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Abstract We consider a bilateral birth-death process characterized by a constant
transition rate λ from even states and a possibly different transition rate µ from odd
states. We determine the probability generating functions of the even and odd states,
the transition probabilities, mean and variance of the process for arbitrary initial state.
Some features of the birth-death process confined to the non-negative integers by a
reflecting boundary in the zero-state are also analyzed. In particular, making use of a
Laplace transform approach we obtain a series form of the transition probability from
state 1 to the zero-state.

Keywords Birth-death processes · Alternating rates · Probability generating
functions · Transition probabilities · Symmetry
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1 Introduction

Birth-death processes were introduced to describe random growth (see, for instance,
Ricciardi [17] for an accurate description of birth-death processes in the context of
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158 A. Di Crescenzo et al.

population dynamics). Furthermore, they arise as natural descriptors of time-vary-
ing phenomena in several applied fields such as queueing, epidemiology, epidemics,
optics, neurophysiology, etc. An extensive survey has been provided in Parthasarathy
and Lenin [15]. In particular, in Section 9 of that paper certain birth-death processes
are used to describe the time changes in the concentrations of the components of a
chemical reaction, and their role in the study of diatomic molecular chains is empha-
sized.

Moreover, Stockmayer et al. [19] gave an example of application of stochastic pro-
cesses in the study of chain molecular diffusion, by modeling a molecule as a freely-
joined chain of two regularly alternating kinds of atoms. The two kinds of atoms have
alternating jump rates, and these rates are reversed for odd labeled beads. By invoking
the master equations for even and odd numbered bonds, the authors obtained the exact
time-dependent average length of bond vectors.

Inspired by this work, Conolly et al. [4] studied an infinitely long chain of atoms
joined by links of equal length. The links are assumed to be subject to random shocks,
that force the atoms to move and the molecule to diffuse. The shock mechanism is
different according to whether the atom occupies an odd or an even position on the
chain. The originating stochastic model is a randomized random walk on the integers
with an unusual exponential pattern for the inter-step time intervals. The authors ana-
lyze some features of this process and investigate also its queue counterpart, where the
walk is confined to the non negative integers. Various results concerning this queueing
system with “chemical” rules (the so-called “chemical queue”) were obtained also by
Tarabia and El-Baz [20,21] and more recently by Tarabia et al. [22].

Another example arising in a chemical context where the role of parity is crucial is
provided in Lente [14], where the probability of a more stable enantiomer is different
according on whether the number of chiral molecules is even or odd.

Stimulated by the above researches, in this paper we consider a birth-death process
N (t) on the integers with a transition rate λ from even states and a possibly different
rate µ from odd states. This model arises by suitably modifying the death rates of the
process considered in the above papers. A detailed description of the model is per-
formed in Sect. 2, where the probability generating functions of even and odd states
and the transition probabilities of the process are obtained for arbitrary initial state.
Certain symmetry properties of the transition probabilities are also given. In Sect. 3
we study the birth-death process obtained by superimposing a reflecting boundary in
the zero-state. In particular, by making use of a Laplace transform approach, we obtain
the probability of a transition from state 1 to the zero-state. Formulas for mean and
variance of both processes are also provided. We remark that some preliminary results
on the process under investigation are given in Iuliano and Martinucci [13] for the
case of zero initial state.

It should be mentioned that closed-form results on bilateral birth-death processes
have been obtained in the past only in few solvable cases, such as those in the above
mentioned papers, and those given in Di Crescenzo [5], Di Crescenzo and Martinucci
[9], Pollett [16].
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Fig. 1 Transition rate diagram
of N (t)

2 Transient distribution

We consider a birth-death process {N (t); t ≥ 0} with state-space Z, and denote by

pk,n(t) = P{N (t) = n | N (0) = k}, t ≥ 0, n ∈ Z

its transition probabilities, where k ∈ Z is the initial state. We assume that N (t) is
characterized by a transition rate λ from any even state to the two neighboring states,
and by a possibly different transition rate µ from any odd state to the neighboring
states. In other terms, denoting by

