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A B S T R A C T

Autophagy is a self-degradative cellular process, involved in stress response such as starvation, hypoxia, and
oxidative stress. This mechanism balances macro-molecule recycling to regulate cell homeostasis. In cancer,
autophagy play a role in the development and progression, while several studies describe it as one of the key
processes in drug resistance. In the last years, in addition to standard anti-cancer treatments such as che-
motherapies and irradiation, targeted therapy became one of the most adopted strategies in clinical practices,
mainly due to high specificity and reduced side effects. However, similar to standard treatments, drug resistance
is the main challenge in most patients. Here, we summarize recent studies that investigated the role of autophagy
in drug resistance after targeted therapy in different types of cancers. We highlight positive results and lim-
itations of pre-clinical and clinical studies in which autophagy inhibitors are used in combination with targeted
therapies.

Introduction

Targeted therapies for cancer

Cancer is a multifactorial disease and one of the leading causes of
death worldwide. Surgery, chemotherapy, and irradiation are the
mainstream therapeutic approaches. Chemotherapeutic drugs act on
rapidly dividing cells, but the main limitations are poor specificity and
adverse effects. In the last years, a new generation of therapies have
been developed to target cancer cells more specifically. Like conven-
tional chemotherapy, targeted cancer therapies are based on com-
pounds that inhibit cancer growth and metastasis [1]. However, they
target specific cancer-associated pathways, reducing their impact on
normal cells [2].

Targeted cancer therapies can be divided into 3 main groups: 1)
monoclonal antibodies (mAbs), 2) small molecule inhibitors and 3)
immunotoxins. Many of these approaches are already in different
phases of pre-clinical and clinical trials.

According to the mechanism of action, MAbs can be divided into

two classes: those that act independently of immune effector mechan-
isms, such as by induction of death signals mediated by cross-linking of
surface receptor on the target cancer cell, or blocking an activation
signal that is necessary for cancer cell growth; and those that require
immune effector participation such as by antibody-dependent cellular
cytotoxicity, complement mediated cytotoxicity and the ability of mAbs
to alter the cytokine milieu or enhance development of an active anti-
tumor immune response [3]. They are highly specific but can only in-
teract with extracellular proteins as they cannot cross the plasma
membrane. Over the past decade, multiple mAbs have gained approval
by the U.S. Food and Drug Administration (FDA) to treat a wide range
of cancers. Also, there are numerous pre-clinical and clinical trials in-
volving mAbs for almost every type of cancer [1].

Small molecule inhibitors act by inhibiting proteins and blocking
the activation of pathways that are dysregulated in cancer.

Tyrosine kinase (TK) inhibitors (TKIs) competitively bind to the
active or inactive ATP binding site of a TK and are used to target pro-
teins that are either downregulated or upregulated during cancer pro-
gression. When these molecules bind to their specific target, they block
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the tyrosine kinase domain and prevent the activation of downstream
pathways. These drugs can be also used in conjunction with standard
chemotherapy to improve therapeutic efficacy. To date inhibitors for
over 20 different kinases have been developed and are in clinical trials
[2]. Immunotoxins are basically modified mAbs or growth factors
which have been conjugated to a toxin either by chemical bond or
generated by recombinant DNA technology. The rationale is to deliver
the toxin to a target expressed specifically by cancer cells.

Most of the pathways/targets of targeted therapy are also expressed
by normal cells, thus targeted therapies are not free of adverse effects
which limit their use. Most commonly reported adverse reactions are
cutaneous rash, liver problem with haptic enzyme elevation, elevated
blood pressure, coagulation defects up to rare gastrointestinal per-
foration. However, some mild side effects are associated with better
outcome [4,5].

However, the main limitation of targeted therapy is the develop-
ment of drug resistance [6]. Molecular characterization of resistant cell
lines has revealed a diverse range of mechanisms, both genetic and non-
genetic. Genetic mechanisms include mutation of the target, e.g. func-
tional hyperactivation and mutation at the site of drug binding. Non-
genetic mechanisms of resistance include oncogene switching, where a
different protein substitutes the drug target, e.g. a growth factor re-
ceptor or kinase, or compensatory activation of other signaling path-
ways [7]. Also, autophagy has been shown to play an important role in
resistance to targeted therapy in many different cancer types.

Autophagy

Autophagy is one of the most studied cellular processes through
which intracellular components are delivered to lysosomes or other
vacuoles for degradation [8]. Substrates of autophagy include ag-
gregated proteins and damaged or excess organelles, e.g. mitochondria.
The degradation products are recycled, which helps the cell to survive
under different stress conditions (starvation and oxidative stress, etc.)
[9]. Autophagy can be broadly classified into 3 sub-types: macro-
autophagy, microautophagy, and chaperone-mediated autophagy [10].
This review focuses on macroautophagy, which henceforth will be re-
ferred to as autophagy. Autophagy is characterized by the formation of
autophagosomes: an isolation membrane (phagophore) encloses cyto-
plasmatic material or organelles forming the autophagosome, which
then fuses with lysosomes.

Autophagosome formation is driven by autophagy-related proteins
(ATGs), which form the autophagy activating kinase (ULK) complex,
and regulatory proteins such as AMP-activated protein kinase (AMPK),
mammalian target of rapamycin complex 1 (mTORC1), vacuolar pro-
tein sorting 34 (VPS34), p150, Beclin 1, B cell lymphoma 2 (BCL-2), and
others [11]. It can be divided into four steps:

1) Initiation: Proteins needed to initiate the membrane formation are
recruited [12].

