
Montanaro et al. 2023 | https://doi.org/10.34133/plantphenomics.0061 1

RESEARCH ARTICLE

Phenotyping Key Fruit Quality Traits in  

Olive Using RGB Images and Back  

Propagation Neural Networks
Giuseppe  Montanaro1*, Angelo  Petrozza2, Laura  Rustioni3,  

Francesco  Cellini2, and Vitale  Nuzzo1

1Università degli Studi della Basilicata, 85100 Potenza, Italy. 2ALSIA, Agenzia Lucana Sviluppo Innovazione 

in Agricoltura, Metapontum Agrobios Research Center, 75010 Metaponto, Italy. 3Department of Biological 

and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.

*Address correspondence to: giuseppe.montanaro@unibas.it

To predict oil and phenol concentrations in olive fruit, the combination of back propagation neural networks 

(BPNNs) and contact-less plant phenotyping techniques was employed to retrieve RGB image-based 

digital proxies of oil and phenol concentrations. Fruits of cultivars (×3) differing in ripening time were 

sampled (~10-day interval, ×2 years), pictured and analyzed for phenol and oil concentrations. Prior to 

this, fruit samples were pictured and images were segmented to extract the red (R), green (G), and blue 

(B) mean pixel values that were rearranged in 35 RGB-based colorimetric indexes. Three BPNNs were 

designed using as input variables (a) the original 35 RGB indexes, (b) the scores of principal components 

after a principal component analysis (PCA) pre-processing of those indexes, and (c) a reduced number 

(28) of the RGB indexes achieved after a sparse PCA. The results show that the predictions reached the 

highest mean R2 values ranging from 0.87 to 0.95 (oil) and from 0.81 to 0.90 (phenols) across the BPNNs. In 

addition to the R2, other performance metrics were calculated (root mean squared error and mean absolute 

error) and combined into a general performance indicator (GPI). The resulting rank of the GPI suggests 

that a BPNN with a specific topology might be designed for cultivars grouped according to their ripening 

period. The present study documented that an RGB-based image phenotyping can effectively predict 

key quality traits in olive fruit supporting the developing olive sector within a digital agriculture domain.

Introduction

Olive oil is increasingly used in the human diet as a functional 
food due to its healthy antioxidants (e.g., phenolic compounds) 
[1] contributing to the globally expanding olive crop [2]. In 
addition, phenolic compounds (phenols) share about 50% of 
oil antioxidant power, contributing to its stability over time [3].

Despite these relevant features of phenols, the concentration 
of oil (% fresh weight) is the prominent quality trait generating 
the overall pro�tability of the crop. In contrast with this, to 
summarize the intrinsic quality of fruit, the seasonal pattern 
of both oil and phenol concentrations should be accounted for. 
Importantly, these patterns dynamically change during the fruit 
growing season following a roughly linear or parabolic trend 
in oil and phenols, respectively [2,4]. Hence, along with manage-
ment practices, harvest time in�uences oil and phenol abun-
dance and in turn yield quality and crop pro�tability. Hence, 
several fruit ripening indexes have been proposed to destruc-
tively track the maturity process and suggest the optimal 
harvest time in olives including fruit detachment force, skin 
pigmentation, and �esh �rmness [5,6].

However, the determination of these indexes involves several 
limitations (e.g., the high consumption of time and high labor 

cost) when compared to those falling within a digital agricul-
ture domain. For example, employing noncontact image-based 
methods is expanding to support crop management to face 
various issues including stress conditions, nutrition, water 
management, and targeting fruit quality [7,8]. Accordingly, in 
the olive sector, several studies have focused on image-based 
methods to develop fruit maturity indexes mainly for fruit 
classi�cation purposes a�er harvest [9,10]. However, imaging 
within a regression context to track the variation of olive skin 
color associated with changes in quality trait(s) has yet to be 
adequately explored.

