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Measuring the characteristics of seawater constituent is in great demand for studies of marine ecosystems 
and biogeochemistry. However, existing techniques based on remote sensing or in situ samplings present 
various tradeoffs with regard to the diversity, synchronism, temporal-spatial resolution, and depth-
resolved capacity of their data products. Here, we demonstrate a novel oceanic triple-field-of-view (FOV) 
high-spectral-resolution lidar (HSRL) with an iterative retrieval approach. This technique provides, for the 
first time, comprehensive, continuous, and vertical measurements of seawater absorption coefficient, 
scattering coefficient, and slope of particle size distribution, which are validated by simulations and 
field experiments. Furthermore, it depicts valuable application potentials in the accuracy improvement 
of seawater classification and the continuous estimation of depth-resolved particulate organic carbon 
export. The triple-FOV HSRL with high performance could greatly increase the knowledge of seawater 
constituents and promote the understanding of marine ecosystems and biogeochemistry.

Introduction

Various processes that are critical for marine ecosystems and 
biogeochemistry are associated with seawater constituents [1,2]. 
Measuring optical properties and particle size distribution (PSD), 

which are external expressions of type, refractive index, geomet-
ric shape, structure, and biological and chemical features of sea-
water constituents, makes important contributions to increase 
our knowledge regarding planktonic growth-metabolic processes 
[3], particle aggregation and fragmentation [4], phytoplankton 
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blooms [5], biological pumps [6], etc. Furthermore, the tem-
poral and spatial variability of ambient light in the oceans can 
be quantified, which affects practical applications ranging from 
prey–predator relationships to coastal bathymetric mapping, 
as it is a fundamental driver of marine productivity and upper 
ocean heat budget [7,8]. Therefore, high-resolution and accu-
rate measurement techniques are highly desired for monitoring 
optical properties and PSD of seawater constituents to study 
marine ecosystems and biogeochemistry.

Passive optical remote sensing techniques provide surface 
information in large areas but have little sensitivity to vertical 
distributions of seawater constituents [9]. In situ methods can 
provide accurate and depth-resolved data, but they are limited 
in the amount of spatial and temporal coverage due to una-
voidable contact with seawater [10]. Lidar, an active optical 
remote sensing technique, can obtain continuous and vertical 
optical properties during both day and night time [11,12], 
which has been used to study plankton [13], primary pro-
ductivity [14], etc. Hitherto, most oceanic lidars have lim-
ited information, mainly including the backscatter and lidar 
attenuation coefficients [15]. The lack of absorption and 
scattering coefficients, as well as PSD, limits the lidar appli-
cations in marine science, including carbon cycles and sea-
water classification. Thus, it remains a challenge in optical 
remote sensing and in situ techniques to meet the simultaneous 
measurement demands of characteristic types, underway obser-
vations, and vertical information.

To overcome this conundrum, lidar signals, which are cou-
pled with absorption, scattering coefficients, and PSD through 
multiple scattering effect, should be further analyzed to obtain 
more information of seawater constituents [16]. Studies have 
shown that the lidar attenuation coefficient can be regarded 
as the beam attenuation coefficient at a narrow field of view 
(FOV) near zero and the diffuse attenuation coefficient (Kd) 
at a wide FOV [17], which was then verified by field measure-
ments [12]. Therefore, a multi-field-of-view (multi-FOV) lidar 
system can potentially obtain more information than current 
single-FOV lidar systems. Furthermore, the particulate vol-
ume scattering function is highly complicated in the back-
ward direction, leading to the quantifying of the multiple 
scattering become an arduous task [18]. The molecular 
Brillouin scattering could solve this problem due to its iso-
tropic backscattering [11]. It is shifted about 7 to 8 GHz 
to both sides relative to the central wavelength of the laser, 
which can be discriminated by the high-spectral-resolution 
lidar (HSRL) technique. Thus, the combination of multi-FOV 
and HSRL techniques could be beneficial to solving the above 
conundrum.

Here, we demonstrate an oceanic triple-FOV HSRL for com-
prehensive, continuous, and vertical measurements of seawa-
ter constituents. With the well-designed and well-calibrated 
triple-FOV HSRL system, desirable performance is achieved 
for continuous profiles of absorption (a) (532 nm), scattering 
(b) (532 nm), and the slope of PSD (ξ), which are highly con-
sistent with Monte Carlo (MC) simulations and in situ meas-
urements. The system has been deployed in the South China 
Sea to measure the vertical structure and horizontal gradient 
of nearshore to offshore seawaters. Furthermore, potential 
applications in the seawater classification and estimating the 
particulate organic carbon export are presented, which have 
broad implications for understanding seawater constituents 
and related marine science studies.

