a channel width apart at the time of breaching, while using “chute cutoff” for cases in 
which a much longer breach channel was created. Since cutoff events are cyclically sporadic and are recognized to 
trigger important geomorphologic processes (Mosley, 1975), their occurrence practically identifies two different 
characteristic timescales: a short timescale, which refers to the evolution of single meanders before the cutoff, 
and a long timescale, which includes multiple, more or less periodic cutoffs (see also Camporeale et al., 2005; 
Hooke, 2004).

The study of the role of cutoff occurrence at large river dynamics timescales is usually carried out according to 
two different though interconnected approaches: the descriptive/experimental and the numerical method. The 
descriptive method dates back to very classical studies, where it was aimed at deriving some empirical laws that 
could relate the hydraulics of the process to the representative geomorphological parameters (e.g., Carlston, 1965; 
Hansen, 1967; Leopold & Wolman, 1960). From then, several laboratory/field surveys concerning cutoff (chute 
or neck) events, oxbow lake formation and post-cutoff adjustments have been carried out (e.g., Gay et al., 1998; 
Grenfell et al., 2012; Grenfell et al., 2014; Hooke, 1995; Johnson & Paynter, 1967; Li et al., 2022; Richards & 
Konsoer, 2019; Van Dijk et al., 2012; Van Dijk et al., 2014; Zinger et al., 2011; Zinger et al., 2013). At the same 
time, a number of theoretical/computational models describing meandering dynamics (e.g., Asahi et al., 2013; 
Eke, Czapiga, et al., 2014; Ikeda et al., 1981; Mahato et al., 2022; Seminara et al., 2001; Smith & McLean, 1984; 
Zolezzi & Seminara, 2001) and cutoff occurrence (e.g., Howard, 1984; Stølum, 1996; Sun et al., 1996) have been 
developed to simulate the planimetric evolution of rivers.
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Some important aspects related to meander life cycle have emerged from a few landmark studies: the interactions 
between meander migration and sedimentation processes (e.g., Howard, 1984), some clues on self-organized 
criticality and self-confinement of the meander belt (e.g., Stølum, 1996), some evidence of the achievement of a 
statistically steady state for the geometrical characteristics of river planimetry (e.g., Howard, 1984; Stølum, 1996), 
and the recognition of the important phenomenon known as the “secondary lobe” (double heading) formation 
(Brice, 1974; Ferguson, 1984; Lancaster & Bras, 2002).

In a relatively recent study by Camporeale et al. (2008), the dynamical mechanisms by which cutoff events are 
able to influence long-term river evolution have been discussed. Particularly, the authors point out that cutoffs 
play two fundamental roles: (a) removing older meanders, thus limiting the geometrical complexity driven by the 
related fluid dynamic processes, and (b) acting as a shot noise able to influence the space-time dynamics of the 
whole river planimetry by the removal of the short-term spatial memory. In order to investigate the fluid-dynamic 
mechanisms based on which cutoffs accomplish their dissipative function, a theoretical model is proposed in 
the present study for the prediction of the characteristic times of meander growth and death. The model, which 
applies to cases in which cutoff occurs as a consequence of neck wall collapse driven by critic hydraulic gradient 
overcoming (therefore, in no-overbank flow conditions), produced an analytical closed-form solution. To our 
knowledge, it is the only fully analytical solution so far appeared in the literature for the modeling of the cyclic 
phases of river meander life. The inspiring background is represented by the large-scale similitude between the 
geometry of the near-cutoff meander axis and part of the boundary streamline of a two-dimensional uniform 
flow that hits a vertical-axis cylinder with increasing circulation. Note that the term boundary streamline is here 
referred to the potential flow streamline to which the two (or the single) cylinder stagnation points belong.

At the drainage basin scale, river bend evolution and migration that take place through rough, high resistance bed 
materials may indeed be thought as represented by a single streamline of an incompressible, slow sediment-flow 
governed by the classic Navier-Stokes equations, and perturbed by more or less space-time periodic undulations. 
Therefore, the relevant velocity scale for the construction of the low Reynolds number we will be referring to in 
the proposed analogical model is represented by the meander train downstream migration rate.

Due to its analytical nature, the model is straightforwardly applicable for a quick prediction of the time left to the 
routine bend exploitation (as a naturalistic or an economic resource), and the timely planning, if needed, of site 
management and restoration.

2. Formulation
Were a (uniform) potential fluid flow of velocity 𝐴𝐴 𝐴𝐴0

′′ and density ρ hitting an (eventually rotating) infinite-axis 
cylinder of radius r0 in the horizontal x-y plane, the suitable dimensionless version of Navier-Stokes equations 
(momentum and continuity) would be (e.g., Batchelor, 1967; Marchi & Rubatta, 1981):
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 indicates the dimensionless local velocity vector, p* the dimensionless local pressure, τ the 
dimensionless time, Re the Reynolds number and ∇ the nabla differential operator. The related scales for length, 
velocity, time and pressure would respectively be: 2r0, 𝐴𝐴 𝐴𝐴0

′′ , 2r0/𝐴𝐴 𝐴𝐴0
′′ , and ρ𝐴𝐴 𝐴𝐴0

′′
2 . The numerical solution of this type 

of problem had allowed Padrino and Joseph (2006) to show that: (a) for a given, relatively small 𝐴𝐴 𝐴𝐴𝐴𝐴 = 2𝜌𝜌𝜌𝜌0
′′
𝑟𝑟0∕𝜇𝜇 

(specifically, Re = 200), where μ indicates fluid dynamic viscosity, and dimensionless cylinder peripheral speed 
vc* = vc/ 𝐴𝐴 𝐴𝐴0

′′ ranging between 3 and 5, the drag coefficient 𝐴𝐴 𝐴𝐴𝐷𝐷 = 𝐷𝐷∕𝜌𝜌𝜌𝜌0
′′
2

𝑟𝑟0 (with D indicating drag) is order of 
10 −2 while the lift coefficient 𝐴𝐴 𝐴𝐴𝐿𝐿 = 𝐿𝐿∕𝜌𝜌𝜌𝜌0

′′
2

𝑟𝑟0 (with L indicating lift) is order of 10; (b) for a given, relatively 
small value of Re (200 or 400), the vortex tail adjacent to the cylinder contour is progressively reduced as its 
rotation speed increases. Thus, as demonstrated in detail in Appendix A, in the presence of a relatively fast rotat-
ing cylinder in a viscous, very slow uniform flow of velocity 𝐴𝐴 𝐴𝐴0

′′ , the near-field streamline pattern practically 
coincides with that of an equivalent potential uniform flow of velocity 𝐴𝐴 𝐴𝐴0 = 𝑓𝑓 (𝐴𝐴0

′′
;𝑅𝑅𝑅𝑅) around the same cylinder 

with superposed free vortex of circulation Γ = 2πr0vc.
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2.1. Derivation of Meander Evolution Governing Equation

It is well known that the incompressible, potential streamline that bumps 
against a steady cylinder of radius r0 without circulation, within a longitudi-
nal uniform flow of velocity v0 in the horizontal x-y plane (Figure 1), subdi-
vides at S1 = (−r0,0) into two equal-length daughter streamlines (respectively 
characterized by clockwise/counter-clockwise direction) that reconnect 
downstream at S2 = (r0,0). The axis of the river bend is represented by the 
clockwise daughter streamline for a bend that develops on the hydraulic left, 
and by the counter-clockwise daughter streamline for a bend that develops 
on the hydraulic right. From the potential flow theory we also know that, 
whereas the areas located in the neighborhood of the stagnation points expe-
rience a compression, elsewhere the cylinder is subject to traction forces. The 
onset of a clockwise circulation would displace the stagnation points on the 
hydraulic right, with the daughter streamlines that wouldn't be equal-length 
anymore (see Figure 2 and Figure 3 for Γ/v0r0 = 2π and Γ/v0r0 = 6π, respec-
tively). Note that, for Γ/v0r0 ≥ 4π, there would be only one stagnation point 
(S) at x = 0 and y < 0. The onset of a counter-clockwise circulation would 
obviously produce the opposite effect. It can be useful to emphasize, at 
this point of the discussion, the strict similitude between the red boundary 
streamline in Figure 3 and the shape of the single near-cutoff loop result-
ing from the first approximation of Seminara et al. (2001) theoretical model 
as shown in their Figure 4. As a matter of fact, the periodic sequence in 
Seminara et al. (2001)'s Figure 4 corresponds to a final equilibrium condition 

characterized by zero meander amplitude time-derivative. Nevertheless, the authors themselves recognize that 
such a condition would hardly be achieved and that, at a certain moment before, a cutoff must occur. Accordingly, 
and as later discussed, the theoretical model proposed by the present study identifies the meander cutoff with 
the condition Γ = 4πv0r0, associating any larger circulation like that in our Figure 3 to post-cutoff/oxbow lake 
formation stages. For the sake of further illustration and clarity, Figure 4 (present study) graphycally describes 
the geometrical analogy underlying the proposed theoretical model.