Plant phenomics is an innovative, non-invasive, image-based 
technology that is still being developed, through which it is 
possible to identify plant features and retrieve their quantitative 
responses to various stimuli. Within an a�ordable image-based 
plant phenotyping, the easily accessible red (R), green (G), and 
blue (B) images are frequently used as a proxy of physiological 
traits [11,12]. Adoption of RGB images, which also have a 
relatively low cost, might be in favor of extensive exploitation 
of plant phenotyping considering the wide di�usion of RGB 
cameras even on smartphones [13]. Along with the di�usion 
of RGB-based imaging, changes of color have been associated 
with changes in plant/organ status.
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For example, changes in the green color of olive fruit dur-
ing ripening have been associated with a change in chlorophyll 
concentration, and the fraction of green olives at harvest 
in�uences olive oil quality [14]. �ere are several RGB-based 
indexes estimating the chlorophyll concentration in leaf and 
fruit tissues in wheat and rye [15], in sugar beet leaves [16], 
and in citrus skin to monitor its ripening [17]. A set of RGB-
based indexes has been employed by Zakaluk and Ranjan [18] 
to monitor plant water status in potato leaf. Furthermore, the 
amount of water in olive fruit is inversely correlated to its 
oil content throughout fruit ripening [19]. Hence, using such 
water-related RGB indexes would be reasonable to use to 
estimate the amount of oil in fruit. Recently, RGB images have 
been used along with non-destructive methods for quantifying 
total polyphenols in the bark of Calycophyllum spruceanum 
[20] and in olive fruit [21]. Hence, within this context, the 
association of polyphenols and RGB indexes in olive fruit is 
reasonable.

Along with the increasing use of imaging, it should be noted 
that it is increasingly combined with artificial neural net-
works (ANNs) to improve the prediction (classi�cation and 
regression) of plant traits [9,10,22,23]. For example, the back 
propagation neural network (BPNN) is an ANN model with 
an adaptive and self-learning function particularly useful to 
solve nonlinear problems in plant science �elds (e.g., fruit qual-
ity) [24,25]. However, ANN might su�er uncertainties includ-
ing over�tting and reduced (or no) convergence, which might 
also be related to the network topology and redundant input 
variables [18]. Hence, the combination of ANN with principal 
component analysis (PCA) for extracting new features or 
selecting relevant variables is suggested to control the over�tting 
issue [26]. In addition, to further improve the interpretability 
of the PCA results (i.e., loadings) to support the BPNN topol-
ogy design, an increased sparsity of loadings might be achieved 
employing a genetic algorithm (GA) and sparse PCA [27].

Taking into account this background, the present study 
tested the hypothesis that oil and phenol concentrations are 
predictable throughout the season by a BPNN fed with RGB-
based colorimetric indexes retrieved through imaging. To test 
this hypothesis, olive samples from �eld-grown olive cultivars 
(×3) were sampled (×2 years) for imaging to extract R, G, and 
B mean pixel values and for analytical determinations of oil and 
phenol concentrations. �e second objective was to compare 
the performance accuracy of 3 BPNNs using as input varia-
bles (a) a set of RGB-based colorimetric indexes, (b) the scores 
of principal components (PCs) a�er a PCA pre-processing of 
those indexes, and (c) a reduced number of the RGB indexes 
as de�ned a�er a sparse PCA.

Materials and Methods

Experimental design
Experiments were carried out in Southern Italy (Metaponto) 
during 2020 and 2021. �e study area has a Mediterranean 
climate with mild winter and warm and dry summer; the 
details on the annual records of the main weather variables are 
reported in Fig. S1. The sampling time covered the period 
of oil and phenols accumulation lasting from pith hardening 
(end of July) till December. During this period, olive fruits were 
sampled at approximately 10-day intervals from three ~20-year 
old groves of the Coratina cultivar (5 × 6 m planting distance) 
and Frantoio and Leccino cultivars (6.5 × 6.5 m). Olive groves 

were irrigated and managed according to local commercial 
practices. In each �eld, 3 bulk samples (300 g each) were col-
lected from 5 to 6 trees ensuring that olives were picked with-
out petiole from the various exposure sides of the canopy. 
Samples were promptly transferred to the laboratory. Figure 1 
reports the pipeline used in this work for imaging, segmenta-
tion, and data analytics.

Image acquisition, processing, and data extraction

Each sample was partitioned into 3 subsamples of olives (about 
100 g each) individually placed on the base of a stand holder 
covered with a blue paper as background (Fig. S2). A Nikon 
D5100 digital camera (16.9 Mpixels) was held to the stand to 
have the lens (AF-P DX Nikkor 18 to 55 mm, f/3.5-5.6 G VR, 
Nikon, Tokyo, Japan) positioned 45 cm away from the fruit. 
�e stand holder was enclosed in a 0.8 × 0.8 × 0.8 m portable 
photo studio box (Ombar Photography Light Box) equipped 
with (light-emitting diode) LED 5500K, 100 LEDs on 
top of the box and sheltered through a light diffuser to 
avoid direct illumination of samples. Images were captured 
in JPG format and an X-Rite ColorChecker Classic color card 
(Grand Rapids, MI, USA) was used to ensure correct white 
balance and color. Namely, the color reference card was used 
to check repeatable conditions during image capturing 
across the various imaging sessions. Images were processed 
using the 1.53t version of ImageJ so�ware [28]. Before RGB 
extraction, the “Image>Adjust>Brightness/contrast” command 
of ImageJ was used targeting the RGB coordinates of the white 
painted square of the color card to those of white (255, 255, 
255). A total of 141 images (51 Coratina, 45 Frantoio, and 45 
Leccino) were collected.