Results

Triple-FOV HSRL technique
The triple-FOV HSRL system, deployed on the foredeck of 
R/V Runjiang No.1, is composed of the upper and lower parts 
(Fig. 1A). The transmitter and receiver are integrated into 
the upper part to ensure a stable optical system with sup-
porting devices in the lower part. The transmitter, emitting 
the laser pulse into the seawater, mainly consists of a diode-
pumped, Q-switched, injection-seeded, frequency-doubled 
neodymium-doped yttrium aluminum garnet laser with a 
pulse energy of 10 mJ at 532 nm and a repetition frequency 
of 10 Hz (Fig. 1B) [19–21]. The laser wavelength is locked to 
the absorption line of an iodine cell by a proportional-inte-
gral-derivative (PID) servo loop. The lidar signals, including 
particulate scattering and molecular Brillouin scattering, are 
collected through a telescope and divided into 4 channels. 
The combined channel at the wide FOV (200 mrad) detects 
all components of the lidar signals, while the 3 molecular 
channels at the triple-FOV (40, 80, and 200 mrad) all reject 
the particulate signal and transmit the molecular Brillouin 
signal through the exploitation of the iodine absorption line. 
Photomultiplier tubes (PMT) and a high-speed data acqui-
sition card are used to record the lidar signals [22,23]. The 
channel gains are intercalibrated by the gain ratio calibration 
of the PMTs. The main parameters of oceanic triple-FOV 
HSRL are shown in Supplementary Materials (Table S3), and 
the optimization of lidar FOVs is analyzed in Text S1.

The basic principle of triple-FOV HSRL for detecting sea-
water constituents depends on the multiple scattering of pho-
tons in the seawater (Fig. 1C). The emitted photons of the laser 
beam can be scattered in different directions by seawater con-
stituents. In this process, multiple scattering takes place when 
a portion of scattered photons is dispersed again by neighbour-
ing molecules or particles. Hence, lidar signals are generated 
by combining single scattered and multiple scattered photons 
collected by the telescope. In particular, the expansion of the 
signal angular distribution due to multiple scattering results 
in intensity variations collected by different FOVs. These sig-
nals are governed by the absorption coefficient, the scattering 
coefficient, the PSD of particles, and the spatial geometry dis-
tribution of the observation using the analytical model (see 
the Materials and Methods for details). Therefore, significant 
information of seawater constituents can be obtained from the 
multi-FOV system.

The seawater absorption coefficient (a), the scattering 
coefficient (b), and the slope of PSD (ξ) (see the Materials and 
Methods for more details) are retrieved from triple-FOV molec-
ular signals according to an iterative retrieval scheme (Fig. 2A). 
The steps are as follows:

1. The simulated molecular signals (BS) are produced by 
using the analytical model as mentioned above. The initial 
values of a, b, and ξ input into the model are estimated as the 
lidar attenuation coefficient at wide FOV, narrow FOV, and 
a median value within the possible range of coastal water [24], 
respectively.

2. An iterative retrieval scheme is employed to retrieve the 
most likely values of a, b, and ξ by minimizing the relative 
differences between the simulated signal BS and the measured 
molecular signal BM at triple FOVs. This process can be expressed 
as a numerical solution to the minimum of the 2-Norm form, 
that is,

(1)
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�
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gral-derivative (PID) servo loop. The lidar signals, including 
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collected through a telescope and divided into 4 channels. 
The combined channel at the wide FOV (200 mrad) detects 
all components of the lidar signals, while the 3 molecular 
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sition card are used to record the lidar signals [22,23]. The 
channel gains are intercalibrated by the gain ratio calibration 
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The basic principle of triple-FOV HSRL for detecting sea-
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beam can be scattered in different directions by seawater con-
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a portion of scattered photons is dispersed again by neighbour-
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by combining single scattered and multiple scattered photons 
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nals are governed by the absorption coefficient, the scattering 
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information of seawater constituents can be obtained from the 
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The seawater absorption coefficient (a), the scattering 
coefficient (b), and the slope of PSD (ξ) (see the Materials and 
Methods for more details) are retrieved from triple-FOV molec-
ular signals according to an iterative retrieval scheme (Fig. 2A). 
The steps are as follows:

1. The simulated molecular signals (BS) are produced by 
using the analytical model as mentioned above. The initial 
values of a, b, and ξ input into the model are estimated as the 
lidar attenuation coefficient at wide FOV, narrow FOV, and 
a median value within the possible range of coastal water [24], 
respectively.