2) Nucleation: Nucleation leads to the formation of the autophagosome
membrane from the membrane source [13].

3) Expansion: This phase occurs until the complete formation of the
autophagosome. The ATG12-ATG5- ATG16L1 complex mediates the
lipidation of microtubule-associated protein 1A/1B-light chain 3
(LC3), which recruits the autophagy targets [14].

4) Degradation: Autophagosome-lysosome fusion is mediated by
LAMP-2 and the small GTPase Rab7 [15].

In cancer, autophagy plays a crucial role in several processes in-
cluding tumorigenesis, drug resistance, metastasis, microenvironment
interactions [16]. Some studies have demonstrated that autophagy
counteracts tumorigenesis, and mice deficient for various effectors of
autophagy show an increase in spontaneous tumors [17,18],. Prolonged
autophagy can also result in so-called “autophagic cell death” or “type
II programmed cell death” [19,20]. On the other hand, autophagy is

known to counteract different types of cellular stress (e.g. oxidative and
endoplasmic reticulum stress) as induced by chemotherapy, radio-
therapy and other types of cancer treatments [21–24]. Moreover, au-
tophagy is involved in the recycling of some receptors resulting in re-
duced target therapy efficacy, thus and autophagy-deficient cells are
more sensitive to target therapies [25].

Because of these biological effects, several autophagy inhibitors are
being used in combination with different cancer treatments, including
targeted therapies, to improve cytotoxic effects or revert drug re-
sistance.

The most important autophagy inhibitors are:

Chloroquine (CQ) is widely known as a last stage inhibitor of au-
tophagy as it interrupts the autophagosome-lysosome fusion step.
CQ and its derivative hydroxychloroquine (HCQ) are the only FDA-
approved drugs currently used in clinical trials, often combined with
standard treatments [25].
Bafilomycin A1 (BafA1) also blocks the autophagosome-lysosome
fusion by inhibiting V-ATPase, which prevents lysosome acidifica-
tion [26].
3-Methyladenine (3-MA) blocks autophagy at an early stage, in-
hibiting class III phosphatidylinositol 3-kinase (PI3K). It is not
considered a specific autophagy inhibitor, because it can also inhibit
class I PI3Ks. Indeed, in some contexts, it can promote autophagy
[27].
Specific and potent autophagy inhibitor-1 (Spautin-1) is an inhibitor
of USP10 and USP13, that promotes the degradation of the PIK3C3/
VSP34-Beclin 1 complex, thereby inhibiting autophagy [28].
Lys 05 is a CQ derivative that inhibits autophagy by accumulating in
the lysosome [29].

Breast cancer

Endocrine therapy

Hormone receptor-positive breast cancer (BC) is the most common
type of BC with approximately 70% of tumors expressing hormone re-
ceptors (estrogen receptor (ER) or progesterone receptor) [30]. The
majority of these patients receive endocrine therapy such as selective
estrogen receptor modulators (SERMs), most commonly tamoxifen
(TAM); aromatase inhibitors (AIs) such as exemestane and letrozole,
and selective ER degraders such as fulvestrant [31]. In the clinic, the
efficacy of these treatments is often limited by intrinsic or acquired
resistance [32,33] and several studies have shown that the aforemen-
tioned drugs induce autophagy, which is associated with resistance
[30].

Initially, autophagy was interpreted as a tumor-suppressive me-
chanism as, non-viable ER + MCF-7 cells showed increased numbers of
autophagosomes after 4-hydroxy-tamoxifen (4-OHT) treatment [34].
Samaddar et al. suggested that autophagy was activated as a survival
mechanism following 4-OHT treatment but failed to rescue the cells
[35]. Both Samaddar et al. and Qadir et al. showed that TAM/4-OHT
combined with autophagy inhibition (3-MA, bafilomycin A1 or siRNAs
targeting Beclin 1, ATG5 and ATG7) restored the sensitivity to TAM/4-
OHT in resistant MCF-7 cells [32,35]. Accordingly, overexpression of
Beclin 1 induced resistance to SERMs 4-OHT and raloxifene [36]. Also,
TAM-resistant and both TAM- and fulvestrant-resistant cells could be
re-sensitized by the autophagy inhibitor CQ [37]. Additionally, re-
sistance to the AI exemestane could be reverted to some extent by 3-MA
and Spautin-1 [38,39].

In this context, different players were identified to regulate autop-
hagy and anti-estrogen resistance (Table 1). Prolylcarboxypeptidase,
glucose-regulated protein 78 and the long non-coding RNA H19 medi-
ated 4–OHT resistance by up-regulating autophagy [40–42] whereas
microRNA (miR)-214 increased the TAM and fulvestrant sensitivity in
antiestrogen-resistant MCF-7 cells by inhibiting authophagy [43].
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In vivo studies have shown that CQ and H19 knockdown restored the
antiestrogen-sensitivity in TAM-resistant xenografts [37,42].

Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors including palbo-
ciclib have been approved for the treatment of advanced ER + human
epidermal growth factor receptor 2 (HER2)-negative BC in combination
with an AI or fulvestrant [44]. Vijayaraghavan et al. showed that pal-
bociclib activated autophagy in MCF-7 cells in vitro and in vivo. In-
hibition of autophagy (HCQ, CQ, Lys05, Spautin-1, bafilomycin A1 or
Beclin 1 /ATG5 knockdown) sensitized the cells to CDK4/6 inhibitors
including palbociclib [45] and combined treatment induced senescence
in vitro. In vivo, the combination of palbociclib with HCQ or Lys05 led to
a massive growth reduction of xenograft tumors. Based on these results
a clinical trial is currently evaluating the efficacy of neoadjuvant le-
trozole and palbociclib with HCQ in ER + HER2- BC (ClinicalTrials.gov
Identifier: NCT03774472).

HER2-targeted therapy

HER2-positive tumors comprise approx. 25% of BC cases and cor-
relate with an aggressive phenotype and poor prognosis [46]. However,
the development of HER2-targeted therapy represents a milestone in
the treatment of this BC subtype and by now several agents targeting
HER2 are available: the mABs trastuzumab and pertuzumab, mAb-drug
conjugates like trastuzumab, and the TKIs lapatinib and neratinib
[47,48]. HER2-targeted therapy is usually combined with che-
motherapy, often in a neoadjuvant and adjuvant setting [31]. Un-
fortunately, 70% of patients develop resistance to trastuzumab treat-
ment within a year [47].

Trastuzumab as well as lapatinib have been shown to induce au-
tophagy in vitro [49,50], and cell lines with intrinsic or acquired re-
sistance to trastuzumab [49,51,52] or lapatinib [53] exhibit increased
basal autophagy.

Vazquez-Martin et al. observed that in trastuzumab-resistant
HER2 + SKBR-3 cells the enhanced basal autophagy was further in-
creased by trastuzumab treatment. Autophagy inhibition with 3-MA
reduced viability and siRNA-mediated knockdown of LC3 decreased
proliferation and re-sensitized the cells to trastuzumab [49]. Also
HER2 + JIMT-1 cells intrinsically resistant to HER2-targeting drug,
treatment with CQ or knockdown of ATG genes re-sensitized the cells to
trastuzumab as well as lapatinib [54].

In a screen of more than 50 BC cell lines, Cufi et al. found that the
autophagy protein ATG12 is commonly up-regulated in trastuzumab-
resistant HER2-overexpressing cell lines. ATG12 silencing reduced the
resistance of JIMT-1 cells to trastuzumab, lapatinib, erlotinib and ge-
fitinib in vitro. In vivo, ATG12-silenced JIMT-1 xenografts exhibited
markedly reduced tumor growth and trastuzumab treatment decreased
tumor growth massively [51]. Also LC3 knockdown increased the sen-
sitivity of JIMT-1 cells to trastuzumab, lapatinib, erlotinib, and gefitinib
[52]. The combination of trastuzumab with CQ increased apoptosis and
reduced cell viability and colony formation of JIMT-1 cells in vitro and
decreased tumor volume by 90% in vivo [52]. In lapatinib-resistant BT-
474 and AU-565 cell lines combination of CQ or 3-MA with lapatinib
decreased cell proliferation and colony formation and enhanced apop-
tosis [53].

One of the mechanisms of action of trastuzumab involves the
binding-mediated degradation of HER2. Bisaro et al. found that the
p130Cas, a signaling protein involved in adhesion, migration and in-
vasion, protects HER2 from being degraded by autophagy by pre-
venting its ubiquitination. P130Cas is elevated in trastuzumab-resistant
HER2 + BT-474 and SKBR-3 cell lines and histological samples of
trastuzumab-unresponsive BC patients [55].

Taken together, all the described studies indicate that autophagy
plays a major role in mediating resistance to targeted therapies for
HER2-positive BC. This is supported by the observation that loss of the
BECN1 gene encoding Beclin 1 correlates with an improved clinical
response to trastuzumab [58]. Hence, autophagy inhibition in

combination with targeted therapy for HER2-positive BCs is a pro-
mising path that should be evaluated in clinical trials. Nevertheless,
caution should be taken as the role of autophagy in BC is controversial.
There are also results showing that in lapatinib-sensitive BT-474 and
AU-565 cells 3-MA treatment reduced the cytotoxic effect of lapatinib
because in this case lapatinib-induced autophagy promoted apoptosis
[56].

Colorectal cancer

Colorectal cancer (CRC) is one of the most diagnosed cancer
worldwide being the fourth in United States. The incidence of CRC has
declined in the last 40 years from 60.5 per 100.000 in 1976 to 40,7 in
2013, as well as the peak mortality has decreased from 28,6 in 1976 to
14.1 in 2014. Despite this, CRC represents a leading cause for cancer
death worldwide [57].

The targeted therapies proven most effective in the treatment of
CRC are targeting angiogenesis (e.g. bevacizumab, apatinib, cabo-
zantinib) and the epidermal growth factor receptor (EGFR) (e.g. ce-
tuximab) (Table 1) [58]. Bevacizumab is a recombinant humanized
monoclonal antibody that binds to vascular endothelial growth factor A
(VEGF-A) and blocking the VEGF-receptor 2 (VEGFR2) signaling
[59,60]. Zhao et al. showed that bevacizumab induces autophagy in
CRC cell lines, as evidenced by the appearance of autophagic vacuoles,
punctate patterns of LC3 and the accumulation of Beclin 1. Inhibiting
autophagy using CQ or RNA interference targeting Beclin 1 and ATG5
promotes bevacizumab-induced apoptosis and inhibits proliferation,
suggesting that autophagy plays a protective role. The same results
were obtained in vivo: inhibiting autophagy using CQ or small inter-
fering RNA in combination with bevacizumab significantly inhibits
tumor growth in vivo compared to bevacizumab alone. In the same
study, bevacizumab increases hypoxia-inducible factor 1α (HIF-1α)
expression. HIF-1α inhibition (YC-1) markedly reduced autophagy.
These results suggest that hypoxia-induced autophagy in tumor cells
may function as an adaptive response to hypoxia caused by anti-an-
giogenic therapy [61].