Were the cylinder free to move, it would be forced to translate leftwards due to 
the positive lift increment in the case of clockwise circulation, and rightwards 
due to the negative lift increment in the counter-clockwise case (Magnus 
effect). For a fixed cylinder, the product of stagnation points displacement 
(the effect) and lift (the cause) gives the work done for the deformation of the 
boundary streamline. In the river-flow version of that basic fluid-dynamic 
process, stagnation-point compression is associated to the net cross-sectional 
accumulation of sediments in the lower velocity areas (the intrados of the 
bend) while traction is associated to the net cross-sectional erosion taking 
place in the higher velocity areas (the extrados of the bend). Additionally, 
cylinder pressure distribution is assimilated to a fictitious, section-averaged 
transverse shear stress that originates along the river from the secondary 
currents induced by the centrifugal/centripetal acceleration. This transverse 
shear stress distribution, in turn, is related to the corresponding unit-length 
transverse bed-load by the Meyer-Peter and Müller Equation  (1948). The 
stream power employed to convey the bed-load, whose effect consists in 
deforming meander planimetry while accentuating its curvature, is equated 
to the power needed to displace the cylinder or, equivalently, to produce the 
deformation of the boundary streamline.

Let us now consider an infinite-axis cylinder undergoing low Reynolds longi-
tudinal uniform flow, and a relatively fast clockwise rotation about its axis 
(allowing for a near-field potential flow approach) at rate 𝐴𝐴 Γ∕2𝜋𝜋𝜋𝜋0

2 . As above 
mentioned, were the cylinder free to move, it would undergo a spin effect 

Figure 1. Potential streamline pattern of a left-to-right uniform flow of 
velocity v0 that hits a cylinder of radius r0 without circulation (r0 = 1 m; 
v0 = 1 m/s). Colorbar indicates, in m 2/s, the value of the associated stream 
function Ψ.

Figure 2. Potential streamline pattern of a left-to-right uniform flow of 
velocity v0 that hits a cylinder of radius r0 with circulation Γ = 2πr0v0 
(r0 = 1 m; v0 = 1 m/s). Colorbar indicates, in m 2/s, the value of the associated 
stream function Ψ.
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with no boundary streamline deformation and stagnation points migration, 
which would indeed be compensated by cylinder transverse displacement. 
Were the cylinder fixed, its rotation would induce boundary streamline defor-
mation and stagnation points transverse migration. For Γ ≤ 4πv0r0, the infin-
itesimal displacement of the symmetrical (in the limit coinciding) stagnation 
points would be (e.g., Marchi & Rubatta, 1981):

𝑑𝑑𝑑𝑑𝑆𝑆 =
𝑑𝑑Γ

4𝜋𝜋𝜋𝜋0
 (3)

where v0, besides the speed of the flow hitting the cylinder, can alternatively 
represent (with opposite sign) the speed at which the cylinder itself moves 
through the static fluid along the longitudinal direction. In the present analog, 
it must actually be viewed as the meander migration rate. The infinitesimal 
work done by the lift L = ρv0Γ and the related power would therefore be, 
respectively:

𝑑𝑑𝑑𝑑 = 𝐿𝐿𝑑𝑑𝐿𝐿𝑠𝑠 = 𝜌𝜌𝜌𝜌0Γ
𝑑𝑑Γ

4𝜋𝜋𝜌𝜌0
 (4)

and

𝑃𝑃 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

𝜌𝜌Γ

4𝜋𝜋

𝑑𝑑Γ

𝑑𝑑𝑑𝑑
 (5)

Based on Bagnold's original stream power theory (Bagnold, 1966), the power 
employed by the flow to convey the infinitesimal bed-load transverse rate 
dQb = qbr0dθ, with qb here indicating unit bend-length bed-load rate, is:

𝑑𝑑𝑑𝑑𝑏𝑏 = (𝛾𝛾𝑠𝑠 − 𝛾𝛾) 𝑞𝑞𝑏𝑏 tan 𝛼𝛼 𝛼𝛼0𝑑𝑑𝑑𝑑 (6)

where γs is the specific weight of sediment, tanα indicates sediment internal friction and θ the angular coordinate. 
For coarse sand or gravel bed, we will assume tan α = 0.7 (https://sites.psu.edu/tzhu/files/2016/10/Some-Useful-
Numbers-1g1rkuu.pdf, 15 June 2022). Based on the Meyer-Peter and Müller formula in the Einstein notation 
(Einstein, 1950), qb is derived from:

Φ = 8
(

𝜏𝜏
∗

0
− 𝜏𝜏

∗

0𝑐𝑐𝑐𝑐

)3∕2 (7)

where:

Φ =
��

√

�� − �
�

��3
�

 (8)

�∗0 = �0
(�� − �)��

 (9)

𝜌𝜌𝑠𝑠 =
𝛾𝛾𝑠𝑠

𝑔𝑔
 (10)

τ0 indicates the dimensional shear stress; ds the representative grain size; subscript cr critical (incipient motion) 
conditions, and the asterisk dimensionless quantities. As above mentioned, in the present analogical model τ0 
is assimilated to the pressure on the cylinder that exceeds the static isotropic counterpart p0 (e.g., Marchi & 
Rubatta, 1981):

𝜏𝜏0 = 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑝𝑝0 =
𝜌𝜌𝜌𝜌

2

0

2

[

1 − 4

(

sin 𝜃𝜃 +
Γ

4𝜋𝜋𝜋𝜋0𝜌𝜌0

)2
]

 (11)

while τ0cr is given by the pressure corresponding to the ideal stable case of no circulation:

Figure 3. Potential streamline pattern of a left-to-right uniform flow of 
velocity v0 that hits a cylinder of radius r0 with circulation Γ = 6πr0v0 
(r0 = 1 m; v0 = 1 m/s). Colorbar indicates, in m 2/s, the value of the associated 
stream function Ψ.

https://sites.psu.edu/tzhu/files/2016/10/Some-Useful-Numbers-1g1rkuu.pdf
https://sites.psu.edu/tzhu/files/2016/10/Some-Useful-Numbers-1g1rkuu.pdf


Water Resources Research

PANNONE AND DE VINCENZO

10.1029/2021WR031661

5 of 20

𝜏𝜏0𝑐𝑐𝑐𝑐 =
𝜌𝜌𝜌𝜌

2

0

2

(

1 − 4 sin
2
𝜃𝜃
) (12)

Thus, provided that a work is done regardless of the sign of τ0 − τ0cr:

𝑑𝑑𝑑𝑑𝑏𝑏 =
tan 𝛼𝛼𝛼𝛼𝛼𝛼

3

0
Γ
∗3

2

√

2𝜋𝜋3

|

|

|

|

−1 −
8𝜋𝜋 sin 𝜃𝜃

Γ∗

|

|

|

|

3∕2

𝑟𝑟0𝑑𝑑𝜃𝜃 (13)

where

Γ
∗
=

Γ

𝑣𝑣0𝑟𝑟0
 (14)

and the vertical brackets indicate absolute value.

Since the total power given by 𝐴𝐴 𝐴𝐴𝑏𝑏 = ∫
𝛽𝛽
2
(𝑡𝑡)

𝛽𝛽
1
(𝑡𝑡)

𝑑𝑑𝐴𝐴𝑏𝑏 , where

𝛽𝛽1(𝑡𝑡) = −sin
−1

[

Γ(𝑡𝑡)

4𝜋𝜋𝜋𝜋0𝑣𝑣0

]

 (15)

and

𝛽𝛽2(𝑡𝑡) = 𝜋𝜋 + sin
−1

[

Γ(𝑡𝑡)

4𝜋𝜋𝜋𝜋0𝑣𝑣0

]

 (16)

indicate the angular coordinates of the two stagnation points, must be equated 
to P from Equation 5, we obtain:

𝑑𝑑Γ
∗

𝑑𝑑𝑑𝑑
=

2Γ
∗2
tan 𝛼𝛼

√
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|

|

|

|

3∕2

𝑑𝑑𝜃𝜃 (17)

with τ = tv0/r0. Finally, the integration of Equation 17 formally yields:

Γ
∗
(𝜏𝜏) =

2 tan 𝛼𝛼
√

2𝜋𝜋2 ∫

𝜏𝜏

0

Γ
∗2
(

𝜏𝜏
′
)

∫

𝛽𝛽2(𝜏𝜏
′)

𝛽𝛽1(𝜏𝜏′)

|

|

|

|

−1 −
8𝜋𝜋 sin 𝜃𝜃

Γ∗ (𝜏𝜏 ′)

|

|

|

|

3∕2

𝑑𝑑𝜃𝜃𝑑𝑑𝜏𝜏
′ (18)

Based on the potential flow theory, when Γ = 4πv0r0 and, therefore Γ ∗ = 4π, 
the two stagnation points overlap and the loop is closed. In the river flow 
analog, we can say that this condition corresponds to the cutoff of the 
meander.