2. An iterative retrieval scheme is employed to retrieve the 
most likely values of a, b, and ξ by minimizing the relative 
differences between the simulated signal BS and the measured 
molecular signal BM at triple FOVs. This process can be expressed 
as a numerical solution to the minimum of the 2-Norm form, 
that is,
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where ar, br, and ξr are the retrieved values of a, b, and ξ, respec-
tively; the subscripts 1, 2, and 3 correspond to the narrow, 
medium, and wide FOV, respectively. The signal relative differ-
ences are gradually approaching the minimum value, while a, 
b, and ξ are adjusted toward true values during the convergence 
iterations (Fig. 2B). Taking a trial group at the jth iteration of 
aj, bj, and ξj as an example, the retrieval parameters are per-
turbed as Xj+1 =Xj + ΔXj. The convergence steps ΔXj are gen-
erated by:

where S is the triple-FOV signal sensitivity to a, b, and ξ (see 
the Supplementary Materials, Text S1 for more details), calcu-
lated by the analytical model. Due to signal noises, the iteration 
is forced to stop when the relative difference is below a threshold 

value predetermined by the system noise levels. In this work, 
10% root-mean-square relative difference between the simu-
lated BS profile with the measured BM profile is used, and its 
detailed definition is given in the next section. It should be 
noted that the seawater characteristics at different depths cor-
responding to the specific profiles under 3 FOVs are retrieved 
simultaneously. It is because that the lidar signal at a deeper 
depth is jointly determined by the seawater characteristics at all 
depths above it.

To illustrate the iteration process, an intuitive example is 
given (Fig. 2C): the initial values of BM and BS corresponding 
to the initial values of a, b, and ξ at different FOVs are provided 
(left plot); combining the signal differences and sensitivities in 
Eqs. 1 and 2, values of ∆a, ∆b, and ∆ξ resulting in convergence 
of BS to BM are derived (middle plot); finally, the relative differ-
ences fall below the threshold values, and the retrieval results 
are obtained (right plot).

In addition to a, b, and ξ, the particulate backscatter coef-
ficient (bbp) and Kd can be obtained from the combined and 
molecular signals at the wide FOV [25]. Similar to the atmos-
pheric aerosol studies [26–29], the lidar ratio (R) and the single 
scattering albedo (ω0) are regarded as key parameters for the 

(2)
ΔX

X
=

ΔB

B
S
−1,

Fig. 1. Principle of the shipborne triple-FOV HSRL. (A) System deployment geometry. (B) Schematic diagram of the triple-FOV HSRL system. WFOV, MFOV, and NFOV are for 
the wide FOV (200 mrad), middle FOV (80 mrad), and narrow FOV (40 mrad), respectively. (C) Simplified scheme for the triple-FOV HSRL detecting multiple scattering signals 
from seawater constituents.
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characterization and classification of seawater constituents. 
R is defined as the ratio of Kd excluding pure seawater to the 
particulate volume scattering function at 180°, which can be 
obtained by a single-FOV HSRL. ω0 is the ratio of the partic-
ulate scattering coefficient to the beam attenuation coefficient 
excluding pure seawater, which can be calculated from the 
triple- FOV HSRL retrieval products.

Performance of the triple-FOV HSRL technique
To ensure the quality of measurements, the edge and width of the 
triple FOVs are calibrated by the laser spot position where the 
lidar signal attenuates to half (see the Supplementary Materials, 
Text S2 and Fig. S1). As shown in Fig. 3A, the final calibration values 
for the triple-FOV are 196.8 ± 9.5 mrad (wide FOV), 83.2 ± 4.0 
mrad (middle FOV), and 43.4 ± 1.6 mrad (narrow FOV), respec-
tively, proving the accuracy of the system FOV design. By the PID 
servo loop, the laser frequency is locked to the iodine absorption 
line within an offset frequency of 10 MHz (Fig. 3B). In this way, 
coincident wavelengths of the laser emission, the iodine line, and 
the particulate backscatter signals are generated to ensure the 
retrieval accuracy of optical properties at 532 nm.