Apatinib (investigational compound YN968D1) is a TKI of the vas-
cular endothelial growth factor receptor-2 (VEGFR2) [62]. It also in-
hibits other TKs such as c-Kit and c-SRC TKs, and reduces ABCB1 and
ABCG2 transporters [63]. Lu et al. presented the first evidence that
apatinib induces autophagy in colon cancer cells by inhibiting the AKT-
mTOR signaling pathway [64]. Cheng et al. discovered that apatinib
directly induces ER stress stimulating autophagy through the upregu-
lation of the Inositol-requiring enzyme 1 (IRE1) signaling pathway.
Meanwhile, inhibiting autophagy could stimulate ER stress-associated
CRC cell apoptosis both in vitro and in vivo, suggesting a protective role
of apatinib-induced autophagy. Blocking autophagy using CQ or a
siRNA targeting ATG5 could significantly induce apoptosis in CRC cell
lines in vitro. Additionally, the combination of CQ with apatinib has a
greater suppressive effect in subcutaneous xenografts in nude mice
compared with apatinib or CQ alone [65].

Cabozantinib (XL184) is an orally bioavailable inhibitor of multiple
kinases involved in cell growth, angiogenesis and metabolism including
VEGFR2/KDR, MET, AXL, RET, TIE2, and c-Kit. MET and VEGFR2 dual
inhibition is central for cabozantinib effects [69]. Scott et al. observed a
significant increase in autophagy following cabozantinib treatment in
the HCT116 and HT29 CRC cell lines [66]. The inhibition of multiple
kinase pathways produces a metabolic dysregulation, with a reduction
of glycolysis leading to cell death. In this context autophagy act as a
salvage mechanism promoting drug resistance. A combination of ca-
bozantinib with autophagy inhibitors increases apoptosis in HCT116
and HT29 cell lines [66].

Cetuximab is a chimeric, anti-EGFR monoclonal IgG1 class anti-
body. It blocks EGFR signaling and modulates tumor cell growth by
inhibiting proliferation, angiogenesis, and differentiation, and pre-
venting metastasis [67,68]. Li et al. found that cetuximab induces
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autophagy by two different mechanisms involving PI3K type I and type
III. The EGFR/class-IPI3K/Akt/mTOR signaling pathway normally in-
hibits autophagy, and by disrupting this signal cetuximab activates
autophagy. Moreover, cetuximab decreases BCL-2 thorough HIF-1
downregulation, this releases beclin 1 to form a complex with class III
PI3K, which directedly induces autophagy [69]. PI3K–AKT–mTOR
signaling pathway is one of the most dysregulated pathways in cancer
as it regulates many cellular processes such as metabolism, motility and
growth. For this reason, about 40 different inhibitors are being eval-
uated at different stages of clinical research [70]. Class III PI3K plays a
fundamental role in autophagy, vesicular trafficking and phagocytosis,
however, its role in cancer still remains elusive [70]. In the same di-
rection, Guo et al. demonstrated that cetuximab induces autophagy in
Caco-2 CRC cells [71].

Hematologic malignancies

Leukemia is cancer of the body's blood-forming tissues, including
the bone marrow and the lymphatic system. There are different kinds of
leukemia depending on the hematopoietic lineage and maturity of the
aberrant cells. However, the most common kinds are acute myeloid
leukemia (AML), acute lymphoid leukemia (ALL), chronic myeloid
leukemia (CML) and chronic lymphoid leukemia (CLL) [72]. Typically,
most forms of leukemia are treated with a standard multi-drug regimen
for myelosuppression: anthracycline, alkylating agents (cyclopho-
sphamide), corticosteroids and vinca alkaloids (vincristine). Targeted
therapies are currently used mainly in CML, where the standard treat-
ment includes imatinib, a TKI targeting BCR-ABL (Philadelphia Chro-
mosome disease), c-Kit and platelet-derived growth factor (PDGF) re-
ceptors (Table 1) [73]. Recent studies highlight the role of autophagy in
the resistance to this drug. Yu et al. demonstrated that imatinib inhibits
the expression of miR-30a in CML patients primary cell lines [74]. miR-
30a negatively regulates autophagy by directly targeting Beclin 1 and
ATG5, thus its inhibition increases autophagy. Knockdown of Beclin 1
and ATG5 by miR30 or using shRNA reestablish imatinib cytotoxic ef-
fect [75]. Administration of other TKIs, such as dasatinib and ponatinib
increases autophagy as a drug resistance mechanism. A study by Am-
rein et al. demonstrated that dasatinib induces autophagy in CLL pri-
mary lymphocytes and that CQ re-sensitize the cells [76]. Similarly,
Mitchel et al. highlighted that ponatinib induces BCR-ABL-independent
resistance in CML cells, through alternative activation of mTOR sig-
naling. The pharmacological or genetic blockade of mTOR and autop-
hagy enhanced the sensitivity of ponatinib-resistant CML cells to cell
death in vitro and in vivo [80]. Similarly, Tong et al. showed that au-
tophagy in inhibition can re-sensitize CML cells to perifosine, which
targets PI3K/AKT/mTOR signaling pathway [77].