It is worth noting that the crucial role of the stream power in determining river 
morphodynamics peculiarities had already been investigated by the authors 

in previous studies (De Vincenzo et al., 2016; Pannone & De Vincenzo, 2021) referring to braided beds. Specifi-
cally, in De Vincenzo et al. (2016), it had been shown that a different relationship (linear or quadratic power law) 

between dimensionless unit bed load Φ and dimensionless unit stream power Ω = ����∕
(

�
√

� (�� − �) ��
3∕�

)

 , 

with se indicating the energy slope, Q the flow rate and B the total bed width, is the expression of different 

morphological regimes. For values of Ω up to 1 (power law domain), all the available stream energy is employed 
to guarantee bed load transport and channel active bed modeling, with changes in cross-sectional geometry and 
bottom slope; conversely, for Ω larger than 1 (linear domain), part of the available of energy is employed to 
maintain suspension. In Pannone and De Vincenzo (2021), the combination of quadratic power law and sediment 
continuity yielded a variable-coefficients advection-diffusion equation that was numerically solved to show how, 
at dynamic equilibrium, the smaller the ratio of macro-bedforms wavelenght to total channel width, the more 
marked the tendency of the river to preserve the multi-thread flow configuration.

Figure 4. Illustration of the geometrical analogy underlying the proposed 
theoretical model; the arrows indicate river flow direction. At equilibrium 
and in pre-cutoff conditions, full black line indicates river axis; in post-cutoff 
conditions, dashed gray line indicates the post-loop closure shorter path.
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In order to obtain an analytical solution for the dimensionless circulation 
(18) that allows (a) bypassing the numerical artifacts unavoidably arising at 
very small and very large values of Γ* and (b) connecting the phenomenon to 
known closed-form mathematical expressions, Equation 17 will first be inte-
grated in an approximate fashion for the two limiting conditions (Γ* → 0 and, 
formally, Γ* → ∞ with Equations 17 and 18 reformulated accordingly from 
a suitable version of Equations 3 and 4). Then, a full-range solution will be 
found by imposing the matching of their respective extrapolations at the crit-
ical value Γ* = 4π. The details of the derivation can be found in Appendix B. 
Note that the proposed mathematical model considers a single meander only. 
Therefore, it is supposed to better interpret reality when the spatial frequency 
of the river bends is relatively low.

2.2. Results

The solution found in Appendix  B (Equations  B6 and B12) is shown in 
Figures 5 and 6 and in Figure 8 (which encompasses periodicity and, there-
fore, also negative circulation values), with the horizontal line in Figure 6 
that indicates the cutoff threshold. Based on the potential flow theory, neck 
length can then be estimated from the following trigonometric relationship 
(see Figure 7):

𝑙𝑙𝑛𝑛(𝜏𝜏) = 2 cos

{

sin
−1

[

Γ
∗
(𝜏𝜏)

4𝜋𝜋

]}

 (19)

with ln = Ln/r0, which practically identifies, in dimensionless terms, the length of the chord between the two 
symmetrical stagnation points. Equations B6 and B12 in Appendix B represent periodic functions (tangent square 
and tangent, respectively). Once Γ ∗ has reached its (first) cutoff-value 4π at τ = 0.25079, and after the discontinu-
ity taking place around Γ ∗ → ±∞ (which is physically associable with the by-pass of the bend through a straight 
path, and the isolation of the closed loop representing the oxbow lake), the circulation abruptly changes its sign. 
A new bend then starts to form on the same side (or the opposite, if the real-life geomorphological/anthropic 
forcing makes the evolutional process represented by a counter-clockwise circulation), reaches the zero-value that 
characterizes the equilibrium half-circle bend, and then increases again toward a new cut-off (Figure 8).

3. Laboratory Experiment and Theory Validation
In order to test theory performance for dimensionless circulation values 
tending to the critical 4π, two different experiments were carried out accord-
ing to the classical Froude similitude (Peakall et  al.,  1996) on an ad-hoc 
designed physical model that simulated the evolutional process of a typi-
cal freely meandering stream under local incipient neck cutoff conditions. 
The sandy alluvial floodplain (d50 = 0.45 mm, d10 = 0.1 mm, d90 = 2 mm, 
γs = 2,650 kg/m 3) was reproduced within a 6 m long, 5 m wide and 0.15 m 
deep wooden basin in the Laboratory of Hydraulics and Hydraulic Construc-
tions at University of Basilicata (Italy). Basin bottom and side walls were 
made water-resistant by a silicone layer and a plastic sheet revetment; the 
bottom was further protected and reinforced by geotextile (Figure 9). In each 
experimental run, an initial meandering planform with a train of semicircu-
lar meanders, which were free to model cross-sectional geometry and bed 
topography in the absence of external constraints, was imposed to investi-
gate the short timescale characterizing river evolution before the cutoff of 
a single meander (Camporeale et al., 2005; Frascati & Lanzoni, 2009). For 
that purpose, only one of the bends, far enough from floodplain inlet and 
outlet, reproduced high curvature, near-cutoff conditions (Figure  10). The 

Figure 5. Matching of the asymptotic solutions for the dimensionless 
circulation. 𝐴𝐴 Γ1

∗ and 𝐴𝐴 Γ2
∗ respectively indicate short-time (Equation B6 

Appendix B) and large-time curve (Equation B12 Appendix B). Length scale: 
r0; velocity scale: v0.

Figure 6. Equilibrium to cutoff dimensionless circulation. Horizontal line 
indicates cutoff threshold. Length scale: r0; velocity scale: v0.
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initial channel was characterized by average bottom slope sb  =  0.008 and 
rectangular cross-sections of width B = 0.1 m and depth h = 0.08 m. Clear 
water coming from the laboratory pipe (the model was not a recirculating 
system) entered the upstream inlet of the channel by a rectangular-shaped 
0.07 m wide by 0.05 m high conduit, with approximately uniform streamline 
distribution. Flow rate Q was measured by an electro-magnetic device located 
on the laboratory pipe upstream of the physical model. According to model 
hypotheses, and provided that overbank flows are not required for neck cutoff 
(Gay et al., 1998; Hooke, 1995), the two runs were carried out at constant 
Q = 0.00025 m 3/s, which was a flow rate value smaller than the bankfull 
limit. The two runs differed in terms of critical meander centerline curvature 
radius r0 and, therefore, in terms of r0/B ratio, which is widely recognized 
as a morphological factor crucially affecting lateral migration rate (Hickin 
& Nanson, 1984; Richard et al., 2005) and meander cutting (Crosato, 2009; 
Yilmaz, 2008).

The initial intra-meander neck width Ln, that is, the initial distance between 
the two converging limbs of the critical bend, was set at 0.1 m in both runs, 
while r0 was set at 0.45 m in the first run and at 0.34 m in the second (with 
Ln(0)/r0I = lnI(0) = 0.222 and Ln(0)/r0II = lnII(0) = 0.294, respectively).