Moreover, simulated data from the MC technique and in situ 
data from field measurements are used to verify the consistency 
of the triple-FOV HSRL results. Parameter settings of the MC 
simulations (see the Supplementary Materials, Tables S1 and 

S2) and profiles of field experiments (see the Supplementary 
Materials, Fig. S2) are given for more details. To evaluate the 
relative difference between BS with BM or the retrieval accuracy, 
the root-mean-square relative difference (RMSRD) is used, which 
is defined as

where n is the total number of signal sampling bins; xi is the 
simulated or lidar retrieved values; x̃i is the MC input or meas-
ured values, working as the reference values.

The lidar measurements of a, b, and ξ are found to be in good 
agreement with MC and in situ estimates (Fig. 3C to E). Estimated 
values of RMSRD for a, b, and ξ between the triple- FOV HSRL 
and MC values are 7.7%, 10.9%, and 0.6%, respectively. A strong 
correlation is observed with a coefficient of determination (r2) 
of 0.92, 0.95, and 0.99, respectively. Relative differences are higher 
in turbid seawaters, i.e., when a and b are larger (ξ is smaller), 
since the signal fluctuations of the MC simulations are more sig-
nificant in this case. In field experiments, values of RMSRD are 
3.9%, 8.4%, and 1.0%, with values of r2 as 0.95, 0.76, and 0.70, 
respectively, for a, b, and ξ constituting an excellent agreement 
when compared with in situ measurements.

(3)
RMSRD=

� ∑n

i=1

�
xi∕x̃i−1

�2

n
×100%,

Fig. 2. Triple-FOV HSRL retrieval algorithm. (A) Flow chart of the retrieval algorithm. (B) Schematic diagram of the iteration process. (C) Example of the signal iteration process. 
ε is the relative difference between the simulated and measured molecular signals BS and BM. The superscripts 1, 2, 3...m is the number of iterations.
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Underway measurements
During the 2020 Joint autumn cruise, underway measurements 
were carried out from September 11 to September 13 (UTC+0800) 
with the ship track and study region in the South China Sea (see 
the Supplementary Materials, Fig. S3). Profiles of bbp from the 
triple-FOV HSRL are plotted in Fig. 4A. The results show a 
decreased trend of turbidity from nearshore to offshore, which 
is consistent with variations of chlorophyll-a concentration 
(Chl) from Moderate-resolution Imaging Spectroradiometer 
(MODIS) monthly products. High values of bbp and Chl in the 
nearshore water are attributed to the sufficient nutrient supply 
due to the shallow depth and prevalent upwelling near Hainan 
Island [30]. The transect with distinct nearshore-to-offshore 
gradients of bbp on September 12 was selected for further inves-
tigation (magenta line in Fig. 4A).

Along the transect, depth-resolved distributions of Kd, bbp, 
a, b, and ξ were obtained except near the sea surface (0 to 2 m, 
to avoid surface effect) and at depths where signal-to-noise 
ratios are too low (Fig. 4B to F). The transect is divided into 5 
regions, L1 to L5, based on the variation of seawater character-
istics. In the L1 region that is closest to the shore, Kd, bbp, a, and 
b reached maximum values of about 0.17, 0.005, 0.11, and 0.75 m−1, 
respectively, while ξ came to the minimum value of about 3.15. 
As the ship traveled southwest into the L2 region, Kd, bbp, a, 
and b decreased to 0.12, 0.0028, 0.085, and 0.55 m−1, respec-
tively, while ξ increased to 3.35. Moving offshore, Kd, bbp, a, and 
b decreased rapidly to about 0.1, 0.0018, 0.078, and 0.4 m−1, 
respectively, in the junction area of L2 and L3, while ξ remained 

