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Abstract: Soil salinity and sodicity are significant issues worldwide. In particular, they represent
the most dominant types of degraded lands, especially in arid and semi-arid regions with minimal
rainfall. Furthermore, in these areas, human activities mainly contribute to increasing the degree
of soil salinity, especially in dry areas. This study developed a model for mapping soil salinity and
sodicity using remote sensing and geographic information systems (GIS). It also provided salinity
management techniques (leaching and gypsum requirements) to ameliorate soil and improve crop
productivity. The model results showed a high correlation between the soil electrical conductivity
(ECe) and remote-sensing spectral indices SIA, SI3, VSSI, and SI9 (R2 = 0.90, 0.89, 0.87, and 0.83),
respectively. In contrast, it showed a low correlation between ECe and SI5 (R2 = 0.21). The salt-
affected soils in the study area cover about 56% of cultivated land, of which the spatial distribution
of different soil salinity levels ranged from low soil salinity of 44% of the salinized cultivated land,
moderate soil salinity of 27% of salinized cultivated land, high soil salinity of 29% of the salinized
cultivated land, and extreme soil salinity of 1% of the salinized cultivated land. The leaching water
requirement (LR) depths ranged from 0.1 to 0.30 m ha−1, while the gypsum requirement (GR) ranged
from 0.1 to 9 ton ha−1.

Keywords: soil salinity; sodicity; GIS; RS; leaching and gypsum requirement

1. Introduction

Land degradation is one of the world’s most severe environmental and socio-economic
issues [1–3], occurring due to natural phenomena and anthropogenic factors that nega-
tively impact land’s ability to function effectively in an ecosystem which causes enormous
challenges in achieving sustainable development goals [4–7]. Degraded lands could reach
one-fifth of the total land in some countries [8,9]. Currently, salt-affected soil covers
approximately 1.125 billion hectares, with anthropogenic activities affecting 76 million
hectares. Soil salinity is a primary challenge to global food security and environmental
sustainability. As climate change accelerates, the problem may soon spread to unaffected
areas [10]. The high salinity levels could cause adverse effects on soil characteristics and
plant physiology [11,12].

There is an urgent need to increase the area of agricultural land to meet the increasing
demand for food due to the rapid population growth [13–15]. Therefore, one of the effective
ways to raise the efficiency of the agricultural unit is land reclamation processes [16]. This
helps in fixing one or more defects in the soils that hinder and/or reduce agriculture
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productivity [17]. However, the traditional methods for reclamation operations are costly in
time and effort [16]; therefore, looking to modern technologies to help in these calculations
has become an urgent necessity.

Remote sensing and geographical information systems (GIS) are promising tools for
assessing land degradation [18–22]. These tools can generate relevant maps and reliable
spatial information to support decision making [23–25]. The earliest successful attempts
to use remote sensing for the detection of salt-affected soils were preceded by Mougenot
et al. [26]. The remote sensing and GIS datasets provide accurate information on large
areas. Some satellite ‘images’ are low in cost, and the remote-sensing assessment tasks
can be carried out in a shorter time than conventional fieldwork assessments [27–30]. The
assessment results can be used to adequately manage soil and crops [31–34]. Using Landsat
images allows for assessing the soil salinity features. The Landsat images are the best to
capture soil salinity extent with different salinity levels [35–41]. In Egypt, several studies
have also been conducted to map soil salinity using remote sensing and GIS datasets and
showed reliable soil salinity results [42–57].