ν j,n = lim
h→0

1
h

P{N (t + h) = n | N (t) = j}

the time-homogeneous transition rates of N (t) from state j to state n, we assume that
the allowed transitions are characterized by the following rates:

ν2n,2n±1 = λ, ν2n±1,2n = µ, ∀n ∈ Z, (1)

with λ, µ > 0. The associated transition rate diagram of this process is given in Fig. 1.
We note that rates (1) are different from those of the birth-death model considered
in Conolly et al. [4] and Tarabia et al. [22], where ν2n,2n+1 = ν2n+1,2n = λ and
ν2n−1,2n = ν2n,2n−1 = µ for any n ∈ Z.

Due to assumptions (1), the transition probabilities of N (t) satisfy the following
system of differential-difference equations:






d
dt

pk,2n(t) = µ pk,2n−1(t) − 2λ pk,2n(t) + µ pk,2n+1(t),

d
dt

pk,2n+1(t) = λ pk,2n(t) − 2µ pk,2n+1(t) + λ pk,2n+2(t),

(2)

for any t ≥ 0, n ∈ Z and for any initial state k ∈ Z. The initial condition is expressed
by:

pk,n(0) = δn,k, (3)

where δn,k is the Kronecker’s delta. We notice that in the special case when λ = µ

process N (t) identifies with the so-called “randomized random walk” (see Conolly
[3]).
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In order to obtain the state probabilities of N (t), hereafter we develop a probabil-
ity generating function-based approach. We recall that this method has been used in
the past to determine probabilities of interest in several stochastic models (see, for
instance, Giorno and Nobile [10] and Ricciardi and Sato [18] for the distribution of
the range of one-dimensional random walks). Let us define the probability generating
functions of the sets of even and odd states of N (t), respectively:

Fk(z, t) :=
+∞∑

j=−∞
z2 j pk,2 j (t), Gk(z, t) :=

+∞∑

j=−∞
z2 j+1 pk,2 j+1(t), (4)

with z ∈ Z. Note that, due to (3), the following initial conditions hold:

Fk(z, 0) =
{

zk k even
0 k odd,

Gk(z, 0) =
{

0 k even
zk k odd.

(5)

From system (2) we have that the generating functions (4) satisfy the following
differential system:






∂

∂t
Fk(z, t) = µ zGk(z, t) − 2λ Fk(z, t) + µ

z
Gk(z, t),

∂

∂t
Gk(z, t) = λ zFk(z, t) − 2µ Gk(z, t) + λ

z
Fk(z, t),

so that

∂

∂t

(
Fk(z, t)
Gk(z, t)

)
= A ·

(
Fk(z, t)
Gk(z, t)

)
, A :=




−2λ µ

z2 + 1
z

λ
z2 + 1

z
−2µ



 .

Hence, by use of standard methods, due to conditions (5) we come to

(
F2k(z, t)
G2k(z, t)

)
= eAt ·

(
z2k

0

)
, (6)

and
(

F2k+1(z, t)
G2k+1(z, t)

)
= eAt ·

(
0

z2k+1

)
, (7)

where

eAt = exp









−2λ µ

z2 + 1
z

λ
z2 + 1

z
−2µ



 t





.
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By straightforward calculations we have A = S · V · S−1, where

S =





µ − λ− h(z)
z

µ − λ+ h(z)
z

λ
z2 + 1

z
λ

z2 + 1
z




, V =




v1 0

0 v2



 , (8)

for v1 = −(λ+ µ) − h(z)/z and v2 = −(λ+ µ) + h(z)/z, and where

S−1 = − z
2λ(z2 + 1)h(z)

(
λ(z2 + 1) z(λ− µ) − h(z)

−λ(z2 + 1) z(µ − λ) − h(z)

)
, (9)

with

h(z) :=
√

(µz2 + λ)(λz2 + µ).