relatively constant. In the L3 region, seawater was clearer than 
in the L1 to L2 region, with bbp and b gradually decreasing with 
increasing ξ. Then the ship turned the direction near the L4 
region, during which the ship first sailed to nearshore and then 
headed offshore to the southeast. This trajectory was reflected 
in the fact that bbp, b, and ξ came to about 0.002 m−1, 0.45 m−1, 
and 3.3 in the L4 region, then Kd, bbp, a, and b decreased to 
their minimum values in the L5 region (about 0.07, 0.00045, 
0.047, and 0.25 m−1, respectively), while ξ achieved a maxi-
mum value of about 3.42. In addition, vertical variations of 
characteristics were found near the water surface in the L4 
regions, indicating the higher concentration of seawater con-
stituents at greater depths. These results demonstrate that the 
water clarity gradually increases from the nearshore to the 
offshore region, which is consistent with other studies [31,32]. 
ξ was negatively correlated with the other seawater optical 
properties (see the Supplementary Materials, Fig. S4), indi-
cating that the slope of the PSD decreases as the proportion 
of large particles increases in more turbid seawater [33]. This 
series of long-distance observations showcase the utility of the 
triple-FOV HSRL technique providing a continuous observa-
tion of seawater characteristics.

Constituent classification and carbon export
As demarcations of different regions are clearly visible, it is 
fairly appealing to employ optical properties and PSD for 
seawater constituent classification. The lidar ratio (R), the 
single scattering albedo (ω0), and ξ are clustered (see the 

Fig. 3. The performance of the triple-FOV HSRL technique. (A) Calibration of FOVs. (B) Locked laser frequency drift compared with the iodine line. Comparisons of (C) the 
absorption coefficient a, (D) the scattering coefficient b, and (E) the slope of PSD ξ with MC and in situ results. WFOV, MFOV, and NFOV are for the wide FOV, middle FOV, and 
narrow FOV, respectively.
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Supplementary Materials, Fig. S5) and classified (Fig. 5A to D) 
for L1 to L5 regions using the random-forest-based seawater 
classification model (see the Materials and Methods for more 
details). It exhibits a substantial improvement compared to 
using only R based on the single-FOV HSRL for classification 
(Fig. 5A and B). In particular, single-FOV HSRL classification 
results in a large confused proportion in the L2-L4 regions 
between nearshore and offshore. Notably, the triple-FOV HSRL 
method improved the self-validation accuracy of classification 
confusion matrix in these 3 regions by 2.1, 1.6, and 2.5 times, 
respectively (Fig. 5C and D). The triple-FOV HSRL classifica-
tion is able to resolve a shallow L3 in the L4 region, presenting 
the intrusion of seawater from the L3 region into the surface 
layer of the L4 region (Fig. 5B). A possible explanation for this 
intrusion event might be that the tide impacts the diurnal var-
iation in seawater constituents [34]. The night-time high tide 
near Hainan Island (see the Supplementary Materials, Fig. S6) 
carried deeper seawaters of the L3 region into the upper layer of 
nearshore seawaters, causing marked stratifications of seawater 
characteristics in the L4 region. The results indicate that addi-
tional characteristics benefit the classification of seawater con-
stituents and the discovery of special phenomena.

Particles of biological origin play an important role in 
ocean carbon sequestration by converting inorganic carbon 
into organic carbon and exporting particulate organic carbon 
to the deep ocean [35]. However, estimates of the particulate 
organic carbon export flux (EP) remain highly uncertain, mainly 
limited to surface-integrated quantities [36]. The PSD slope 
ξ provides ways to compute the particle size fractions relative 
to total particles [24]. A depth- resolved EP can be computed 
by employing the Kd, bbp, and ξ profiles with other auxiliary 
data based on the food-web model (see the Materials and Method).

Overall, EP showed similar distribution patterns as those 
of seawater characteristics along the transect from the near-
shore to offshore regions (Fig. 5E). The intensity of EP decreased 
from a maximum of 58.08 mgCm−3d−1 in the L1 region to a 

minimum of 7.37 mgCm−3d−1 in the L5 region (Fig. 5F). The 
results suggest that values of EP were dominated by the flux of 
fecal matter from zooplankton grazing (FecEZ) in all regions, 
of which the large phytoplankton (FecEZm) took a more signif-
icant fraction than the small phytoplankton (FecEZs), while 
the direct sinking export of large phytoplankton (AlgEZ) made 
a much smaller contribution [36]. High values of EP were found 
in parts of the sea surface in the L1 region, perhaps due to the 
aggregation of nearshore phytoplankton and other organic par-
ticles. This result was consistent with the Chl and seawater char-
acteristics distributions (Fig. 4). Besides, phytoplankton will 
accumulate in shallow waters because of stronger light inten-
sity, which may lead to the decrease of NPP and EP with depth 
increasing in nearshore seawaters [37]. As mentioned previ-
ously, the high tide from L3 took part of phytoplankton away 
from the upper L4, and reduced the EP of surface seawaters and 
weaken the decreasing trend of EP with depth in the L4 region. 
This intrusion event was also reflected in the more significant 
contributions of large phytoplankton (AlgEZ and FecEZm) into 
the EP than in the surrounding regions. The depth-resolved EP 
derived from triple-FOV HSRL measurements offers vertical 
information on carbon exports and will further advance studies 
on the 3-dimensional global carbon cycle.