The initial values of Shields' parameter:

�∗0 (�50) =
����

(

�� − �
�

)

�50
 (20)

with RH indicating flow hydraulic radius, were higher than the corresponding critical threshold 𝐴𝐴 𝐴𝐴
∗

0𝑐𝑐𝑐𝑐
= 0.047 in 

order to allow for in-channel sediment transport and meander morphological evolution; medium grain size d50, 
average flow depth h and section width B placed the channel within the meandering dune regime (Yalin, 1992). 
Moreover, the shape parameter E as proposed by Parker (1976):

𝐸𝐸 =

𝐵𝐵𝐵𝐵𝑒𝑒

𝜋𝜋𝜋𝜋𝜋𝜋𝜋
 (21)

where Fr indicates the flow Froude number:

𝐹𝐹𝐹𝐹 =
𝑈𝑈

√

𝑔𝑔𝑔𝑔𝐻𝐻

 (22)

and U the section-averaged velocity, was smaller than 1 and, therefore, typical of slow meandering rivers. The 
experimental surveys, which were performed on average every 4 hr before the cutoff and only once immedi-
ately after it, consisted in: (a) acquisition of water surface elevation and bed topography above a datum at 8 
cross-sections along the channel, three of which were located at the apices of a few bends of the upstream train 
and the remaining five along the critical meander (Figure 10), by using a manual point gauge mounted on a 
carriage (cross-sectional measurements were spaced two cm apart); (b) acquisition of concave bank position 
relative to one of the floodplain model side barriers at cross-sections 1, 2 and 3; (c) measurement of the neck 
width. The experiments were stopped 1  hr after the neck breaching. Total experimental running times were 
TI = 32.7 hr and TII = 30 hr, respectively. See Table 1 for a summary of the relevant experimental parame-
ters in incipient cutoff conditions. Sinuosity σ is referred to the closing loop (in parenthesis the average values 
referred to the whole train of meanders). The corresponding bend inlet deflection angle ϑ was calculated from 
the curve 1/σ = f(ϑ) as reported by Yalin (1992). Finally, 𝐴𝐴 𝐴𝐴𝐴𝐴

∗
= 𝑣𝑣

∗
𝑑𝑑50∕𝜈𝜈 indicates grain Reynolds number and 

𝐴𝐴 𝐴𝐴
∗
=

√

𝑔𝑔𝑔𝑔𝐻𝐻𝑠𝑠𝑒𝑒 shear velocity.

As an example, Figure 11 shows a picture of Run1 meander in immediate pre-cutoff and Figure 12 the details 
of the neck. As one can see, meander late evolution was associated to alternate bar formation with superposed 
dunes and water surface rippling. Capturing the position of the concave bank at cross-sections 1, 2 and 3, with the 

Figure 7. Equilibrium to cutoff dimensionless neck length (Equation 19). 
Length scale: r0; velocity scale: v0.
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cross-sectional wetted area that remained approximately constant over time, 
allowed us to estimate bend lateral shift and, therefore, the experimental aver-
age bank erosion rate: vE = 3.5 ⋅ 10 −7 m/s. In both experimental runs, the rate 
of bank erosion was also calculated according to Ikeda et al. (1981) criterion:

𝑣𝑣𝐸𝐸 = 𝐸𝐸
′
𝑢𝑢
′

𝑏𝑏 (23)

which assumes a linear relationship between bank erosion rate and a func-
tion of the cross-sectionally averaged velocity (𝐴𝐴 𝐴𝐴

′

𝑏𝑏
 ) that reflects the magni-

tude of concave bank shear stress. In Equation  23, E′ is a coefficient of 
bank erosion that globally accounts for grain size, geotechnical properties 
of bank material, effects of the vegetation on near-bank flow, local chan-
nel slope and width, meander sinuosity, bend curvature, stream power and 
r0/B ratio (Hasegawa,  1989; Ikeda et  al.,  1981; Odgaard,  1987; Richard 
et al., 2005; Wallick et al., 2006). According to Odgaard's bank erosion model 
(Odgaard, 1984), 𝐴𝐴 𝐴𝐴𝐸𝐸∕𝐸𝐸

′
= 𝑢𝑢

′

𝑏𝑏
 may be expressed by the following relationship:

𝑣𝑣𝐸𝐸

𝐸𝐸′
= 𝑈𝑈

{

[

1 +
𝐵𝐵

2𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜
(𝑘𝑘 − 1)

]1∕2

− 1

}

 (24)

where rout is the outer bank curvature radius, k is defined by the following expression:

𝑘𝑘 =
ℎ𝑜𝑜𝑜𝑜𝑜𝑜

ℎ0

(

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜

𝑟𝑟0

− 1

) (25)

hout indicates flow depth at the outer bank and h0 flow depth at channel centerline.

Odgaard's bank erosion model was applied to cross-sections 1, 2 and 3, where the linear relationship between vE 
and U can realistically be assumed to be valid. For instance, for Run2 and cross-section 3, where the wetted area 
A was equal to 0.0027 m 2 and the cross-sectionally averaged velocity U = Q/A to 0.09 m/s, the measured values 
of hout, rout, h0 and r0 led to vE/E′ = 0.078 m/s. Assuming an erosion parameter of 5 ⋅ 10 −7, which is typical of sand 
beds (e.g., Costantine et al., 2010), an instantaneous average bank erosion rate of 3.9 ⋅ 10 −7 m/s was obtained, 
which corresponds to a daily average value of 0.033 m. As one can see, the calculated instantaneous average value 
of vE was very close to that directly estimated from bend lateral shift.

Figure 8. Double-cycle dimensionless circulation. Vertical asymptotes 
identify loop bypass discontinuity. Length scale: r0; velocity scale: v0.

Figure 9. Empty wooden basin utilized to simulate the sandy alluvial floodplain in the Laboratory of Hydraulics and 
Hydraulic Constructions at University of Basilicata.
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The validation of the theory in pre-cutoff conditions (i.e., when the right timing of the process is a matter of safety 
more than management, and the evolutional process rapidly goes toward an abrupt discontinuity), was performed 
by first estimating the meander residual migration rate. From Equation 19, with ln = Ln/r0, we got the values of 
the theoretical dimensionless circulations at run starting (𝐴𝐴 ΓI

∗
= 12.4887 and 𝐴𝐴 ΓII

∗
= 12.4297 ). Then, from Equa-

tion B12 in Appendix B:

Γ
∗
=

√

12𝜋𝜋3 tan(

√

24𝜋𝜋 tan 𝛼𝛼𝛼𝛼 − 0.9469) 

we calculated the corresponding dimensionless times: τI = 0.25032 and τII = 0.24997. Finally, from the time 
derivative of Equation 19, which represents the dimensionless version of the theoretical bank erosion rate:

𝑑𝑑𝑑𝑑𝑛𝑛

𝑑𝑑𝑑𝑑
=

Γ
∗

8𝜋𝜋2

1
√

1 −
Γ∗

2

16𝜋𝜋2

117.245

cos2(6.078𝑑𝑑 − 0.9469)
=

𝑣𝑣𝐸𝐸

𝑣𝑣0 (26)

evaluated at the times of interest with vE = 3.9 ⋅ 10 −7 m/s, we respectively obtained v0I = 1.645 ⋅ 10 −9 m/s and 
v0II = 2.19 ⋅ 10 −9 m/s. Provided that, from both Equations B6 and B12 in Appendix B, Γ ∗ = 4π at τ = 0.25079, the theoretical 
corresponding times left to cutoff were ΔτcI = 4.7 ⋅ 10 −4 and ΔτcII = 8.2 ⋅ 10 −4 or, in dimensional terms, ΔtcI = ΔτcIr0I/
v0I  ≅  35.7  hr (against the experimental 32.7  hr, with +9% relative error) and ΔtcII  =  ΔτcIIr0II/v0II  ≅  35.4  hr  
(against the experimental 30 hr, with +18% relative error). See Figure 13 and Figure 14, respectively displaying 
dimensionless neck width versus dimensionless time in Run1 and Run2. Full black lines represent the theoretical 
solution; dashed black lines the corresponding 90% confidence interval; empty gray circles the experimental 
observations. As one can see, the (non-calibrated) analytical solution was overall able to convincingly represent 

the near-cutoff neck reduction process. Only the very final values of ln fell 
outside the 90% confidence interval. As a matter of fact, whereas the mathe-
matical model can follow the process until the achievement of the theoretical 
ln = 0, in the reality, when ln → 0, the hydrostatic gradient across  the neck 
becomes so large that the thin sandy neck wall suddenly collapses (e.g., Han 
& Endreny, 2014) without effectively ever reaching the theoretical zero-width 
condition. Thus, the experimental points of zero ln-coordinate in Figures 13 
and Figure  14 are actually representative of the immediate post-collapse 
condition (the only that could experimentally be detected). In any case, as 
above discussed, the order of magnitude of the breaching time was grasped 
with a definitely acceptable (and manageable) margin of error.

Figure 10. Scheme of the initial channel planform with the monitored cross-sections (identified by the read dashed lines and numbers). Only the meanders that proved 
to be completely free from boundary effects are reproduced. Dimensions are to scale (for Run2); the different colors highlight the wavelengths included in the periodic 
sequence, with the purple indicating the critical loop (By Mr. Antonio Cosa, MS CE).