If the initial state is even (2k), Eqs. (6) and (8)–(9) give

eAt ·
(

z2k

0

)
=





µ − λ− h(z)
z

µ − λ+ h(z)
z

λ
(z2 + 1)

z
λ

(z2 + 1)

z








ev1t 0

0 ev2t









− z2k+1

2h(z)

z2k+1

2h(z)




,

and then

eAt ·
(

z2k

0

)
= e−(λ+µ)t · z2k

h(z)




h(z) cosh[t h(z)

z
] + z(µ − λ) sinh[t h(z)

z
],

λ(z2 + 1) sinh[t h(z)
z

]



 .

(10)

Hence, from Eqs. (6) and (10) we obtain the explicit expression of the probability
generating functions when the initial state is even:

F2k(z, t) = e−(λ+µ)t z2k

h(z)

{
h(z) cosh

[
t h(z)

z

]
+ z(µ − λ) sinh

[
t h(z)

z

]}
, (11)

G2k(z, t) = e−(λ+µ)t z2k

h(z)
λ

(
z2 + 1

)
sinh

[
t h(z)

z

]
. (12)
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Similarly, if the initial state is odd (2k + 1) the explicit expression of the probability
generating functions is:

F2k+1(z, t) = e−(λ+µ)t z2k+1

h(z)
µ

(
z2 + 1

)
sinh

[
t h(z)

z

]
, (13)

G2k+1(z, t) = e−(λ+µ)t z2k+1

h(z)

{
h(z) cosh

[
t h(z)

z

]
+ z(λ− µ) sinh

[
t h(z)

z

]}
.

(14)

We are now able to provide the state probabilities.

Proposition 1 For all l, r ∈ Z and t ≥ 0 the transition probabilities of N (t) are:

p2l,2r (t) = e−(λ+µ)t
+∞∑

n=|r−l|

[
(λt)2n

(2n)! +
(

µ − λ

λ

)
(λt)2n+1

(2n + 1)!

]

×
n−|r−l|∑

k=0

(
n
k

)(
n

k + |r − l|

) (
λ

µ

)−2k−|r−l|
, (15)

p2l,2r+1(t) = e−(λ+µ)t






+∞∑

n=|r−l|

(λt)2n+1

(2n + 1)!

n−|r−l|∑

k=0

(
n
k

)(
n

k + |r − l|

) (
λ

µ

)−2k−|r−l|

+
+∞∑

n=|r−l+1|

(λt)2n+1

(2n + 1)!

n−|r−l+1|∑

k=0

(
n
k

)(
n

k + |r − l + 1|

) (
λ

µ

)−2k−|r−l+1|



 . (16)

p2l+1,2r (t) = e−(λ+µ)t






+∞∑

n=|r−l−1|

(µt)2n+1

(2n + 1)!

n−|r−l−1|∑

k=0

(
n
k

)(
n

k + |r − l − 1|

) (µ

λ

)−2k−|r−l−1|

+
+∞∑

n=|r−l|

(µt)2n+1

(2n + 1)!

n−|r−l|∑

k=0

(
n
k

)(
n

k + |r − l|

) (µ

λ

)−2k−|r−l|



 . (17)

p2l+1,2r+1(t) = e−(λ+µ)t
+∞∑

n=|r−l|

[
(µt)2n

(2n)! +
(
λ− µ

λ

)
(µt)2n+1

(2n + 1)!

]

×
n−|r−l|∑

k=0

(
n
k

)(
n

k + |r − l|

) (µ

λ

)−2k−|r−l|
. (18)

Proof It follows by extracting the coefficients of x2r and x2r+1 in (11)–(14), respec-
tively. ()

Figure 2 shows some plots of transition probabilities given in Proposition 1.