Images were segmented into fruit and background compo-
nents (Fig. S2) by means of a macro calibrated by the user. 
Brie�y, a�er the image was imported, it was processed to 
remove the background identifying the object of interest 
(olives); all the other objects were removed. Color thresholding 
for image segmentation starts through the Image>Adjust>Color 
�reshold command, choosing the default method within the 
L*a*b* color space, composed by lightness from black to white 
(L*), and the description of chromatic colors along the green–
red (a*) and blue–yellow (b*) axis, respectively. �e object of 
interest was selected, and selection coordinates were saved as 
the region of interest (ROI) within the ROI manager. A�er 
that, using the Image>Type>RGB stack command, the original 
imported image was converted into 3 layers (slices) stacked in 
a single window, with each slice representing the channel (gray-
scale) of the primary R, G, and B colors. �e pre-saved ROI 
was pasted on each slice to select again the object of interest, 
and then the mean R, G, and B values were measured through 
the “measure RGB” plugin. A series of 35 colorimetric indexes 
were then calculated from the R, G, and B mean pixel values 
(Table 1).

Fruit quality trait determination
A�er the imaging acquisition, each fruit sample was ground 
(skin + �esh + stone) into a paste with a hammer mill. About 
75 g of well-mixed subsample of paste was used for a single 
determination of extractable fat matter (oil, % fresh weight), 
water content (%), and acidity (%) by near-infrared (NIR) anal-
ysis using the Olivia instrument (FOSS, Hillerød, Denmark). 
�e subsample paste was spread on the sample cup and pressed 
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to minimize the presence of air. �e Olivia was operated with 
a single linear array detector (850 to 1,050 nm wavelength 
range) pre-calibrated by the factory and checked for zero before 
each measurement session a�er about 1 h warm-up.

Total phenols were determined on an aliquot of paste 
collected from the same subsamples used for NIR-base oil 
content determinations by the colorimetric reaction with 
Folin-Ciocalteu’s reagent. �e phenols were extracted from a 
5-g aliquot using 25 ml of 50% aqueous ethanol, and the result-
ing mixture was gently agitated for 24 h at room temperature. 
A�er centrifugation (15 min, 3,500 rpm) (Allegra 6R, Beckman 
Coulter 3750), an aliquot of 1.5 ml of the supernatant was 
drawn from the middle part of the tube using a 5-ml pipette. 
�is sample was again centrifuged (10 min, 6,000 rpm) (min-
ispin eppendorf f45-12-11) and a 500-μl aliquot was used for 
the determination of the total phenols. A 1-ml diluted (1:60, 
pure water) extract sample was added to 3 ml of Folin–Ciocalteu’s 
reagent (8.3%; v/v) and the mixture was vortexed for 10 s and 
allowed to stand for 6 min. A�erwards, 1 ml of 20% sodium 

carbonate (Na2CO3) solution was added with mixing. A�er 30 min 
at room temperature, the absorbance (abs) was read at 750 nm 
using a spectrophotometer (Varian 50-BIO, Varian Australia 
Pty Ltd, Victoria 3170 Australia). �e total phenolic compounds 
were referenced to a standard curve (y = 0.0099*abs + 0.103, 
R2 =0.98) and reported as mg of gallic acid equivalents (GAE) 
per 1 g olive paste (skin + �esh + stone dry weight).

Prediction of fruit quality traits
Oil and total phenols were modeled for each cultivar as response 
variables of RGB-based colorimetric indexes (covariates) using 
a resilient BPNN along with the logistic function as activation 
function[29,30]. �e topology of the BPNN consisted of one 
input layer, one hidden layer, and one output layer. �e output 
layer had one node, namely, the oil or total phenol concentra-
tions. �e BPNN had a single-hidden layer structure to reduce 
model complexity and minimize over�tting, the number of 
the nodes of the hidden layer was determined by the equation 

Fig. 1. Flowchart of the experimental design for imaging, segmentation, fruit quality (oil and total phenols) determinations, and modeling through back propagation neural 

networks (BPNNs). After the segmentation, the region of interest (ROI) was sliced into R, G, and B channels (grayscale) and the mean of the light intensity distribution of the 

ROI in each channel was measured. The inputs (red text) of the BPNNs were the RGB-based colorimetric indexes (BPNN), the scores of the PC1 and PC2 resulting from the 

PCA (PCA_BPNN), and the RGB indexes having nonzero loadings (NNZL) selected after a Sparse PCA (SPCA_BPNN). The number of the PCs (2) and the original RGB indexes 

fed the genetic algorithm (GA) to determine the target of the number of features with nonzero loadings (NNZL) to be used as a input parameter of the Sparse PCA; the red 

star indicates the indexes not used for the SPCA_BPNN because after the Sparse PCA they had loading = 0.
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N/3 +2 according to Ref. [31], where N was the total number 
of input covariates.