The prevalence of saline/sodic soils depends on two types of factors, namely, climatic
factors and geomorphologic factors. Saline lands are found in regions with a continental
climate or where droughts prevail, which leads to increased evaporation and salt accumu-
lation [58–60]. Saline/sodic soils also spread in the lands of lakes, rivers, and sedimentary
valleys, and abound in dry and semi-arid areas with little rain and high temperatures.
All conditions are identical in the study area where the evaporation process accelerates
the formation of salts and their ascent to the surface of the soil through its capillary prop-
erty [31,32,61,62]. Saline soils have higher salt concentrations than usual, whereas sodic
soils have higher concentrations of Na+ than usual. Saline soils cause a chemical drought
while sodic soils, conversely, cause waterlogging in soils [33]. Leaching is a vital soil
management technique applied to salt-affected soil by adding supplemental irrigation
water to remove salts from the root zone layers [26–28]. Understanding the hydraulic
properties of the soil, water mobility, and salt dynamics are essential to correctly conduct
the required leaching [63–65], while adding gypsum (CaSO4 × 2 H2O) to salt-affected soil
is one of the oldest amendment methods. This method promotes the efficient replacement
of Na+ by exchangeable Ca2+ leading to the improvement in the soil’s physical–chemical
and enzymatic properties [66–73].

In Egypt, salinity accumulation, sodicity, and waterlogging are the main form of
land degradation. Soil salinity and sodicity seriously affect agriculture production, where
saline/sodic soils occupy 46% of the total Nile Delta area [74]. Egypt’s croplands are
entirely irrigated due to the country’s extremely low rainfall and high rates of evaporation.
The primary cause of secondary soil salinization in Egypt is the extensive irrigation of
agriculture in arid climate conditions [74,75]. Additionally, irrigation with contaminated
water from the polluted drains led to increasing in some metals’ concentration due to
anthropogenic pollution through the spreading of contaminated dredged materials on
agricultural fields [76]. The soil salinization problem in Egypt, caused by the reuse of
irrigation drainage waters and limits on rice plantings due to the shortage of irrigation
water, raises an urgent need for the agricultural productivity of the Nile Delta through,
for instance, subsurface drainage in waterlogged lands, land leveling, and use of gypsum
amendments [74]. Especially in Egypt, at least 20% of all irrigated areas are salt-affected,
and other estimates put the figure as high as 50%. The northern part of the Nile Delta
in Egypt contains a huge region of heavy clay soils with shallow open drainage, limited
permeability, and low productivity.

In the North Delta region, particularly in Egypt’s Kafr El-Sheikh Governorate, there is
a serious lack of irrigation water supply. Farmlands at the end of irrigation canals must use
available drainage water to compensate for the lack of source of water [76–79]. Therefore,
this study aims to integrate remote sensing and GIS techniques to produce amelioration
maps of leaching (LR) and gypsum (GR) requirements in the study area.
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2. Materials and Methods
2.1. Description of the Studied Area

Location: The study area covers 373,191 km2, representing 28.1% of the total area
of the Delta region and about 0.35% of the total area of Egypt. It is located in the Kafr
El-Sheikh Governorate in the northern part of Egypt’s Nile Delta. The latitude ranges from
31◦00′ and 31◦ 15′ in the east and 31◦00′ and 31◦37′ in the north, and an altitude of 9.14 m
above sea level. It is bounded in the north by the Mediterranean Sea, the southern Gharbia
Governorate, the eastern part of Dakahlia Governorate, and the western province of Bihaira.
(Figure 1). In the north part of the area, Lake Burullus is located within the borders of the
governorate with an area of 148,562 hectares. The lake is connected to the Mediterranean
through the Burullus spur, which is 44m-wide.
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Figure 1. Location map of the study area.

Landform: The region’s topography has a diversity of natural life due to the diversity
of environments and the diversity of the topography of the land. The natural environments
in the province can be classified into three main types: agricultural and urban environments,
coastal environments, and wetlands. Each of them is unique in its animal life, plants, and
biodiversity [80,81].

Geology: The center and south of the province cover the sediments of the modern
geological age (Holocene era), which are dark-brown formations composed of deposits
of clay, clay, and sandy clay. These sediments are deposited over the ancient marine
sediments (under delta formations) that date back to the Pleistocene era. They are yellow
in color and consist of coarse and fine sand and pebbles consisting of quartz or igneous
and metamorphic rocks. The northern coastal zone is a low, sandy coast consisting of soft,
brittle sediments belonging to the Pleistocene and Holocene [82,83].