One more example in the context of AML is given by Torgersen et al.
They showed that in AML1-ETO-positive AML cells, apoptosis induced
by histone deacetylase (HDAC) inhibitors valproic acid and vorinostat is
limited by the upstream activation of autophagy. Blocking autophagy
results in enhanced caspase activity and apoptotic cell death [78].

Lymphoma is a heterogeneous group of chronic malignancies
characterized by different etiopathogenesis, clinical behavior and re-
sponse to treatment. Typically, the aberrant proliferation of precursor/
mature lymphoid cells is restricted to lymphatic organs [79]. Lym-
phoma treatment depends on the tumor subtype and stage. Typically,
for the more aggressive forms, the standard approach is CHOP (cyclo-
phosphamide, doxorubicin, vincristine, and prednisone) or CHOP-like
combination chemotherapy, which can be combined with anti-CD20
mAb therapy (rituximab plus/or obinutuzumab) [80].

In the last decades, many molecular targeted therapies (mAbs or
small molecule inhibitors) have been developed to treat lymphomas.
For instance, bortezomib is a proteasome inhibitor that can kill cancer
cells by blocking IκBα degradation, resulting in NF-κB inhibition, or by
preventing the degradation of pro-apoptotic proteins. Recent studies on
activated B-cells and germinal center B-cells derived from diffuse large

B-cell lymphoma (DLBCL) (su-DHL 8 and su-DHL 4) demonstrated that
bortezomib antagonizes the constitutive activation of NF-κB induced by
TNF-α or TRAIL. Bortezomib resistance is mediated by the activation of
the autophagy machinery, which is necessary for the degradation of
many ubiquitinated proteins, including IκBα. Autophagy block using
CQ reverted the resistance by preventing IκBα degradation and restored
NF-κB activity [81]. Using the same approach, Heine et al. also ex-
plained that in D1/CDK4-aberrant mantle cell lymphoma (MCL) cell
lines (Mino, Jeko-1, Rec-1, Jvm2, and Granta-519) exposed to borte-
zomib, the pro-apoptotic protein NOXA is efficiently expressed only
when the D1/CDK4 complex inhibits autophagy, otherwise NOXA gets
degraded [82]. Also, Granato et al. found that bortezomib induces the
upregulation of proteins involved in ER stress and apoptosis (CHOP,
BIP, and JNK) in primary effusion lymphoma cell lines. The pro-sur-
vival role of autophagy could be reversed by the administration of
autophagy inhibitors or by the silencing of ATG genes [83].

The mTOR kinase inhibitors everolimus and temsirolimus have
shown strong cytotoxicity in pre-clinical and clinical models of some
hematological malignancies. Rosich et al. demonstrated that, in MCL
cell lines, everolimus-induced autophagy promoted resistance by pre-
venting AKT-mTOR targeting. This effect was reversed by genetic or
pharmacological autophagy inhibition with CQ or ATG gene knock-
down [84]. Moreover, Dong et al. showed that the HDAC inhibitor
valproic acid (VPA) increased temsirolimus efficacy on Burkitt lym-
phoma (BL) cell lines (Namalwa and Raji) through autophagy and MYC
inhibition. The authors confirmed the results also in pre-clinical mouse
models of BL, reporting a significant decrease in tumor growth and
contemporary MYC inhibition in the group receiving a combination of
temsirolimus and an HDAC inhibitor [85].

Recent studies have shown that ALK-expressing anaplastic large cell
lymphoma cells treated with ATP-competitive inhibitors targeting ALK
and c-Met develop autophagy-mediated resistance. Mitou et al. de-
monstrated that crizotinib inactivated ALK, thereby increasing autop-
hagy, which plays a pro-survival role and could be counteracted by the
administration of autophagy inhibitors [86]. A very interesting study by
Alinari et al. reported that FTY720 (fingolimod) and milatuzumab (anti-
CD74 mAb) act synergistically on MCL cell line. FTY720 leads to in-
creased expression of CD74 by blocking its autophagy-mediated de-
gradation, thus increasing mAb efficacy [87].

Multiple Myeloma (MM) is a cancer originating from terminally
differentiated plasma cells. The patients show bone marrow infiltration
of clonal cells and the presence of monoclonal antibodies in the per-
ipheral blood [88]. Standard treatments include a combination of
bortezomib and lenalidomide which increased the five-year survival to
49% in the last years [88]. Chen et al have demonstrated that borte-
zomib-resistant cell display Bcl-2-like protein 11 (Bim) downregulation.
HDACis and BH3 mimetics can revert the resistance by increasing Bim
levels but this was correlated with Bim-associated autophagy regula-
tion. Indeed, CQ was required to induce cell lethality [89]. Also, Ja-
gannathan et al. have shown that bortezomib activates autophagy as a
compensatory mechanism for the accumulation of unfolded proteins.
Moreover, they have reported that the co-administration with met-
formin suppressed glucose-regulated protein 78 (GRP78), a key effector
of bortezomib-induced autophagy, thus enhancing apoptosis [90]. Re-
cent studies on MM demonstrated that carfilzomib, an irreversible
proteasome inhibitor, induces overexpression of SQSTM1/p62, a cargo
protein associated with autophagosomes. Co-administration with CQ
sensitizes MM cells to the targeted therapy [91].