�ree BPNNs di�ering in the covariates of the input layer 
were used: (a) the RGB colorimetric indexes listed in Table 1 
were used in “BPNN”; (b) the PCs determined through a PCA 
over those colorimetric indexes were used in “PCA_BPNN”; 
(c) a reduced number of the original colorimetric indexes were 
used in “SPCA_BPNN”. �e input features were shi�ed to be 
zero centered and scaled to have unit variance before PCA. In 
addition, PCA was implemented with no limitation to the num-
ber of PCs to be used. �e PC vectors to serve as input of the 
PCA_BPNN were determined using ~85% of total variance as 
cuto� point.

The input variables of the SPCA_BPNN were selected 
among the original RGB indexes as those variables having 
nonzero loadings a�er a sparse principal component analysis 
(SPCA) implemented through Ref. [32]. The RGB indexes 
used as input data of the SPCA (Table 1) were centered and 
scaled by subtracting the mean and dividing each by the 
standard deviation, hence having the data as per unit vari-
ance. The SPCA default maximum 200 iterations and 1e−6 
quadratic penalty parameter were used. The number of var-
iables with nonzero loadings to be achieved in each PC was 
specified through a GA according to Gajjar et al. [27]. The 
GA required the number of PCs to be considered. Hence, it 
used the resulting number of PCs determined through the 
abovementioned PCA.

Following a hold-out method, the entire number of obser-
vations in each cultivar (n) (51 Coratina, 45 Frantoio, and 45 
Leccino) was randomly split into 2 parts: a training (70%) and 
a testing (30%) dataset. To account for the randomness of the 
training (and testing) dataset, this random subsampling was 
repeated 5 times (j), hence ensuring j ≤ n each time [33]. In 
each iteration, the 3 BPNNs topologies were �t to the same 
training dataset and evaluated on the same test dataset. �e 
accuracy of each model was then assessed through the mean 
coe�cient of determination (R2), the root mean squared error 
(RMSE), and the mean absolute error (MAE) as follows:

where Xi and X are the actual measured value and the mean of 
the measured values, respectively; Yi and Y  are the estimated 
value and the mean of the estimated values, respectively; n 
represents the sample number of the estimated model.

�e accuracy was also assessed in each BPNN model (m), 
through the general performance indicator (GPI) calculated 
over the 5 iterations (j) using the min–max (0,1) normalized 
values of the 3 (i) performance indicators R2, RMSE, and MAE 
according to [34]:

where α equals −1 for indicator i = R2 and 1 for all other indi-
cators, and Oi and Oi are the value and the median over the 5 
iterations of the performance indicator, respectively. �e main 
e�ect and interaction of year and stage on quality traits were 
evaluated by a 2-way analysis of variance (ANOVA). Prior to 
the ANOVA, the hypothesis of normality (Shapiro–Wilk’s test) 
and equal variance (Levene’s test) were tested (P < 0.05, 
SigmaPlot12.3; Systat So�ware, Inc. Palo Alto, CA, USA). �ese 
tests revealed the failure of the ANOVA assumptions. Hence, 
according to Kay et al. [35], data were aligned and rank trans-
formed to allow a nonparametric ANOVA on a linear model 
Y ~ a*b +c, where the response variable was the oil or phenol 
concentration. �e �xed e�ect terms were stage and year, 
respectively, and c was the random e�ect. Residuals of each 
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Table 1. Colorimetric indexes used to predict the olive fruit quality traits. R, G, and B are the mean pixel values of the red, green, and blue 

color extracted from the image of the sample. In brackets, the source reference of the index.