Run1 Run2

𝐴𝐴 𝐴𝐴
∗

0
 0.309 0.114

σ 4.08 (2.2) 3.4 (2.02)

ϑ 120° 110°

r0/B 3.61 3.00

sb 0.005 0.005

Fr 0.260 0.157

Re* 200.03 121.49

Table 1 
Experimental Parameters in Incipient Cutoff Conditions
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4. Comparison With River Bollin Cutoff Site 
Observations (Hooke, 1995, 2004)
In order to test the theory over a wider time horizon, farer-from-cutoff condi-
tions and, mostly, in real-life scenarios, we compared analytical solution 
and field observations at a cutoff site on river Bollin (Hooke (1995, 2004)). 
Tables 2–4 summarize the results of the validation test. River Bollin, which can 
be defined as an active meandering, gravel-bed river, flows in north-western 
England at the south of Manchester conurbation. By early November 1980, 
at the cutoff site, located just downstream of Mill Lane bridge near the town 
of Wilmslow (Cheshire), erosion had been rapidly progressing in the adjacent 
apices of the (double-head) loop and the banks, made of sandy alluvium, were 
undergoing considerable seepage. At that time, the neck of the meander had 
narrowed to only 1.5 m wide. Since it was clear that a neck cutoff was about 
to occur, the whole reach was mapped by accurate land survey on November, 
8. The breach of the neck took finally place on November, 15. In immedi-
ate pre-cutoff conditions, the reported total length of the bend was equal to 
232 m (radius of the equivalent circle: r0 = 36.92 m). From Equations B12 
and 19, the theoretical dimensionless time needed for the dimensionless 
neck length ln to decrease from 1.5/36.92 = 0.0406 to 0 is Δτc = 2 ⋅ 10 −5.  

In order to match the real time left to cutoff on November, 8 (7 days), meander migration rate v0 should have been 
equal to about 1.2 ⋅ 10 −9 m/s. Among other things, Hooke (1995) provides graphical details about local channel 
changes in time, specifically 1970, 1980 and 1989 planimetries (see Figure 15). Based on the theory proposed 
by the present study, at a given site, meanders are always variable-length arcs of circumference with the same 
constant radius. In 1970, when position, curvature and, likely, residual migration rate of the closing loop were 
already approximately defined and fixed (as one can see from Figures 15, 1970 and 1980 meanders are almost 
superposed, with the only considerable difference in terms of neck width), the graphically estimated neck length 
Ln was equal to about 30 m or, in dimensionless terms, ln = 30/36.92 = 0.81. From Equations B12 and 19, we 
correspondingly obtained τ = 0.24418. The dimensionless time interval needed for ln to decrease from 0.81 to 0 
therefore was Δτtc = 0.25079 – 0.24418 = 0.00661 or, in dimensional terms, using 1980 migration rate, Δttc ≅ 
6.5 years, which is a value definitely close (and, for the benefit of safety, smaller) to the real time left in 1970 to 
cutoff (10 years). Finally, from 26:

|

|

|

|

𝑑𝑑𝑑𝑑𝑛𝑛

𝑑𝑑𝑑𝑑

|

|

|

|𝑑𝑑=0.24418

= 𝑣𝑣𝐸𝐸∕𝑣𝑣0|𝑑𝑑=0.24418 (27)

we obtained a pre-cutoff vE of 2.16  m/year against the average pre-cutoff 
1.25 detected on field (Hooke,  1995). As shown in Figure  15, in 1989 a 
new bend was developing on the opposite side of 1980 loop. The length of 
the chord between the extremes of the bend was approximately 67 m long, 
which gives a dimensionless neck length ln = 67/36.92 = 1.81. The reported 
1989 sinuosity was σ  =  2.49 (Hooke,  2004). The estimated river average 
width was B = 9.65 m. Based on Ikeda's (1981) model and the correspond-
ing curve v0/B = f(σ) as reported by Crosato (2009), with the migration rate 
given in meters per year, we found v0/B = 0.028 and, therefore, v0 = 8.57 ⋅ 
10 −9 m/s. For ln = 1.81, Equations B12 and 19 give Γ* = 5.346, τ = 0.20027, 
Δτfc = 0.05052 (dimensionless time from cut-off) and, therefore, a theoreti-
cally estimated time elapsed from cutoff of about 7 years (against the actual 
approximately 9). It is worth noting that Crosato's curve, which does not cover 
the range of sinuosity larger than 3, couldn't have been used for the pre-cutoff 
data set. Indeed, as also the theory predicts via the tangent function behavior, 
the dynamics of a meander that is approaching the cutting is a highly nonlin-
ear and rapidly accelerating process. In the reality, neck collapse occurs 
suddenly, due to its narrowing beyond a critical threshold and the overcoming 
of the strength against the differential hydrostatic pressure. Finally, from 27 

Figure 11. Run1: Meander in incipient cutoff conditions.

Figure 12. Run1: Details of the closing neck.
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evaluated at τ = 0.20027, we obtained a post-cutoff vE of 2.56 m/year against 
the average post-cutoff 2.11 detected on field (Hooke, 1995), which, again, 
highlights the good predictive ability of the model.

5. Discussion and Conclusions
The present study has proposed and validated, by comparison with field and 
laboratory data, a theoretical model based on the potential flow theory and 
enabled by a suitable solution of Navier-Stokes’ equations in the presence of 
a rapidly rotating cylinder at low Reynolds numbers. The target of the inves-
tigation is represented by the assessment of the characteristic times of river 
meander cyclic growth and death. The underlying motivation of the specific 
theoretical approach is represented by the large (basin) scale geometric simil-
itude between the progressively more curved channel axis at cutoff site and 
the boundary streamline of an initially uniform flow that hits a cylinder with 
increasing circulation. It should be emphasized that the use of the potential 
flow theory (and, ultimately, Euler's equation) for the modeling of meander-
ing river axis evolution is also legitimized, beyond the invoked geometri-
cal analogy, by the results of Stølum's (1996) numerical simulations. These 

simulations, which were based on a fractal stochastic interpretation of river meanders dynamics, actually demon-
strated that there exists a statistically steady-state about which the sinuosity of the whole river tends to oscillate 
by periodically compensating (by cutoff) its excess due to growing meanders. Indeed, one of the consequences 
of Euler's equation is represented by the theorem of global circulation conservation. In Stølum's simulations, this 
conservation is achieved (in an ensemble mean sense) by the periodic cutting of exceedingly curved and large 
meanders.

Recent numerical studies focusing on meander dynamics have addressed the separate dynamics of each river 
bank and floodplain-channel interactions. Following the novel approach by Parker et al. (2011), Eke, Parker, and 
Yasuyuki (2014) have modeled planform river meander evolution by introducing separate closure relations for the 
migration of advancing and retreating banks. Along with recent experimental work (e.g., van Dijk et al., 2014), 
they predict how channel width adjusts in time as a response to a dynamic “dialogue” between the two banks, by 
raising the question of whether width adjustments and channel migration are mostly supported by a bar push or 
a bank pull process. Zen et al. (2016) proposed an “at bend cross-sectional scale” model for the lateral migration 
of river bends, where the two banks can migrate separately as a result of the mutual interaction of river flow, 
sediments and riparian vegetation. The model relates the migration of the inner bank to the active role of point bar 
riparian vegetation dynamics by means of biophysically-based relationships for vegetation biomass growth and 

decay. Our study belongs to the category of “at bend axis scale” analytical 
models corroborated by laboratory and field validation and, to our knowl-
edge, is the only fully analytical model of meander evolution toward cutoff 
existing at this time. An exhaustive review of scale issues related to general 
fluvial instability is reported by Dey and Ali (2020). Analytical models offer 
the possibility to identify (in dimensionless and, therefore, universal form) 
the most relevant parameters for the process under investigation. Thus, they 
can not only guide the design of laboratory/field/numerical tests, but also 
offer the vademecum for a timely and efficient intervention on field only 
where and when it is really necessary.

Process governing equation in terms of dimensionless circulation as a func-
tion of dimensionless time was obtained in the present study by making a 
system of the equations respectively expressing the fluid-dynamic power 
needed to deform the cylinder boundary streamline and the stream-power 
needed to convey the bed-load associated with river cross-sectional average 
shear-stress. The cross-sectional average shear-stress, in turn, was assumed 
as coinciding with the cylinder radial pressure that exceeds the value corre-
sponding to the ideal stable case of no circulation. It must be stressed that, 

Figure 13. Neck width reduction toward cutoff in Run1: analytical solution 
with 90% confidence interval (dashed lines) versus experimental observations.