All the ancient geological studies show that the Burullus region in the north of the
governorate was less arid than our present era with the presence of many plants. Likewise,
the shore of the delta region was mainly composed of silt, with swamps and depressions
increasing in it. In the flood season, these depressions were filled with fresh water, forming



Land 2022, 11, 1041 4 of 19

a series of small lakes and wetlands. These bogs were filled with organic matter and
sediments resulting from the analysis of plant remains, so most of this water was devoid of
oxygen. It was also filled with the shells of some bivalve mollusks, especially the cardium
type. The coastal area consists of a sandy beach as a result of the sediments that were
carried by the waves of the Mediterranean [82,83].

Climate: In general, the climate in Kafr el-Sheikh Governorate is an arid climate
(classified as BWh) by the Köppen–Geiger system. The warmest month is August (31 ◦C),
and the coldest month is January (9.4 ◦C). The total number of rainy days in a year is 31 days,
where January is the wettest month while July is the driest month (0.0 mm/0 inches).

A climate diagram (Figure 2) is based on 30 years of available data from the study
area. From this indication of typical climate patterns and conditions of temperature and
precipitation, it is clear from the figure that the rain is very little, at less than 25 mm, and
most of it occurs in January. Generally, the governorate has a Mediterranean climate, and
the temperature varies between 13.2 ◦C in January (winter) and 26.6 ◦C in July (summer).
The amount of precipitation ranges from 140 mm to 250 mm per year. The winds are
generally western and northwest.
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Agricultural land and irrigation water: Soil texture in the study area is classified from
heavy clay to sandy soil. Surface irrigation systems use the Nile water or drainage reuse,
and it has electrical conductivity values between 0.31 and 1.86 dS m−1.

The soil texture classes of the researched area differ between sandy and heavy clay,
according to field surveys and laboratory investigations. Cation-exchangeable capacity
(CEC) was strongly associated with clay content and ranged from 7.36 to 44.87 cmolc kg−1.
These soils ranged from being non-saline to being extremely salty according to the salinity
levels, which ranged from 0.81 to 10.80 dS m−1. ESP and pH values ranged from 1.02 to
36.20 and 7.83 to 8.81, respectively. The study area’s bulk density and soil depth were
between (1.11 and 1.63 Mg m−3) and (120 to 150 cm), respectively. Organic matter generally
is on average 16.2 g kg−1. The high temperature in dry and semi-arid locations, which
causes the decomposition of fresh residuals, is to blame for the low value of OM. CaCO3
content is 7.30 g kg−1 on average.

The area of agricultural land in the governorate represents about 7.5% of the total
agricultural area in Egypt [84–86]. Winter rains that fall on the northern coast of the area are
unreliable. Groundwater cannot be used due to its excessive salinity as a result of seawater
intrusion as well as to limit its effects. The efficiency of the applied surface irrigation system
does not exceed 60% [84]. Recently, the governorate’s share of fresh water available for
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agriculture was about 3.15 billion cubic meters, and agricultural drainage water is mixed
with freshwater canals to meet agricultural water requirements [85]. Drainage water with
low-quality water such as wastewater is used for irrigation [86], especially in the areas
located at the end of irrigation networks that receive inadequate fresh water. There are some
main drains in the area such as West El-Burullus, Gharbia, El-Khashaah, Tirrah, and El-
Hoks [87]. The principal pollutants are biological oxygen demand (BOD), chemical oxygen
demand (COD), and NO3-N. While NH4-N and NO3-N values fall within the normal range
for irrigation, they are in the abnormal range according to Egyptian standards. BOD and
COD values are rated as bad to moderate and moderate. According to Egyptian standards,
the values are within the usual range for irrigation. Furthermore, except for Ni, whose
readings are within the normal range, the levels of the heavy metals Cu, Mn, Pb, and Cd
are higher than what is permitted for irrigation. B values in water samples range from poor
to excellent. In the meantime, irrigation-appropriate pH values ranged from 7.33 to 8.15,
EC values ranged from 1.87 to 4.71 ds m−1, and SAR values ranged from 5.86 to 9.32.