Index Formula Index Formula Index Formula

R GLI (2*G−R−B)/(2*G+R+B) [14] GRAY 0.299*R+0.587*G+0.114*B [14]

G HI (2*R−G−B)/(G−B) [14] GLAI (25*(G−R)/(G+R−B)+1.25) [61]

B NGRDI (G−R)/(G+R) [18] CI (R−B)/R [62]

NR R/(R+G+B) [15,61] NDGBI (G−B)/(G+B) [15,18] SHP 2*(R−G−B)/(G−B) [62]

NG G/(R+G+B) [15,61] NDRBI (R−B)/(R+B) [15,18] RI R^2/(B*G^3) [62]

NB B/(R+G+B) [15,61] I R+G+B [18] RminB R−B [15,61]

GB G/B [18] S ((R+G+B)−3*B)/(R+G+B) [18] RplusB R+B [61]

RB R/B [18] VARI (G−R)/(G+R−B) [14] RplusG R+G [61]

GR G/R [18] HUE atan(2*(B−G−R)/30.5*(G−R)) [14] RminG R−G [15,61]

BI sqrt((R^2+G^2+B^2)/3) [14] HUE2 atan(2*(R−G−R)/30.5*(G−B)) [62] GminB G−B [15,61]

BIM sqrt((R*2+G*2+B*2)/3) [62] BGI B/G [14] BplusG B+G [61]

SCI (R−G)/(R+G) [14,15] L R+G+B/3 [62]
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single model were calculated as the di�erence between observed 
and �tted values. Residuals from the 5 iterations were pooled 
before the analysis conducted to evaluate their randomness and 
constancy of variance according to Ref. [36] and was imple-
mented by means of Ref. [29].

Results

Seasonal variation of olive fruit quality traits
In both seasons, about 30 days a�er pit hardening (DAPH), the 
concentration of oil in fruit started to increase from a value of 
approximately 5.5%FW in all the cultivars reaching the maximum 
value of about 16%FW and 22%FW in 2020 and 2021, respec-
tively (Fig. 2). �e concentration values of the phenols di�ered 
between the 2 seasons in all cultivars, and the highest values 
were recorded in 2021. By contrast, the phenol concentrations 

in Coratina cultivar signi�cantly di�ered from those of the 
Leccino and Frantoio for most of the sampling times in both 
seasons. Particularly, during the 2021 season, the initial increase 
in concentration peaked at approximately 41 mg GAE g−1 DW, 
thereafter it progressively decreased during the following 
months (Fig. 2). In addition to the signi�cant e�ect of the cul-
tivar, the analysis of variance revealed a statistically signi�cant 
e�ect of the stage and of the year on oil and phenol concentra-
tions (Table 2).

Seasonal variation of R, G, B, and correlation 
between colorimetric indexes and quality traits
�e variations of the R, G, and B mean pixel values extracted 
from images during the 2020 and 2021 seasons are reported in 
Fig. 3. The patterns of the color bands were comparable 
across cultivars and years. Consistently in both years, the R 

0 28 42 64 78 92 119

4

8

12

16

20

24

2021

)
W

F 
%(  li

O

b

c

a
a

b

a

a

 Leccino

 Coratina

 Frantoio

2020

0 28 40 56 68 83 98 112 131

4

8

12

16

20

24

0 28 42 64 78 92 119

0

2

4

6

8

10

12

14
a

b

b

aa
a

ab

b
a

b

c

 Leccino

 Coratina

 Frantoio

2021

g 
E

A
G 

g
m( 

sl
o

n
e

h
p l

at
o

T
−

1
)

W
D 

2020

0 28 40 56 68 83 98 112 131

10

20

30

40

50

b

c

b

b

a
a

a

a
a

a
a

b

b
b

b

b

b
b

b

b

b

b

b

b

b
b

b

a

a

b

c

c

c

a

ba

b

c
b

a

a

bb

a

a

c

b

a

b

c

a

ab

b

a

a

Days after pith hardening

a

b

Fig. 2. Seasonal trend of the mean (±SE) oil concentration (%FW) and total phenol concentrations (mg Gallic Acid Equivalent [GAE] per g [flesh + stone] DW) recorded in 

3 olive cultivars during 2020 and 2021. Note that SE bars are visible when they are greater than the symbol. Within the same quality trait and year, and comparing between 

cultivars at the same time, different letters indicate statistically significant differences according to Tukey’s HSD test. Note that letters were not reported when there were 

no significant differences.

D
ow

nloaded from
 https://spj.science.org on June 23, 2024

https://doi.org/10.34133/plantphenomics.0061


Montanaro et al. 2023 | https://doi.org/10.34133/plantphenomics.0061 6

(Fig. 3A to D) and G (Fig. 3B to E) mean pixel values initially 
increased toward the maximum values reached in all cultivars 
at approximately 40 DAPH. Such maximum values were some-
how dependent on the cultivar. �at is, the Leccino had the 
lowest R and G mean values in both years, while Frantoio had 

the highest R and G mean values in 2020. �e R and G mean 
values remained at high levels for a variable time depending 
on the cultivar. �erea�er, the mean R and G pixel values 
declined toward the minimum, which was reached in advance 
in 2021 compared to 2020.