2.1 Symmetry properties

The relevance of symmetry properties of transition functions of birth-death processes
has been emphasized in Anderson and McDunnough [1] and in Di Crescenzo [6], for
instance. We stress that the role of symmetry is closely connected to the analysis of the
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Fig. 2 Plots of some transition probabilities for (λ, µ) = (1, 2) (solid line), (λ, µ) = (2, 2) (dotted line),
(λ, µ) = (2, 1) (dashed line)

first-passage-time problem in Markov process. See, for instance, the contributions of
Giorno et al. [11,12] and Di Crescenzo et al. [7,8], where some relations involving the
transition probability density functions and the first-passage-time density functions of
symmetric diffusion processes in the presence of suitable time-varying boundaries.

Hereafter we analyze some symmetry properties of the transition probabilities
obtained in Proposition 1. The proof is omitted, since it follows from direct anal-
ysis of the probabilities (15)–(18). When necessary we emphasize the dependence on
the parameters by writing pk,n(t; λ, µ) instead of pk,n(t).

Proposition 2 For every t ≥ 0 and n, k ∈ Z the following symmetry relations hold:

(i) pN−k,N−n(t) = pk,n(t), if N is even
(i i) pN−k,N−n(t; λ, µ) = pk,n(t;µ, λ), if N is odd;
(i i i) pn,k(t; λ, µ) = pk,n(t;µ, λ);
(iv) pN+k,N+n(t) = pk,n(t), if N is even
(v) pN+k,N+n(t; λ, µ) = pk,n(t;µ, λ), if N is odd.

In Fig. 2 the plots of p−2,1(t) and p1,−2(t) illustrate a case in which property (ii)
of Proposition 2 holds.

2.2 Moments

Hereafter we obtain in closed form the mean and the variance of N (t). We shall obtain
that the mean is equal to the initial state. This result is intuitively justified by the sym-
metry of the Markov chain. Indeed, by choosing N = 2k and n = k − r in identity (i)
of Proposition 2 we have pk,k+r (t) = pk,k−r (t) ∀k, r ∈ Z, and t ≥ 0.
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Proposition 3 For t ≥ 0 and k ∈ Z we have

E[N (t)|N (0) = k] = k, (19)

V ar [N (t)|N (0) = k] = 4λµ
λ+ µ

t + (−1)k λ(λ− µ)

(λ+ µ)2

[
1 − e−2(λ+µ)t

]
, (20)

Proof The mean (19) easily follows from Eqs. (2) and (3). Moreover, by setting
ψk(t) := E[N 2(t)|N (0) = k] from system (2) we obtain:

d
dt
ψk(t) = 2µ

+∞∑

n=−∞
pk,2n+1(t) + 2λ

+∞∑

n=−∞
pk,2n(t)

= 2µ Gk(1, t) + 2λ Fk(1, t), t ≥ 0,

where Fk and Gk have been defined in (4). Hence, recalling Eqs. (11)–(14), after some
calculations we have

d
dt
ψk(t) =






4λµ
λ+ µ

+ 2λ(λ− µ)

λ+ µ
e−2(λ+µ)t , k even

4λµ
λ+ µ

+ 2µ(µ − λ)

λ+ µ
e−2(λ+µ)t , k odd

with ψk(0) = k2. Finally, Eq. (20) follows. ()

3 A reflecting boundary

In this section we consider the case in which the state-space is reduced to the set
of non-negative integers. We shall denote by {R(t); t ≥ 0} the birth-death process
having state-space {0, 1, 2, . . .}, with 0 reflecting, whose rates are identical to those
of N (t). This describes, for instance, the number of customers in a queueing system
with alternating rates. For n = 0, 1, 2, . . ., let us introduce the transition probabilities

qk,n(t) = P{R(t) = n | R(0) = k}, t ≥ 0.