Numerous studies have attempted to obtain PSD slope based 
on remote sensing of ocean color or directly from in situ meas-
urements. Previous values of ξ range from 2.5 to 5 [31–33,38–46], 
with typically smaller values in turbid waters compared to 
higher values in clear seawaters (Fig. 5G). The mean value and 
SD of ξ from triple-FOV HSRL are found to be 3.38 and 0.23 
in this work, respectively. The values are significantly smaller 
than values in clear open ocean environments (around 4.0). We 
have found that the relatively low values of ξ in the coastal 
seawater near Hainan are consistent with the characteristics of 
the more turbid waters in other studies, such as the coastal 
waters of California [31] or the English Channel [40], poten-
tially indicating a more significant EP than other clearer regions.

Fig. 4. Triple-FOV HSRL and ocean color results near Hainan Province on 2020 September 12. (A) Continuous S-shaped underway triple-FOV HSRL measurements of the 
particulate backscattering coefficient bbp together with the surrounding chlorophyll-a concentration Chl from MODIS satellite measurements. The magenta line shows the 
area selected for further studies. (B) Diffuse attenuation coefficient Kd. (C) Particulate backscattering coefficient bbp. (D) Absorption coefficient a. (E) Scattering coefficient 
b. (F) Slope of PSD ξ. Magenta lines in (B) and (C) indicate 3 optical depths, and red lines in (D) and (E) show the maximum effective depth of the triple-FOV HSRL retrieval, 
which is mainly determined by the noise level of the signal at the narrow FOV, where the dynamic range of 3 orders of magnitude is selected in this work.
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Discussion

In this work, we developed a novel oceanic triple-FOV HSRL 
that can provide comprehensive, continuous, and vertical 
measurements of seawater constituents. This high-performance 
technique can retrieve multiproperty profile measurements 
(absorption coefficient a, scattering coefficient b, and slope of 
PSD ξ) in various water types, and we have validated these 
abilities using both MC radiative transfer simulations and 
in situ measurements with high fidelity (Fig. 3). Furthermore, 
we studied a typical nearshore-to-offshore transect in the coastal 
seawater of Hainan Island on 2020 September 12 (Fig. 4). Although 
ocean color remote sensing data, such as MODIS and Visible 
infrared Imaging Radiometer products, contain global surface -
integrated optical properties and particle size parameters of 
seawaters [9,33], the triple-FOV HSRL provides more refined 
depth-resolved characteristics of seawater constituents for con-
ducting in-depth analyses of shallow oceans. The continuous 
profiles obtained by the triple-FOV HSRL reveal both horizon-
tal gradients and vertical variations of comprehensive seawater 
constituent characteristics, which can be very difficult to get 
from in situ measurements, such as the WETLabs AC-S and 
HOBILabs HS6P used in this work.

Using the triple-FOV HSRL technique, we developed a sea-
water classification approach based on lidar ratio (R), single 
scattering albedo (ω0), and ξ (Fig. 5A to D). The accuracy of 
self-validation in the L1 to L5 region is improved by up to 41.2% 

compared to the results for R-only classification. An interesting 
seawater layer intrusion event related to the tide impact on the 
variation of seawater constituents was founded in the classifi-
cation results. In addition, triple-FOV HSRL can provide addi-
tional seawater characteristics for other classification schemes, 
such as remote-sensing-reflectance-based [47] and Kd-based 
[48] methods, producing a more accurate and informative sea-
water classification. In this work, we have not distinguished 
between planktonic and mineral fractions of oceanic particles. 
The integration of polarization information [49] available with 
triple-FOV HSRL will enable us to further classify particulate 
constituents of upper seawaters. Distinguishing the contribu-
tion of different plankton or particle types is imperative for 
validating and improving the food-web model processes and 
ocean carbon cycle analyses.