Table 2. Analysis of variance of aligned rank transformed oil (%FW) and phenol (mg GAE g−1DW) concentrations determined through a 

linear mixed model using the stage and year as factors. The 6 stages belong to the following 2020:2021 paired days after pit hardening: 

28:28, 42:40, 64:68, 78:83, 92:98, and 119:112.

F Df Df.res Pr(>F)

Oil Stage 170.7744 5 100 <2.22e−16 ***

Year 156.8850 1 100 < 2.22e−16 ***

Stage:Year 9.7429 5 100 1.3248e−07 ***

Phenols Stage 2.6333 5 100 0.027964 *

Year 309.9177 1 100 <2e−16 ***

Stage:Year 2.97695 5 100 0.015107 *

Significance codes: ***, α = 0.001; * α = 0.05.
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Fig. 3. Seasonal trend of the mean (±SE) (A and D) red, (B and E) green, and (C and F) blue pixel values extracted from olive fruit images of the Coratina, Frantoio, and Leccino 

cultivars pictured during (top row) 2020 and (bottom row) 2021. Error bars are visible when they are higher than the symbol. Within the same color band and year, and 

comparing between cultivars at the same time, different letters indicate statistically significant differences according to Tukey’s HSD test (P value threshold 0.05). Note that 

letters were not reported when there were no significant differences.
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In contrast to R and G, the pattern of the mean B pixel values 
di�ered between the 2 years. �at is, in 2020, the B pixels pro-
gressively increased in Leccino and Frantoio (excepting a tran-
sient decline at 64 DAPH in Leccino), while in Coratina, a steep 
increase was registered only at the end of the season (Fig. 3C). 
During 2021, a�er the initial steep increase, the B pixels 
decreased in all cultivars until 98 DAPH. �erea�er, B pixel 
values increased similarly to those in R and G (Fig. 3F).

�e pattern of the color bands (Fig. 3) and that of oil and 
phenols (Fig. 2) anticipate a di�erential relationship between 
phenotype and quality traits. For example, Fig. 4 shows the 
appearance of fruit along with their oil and total phenol con-
centrations determined at day 83 DAPH. �e Leccino cultivar 
showed an advanced visual ripening (darker fruit) while having 
the lowest oil and phenol concentrations compared to the 
greener varieties (Frantoio, Coratina). �e changes in the phenol 
concentrations were not linear as those of the oil ones (Fig. 2), 
making inferences based on visual appearance or linear cor-
relation very di�cult. An example of the seasonal variation of 
the phenotype of the 3 varieties is shown in Fig. 5.

Plotting the analyzed quality traits vs. the R, G, and B mean 
pixel values shows that data from the 2 seasons were consistent, 
and that the coe�cients of correlation were variable (Fig. 6).

Similarly, the changes in skin color as coded by the various 
new RGB-based colorimetric indexes were di�erentially cor-
related to the changes in the quality traits examined. For exam-
ple, Fig. 7 reports the changes in oil concentration in parallel 
with the changes of G × R (GR), normalized G (NG), and R + 
G (RG) colorimetric indexes. All the resulting coe�cients ρ 
(Spearman rank test) of the correlation between each quality 
trait and colorimetric indexes are reported in Fig. 8.

Prediction of fruit quality traits
To predict the oil and the phenol concentrations, this study 
employed various ANNs di�ering in the input features. �e 
BPNN used all the 35 RGB-based colorimetric indexes (Table 1). 
�e resulting scores of PC1 and PC2 (Table 3) were used as 
input features of the PCA_BPNN. In the SPCA_BPNN, the 
input features were 28 of the abovementioned indexes, which 
were selected through the SPCA aided by a GA. �e number 
of PCs used as input of the GA was 2, and it was determined 

Fig. 4. Mean (±SE) concentration of oil and total phenols in the fruit of Frantoio, 

Coratina, and Leccino olive cultivars measured at the same time point (at 83 DAPH, 

2021 October 19). On the bottom, the corresponding olive samples after the image 

segmentation procedure. Comparing cultivars within the same variable, different 

letters indicate statistically significant differences according to Tukey’s HSD test at 

P value = 0.05.
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Fig. 5.  Example of some RGB images of the 3 cultivars captured during 2021. 

DHPH = days after pith hardening.
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through a standard PCA as the number of PCs whose cumu-
lative percent of variance was close to 85% (see Fig. S3). Table 3 
reports the output of the PCA and SPCA showing in bold the 
colorimetric indexes discarded (i.e., those with the loading 
value equal to zero) and not used as input of the SPCA_BPNN. 

Hence, the SPCA_BPNN used the indexes having the SPC1 
with non-zero loadings. All the indexes of the SPC2 had zero 
loadings except the SHP, which was not considered because it 
was already deemed as an index with non-zero loading under 
the SPC1.