2.2. Soil Analysis

Soil sampling was conducted in the study area, where 66 soil samples were collected at
0–0.3 m depths. The samples were dried, grounded, and passed through a 2.0 mm sieve in
the laboratory (Table 1). The soil reaction (pH) and soil electrical conductivity (ECe, dS m−1)
were identified according to the Page method [87]. The soil organic matter (SOM, g kg−1)
was determined according to Nelson and Sommers method [88]. The Ca2+ as carbonate
(CaCO3, g kg−1) was measured volumetrically using a Collins calcimeter method [89]. The
exchangeable sodium percentage (ESP) was calculated using the [33] equation:

ESP =
100× (−0.0126 + 0.01475 SAR)
1 + (−0.0126 + 0.01475 SAR)

(1)

where SAR (sodium adsorption ratio) is a measure of the amount of sodium (Na+) relative
to calcium (Ca2+) and magnesium (Mg2+) in the water extracted from a saturated soil paste.
It is the ratio of the Na concentration divided by the square root of one-half of the Ca + Mg
concentration. SAR is calculated from the equation:

SAR = Na+/[(Ca2+ + Mg2+)/2]0.5

Table 1. Basic variables for the sixty-six soil samples’ studied soil properties.

Variable Unit Min Max Mean

pH (1:2.5 suspension) - 7.83 8.81 8.32
ECe (paste extract) dS m−1 0.81 10.80 5.81

SAR - 1.56 39.33 20.45
ESP - 1.02 36.20 18.61

SOM g kg−1 10.5 21.9 16.2
CaCO3 g kg−1 0.33 14.27 7.30

Soils that have values for sodium adsorption ratio of 13 or more may have an increased
dispersion of organic matter and clay particles, reduced saturated hydraulic conductivity
and aeration, and a general degradation of soil structure.

2.3. Soil Amelioration

Leaching requirements (LR, depth cm) were calculated using the [90] equation:

LR =
ECiw

5× (ECe − ECiw)
(2)

where ECiw is the electrical conductivity of the irrigation water and ECe is the soil electrical
conductivity.
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Gypsum requirements (GR, Mg ha−1) were calculated using the [33] equation.

GR =
ESPi − ESPf

100
×CEC× 4.1 (3)

where ESPi: actual ESP of the soil; ESPf: ESP required to be reached by reclamation; and
CEC: cation exchange capacity (cmolc kg−1).

2.4. Image Preprocessing and Analysis
2.4.1. Remote-Sensing Data

Remote sensing provides spatial coverage by measuring reflected and emitted elec-
tromagnetic radiation from the earth’s surface and surrounding atmosphere over a wide
range of wavelengths. Remote sensing implies collecting data without making physical
contact with the studied object. This study used Landsat 8 (OLI) images (path 177, row 38)
in May 2021.

2.4.2. Image Preprocessing

Image distortions and degradations occur during the acquisition process of remotely
sensed images. Preprocessing satellite data are required to remove sensor errors during data
acquisition and display the correction, band selection, data dimensionality reduction, and
computing complexity reduction. The team conducted radiometric to eliminate radiometric
problems in images such as nonuniformity, stripe noises, and defective lines, for proper
conversion of digital numbers to reflectance values, geometric, and atmospheric corrections
on the studied Landsat OLI images to increase the visual distinction between features.