Liver cancer

Hepatocellular carcinoma (HCC) is the most common type of pri-
mary liver cancer [92]. Currently, surgical resection is recommended
for very early stage and early stage HCC following chemo-/radio-
therapy, but HCC is still prone to recurrence and metastasis after sur-
gery and there is still no effective treatment for patients with advanced,
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metastatic or drug-resistant HCC [93,94]. Therefore, it is essential to
elucidate the mechanisms of tumorigenesis, metastasis, and drug re-
sistance in HCC and to identify effective and safe therapeutic strategies
and prognostic biomarkers [95]. In HCC, autophagy inhibition in
combination with targeted therapy have shown a great potential in
improving the efficacy on tumor cells while having a lesser effect on
normal cells (Table 1) [96]. This provides the foundation for promising
targeted therapy for HCC through autophagy inhibition.

Sorafenib (BAY 43–9006, Nexavar®), an oral multi-kinase inhibitor,
remains the only FDA approved systemic drug for patients with ad-
vanced HCC [97,98]. Studies have shown that sorafenib treatment en-
hances autophagy in HCC cells, and is responsible for orchestrating
adaptive responses to sorafenib. Inhibition of autophagy using either
pharmacological inhibitors (CQ, 3-MA or bafilomycin A1) or knock-
down of essential autophagy genes (Beclin 1 or ATG5) enhances the
cytotoxicity of sorafenib in HCC cells, indicating that autophagy in-
duced by sorafenib acts as a protective mechanism [99–102]. Shi et al.
found that direct stimulation of ER stress by sorafenib in HCC cells
induces autophagy via the upregulation of the IRE1 pathway and that
inhibition of autophagy promotes ER stress-related apoptosis of HCC
cells in vitro and in vivo. These results support the hypothesis that sor-
afenib-induced ER stress signals are critical for the induction of au-
tophagy. Their data indicate that all the chemical and genetic autop-
hagy inhibitors, 3-MA, CQ and ATG5 siRNA knockdown, potentiate
sorafenib-induced cell death. They have also demonstrated that in-
hibition of autophagic degradation resulted in ER stress potentiation.
Therefore, sorafenib-induced autophagy alleviated ER stress, dimin-
ishing the apoptotic signals and thus suppressing cell death [99].

Lung cancer

Lung cancer is the deadliest type of cancer worldwide with 1.7
million deaths each year [103]. It is classified into two groups: small
cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC),
which make up 15% and 85% of lung cancer cases, respectively [104].
NSCLC is classified into squamous cell carcinoma (30%), large cell
carcinoma (10%) and adenocarcinoma (40%) [105].

Standard treatment involves surgery followed by adjunct che-
motherapy or radiation.

A large variety of drugs have been approved for targeted therapy in
lung cancer: anti-angiogenic drugs, inhibitors targeting mutated pro-
teins like EGFR, ALK, ROS1, and BRAF (Table 1).

Autophagy is well described as a mechanism of resistance to tar-
geted therapy in lung cancer. The anti-angiogenic mAb bevacizumab
synergizes with the proteasome inhibitors MG132 or bortezomib, which
are also known to block autophagic flux, in lung cancer cells both in
vitro and in vivo, suggesting a role in bevacizumab resistance. Studies
[106,107] have shown that treatment with erlotinib, an EGFR TKI,
induces autophagy in EGFR-mutated cell lines. In a non-sensitive EGFR
wild type cell line, blocking autophagy with CQ decreases cell viability.
Goldberg et al. [108] performed a phase 1 clinical trial treating NSCLC
patients with HCQ with and without erlotinib and found that HCQ with
or without erlotinib is safe and well-tolerated. Another clinically ap-
proved EGFR inhibitor, afatinib, was found to act synergistically in
combination with CQ and 3-MA in EGFR-mutated NSCLC cell lines
(H1975 and H1650) both in vitro and in vivo [109]. Crizotinib
(PF02341066), an inhibitor of the ALK fusion oncoprotein, is clinically
approved for the treatment of ALK-positive NSCLC patients. Its effec-
tiveness is reduced after approximately a year of treatment due to the
onset of resistance of the tumor. It was found that crizotinib-resistant
cells downregulate ALK expression due to autophagy upregulation and
the combination with CQ was able to overcome resistance [110]. Vis-
modegib, an inhibitor of the sonic hedgehog homolog pathway, is al-
ready used in lung adenocarcinoma (LUAD). A study has shown that
vismodegib increases autophagy in LUAD cell lines and that the in-
hibition of autophagy with siRNAs targeting ATG5 or ATG7 increases

its antiproliferative effect in vitro. Furthermore, its combination with
CQ enhances anti-LUAD efficacy in vivo. The FDA has approved the
BRAF inhibitor dabrafenib in combination with the MEK inhibitor tra-
metinib for patients with BRAFV600E NSCLCs. Kinsey et al. found that in
BRAFV600E cell lines (BxPC3) trametinib increases autophagic flux and
its inhibition by CQ enhanced cytotoxicity [111]. Karsli-Uzunbas et al.
conditionally deleted ATG7 in adult mice. Interestingly, acute autop-
hagy ablation in mice with preexisting NSCLC blocked tumor growth,
promoted tumor cell death, and inhibited more benign disease (onco-
cytomas) [112].