Fig. 6. Correlation between the mean pixel values of image-based red (top row), green (middle row), blue (bottom row), and oil in (A, G, and M) Frantoio, (B, H, and N) Leccino, 

and (C, I, and O) Coratina cultivars, and total phenols in (D, J, and P) Frantoio, (E, K, and Q) Leccino, and (F, L, and R) Coratina cultivars, during (○) 2020 and (•) 2021. The 

arrows indicate the start and timeline of the samplings (from early to late), ρ = Spearman rank test coefficient of correlation.

CBA

Fig. 7. Example of correlation between oil concentrations and the mean pixel values of (A) GR = G × R in Coratina, (B) NG = normalized G in Frantoio, and (C) RG = R + G in 

Leccino. Data from 2020 and 2021 have been pooled before calculating the coefficient of correlation ρ (Spearman rank test).
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The various BPNNs were iterated 5 times on the same 5 
randomly resampled subsets of the training and testing bench-
mark datasets. �e outcomes of the models show that both the 
quality traits examined were accurately predicted with average 
values of the coe�cient of determination (R2) ranging from 
0.65 ± 0.03 (±SE) to 0.95 ± 0.01 and from 0.66 ± 0.05 to 0.9 ± 
0.02 in oil and phenols, respectively (Fig. 9). Figure 9 also 
reports the accuracy parameters RMSE and MAE.

�e constancy of variance of the residuals across the �tted 
oil and phenol concentrations is reported in Figs. 10 and 11. 
�e variances of the residuals of oil data were homogenously 
distributed across the range of �tted measurements in most 
scenarios. However, the linearity of variance degrades mainly 
in Frantoio and Leccino for the higher oil concentrations (close 
to 25%FW) depending on the BPNN method (Fig. 10D, F, and 
H). Similarly, the variance of residuals of the phenols showed 
a non-linearity mainly for high values of concentrations 
(Fig. 11). Figure 12 presents the violin plots of the residuals for 
all BPNN models, cultivars, and quality trait scenarios. In every 
cultivar and consistently across oil and phenols, the SPCA_
BPNN model had the skinnier shape of the residuals’ distribu-
tion and the narrower interquartile range (IQR) in almost all 
scenarios. By contrast, the distribution of residuals generated 
by PCA_BPNN had the larger IQR in 3/3 and 2/3 cultivars in 
oil and phenol concentrations, respectively. A bimodal shape 
was more evident for residuals belonging to the PCA_BPNN 

model. Detailed histograms and kernel density distributions 
are reported in Fig. S4.

The GPI values summarizing the overall prediction 
accuracies of the BPNNs are reported in Table 4. �e GPIs 
were ranked di�erentially across cultivars and quality traits. 
Although it was not possible to systematically identify the best 
neural network model, it could be envisaged that the SPCA_
BPNN had the highest number of �rst rank.

Discussion
�e present study documents a�ordable phenotyping predic-
tion models of oil and total phenol concentrations in develop-
ing olive fruit using a BPNN fed with RGB-based colorimetric 
indexes extracted through imaging. �e seasonal pattern of oil 
and phenol concentrations was tracked and modeled integrat-
ing current knowledge, which o�en focuses only on the end-
points of the fruit developmental period (e.g., harvest) and 
classi�cation problems.

Seasonal pattern of R, G, B, and fruit quality traits
�e seasonal patterns of R, G, and B mean pixel values were 
quasi-parabolic if the curves of the B channel of the 2020 season 
are excepted. �is result is di�cult to discuss because of poor 
literature existing in this speci�c research �eld for olive and 
because fruit color is o�en empirically classi�ed (e.g., [2,37]). 

Fig. 8. (A) Heatmap of the correlation coefficients (Spearman rank test) between the RGB-based colorimetric indexes and oil, and (B) total phenol concentrations determined 

in 3 cultivars.
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However, the seasonal R, G, and B patterns agree with those 
recorded in grapevine [24]. Interestingly, although the curves 
of the R, G, and B channels of the various cultivars showed a 
similar shape, a signi�cant shi� in their values is displayed in 
most of the sampling times. Particularly, that shi� was evident 
early in the season when the gain in quality traits of fruit had 
not started yet (Fig. 2) envisaging a putative genotype e�ect.