2.4.3. Atmospheric Correction Using FLAASH Tool

The team conducted atmospheric correction using The FLAASH (fast line/of/sight
atmospheric analysis of spectral hypercubes) tool in ENVI 5.1 software to have better
reflectance. The team used the native file in a BSQ format for the correction and converted
the images to BIL and BIP format to be compatible with the FLAASH tool.

2.5. Surface Interpolation Using the Ordinary Kriging Technique

The team used the interpolation method to determine the spatial variability and pattern
of the soil characteristics in two-dimensional soil data sets in the topsoil. The geostatistical
analyst extension (Arc GIS 10.4.1) [91] was used to develop the semi-variogram between
each pair of points and interpolate between the sampling locations using the kriging
method to predict the soil salinity in the study area. Ordinary kriging was used to estimate
the value of continuous soil salinity (z) at an unsampled location (u) using only data on
this characteristic [z(uα), α = 1, n] as a linear combination of neighboring observations:

Z∗ok(U) =
n(u)

∑
α=1

λα(u)Z(u∝) (4)

The ordinary kriging weights were chosen to minimize the estimation or error variance,

σ
2
E
(u) = Var[Z(u)− Z(u)] (5)

The weights were obtained by solving a system of linear equations:
n(u)
∑

β=1
λβ(u)γ(u∝ − uβ)− µ(u) = γ(u∝ − u)

n(u)
∑

β=1
λβ(u) = 1 α = 1, . . . , n (u)

(6)
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To ensure the estimator was unbiased, constraining the weights to sum to one requires
the definition of the Lagrange parameter m (u).

2.6. Soil Salinity Indices

The team examined fourteen different spectral salinity indices related to salt detection
and soil salinity mapping developed in numerous studies. The most commonly used
salinity indices taken into account in this study (NDSI, SIA, SI 1, SI 2, SI 3, SI 4, SI 5, SI 6,
SI 7, SI 8, SI 9, NDVI, SAVI, and VSSI) are presented in Table 2.

Table 2. Soil salinity indices based on different band ratios of Landsat.

No Index Name Formula Ref.

1 Salinity index (SI)
√

Band 3× Band 4 [92]

2 Soil salinity index for arid and semi-arid conditions (SIA)
SIA =

((
Blue× Red

Green

)
×
(

Red× Near In f rared
Green

))
(

Blue− Red
Blue + Red

) [93]

3 Normalized difference salinity index (NDSI) Band 3− Band 4
Band 3 + Band 4

[94]

4 Vegetation soil salinity index (VSSI) 2× Band2− 5 (Band 3 + Band 4) [92]
5 Normalized differential vegetation index (NDVI) Band4− Band 3

Band3 + Band 4
[94]

6 Soil adjusted vegetation index (SAVI) (1 + L)Band 4−
(

Band 3
L

)
+ Band 4 + Band 3 [95]

7 Salinity index 2 SI =
√

G× R [92]
8 Salinity index 3 SI =

√
G2 + R2 + NIR2 [96]

9 Salinity index 4 SI =
√

G2 + R2 [96]

10 Salinity index 5 SI =
B
R

[97]

11 Salinity index 6 SI =
B− R
B + R

[97]

12 Salinity index 7 SI =
B× R

B
[97]

13 Salinity index 8 SI =
B× R

G
[98]

Where: B, G, R, NIR, SWIR1, and SWIR2 refer to the reflectance in visible blue, green, red, near-infrared, Shortwave
infrared 1, and 2, respectively.