Figure 14. Neck width reduction toward cutoff in Run2: analytical solution 
with 90% confidence interval (dashed lines) versus experimental observations.
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strictly speaking, such a formulation is fully justified only in the presence 
of large bend curvature in near-cutoff conditions, while representing just an 
approximation for the far-from cutoff regime. Such an approximation, which 
was in any case satisfactorily corroborated by comparison with field survey 
macroscopic data, is expected to be as closer to reality as slower the meander 
migration is. The analytical solution of the governing equation proposed in 
the present study (which refers to the limiting case of low Reynolds numbers 
and high cylinder rotation speed) is (consistently) a periodic one in the form 
of a tangent/tangent squared. After the cutoff, and the mathematical discon-
tinuity represented by the ±∞ behavior (which is physically associable with 
the sudden breach of the neck, and the bypass of the loop by a faster straight 
path), a new bend (represented by Γ → −∞) starts to develop on the same 
side, gradually reaches the zero-circulation condition associated with the 
equilibrium half-circle shape (Γ  =  0), and then continues growing toward 
a new cutoff (Γ → +∞), as graphically illustrated by the periodic solution 
in Figure 8. The favorable comparison of model prediction in terms of time 
to cutoff, time elapsed from cutoff and rates of bank erosion with the data 

collected from field survey at a cutoff site on river Bollin (UK), and from an ad hoc-designed laboratory exper-
iment at University of Basilicata (Italy), proved that the model itself was able to grasp the global features of 
the phenomenon. Specifically, it mildly underestimated the field time to cutoff in pre-cutoff conditions (while 
mildly overestimating the corresponding bank erosion rate) and slightly underestimated the field time elapsed 
from cutoff in post-cutoff conditions (while slightly overestimating the corresponding bank erosion rate). In both 
conditions the orders of magnitude were correctly identified. It may be argued that the mismatch in estimating 
field times to and from cutoff could be related to variable real flow rates. Note that the mismatch (relatively slight 
model underestimation) refers to time  intervals of about 10 years in both cases (from 1970 to 1980 and from 
1980 to 1989, respectively). It is highly probable that, due to the seasonal alternation of wet and dry periods, 
there was a natural compensation between accelerations and decelerations of the bank erosive process related to 
unsteady flow conditions. We believe that the reason of a systematic bias may rather reside in the peculiar nature 
of meander time evolution (gradual transition from advective to purely erosional regime) whose mathematical 
interpretation, as later specified, constitutes the main target of the ongoing model generalization. As a matter of 
fact, the early stages of meander life are dominated by a strongly directional side erosion that makes it to rapidly 
migrate downstream, with a limited increase in amplitude. As the bend becomes longer and progressively more 
curved, the consequent loss of flow energy makes the bank erosion/deposition process more and more isotropic 

through the loop. In these conditions, its barycenter practically stops while 
its amplitude rapidly and highly non-linearly increases toward cutoff, in a 
sort of self-feeding process that relegates the effect of a hypothetical flow 
rate variation to a marginal role. These large-time conditions are exactly 
those that the present version of the model intends to reproduce by assuming 
the dominant role of cylinder rotation as compared to the magnitude of the 
external uniform flow. Indeed, by the potential flow analog expressed by 
Equations 7–12, which makes the intensity of the transverse bed-load (and, 
therefore, the intensity of the erosion/deposition phenomena) dependent on 
the highly nonlinearly increasing circulation Γ, our model is in principle 
able  to account for the self-feeding meander final growth process. In the case 
of the laboratory experiment (which was conducted at constant flow rate), 
while the analytical solution closely follows neck time reduction before the 
breaching, the very final observations are compatible with a faster, sudden and 
perhaps hardly mathematically predictable collapse of the thin sandy wall. 
Overall, we can conclude that the proposed theoretical model  seems to have 
the potentialities to represent a fast and easy tool to forecast the evolution of 
a river bend when the signs of the incipient instability suggest quantifying the 
time left to its exploitation (as a naturalistic or an economical resource), and 
to timely plan, where needed, site management and restoration. Input param-
eters for the application of the model to any real-life case are represented by 

Immediate pre-cutoff 8 November 1980

Ln (real) Hooke (1995) 1.5 m

r0 (real) Hooke (1995) 36.92 m

ln (real) Hooke (1995) 0.0406

Γ*(from Equation B3) 12.5638

τ (from Equation B2) 0.25077

Δτtc (theoretical) 2 ⋅ 10 −5

Δttc (real) Hooke (1995) 7 days

v0 (estimated) 1.2 ⋅ 10 −9 m/s

Note. Bold value indicates the estimated migration rate.

Table 2 
River Bollin 1980 Immediate Pre-Cutoff Observed and Estimated Variables

Pre-cutoff 1970

Ln (real) Hooke (1995) 30 m

r0 (expected) 36.92 m

ln (expected) 0.81

Γ*(from Equation B3) 11.49

τ (from Equation B2) 0.24418

Δτtc (theoretical) 0.00661

v0 1.2 ⋅ 10 −9 m/s

Δttc (theoretical) 6.5 years

Δttc (real) Hooke (1995) 10 years

vE/v0 (from Equation B10 at τ = 0.24418) 57.09

vE (theoretical) 2.16 m/year

vE (real) Hooke (1995) 1.25 m/year

Note. Bold values highlight the comparison between predictions and 
observations.

Table 3 
River Bollin 1970 Pre-Cutoff Observed and Calculated Variables
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section width B, radius of the equivalent circle r0, centerline flow depth h0, 
outer bank equivalent radius and depth rout and hout, section-averaged velocity 
U and reach sinuosity σ.

5.1. Specific Limitations

1.  In its present version, the model is a local one. That is, it cannot predict 
meanders evolution at the scale of the whole river (unless the bends do 
not succeed one another at a very low spatial frequency). On the other 
hand, in terms of practical applications, one is interested in predicting 
the evolution of a specific river bend in markedly instable conditions 
to quantify its residual regular life, and to timely and safely plan its 
restoration;

2.  The model does not encompass geomorphological and anthropic 
forcing (for instance, the presence of mountain slopes or engineering 
works). Nevertheless, it proved to be able to correctly grasp the order 
of magnitude of the characteristic times from and to cutoff at a Bollin 
UK site, where the dying meander was clearly “compressed” and made 
double-headed by highly probable geological/anthropic constraints;

3.  The model accounts for grain size distribution in average terms by 
assuming a uniform internal friction coefficient that is characteristic 
of sand/medium gravel (for which river meandering is indeed the most 
probable scenario). Nevertheless, it was able to closely simulate reality 
both in the lab (where, as Figures 11 and Figure 12 clearly show, bend 
water flow gradually induced a clear separation between fine-sediment 
side bars with superposed dunes and coarser active bottom, thus reveal-
ing a non-negligible sediment size heterogeneity) and on field (where 
sediment sorting has not even to be questioned). It should also be 
stressed that bars and dunes, which are always affected by non-negligible 
random features, considerably complicate flow field structure (e.g., 
Pannone, 2012; Pannone et al., 2013). When associated with the already 
complex 2- or 3-D realistic numerical modeling of water flow and sedi-
ment transport through a sequence of more or less pronounced bends, 
that may make resorting to an analytical 1-D model (which exclusively 
focuses on river axis evolution) a useful alternative, at least in terms of 
prediction of cutoff characteristic times.

4.  Finally, the model does not account for the presence of vegetation, which in principle may slow down bank 
erosion (as a higher order effect if compared with secondary currents side action). However, it proved to be a 
rather robust characteristic time estimator also in this regard, when applied to vegetation-covered field banks. 
As a matter of fact, the progressive sedimentation of grains at the convex bank in the form of a point bar 
is often associated with the growth and development of vegetation that control bank dynamics. The rate of 
erosion of the outer bank is also influenced by riparian vegetation. Vegetation and plant root system can stabi-
lize the bank and limit the intensity of the erosive phenomena and their timing. The authors chose, for the sake 
of safety, to disregard the effect of vegetation because they focused their analysis on the worst conditions, in 
which the reduction of outer bank erosion due to the vegetation was neglected. In this case, the highest erosion 
rate is expected and, everything else being the same, predicted cutoff times are shorter.