The related differential-difference equations are, for n = 1, 2, . . . ,






d
dt

qk,0(t) = µ qk,1(t) − λ qk,0(t),

d
dt

qk,2n(t) = µ qk,2n−1(t) − 2λ qk,2n(t) + µ qk,2n+1(t),

d
dt

qk,2n−1(t) = λ qk,2n(t) − 2µ qk,2n−1(t) + λ qk,2n−2(t),

(21)
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with

qk,n(0) = δn,k . (22)

We point out that the steady-state distribution of R(t) does not exist. Indeed, from
system (21) it is not hard to see that lim

t→∞ qk,n(t) = 0 ∀k, n ∈ Z.

3.1 Moments

Let us now set, for k ∈ Z,

Pk(t) = P {R(t) even | R(0) = k} =
+∞∑

n=0

qk,2n(t), t ≥ 0. (23)

Now mean and variance of R(t) will be formally expressed in terms of (23).

Proposition 4 For t ≥ 0 we have

E[R(t)|R(0) = k] = λ

t∫

0

qk,0(τ )dτ + k, (24)

V ar [R(t)|R(0) = k] = 2(λ− µ)

t∫

0

Pk(τ )dτ − λ(2k + 1)

t∫

0

qk,0(τ )dτ

−λ2




t∫

0

qk,0(τ )dτ




2

+ 2µt, (25)

where

Pk(t) = 2µ

λ+ µ
+ λ− µ

λ+ µ
e−2(λ+µ)t + λ

t∫

0

e−2(λ+µ)(t−τ )qk,0(τ )dτ. (26)

Proof The mean (24) easily follows from system (21) and condition (22). Moreover,
from Eqs. (21) we obtain

d
dt

E[R2(t)|R(0) = k] = 2µ

+∞∑

n=1

qk,2n+1(t) + 2µqk,1(t) + λqk,0(t) + 2λ
+∞∑

n=1

qk,2n(t)

= 2µ[1 − Pk(t) − qk,1(t)] + 2µqk,1(t)

+λqk,0(t) + 2λ [Pk(t) − qk,0(t)]
= 2(λ− µ)Pk(t) + λqk,0(t) + 2µ,
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where Pk(t) satisfies the differential equation

d
dt

Pk(t) = −2(µ + λ) Pk(t) + λ qk,0(t) + 2µ. (27)

Since the solution of (27) is Eq. (26), the conditional variance (25) easily follows. ()

3.2 Probabilities

We note that when k = n = 0 the transition probability is given by (see Sect. 3 of
Iuliano and Martinucci [13])

q0,0(t) = e−at

a + b

+∞∑

k=0

(t/2)2k

k!2
{(

a2k+1 + b2k+1
)

1 F2

(
−1

2
, k + 1

2
, k + 1,

b2t2

4

)

+ t (a2k+2 − b2k+2)

2(k + 1)
1 F2

(
−1

2
, k + 1, k + 3

2
,

b2t2

4

)}
, t ≥ 0,

where

a = λ+ µ, b = λ− µ.

Now we analyse the case in which the initial state is k = 1. Denoting by

πk,n(s) := Ls[qk,n(t)] =
∞∫

0

e−st qk,n(t) dt, s > 0,

the Laplace transform of the transition probabilities of R(t), from Eqs. (21) we have:






(λ+ s)π1,0(s) = µπ1,1(s)
(2µ + s)π1,1(s) = 1 + λπ1,2(s) + λπ1,0(s)
(2λ+ s)π1,2n(s) = µπ1,2n−1(s) + µπ1,2n+1(s), n ≥ 1
(2µ + s)π1,2n−1(s) = λπ1,2n(s) + λπ1,2n−2(s), n ≥ 2.