The processing steps of mapping soil salinity using Landsat 8 image by the superior
index among the used indices through assessing soil salinity from soil samples are shown
in Figure 3. Firstly, FLAASH model was applied to remove the atmospheric effects [98–100].
Then, image processes were applied, i.e., image morphology, conversion from digital
number to reflectance value, cloud filtering [101], and image enhancement. Subsequently,
indices were computed and analyzed. Then, indices were normalized in Excel software.
Secondly, the soil samples were analyzed with the spectral reflectance of the image. The soil
salinity is estimated by the measured laboratory EC. Based on the results, the relationship
was determined between reflectance values and indices of soil salinity to estimate the soil
salinity from the image. It was noted that various soil types reflect solar radiation differently.
The variation in reflectance makes it possible to identify the type of soil at the surface layer.
Validation samples were taken from different land use/land cover types, including Sabkha,
water bodies, waterlogged, bare soil, and cultivated land. The sample locations are selected
at different salinity intrusion degrees. Finally, leaching water requirements and Gypsum
requirements were calculated as shown in Figure 3.
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3. Results
3.1. The Relationship between ECe and Remote-Sensing Spectral Indices

Various spectral indices derived from the initial Landsat bands in the study area
validated the developed spatial model of soil salinity; Figure 4. The statistical correlation
between soil electrical conductivity (ECe) and remote-sensing spectral index revealed that
the salinity index (SIA), salinity index 3 (SI3), vegetation soil salinity index (VSSI), and
salinity index 9 (SI9) had a significant correlation with ECe (R2 = 0.90, 0.89, 0.87, and 0.83,
respectively). However, salinity index 5 (SI5) had a low correlation (R2 = 0.21). The models
with the highest R2 values, indicating a high correlation between field measurement data
and satellite data, were chosen as the best regression model to produce the soil salinity
map of the study area. Overall, the brightness index with bands (R and NIR) of the image
dated May 2021 had the highest correlation of 90%. Therefore, this obtained regression
equation was used for soil mapping, while the density-slicing method was used to classify
the different salinity levels, according to the different salinity classes. These salinity classes
were defined using the international salinity thresholds.

The SIA, SI2, SI3, SI4, SI7, SI8, and SI9 indices are positively correlated between the
actual ECe and the modeled ECe, and negatively correlated with NDS1, SI6, and SI5. All
of the studied indicators followed a normal distribution for the low-salinity class (2 and
4 dS m−1), while the higher-salinity class resulted in negative skewness. It was noted that
there was a high level of uncertainty and variability for all indicators with higher salinity
levels, but a lower level of uncertainty with lower salinity content (Figure 2).
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3.2. Land Use

The land use in the study area was 373,191 ha and can be classified into four dominant
classes: cultivated land, water bodies and lake Burrulus, fish ponds, and urban area. The
cultivated land was the main class, the second class was water bodies and lake Burrulus,
the third class was fish bonds, and the fourth class was the urban area, which covered
about 72, 12, 10, and 6% of the total area, respectively (Table 3).

Table 3. The main land use categories in the study area.

Land Use Categories Area (%) Area (ha)

Cultivated land (C.A.) 72% 269,628
Water bodies and lake Burrulus 12% 43,512

Fish ponds 10% 37,739
Urban 6% 22,310

Total studied area 100% 373,189

3.3. Soil Quality Index (SQI)

The results related to classifying the different salinity levels by the salinity index SIA
with bands (R and NIR) are given in Table 4 and Figure 5. The results of the proposed
model revealed that the assessment of salinity levels was classified into four classes: the low
salinity (4 < dS m−1) class occupies 118,580 ha (44% of the cultivated area); the moderate-
salinity class (4–8 dS m−1) occupies 73,177 ha (27% of the cultivated area); the high-salinity
class (8–16 dS m−1) represents 77 ha (28% of the cultivated area); and the extreme-salinity
class (>16 dS m−1) represents 145 ha (1% of the cultivated area). The results indicated that
the salt-affected soils in the study area represent 56% of the cultivated land.

Table 4. The main salinity class categories in the study area.