5.2. Future Research Perspectives

There is no doubt that the above-listed approximations may marginally be responsible for the non-perfect match-
ing between theoretical predictions and real data. On the other hand, an analytical model cannot rigorously 
encompass the unavoidable complexity of a real process. Nevertheless, the scope of the present study was to find 

Post-cutoff 1989

Ln (real) Hooke (1995) 67 m

r0 (expected) 36.92 m

ln (expected) 1.81

Γ*(from Equation B3) 5.346

τ (from Equation A19) 0.20027

Δτfc (theoretical) 0.05052

σ (real) Hooke (1995) 2.49

v0/B Crosato (2009) 0.028

B (real) Hooke (1995) 9.65 m

v0 (real) 8.57 ⋅ 10 −9 m/s

Δtfc (theoretical) 7 years

Δtfc (real) Hooke (1995) 9 years

vE/v0 (from Equation B10 at τ = 0.20027) 9.49

vE (theoretical) 2.56 m/year

vE (real) Hooke (1995) 2.11 m/year

Note. Bold values highlight the comparison between predictions and 
observations.

Table 4 
River Bollin 1989 Post-Cutoff Observed and Calculated Variables
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a fast, easy and universal prediction tool that guarantees at the same time a satisfactory predictive ability by resort-
ing to a fully analytical formulation. With this in mind, we will further go into detail with our investigation  by:

1.  Verifying the possibility to calibrate the model by performing additional laboratory tests with simulated vege-
tation/physical constraints and even more heterogeneous gran size distributions, in order to assess the effects 
of suspended load involving the finer sediment fractions (e.g., Mahato et al., 2021) as well as the role of 
possible sedimentary singularities in determining cutoff location and direction;

2.  Generalizing the theoretical model to earlier phases of meander life (farer-from-cutoff conditions) by releas-
ing some approximations like high cylinder rotation speed/high meander axis curvature and low Reynolds 
number cylinder flow/low meander migration rate. We believe that this generalization can lead to the most 
considerable model predictive ability improvement.

Figure 15. Bollin's cutoff site over time (see the square window and, in detail, 1980 cutoff site in the circle) (adapted from Hooke (1995) with permission). Dashed 
line: 1970 bank edge; full line: 1980 bank edge; thick full line: 1989 bank edge.
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Appendix A: On the Consistency of the Potential Approach in the Modeling of Near 
Field Velocity Around a Fast Rotating Cylinder in a Low Reynolds Number Uniform 
Flow
Let us start from Lamb-Oseen's linearized dimensional flow equations (Batchelor,  1967; Lamb,  1932; 
Oseen, 1910), with the modified boundary condition represented by cylinder rotation at constant clockwise angu-
lar rate 𝐴𝐴 Γ∕2𝜋𝜋𝜋𝜋0

2 :

𝜌𝜌

(

𝒈𝒈 −
𝜕𝜕𝒗𝒗

𝜕𝜕𝜕𝜕
− 𝒗𝒗

′′

0
⋅ ∇𝒗𝒗

)

= ∇𝑝𝑝 − 𝜇𝜇∇
2
𝒗𝒗 (A1)

∇ ⋅ 𝒗𝒗 = 0 (A2)

𝑣𝑣𝑐𝑐 = ‖𝒗𝒗‖𝑐𝑐 = −
Γ

2𝜋𝜋𝜋𝜋0
 (A3)

where v indicates the generic velocity vector, 𝐴𝐴 𝒗𝒗
′′

0
= 𝑣𝑣

′′

0
�̂�𝒙 the velocity of the incompressible flow that hits the 

cylinder (or, equivalently, the velocity at which the cylinder moves through the static fluid along the opposite 
longitudinal direction), 𝐴𝐴 𝒈𝒈 = −𝑔𝑔�̂�𝒛 the gravity acceleration vector, z the vertical coordinate, subscript c the cylin-
der contour, and the double vertical brackets the vector magnitude. Total velocity may then be subdivided into 
a potential (𝐴𝐴 𝒗𝒗

′′

0
+ 𝒗𝒗1 ) and a deviatory rotational (v2) component (Marchi & Rubatta, 1981). For steady flow, let:

−∇(𝛾𝛾𝛾𝛾 + 𝑝𝑝) + 𝜇𝜇∇
2
𝒗𝒗 = 𝜌𝜌𝜌𝜌

′′

0

𝜕𝜕𝒗𝒗

𝜕𝜕𝜕𝜕
 (A4)

with γ = ρg indicating fluid specific weight. The v2-related conditions for the proposed flow field 𝐴𝐴 𝒗𝒗 = 𝒗𝒗
′′

0
+ 𝒗𝒗1 + 𝒗𝒗2 

being a possible solution of Equations A1 and A2 are continuity and residual momentum, that is:

∇ ⋅ 𝒗𝒗2 = 0 (A5)

and

∇
2
𝒗𝒗2 −

𝑣𝑣
′′

0

𝜈𝜈

𝜕𝜕𝒗𝒗2

𝜕𝜕𝜕𝜕
= 0 (A6)

where ν  =  μ/ρ indicates kinematic viscosity. Series solution of Equation  A6 for small 𝐴𝐴 𝐴𝐴0
′′
𝑟𝑟∕2𝜈𝜈 yields (e.g., 

Batchelor, 1967; Marchi & Rubatta, 1981):

𝑣𝑣2𝑥𝑥 = 𝑐𝑐0

[

1

2

(

𝐸𝐸𝑢𝑢 −
1

2
+ ln

𝑣𝑣
′′

0
𝑟𝑟

4𝜈𝜈

)

−
𝜈𝜈

𝑣𝑣
′′

0

𝜕𝜕 ln 𝑟𝑟

𝜕𝜕𝑥𝑥
+

1

4
𝑟𝑟
2 𝜕𝜕

2
ln 𝑟𝑟

𝜕𝜕𝑥𝑥2
+ . . .

]

 (A7)

𝑣𝑣2𝑦𝑦 = 𝑐𝑐0

[

−
𝜈𝜈

𝑣𝑣
′′

0

𝜕𝜕 ln 𝑟𝑟

𝜕𝜕𝑦𝑦
+

1

4
𝑟𝑟
2 𝜕𝜕

2
ln 𝑟𝑟

𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦
+ . . .

]

 (A8)

with 𝐴𝐴 𝐴𝐴 =

√

𝑥𝑥2
+ 𝑦𝑦2 and Eu indicating Euler's constant. The mathematical shape of Equations A7 and A8, and the 

boundary condition (30) ‖v‖c ≡ vθ(r0,θ) = −Γ/2πr0, where θ = tan −1(y/x), suggest assuming the following potential 
function for the irrotational component of the flow:

𝜑𝜑 = 𝑣𝑣
′′

0
𝑥𝑥 −

Γ

2𝜋𝜋
tan

−1

(

𝑦𝑦

𝑥𝑥

)

+ 𝑐𝑐1 ln 𝑟𝑟 + 𝑐𝑐2
𝜕𝜕 ln 𝑟𝑟

𝜕𝜕𝑥𝑥
+ . . . (A9)

with:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑣𝑣

′′

0
+ 𝑣𝑣1𝜕𝜕 (A10)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑣𝑣1𝜕𝜕 (A11)
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and the constants respectively given by:

𝑐𝑐0 =
2𝑣𝑣

′′

0

(

1

2
− 𝐸𝐸𝑢𝑢 − ln

𝑣𝑣
′′

0
𝑟𝑟0

4𝜈𝜈

) (A12)

𝑐𝑐1 =
𝜈𝜈

𝑣𝑣
′′

0

𝑐𝑐0 (A13)

𝑐𝑐2 = −
𝑟𝑟
2

0

4
𝑐𝑐0 (A14)

Total Cartesian components of velocity will therefore be expressed as:

𝑣𝑣𝑥𝑥 = 𝑣𝑣
′′

0
+ 𝑣𝑣1𝑥𝑥 + 𝑣𝑣2𝑥𝑥 = 𝑣𝑣

′

0
ln

𝑟𝑟

𝑟𝑟0
+ 𝑣𝑣

′

0

(

1 −
𝑟𝑟
2

0

𝑟𝑟2

)
(

1 − 2cos
2
𝜃𝜃
)

2
+

Γ

2𝜋𝜋𝑟𝑟
sin 𝜃𝜃 (A15)

𝑣𝑣𝑦𝑦 = 𝑣𝑣1𝑦𝑦 + 𝑣𝑣2𝑦𝑦 = −𝑣𝑣
′

0

(

1 −
𝑟𝑟
2

0

𝑟𝑟2

)

sin 𝜃𝜃 cos 𝜃𝜃 −
Γ

2𝜋𝜋𝑟𝑟
cos 𝜃𝜃 (A16)

where

𝑣𝑣
′

0
=

𝑣𝑣
′′

0

(

1

2
− 𝐸𝐸𝑢𝑢 − ln

𝑣𝑣
′′

0
𝑟𝑟0

4𝜈𝜈

)
=

𝑣𝑣
′′

0
(

1

2
− 𝐸𝐸𝑢𝑢 − ln

𝑅𝑅𝑅𝑅

8

) (A17)

or, in the cylindrical reference frame:

𝑣𝑣𝑟𝑟 = 𝑣𝑣𝑥𝑥 cos 𝜃𝜃 + 𝑣𝑣𝑦𝑦 sin 𝜃𝜃 = 𝑣𝑣
′

0
ln

𝑟𝑟

𝑟𝑟0
cos 𝜃𝜃 −

𝑣𝑣
′

0

2

(

1 −
𝑟𝑟
2

0

𝑟𝑟2

)

cos 𝜃𝜃 =
1

𝑟𝑟

𝜕𝜕Ψ

𝜕𝜕𝜃𝜃
 (A18)

𝑣𝑣𝜃𝜃 = −𝑣𝑣𝑥𝑥 sin 𝜃𝜃 + 𝑣𝑣𝑦𝑦 cos 𝜃𝜃 = −𝑣𝑣
′

0
ln

𝑟𝑟

𝑟𝑟0
sin 𝜃𝜃 −

𝑣𝑣
′

0

2

(

1 −
𝑟𝑟
2

0

𝑟𝑟2

)

sin 𝜃𝜃 −
Γ

2𝜋𝜋𝑟𝑟
= −

𝜕𝜕Ψ

𝜕𝜕𝑟𝑟
 (A19)

where Ψ indicates the associated stream function. The solution of the above partial differential equation system 
leads to:

Ψ(𝑟𝑟𝑟 𝑟𝑟) = −
𝑣𝑣
′

0

2

(

𝑟𝑟 −
𝑟𝑟
2

0

𝑟𝑟

)

sin 𝑟𝑟 + 𝑣𝑣
′

0
𝑟𝑟 ln

𝑟𝑟

𝑟𝑟0
sin 𝑟𝑟 +

Γ

2𝜋𝜋
ln 𝑟𝑟 (A20)

or:

Ψ(𝑟𝑟𝑟 𝑟𝑟) = −
𝑣𝑣
′

0

2

(

𝑟𝑟 −
𝑟𝑟
2

0

𝑟𝑟

)

sin 𝑟𝑟 +
Γ

2𝜋𝜋

(

2𝜋𝜋𝑣𝑣
′

0
𝑟𝑟

Γ
ln

𝑟𝑟

𝑟𝑟0
sin 𝑟𝑟 + ln 𝑟𝑟

)

 (A21)

At relatively high rotation speeds, with 𝐴𝐴 − 𝑣𝑣0
′
= 2𝑣𝑣0 , Γ ≫ 4πv0r0, and finite r/r0:

Ψ(𝑟𝑟𝑟 𝑟𝑟) = 𝑣𝑣0

(

𝑟𝑟 −
𝑟𝑟
2

0

𝑟𝑟

)

sin 𝑟𝑟 +
Γ

2𝜋𝜋

(

−
4𝜋𝜋𝑣𝑣0𝑟𝑟0

Γ

𝑟𝑟

𝑟𝑟0
ln

𝑟𝑟

𝑟𝑟0
sin 𝑟𝑟 + ln 𝑟𝑟

)

≅ 𝑣𝑣0

(

𝑟𝑟 −
𝑟𝑟
2

0

𝑟𝑟

)

+
Γ

2𝜋𝜋
ln 𝑟𝑟 (A22)

which indeed represents the stream-function of a potential flow field made by a longitudinal uniform flow of 
velocity v0 superposed to a doublet of constant m = 2πv0r0 2 and a clockwise free vortex of circulation Γ, the last 
two centered at the origin of the reference frame (e.g., Batchelor, 1967; Marchi & Rubatta, 1981). Note that the 
condition Γ ≫ 4πv0r0 is equivalent to:

ln
𝑅𝑅𝑅𝑅

8
≪

1

2
− 𝐸𝐸𝑢𝑢 −

2𝜋𝜋𝜋𝜋0𝑣𝑣0
′′

Γ
 (A23)
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Equation A23 consistently means that, the larger the circulation, the larger the Reynolds number that guaran-
tees the reliability of the truly potential-flow formulation, according to Padrino and Joseph's (2006) numerical 
findings.

Appendix B: Circulation/Meander Amplitude Analytical Solution
Being understood that, according to Equation A23, at small rotation speeds (the equivalent of early meander 
instability) the present formulation may be considered as an approximation that is as closer to reality as slower 
the uniform flow/meander migration is, for Γ* → 0 + we obtain from Equations 15–17:

�Γ∗

��
≅ 2Γ∗2 tan �

√

2�2Γ∗3∕2
∫ �
0 |−Γ∗ − 8� sin �|3∕2�� =

= 2
√

2�2
tan �Γ∗1∕2 ∫ �

0 (Γ∗ + 8� sin �)3∕2��
 (B1)

Series expansion of the integrand in Equation B1 leads to:

𝑑𝑑Γ
∗

𝑑𝑑𝑑𝑑
≅

2(8𝜋𝜋)
3∕2

√

2𝜋𝜋2

tan 𝛼𝛼Γ
∗1∕2

∫

𝜋𝜋

0

sin
3∕2

𝜃𝜃

(

1 +
3Γ

∗

16𝜋𝜋 sin 𝜃𝜃

)

𝑑𝑑𝜃𝜃 (B2)

and, after performing the angular integration:

𝑑𝑑Γ
∗

𝑑𝑑𝑑𝑑
= 𝑘𝑘1Γ

∗1∕2
+ 𝑘𝑘2Γ

∗3∕2 (B3)

with

𝑘𝑘1 = 64

√

2

𝜋𝜋

𝐺𝐺
2

(

5

4

)

𝐺𝐺

(

5

2

) tan 𝛼𝛼 (B4)

𝑘𝑘2 =
12

𝜋𝜋

√

2𝜋𝜋

𝐺𝐺
2

(

3

4

)

𝐺𝐺

(

3

2

) tan 𝛼𝛼 (B5)

and G indicating Gamma Function. Finally, the integration of the ordinary differential Equation  B3 yields 
(Gradshteyn & Ryzhik, 1994):

Γ
∗

1
(𝜏𝜏) =

𝑘𝑘1

𝑘𝑘2

tan
2

(

𝑘𝑘1

2

√

𝑘𝑘2

𝑘𝑘1

𝜏𝜏

)

 (B6)

For large Γ* (Γ* >> 4π) and from the potential flow theory, the y-coordinate of the single, off-cylinder stagnation 
point (xs = 0) is:

𝑦𝑦𝑠𝑠 =
Γ

4𝜋𝜋𝜋𝜋0
+

𝑟𝑟0

4𝜋𝜋

√

Γ2

𝜋𝜋
2

0
𝑟𝑟
2

0

− 16𝜋𝜋2 ≅
Γ

2𝜋𝜋𝜋𝜋0
 (B7)

and, in differential terms:

𝑑𝑑𝑑𝑑𝑆𝑆 =
𝑑𝑑Γ

2𝜋𝜋𝜋𝜋0
 (B8)

with the fluid-dynamic power given by:

𝑃𝑃 =
𝜌𝜌Γ

2𝜋𝜋

𝑑𝑑Γ

𝑑𝑑𝑑𝑑
 (B9)
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Therefore, for the closed loop (with the angular coordinate that goes from 0 to 2π):

�Γ∗

��
= Γ∗2

√

2�2
tan � ∫

2�

0

|

|

|

|
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|

|

|
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�� =

= Γ∗2
√

2�2
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 (B10)

Series expansion of the integrand in Equation B10 for Γ* → ∞ leads to:

�Γ∗

��
≅ Γ∗2 tan �

√

2�2 ∫

2�

0

(

1 + 12�
Γ∗ sin2 � + 24�2

Γ∗2
sin2 �

)

�� =

= 1
√

2�2
tan �

(

2�Γ∗2 + 24�3
)

 (B11)

Finally, the integration of differential Equation B11 yields (Gradshteyn & Ryzhik, 1994):

Γ
∗
=

√

12𝜋𝜋3 tan(

√

24𝜋𝜋 tan 𝛼𝛼𝛼𝛼 + 𝐶𝐶) (B12)

with C indicating a numerical constant. As above mentioned, the overlapping of the two limiting solutions at 
medium circulation values is obtained by imposing the matching of their respective extrapolations at Γ* = 4π (as 
done in Figure 5), thus obtaining C = −0.9469.
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