(28)

The solution of system (28) involves the roots of the biquadratic equation

λµ x4 −
[
(λ+ µ + s)2 − λ2 − µ2] x2 + λµ = 0,

which are given by

ψ2
1 (s) = (A + B)2

a2 − b2 , ψ2
2 (s) = (A − B)2

a2 − b2 ,

with

A2 = (a + s)2 − a2, B2 = (a + s)2 − b2.
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Since ψ2
1 (s) > 1 and 0 < ψ2

2 (s) < 1, from system (28) we finally obtain:

π1,2n(s) = (2µ + s)(λ+ s)
[
ψ2

2 (s)
]n+1

λ2
[
µ(1 − ψ2

2 (s)) − s ψ2
2 (s)

] , n ≥ 1, (29)

and, similarly,

π1,2n−1(s) = (λ+ s)
[
ψ2

2 (s)
]n [

1 + ψ2
2 (s)

]

λ
[
µ(1 − ψ2

2 (s)) − s ψ2
2 (s)

] , n ≥ 1. (30)

By making use of Eqs. (29) and (30) and substituting in (28), we have

π1,0(s) = (2λ+ s)(2µ + s) − AB
λ [s(2µ + s) + AB]

. (31)

By inversion of (31) after some calculations we obtain

q1,0(t) = e−at

2λ(a + b)

t∫

0

[
−b2 I1(b(t − s))

b(t − s)
+ a2 I1(a(t − s))

a(t − s)

]
h(s)ds

+ e−at

2λ(a + b)
(a2 − b2)

t∫

0

b(t − s)
2 1 F2

(
1
2
,

3
2
, 2,

b2(t − s)2

4

)
h(s)ds,

(32)

where

h(x) := a [I0(ax) + I1(ax)] + b [I0(bx) − I1(bx)] ,

with In(·) denoting the modified Bessel function of the first kind. The evaluation of
the integrals in Eq. (32) finally gives the following result.

Proposition 5 For t ≥ 0, we have

q1,0(t) = e−at

λ(a + b)

{ +∞∑

n=0

t2n

n!(n + 1)!

[(a
2

)2n+2
−

(
b
2

)2n+2
]

ξ

(
1
2
, 1, a, b

)

+
+∞∑

n=0

t2n+1

n!(n + 1)!(2n + 1)

[
a2 − b2

2

(
b
2

)2n+1
]

ξ

(
1,

3
2
, a, b

)

+
+∞∑

n=0

t2n+1

n!(n + 1)!(2n + 1)

[(a
2

)2n+2
−

(
b
2

)2n+2
]

η

(
1,

3
2
, a, b

)

+
+∞∑

n=0

t2n+2

n!(n + 1)!(2n + 1)(2n + 2)

[
a2 − b2

2

(
b
2

)2n+1
]

η

(
3
2
, 2, a, b

)}
,
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Fig. 3 Plots of q1,0(t) for
(λ, µ) = (1, 2), (2, 2), (2, 1),
from top to bottom

0 10 20 30 40
t0

0.1

0.2

0.3

0.4

0.5
q1,0 t

where

ξ(u, v, a, b) = 1 F2

(
1
2
; n + u, n + v; a2t2

4

)
− 1 F2

(
1
2
; n + v, n + u; b2t2

4

)
,

η(u, v, a, b)=a 1 F2

(
1
2
; n + u, n + v; a2t2

4

)
+b 1 F2

(
1
2
; n + v, n + u; b2t2

4

)
.

In conclusion, some illustrative plots of q1,0(t) are shown in Fig. 3.

4 Concluding remarks

Stimulated by some previous works on the applications of stochastic processes to
the study of chain molecular diffusion, in this paper we have analyzed a birth-death
process on Z characterized by alternating transition rates. The probability generating
functions of even and odd states and the transition probabilities of the bilateral process
have been obtained when the initial state is arbitrary. A preliminary investigation on the
transient behavior of the birth-death process obtained by superimposing a reflecting
boundary in the zero-state has also been performed.

In conclusion, the results given in this paper deserve also special interest in the
fields of chemical queueing processes and two-periodic random walks, according to
the lines traced in various papers, such as Conolly et al. [4] and Böhm and Hornik [2],
for instance.
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