Melanoma

Melanoma is one of the main causes of cancer-related death
worldwide, representing the most invasive and metastatic skin tumor
type. Unfortunately, only a small proportion of patients with metastatic
melanoma survive more than 10 years after the diagnosis of the disease.
There are different types of targeted therapy approved by the FDA for
melanoma with mutations in the BRAF gene, which result in the con-
stitutive activation of the RAS/RAF/MEK/ERK pathway (Table 1). They
include inhibitors targeting BRAF directly (vemurafenib, dabrafenib,
encorafenib) or the MEK proteins (trametinib, cobimetinib, binime-
tinib) which act downstream of BRAF. In most cases, patients with a
BRAF mutation receive both a BRAF and a MEK inhibitor, as combining
these drugs often shows better response [113].

Recent studies have demonstrated the ability of BRAF inhibitors to
induce autophagy as part of a transcriptional program that upregulates
lysosome biogenesis/function, driven by the TFEB transcription factor.
In BRAFV600E-mutated xenografts, TFEB was inactivated independently
from mTORC1, associated with high levels of TGF-β and more ag-
gressive histopathological features [114]. BRAF inhibition activates
JNK2/p38, which in turn phosphorylates ZKSCAN3, alleviating the
repression of TFEB and increasing the production of lysosomal/autop-
hagic factors. ZKSCAN3 (ZNF306) belongs to a family of zinc-finger
transcription factors harboring KRAB and SCAN domains. It is a tran-
scriptional repressor of the autophagy–lysosome network, and is regu-
lated in conjunction with TFEB during starvation/lysosome activation.
Inhibition of autophagy or the lysosomal pathway increases TGF-β le-
vels, which leads to increased tumor aggressiveness. Treatment of the
human melanoma cell line A375 expressing BRAFV600E with the BRAF
inhibitor PLX4720, a progenitor of vemurafenib, leads to increased le-
vels of the autophagy marker LC3 and degradation of p62 in a dose-
dependent manner. The authors have highlighted that the BRAFV600E-
TFEB/ZKSCAN3-autophagy-lysosomal axis is a signaling pathway that
works together with TGF-β and the EMT machinery, inducing tumor
progression, metastasis and resistance to BRAF-targeted therapy in
melanoma [114].

The evaluation of autophagic markers in different BRAF inhibitor
sensitive (A375P, SKMEL5, MEL1617) and resistant (MEL1617R,
WM983BR, MEL624) human melanoma cancer cell lines confirmed that
after treatment with the BRAF inhibitor PLX4720, LC3-II/LC3-I ratio is
significantly increased and p62 insignificantly reduced in all cell lines
[120]. Ma et al. have demonstrated that treatment of these cell lines
with vemurafenib induces binding of the mutant BRAF to the ER stress
gatekeeper GRP78, which rapidly increases ER stress. Dissociation of
GRP78 from the PKR-like ER-kinase promotes the PERK-dependent ER
stress response which activates cytoprotective autophagy. In this
system, combined BRAF and autophagy inhibition (HCQ) promotes
tumor regression in BRAF inhibitor-resistant xenografts [115].

Treatment with the BRAF inhibitor dabrafenib induces a dose-de-
pendent activation of autophagy in both sensitive (A375) or resistant
(MEL624) human melanoma cell lines. In this context, dabrafenib ac-
tivates ER stress-dependent autophagy, whereas PERK silencing atte-
nuated autophagy. Autophagy inhibition (3-MA) increases the dabra-
fenib effect and restores sensitivity in resistant cell lines [116]. Xie et al.
deleted ATG7 in BRAFV600E-mutated melanoma cells [122] showing
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that ATG7 deficiency in melanoma xenografts dramatically increases
the survival of these mice. BRAFV600E inhibition results in larger tumor
volume reduction in ATG7 null mice [117]. In conclusion, autophagy
plays a key role in the resistance of BRAF mutant melanoma to BRAF
inhibitors. Mutant BRAF can induce resistance to BRAF inhibitors
through autophagy in multiple ways, including the subsequent increase
in ATP synthesis, oxidative stress or ER stress. Therefore, autophagy can
be considered a potential therapeutic target.

Prostate cancer

Prostate cancer (PC) is the most common cancer in men. While most
types of prostate cancer grow slowly and may need minimal or even no
treatment, other types are aggressive and can spread quickly.

The mTOR inhibitor everolimus is an important drug used in the
treatment of prostate cancer, in particular for castration-resistant
prostate cancer (CRPC) (Table 1). NPRL2 expression is upregulated in
PC, particularly in CRPC where it induces tumor cell proliferation and
resistance to everolimus. NPRL2 silencing inhibits proliferation, en-
hances mTOR signaling and decreased autophagy, which is associated
with an increase in apoptosis [118].

Androgen deprivation or treatment with the anti-androgens en-
zalutamide or bicalutamide increased autophagic flux in PC cells in vitro
and in PC models in vivo [119]. This effect is reduced by the knockdown
of ATG5 and Beclin 1 or inhibition of the androgen-induced mTOR
pathway [120]. Treatment with EPI-001 (EPI), an androgen receptor
inhibitor, reduces cell growth and increases apoptosis in PC cells. Also,
EPI-treated cells showed increased autophagosome formation [121].
The combination of EPI with autophagy inhibitors further reduces cell
viability significantly. Therefore, this combination may offer a strategy
to overcome resistance mechanisms in advanced PC [121].