Salinity Class (dS m−1) Area ha Area (%)

4< 118,580 44
4–8 73,177 27
8–16 77,726 28
16> 145 1

The cultivated study area 269,628 100%
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3.4. Soil Amelioration
3.4.1. Leaching Water Requirements

Figure 6 shows the different leaching requirements that should be added to the soil to
reduce soil salinity. The different leaching water requirement depths were classified into
six classes: (1) 0.01 to 0.1 m ha−1 for an area of about 27,607 ha (10% of the cultivated area);
(2) 0.1 to 0.2 m ha−1 for an area of about 62,335 ha (23% of the cultivated area); (3) 0.2 to
0.3 m ha−1 for an area of about 66,775 ha (25% of the cultivated area); (4) 0.3 to 0.4 m ha−1

for an area of about 83,453 ha (31% of the cultivated area); (5) 0.4 to 0.6 m ha−1 for an area
of about 15,447 ha (5% of the cultivated area); (6) 0.6 to 0.9 m water depth ha−1 for an area
of about 14,012 ha (5% of the cultivated area).
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3.4.2. Gypsum Requirements

Figure 7 illustrates the different gypsum requirements that should be added to the soil
to reduce soil sodicity. As is clear from the figure, the gypsum requirement was classified
into six classes: (1) 0.10 to 1 ton ha−1 for an area of 41,346 ha (15% of the cultivated area);
(2) 1 to 2 ton ha−1 for an area of about 69,754 ha (26% of the cultivated area); (3) 2 to
3 ton ha−1 for an area of about 65,86 ha (24% of the cultivated area); (4) 3 to 4 ton ha−1 for
an area of about 49,171 ha (18% of the cultivated area); (5) 4 to 6 ton ha−1 for an area of
about 34,234 ha (13% of the cultivated area); (6) 6 to 9 ton ha−1 for an area of about 9265 ha
(3% of the cultivated area).
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4. Discussion

Assessment of salt-affected soil using remote sensing and GIS is beneficial due to its
low cost and efficiency. This will improve the management of the salt-affected soil [1]. It
was clear from the results obtained that using Landsat images can capture soil salinity with
a significant correlation between the ECe values and bands of the Landsat images [40–46].

Our results indicate that the correlation between the remote-sensing spectral index
and ECe (salinity index (SIA), salinity index 3, vegetation soil salinity index, and salinity
index 9) was highly significant. This agrees with the views of [102,103] who emphasized
that the salinity index (SI) has the highest correlation with soil salinity based on the image
enhancement method. Elhag [104] indicated that the SI-3 and SI-9 have a high correlation
with soil salinity indices.

The results showed that the salt-affected soils in the study area represent 56% of
cultivated land. These results agree with one study [80,93], which stated that more than 50%
of the soil in Kafr El-Sheikh Governorate suffers from land degradation. Additionally, good
or non-saline soils in the study area decreased by 33% during the period 1961 to 2016 [81].
Another study conducted by Enar [105] indicated that the low-salinity soil increased by
0.46%, while moderate salinity, high salinity, and extreme soil salinity increased by 16%,
52%, and 20% during the period 2000 to 2020, respectively.

The added value of the paper is in mapping the soil water leaching and gypsum
requirements using remote-sensing and GIS techniques. Limited studies have covered this
topic so far. The method used to calculate the leaching water requirements (cm, depth) and
gypsum requirements (GR, Mg ha−1) according to the concentration of salts is reliable and
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accurate [33,90]. The leaching water depths required to reduce the ECe ranged between
0.01 and 0.90 m ha−1, while the gypsum required to reduce the initial ESP in different study
zones ranged from 0.1 to 9 tons ha−1.

The investigated salt-affected soils are formed as a result of climate and inappropriate
soil management. This is in addition to the effect of irrigation water, water logging, and
saline water intrusion of the Mediterranean. Saline, saline–sodic, and sodic soils have a
strong presence in the area with an average of 55% of the total cultivated soils (Table 2).
The south part of the area is threatened by sodicity according to the low-salinity soils and
highly carbonated irrigation water, while the north of the area contains the highest area of
saline and saline–sodic soils, reaching 33%. Poor drainage in addition to reuse of saline
drainage water supports the buildup of salinity and sodicity [106]

The most popular method for reclaiming salt-affected soils in the region is a gypsum
amendment (CaSO4 2 H2O) combined with intermittent leaching. Another two ways
for adapting and mitigating salinity and sodicity accumulation in the region are furrow
irrigation and rice production under ponding.