In the global carbon cycle, the biological carbon pump by 
seawater constituents is essential for ocean carbon sequestra-
tion by converting inorganic source into organic carbon and 
exporting it to the deep ocean, and it is an important scien-
tific quest to study the link between this process to the 
changing climate [2]. However, there remains great chal-
lenges to getting accurate estimates of EP and its vertical 
distribution based on ocean color remote sensing or in situ 
measurements [50]. The ξ from the triple-FOV HSRL can be 
used to constrain the microphytoplankton contribution to the 
total chlorophyll-a concentration, which is a critical parameter 
in the estimation of EP. In combination with auxiliary data 

Fig. 5. Applications of retrieval results. (A) Classification results from single-FOV HSRL. (B) Classification results from triple-FOV HSRL. (C) Confusion matrix of single-FOV 
HSRL classification. (D) Confusion matrix of triple-FOV HSRL classification. (E) Depth-resolved particulate organic carbon export flux EP. (F) Contributions of different sources 
to EP in L1 to L5 regions; AlgEZ is the direct sinking export of large phytoplankton; FecEZm is the flux of fecal matter from large zooplankton grazing; FecEZs is the flux of fecal 
matter from small zooplankton grazing. (G) Historical ξ values from previous studies, including this work; the white center point of the color bar represents the mean value, 
and the lengths on both sides represent the SD of the observations.
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obtained from other instruments, the triple-FOV HSRL enables 
the analysis of depth-resolved EP and its components in differ-
ent regions, indicating the great potential of this technique in 
improving ocean carbon studies (Fig. 5E and F).

Promising future directions also include improving the sys-
tem detection capabilities, accumulating more field experiment 
data, and integrating the triple-FOV HSRL with other meas-
urement systems to benefit future investigations into plankton 
community structure and succession. Overall, the proposed triple- 
FOV HSRL technique can provide an improved solution for inter-
preting seawater constituent characteristics and expanding our 
understanding of marine ecosystems and biogeochemistry.

Materials and Methods

Parameterization of the seawater
The absorption coefficient (a), scattering coefficient (b), and 
backscattering coefficient (bb) can be separated into the contribu-
tion from pure seawater and other components, where the values 
for pure seawater at 532 nm adopted in this work are 0.042, 0.0022, 
and 0.0011 m−1, respectively [51,52]. The effects of temperature 
and salinity were omitted. Optical properties are determined by 
the particulate constituents and their PSD in seawaters.

Several analytical models for the PSD of seawater particles 
have been proposed in previous studies. The most used PSD is 
a power-law type [53]:

where Np is the number concentration of particles per volume 
of seawater particles in m−3μm−1; D is the particle diameter in 
μm; N0 is the particle number concentration at the reference 
diameter D0, and ξ is the power-law exponent of the PSD (often 
referred to as “slope”). As described by this power-law distri-
bution, Np decreases with the increase of D, consistently with 
the analysis of the ecological structure and predator–prey rela-
tionships in planktonic ecosystems [54]. The distribution and 
evolution of the PSD are closely related to physical and bioge-
ochemical processes in seawaters. The Fourier–Forand phase 
function [53] provides us with an analytic expression for the 
phase function of a population of homogeneous spheres, dis-
tributed according to the power-law size distribution based on 
a modified form of the anomalous diffraction approximation. 
This function is used in our calculations of the further multiple 
scattering model and iterative retrieval process. Basing on the 
Fourier–Forand phase function, the particulate backscattering 
fraction of the seawater BF can be further obtained by

where bp is the particulate scattering coefficient in m−1; δ90 = 
0.75(m − 1)−2sin2(90°/2) and v = (3 − ξ)/2 are intermediate 
variables; m = 1.01 + 0.1542(ξ − 3) represents the refractive 
index of particles relative to seawater.

Multiple scattering model
The analytical model based on the quasi-single-scattering 
small-angle approximation is used to simulate oceanic HSRL 

signals efficiently [55]. The analytical model is applied to the 
forward simulation of triple-FOV HSRL signals and the further 
iterative retrieval process, achieving more credible simplifica-
tion than the traditional methods. In the analytical model, the 
coaxial molecular signal profile of HSRL can be expressed as

where F represents the forward simulation of HSRL molecular 
signals by analytical model; C0 is the system constant; a1…ai, 
b1…bi, and ξ1…ξi are whole profiles of a, b, and ξ. This means 
that once the lidar system parameters are determined, the 
molecular signal can be written as an equation of a, b, and ξ.