Androgen deprivation therapy is a common therapy used in the
clinic to treat PC, but in CRPC the remaining low levels of androgens
are sufficient to activate androgen receptor signaling, which can be
altered on several levels. Under enzalutamide treatment transmission
electron microscopy has shown an increase in autophagy vesicles (AVs)
(induced by autophagy upregulation), and increased expression of the
autophagy-proteins LC3, ATG5 and Beclin 1 while p62 was reduced
[122,123]. Interestingly, the combination of Abiraterone acetate (AA)
and the autophagy inhibitor 3-MA greatly decreased the number of
AVs. Inhibition of autophagy impaired cell viability, increased apop-
tosis, and induced G2/M cell cycle arrest [122,123].

(AA) increased autophagy in LNCaP cells as demonstrated by the
upregulation of ATG5 and LC3 and the accumulation of autophago-
somes [123]. Cells treated with the autophagy inhibitor 3-MA, or a
combination of AA with 3-MA show lower expression of both ATG5 and
Beclin 1, which is associated with a reduction of LC3-I and LC3-II [123].
Upregulation of autophagy induces resistance to AA and survival of
LNCaP cells and AA treatment in combination with 3-MA increases
apoptosis [123].

Limitations and perspectives

Several studies highlight that autophagy represents a pivotal pro-
cess in cancer. Here, we have reported many studies in which autop-
hagy is triggered by targeted therapy and results in drug resistance.
Consequently, autophagy inhibitors, in most cases, revert the resistance
and increase drugs effects in vitro and in vivo. However, it is question-
able that different targeted therapy blocking different pathways in
several cancer types will end up in the activation of a similar response
to promote drug resistance. To address this issue, we have summarized
the most relevant targeted therapies associated pathways in Fig. 1. It is
to be noted that almost all targeted therapies interfere directedly or
undirectedly with tyrosine kinases that have the MEK-ERK signaling
pathway downstream. MEK-ERK pathway inhibition leads to the acti-
vation of LKB1 → AMPK → ULK1 signaling axis, a key regulator of

autophagy [111,124]. In addition to this, autophagy can be triggered by
several mechanisms associated with targeted therapy such as activation
of Beclin 1 through class III PI3K, induction of oxidative and en-
doplasmic reticulum stress, alteration of AKT-mTOR pathway. Simi-
larly, there are several mechanisms by which autophagy can contribute
to drug resistance and survival. For instance, autophagy contributes to
cell homeostasis by eliminating damaged organelles such as mi-
tochondria and ER, and protein aggregates. Thanks to this action, au-
tophagy can mitigate metabolic, oxidative and endoplasmic reticulum
stresses [125,126]. Several studies report that these cellular stresses
contribute to cell death following targeted therapies. For example, ve-
murafenib and bortezomib mediate cell death through ER stress in
melanoma and pancreatic cancer [127,128] as well as apatinib in col-
orectal [65]. Similarly, erlotinib induces cell death through metabolic
oxidative stress in head and neck squamous carcinoma [129]. In ad-
dition, autophagy can be involved in target recycling thus reducing the
efficacy of targeted therapies [25]. Besides autophagy, many other re-
sistance mechanisms have been identified and divided in three main
categories: (1) alterations of the drug target, (2) alterations in upstream
and downstream effectors resulting in pathway reactivation and (3)
bypass mechanisms [130]. All these mechanisms require deep altera-
tion at genetic or epigenetic level, which develop over time under se-
lective pressure. On the contrary, autophagy is a generic response that
is activated by a variety of cellular stress in a short time (within minutes
to hours). Moreover, it does not require deep genetic or epigenetic al-
teration or selective pressure. Based on this, autophagy can be defined
as an early and unique mechanism by which cancer cell counteracts the
effect of targeted-therapy-induced stress. Indeed, drugs targeting au-
tophagy are being tested in different clinical trials, in combination with
standard chemotherapy or targeted therapy. However, there are lim-
itations and concerns that need to be addressed. Autophagy has a dual
role which is highly dependent on the specific context. Knockdown of
autophagy-related genes increases the incidence of cancer in many
tissues and, in certain conditions, it can contribute to cell death by a
process named autosis. Moreover, autophagy is necessary for physio-
logical processes in many cells such as immune system regulation,
metabolism and senescence [131,132]. Indeed, autophagy inhibitors
such as CQ and HCQ, which have been largely used to treat malaria and
autoimmune disease, are not free of sides effects that range from skin
rush to muscle weakness up to gastrointestinal and neurological dis-
orders, and irreversible retinopathy. The severity of side effects be-
comes more important in long term treatments. In addition, CQ might
exacerbate chemotherapy-related injuries in organs such as kidney,
brain, heart and hematopoietic cells [133]. One additional important
limitation concerns drugs specificity as both CQ and HCQ do not spe-
cifically inhibits autophagy. They rather accumulate into acidic cellular
compartments and interfere with lysosomal function thus affecting
autophagy as well as other cellular functions. For these reasons, it
would be ideal to have a specific marker to identify those patients in
which autophagy plays a major role and maximize treatments effect.
Unfortunately, this marker is not available yet as monitoring autophagy
in vivo, especially in humans, is particularly challenging.
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