The salts are spread in the soil profile, especially in the northern areas of the study area,
adjacent to the water-logged areas, Sabkha, and along the coastline. The dominant salts
in the delta are saline, and sodic soils are sodium sulfate (Na2SO4) and sodium carbonate
and bicarbonate (Na2CO3 and NaHCO3). The solubility of these salts decreases sharply
with temperature decreases; accordingly, the reclamation and leaching processes should
be applied during the summer warm season only. Improving drainage and preventing
industrial and sanitary wastes in the agricultural drain is a must [107]. Land degradation
in coastal areas, increased distribution of soil salinity, and reduced crop productivity in the
region are the manifestations of climate change that have already appeared in the region
from rising sea levels, coastal erosion, reduced Nile flow, increased summer temperature,
changing rainfall patterns [108–112], and increased evapotranspiration [113].

In the study case, saline soils should be treated, and subsequently sodic soils, in order
to reduce the concentration of salts to the appropriate degree for the growth of plant roots
and even the appropriate depth for the roots [114–120].

Proper agricultural practices should be followed such as: adding organic fertilizers,
developing and maintaining drainage, following an appropriate agricultural cycle, using a
digger plow, and choosing salt-tolerant crops and an appropriate irrigation system.

Nitrate, phosphate, and potassium fertilization increase the resistance of plants to
salinity. Salt-tolerant crops such as barley and sorghum are the most salt-resistant cereal
crops, followed by rice and wheat, while maize is the least resistant. Cotton and sugar beet
are the most important salt-tolerant crops, while sugar cane, fava beans, and peas are the
least tolerant of salinity. Most vegetable crops are moderately resistant to salinity, while
most fruit crops, especially deciduous, are sensitive to salinity [114–124].

5. Conclusions

The physico-chemical characteristics of 60 soil profiles were investigated. The results
showed remarkable differences among various sites. The differences were very clear be-
tween the southern regions, where they are often affected by a slight or medium degree
of deterioration and are often concentrated in soil compaction, while the northern regions
were greatly degraded due to the presence of most types of soil deterioration such as salin-
ity, alkaline, and waterlogging. The GIS, Landsat OLI satellite images, and multi-temporal
satellite image analysis were used to estimate the rate and extent of salinized areas. These
proven tools are handy for providing accurate and timely geospatial information depicting
soil conditions. The results reflected that 56% of cultivated land of the Kafr El-Sheikh
Governorate suffers from salinization. Zoning or classifying the area into zones can lead to
better management and amelioration of the different salinity zones. Therefore, using this
technology improves the management of salt-affected soil on a large scale and can be re-
garded as one of the best management strategies for increasing crop production. The causes
of salinity in investigated soils are thought to be a result of seawater intrusion—especially
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in the coastal zone of the area—high water table level, accumulation of salt in the upper
soil layers due to unsuitable irrigation management, and inadequate drainage conditions.
Salinity problems require sustainable management strategies, including identifying and fur-
ther developing crop cultivation practices adapted to saline conditions, enhanced drainage
systems, using salt-tolerant varieties/crops, and exchanging knowledge and transferring
practical and adaptive solutions. Water is fundamental in agriculture; different sources of
pollution such as sewage and industrial wastewater are discharged onto the drains. So,
the water in this drain has very low quality, which in turn may cause hazards to soil and
grown crops. It could be concluded that drains may be used for irrigation purposes under
controlled precautions with good soil management, e.g., good tillage, deep plowing, land
leveling, applying soil and water amendments, and finally a suitable cropping system.
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