Data from a semianalytical MC were used to validate the 
performance of the retrieval algorithm in this work. The details 
of this model can be found in our previous work [56]. The 
traditional MC applied to lidar achieves the purpose of signal 
simulations by tracing the scattering process of numerous pho-
tons in the water and counting the number of photons returned 
to the lidar receiver. The semianalytical MC model combines 
the statistical approach and the analytical estimation, which 
greatly improves the efficiency of the MC simulation and reduces 
the fluctuation of the simulated signal. To obtain the multi-
channel signals in triple-FOV HSRL simultaneously, the sem-
ianalytical MC considered in this paper relies on both particulate 
scattering and molecular scattering and divides the lidar returns 
into combined channels and molecular ones.

In situ measurements
An optical package, which included WETLabs AC-S and 
HOBILabs HS6P, measuring in situ optical properties was 
deployed at specific locations (stations) lowered with a winch. 
WETLabs AC-S can measure the spectral absorption and beam 
attenuation coefficients (here, we use only the values at 532 nm). 
The particulate backscattering coefficient at 532 nm was 
obtained from the particulate backscattering at 510 nm from 
HOBILabs HS6P, assuming bbp(λ) = bbp(λ0)λ0/λ [57]. ξ is cal-
culated by substituting the in situ values of bp and bbp into Eq. 5. 
All in situ data were binned to a depth resolution of 1 m.

It should be noted that, in situ ξ are converted from in situ 
measurements of the particulate backscattering fraction BF of 
the seawater. Therefore, for the rigor, we also converted retrieved 
ξ to BF and compared them with in situ values in the Supplementary 
Materials, Fig. S2.

Assessment of particulate organic carbon  
export flux
Vertically resolved particulate organic carbon export flux 
(EP) is defined using a 2-component food-web-based model 
as [36,50]

where AlgEZ is the direct sinking export of large phytoplank-
ton and FecEZm is flux of fecal matter from zooplankton grazing. 
AlgEZ can be calculated as the product of the net primary pro-
duction (NPP). This model has been commonly used in the 
studies of EP [36,50], and the triple-FOV HSRL data are applied 
to it in this work. The NPP is calculated using the carbon-based 
production model, where inputs include bbp (from triple-FOV 
HSRL), chlorophyll-a (Chl, derived by Kd from triple-FOV 
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HSRL), and photosynthetically available radiation (PAR, from 
MODIS L3 monthly products) [58].

The FecEZ, which can be divided into parts from large 
(FecEZm) and small phytoplankton (FecEZs), is calculated 
using the NPP, bbp, Kd, the rate of change in Chl (from MODIS 
L3 products) and mixed-layer depth (calculated from wind field 
data of CMPP 2.0) [50,59]. The fractions of micro and small 
phytoplankton are estimated based on the value of ξ [24].

Seawater classification method
Random forest is one of the most successful methods currently 
applied to various regressions, classifications, and other related 
issues [60]. A random forest classification model is used for the 
seawater classification in this work, in which a total of 100 trees 
with a split number of 5 and a depth of 12 are adopted. R, ω0, ξ 
(or only R), and corresponding seawater types L1 to L5 work for 
the model training. Finally, confusion matrixes of self-validation 
are used to evaluate the classification performance.
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Measuring the characteristics of seawater constituent is in great demand for studies of marine ecosystems and
biogeochemistry. However, existing techniques based on remote sensing or in situ samplings present various tradeoffs
with regard to the diversity, synchronism, temporal-spatial resolution, and depth-resolved capacity of their data products.
Here, we demonstrate a novel oceanic triple-field-of-view (FOV) high-spectral-resolution lidar (HSRL) with an iterative
retrieval approach. This technique provides, for the first time, comprehensive, continuous, and vertical measurements
of seawater absorption coefficient, scattering coefficient, and slope of particle size distribution, which are validated by
simulations and field experiments. Furthermore, it depicts valuable application potentials in the accuracy improvement
of seawater classification and the continuous estimation of depth-resolved particulate organic carbon export. The triple-
FOV HSRL with high performance could greatly increase the knowledge of seawater constituents and promote the
understanding of marine ecosystems and biogeochemistry.
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