�e oil concentrations increased throughout the season with 
a typical pattern reported for the Mediterranean area [5,38,39]. 
�e di�erent patterns of the RGB (non-linear) and that of oil con-
centrations (linear) anticipate that their correlation would be 
hysteretic. In addition, the coe�cients of correlation span in a 
wide range, suggesting that the RGB indexes would have different 
weights as predictors. �e phenol concentrations were variable 
between the 2 seasons and among the cultivars. �e phenols, 
as well as oil, are in�uenced by cultivar [40]. Additionally, an 
inter-annual variability might occur due to environmental con-
ditions and fruit load [39,41,42]. In line with this, Table 2 shows 
the statistically significant effect of year on the analyzed 
quality traits.

�e fruit of cultivar Coratina showed the highest peak value 
of phenols compared to Frantoio and Leccino in line with the 
grouping criteria (high and low phenolic cultivars) suggested 
by Alagna et al. [40].

�e early season increase of phenol concentrations corre-
sponded to those of R, G, and B mean values; therea�er, R, G, 
and B declined, causing the hysteresis phenomenon and a weak 
linear correlation between them. It emerges that the single R, 
G, and B mean values were weak predictors of fruit quality traits 
within a linear correlation context. �is would not be surprising 
considering that R, G, and B were not e�cient even when used 

as input of a neural network to predict grapevine maturity [24]. 
However, a�er combining the R, G, and B values in new colori-
metric indexes, most of them induced an improvement of 
the linear correlation coe�cient according to Ref. [24]. In 
addition, a further improvement was observed when these 
colorimetric indexes served as input for the neural networks 
(see below).

Structure of the neural networks
Image processing and neural networks have been employed in 
olive mainly to classify the fruit into speci�c ripening classes 
[43–46] or to sort them according to skin defects and color to 
support the production of olive oils with di�erent quality [9,10]. 
In contrast, its use for regression is still limited. �e present 
study would contribute to expanding the application of ANNs 
and imaging within a regression context in the olive sector 
covering the seasonal variation of the main fruit quality traits.

Application of ANNs might be constrained by the over�tting 
of models, an issue embedded in neural networks [26,46]. In 
the present study, a set of colorimetric indexes was derived 
from common R, G, and B values triggering the criticism that 
the derived indexes would be inter-related, and thus contrib-
uting to the over�tting of models.

However, the overfitting control in an ANN might be 
actively pursued through several methods including those 
based on PCA for the extraction of PCs or the selection of 
relevant features in sensu Bejani and Ghatee [26]. Accordingly, 
our study dealt with over�tting of models by adopting PCA 
pre-processing in PCA_BPNN and SPCA_BPNN.

�e PCA is a multivariate technique used for the dimension-
ality reduction of the dataset with several quantitative dependent 

Table 3. Loadings of the 2 principal components determined by the PCA and by the sparse PCA (SPCA) over the RGB colorimetric indexes. 

The RGB indexes with nonzero loading of the SPCs were retained as input features of the SPCA_BPNN, while those in bold were excluded.

PCA SPCA PCA SPCA

RGB index PC1 PC2 SPC1 SPC2 RGB index PC1 PC2 SPC1 SPC2

R 0.173673 −0.17527 0.190384 0 S 0.186705 0.150404 0.000897 0

G 0.193318 −0.13006 0.25154 0 VARI 0.192465 0.000261 0 0

B −0.04634 −0.34902 0.029027 0 HUE −0.19007 −0.0248 −0.00694 0

NR 0.112447 0.184999 0 0 HUE2 −0.16947 −0.01249 −0.00573 0

NG 0.195725 0.118161 0 0 BGI −0.19762 −0.09568 −0.00164 0

NB −0.18671 −0.1504 0 0 L 0.179046 −0.17924 0.457194 0

GB 0.107347 0.289417 0.001645 0 GRAY 0.184074 −0.16516 0.207812 0

RB 0.098209 0.290244 0.001023 0 GLAI 0.192465 0.000261 0.014478 0

GR 0.184904 0.037012 0.000741 0 CI 0.182407 0.13823 0.001129 0

BI 0.174901 −0.19118 0.172234 0 SHP −0.01298 −0.01486 −0.00018 -1

BIM 0.162807 −0.22338 0.012636 0 RI −0.1057 0.288167 0 0

SCI −0.18633 −0.02744 0 0 RminB 0.194727 0.040558 0.160705 0

GLI 0.198202 0.105196 0.001438 0 RplusB 0.097349 −0.29776 0.208727 0

HI 0.009223 0.039836 −0.00091 0 RplusG 0.183643 −0.15131 0.436911 0

NGRDI 0.186327 0.027439 0 0 RminG −0.18022 −0.00587 −0.05907 0

NDGBI 0.187861 0.155 0.001253 0 GminB 0.202835 0.031916 0.224126 0

NDRBI 0.170895 0.194543 0.000646 0 BplusG 0.141039 −0.25804 0.27192 0

I 0.161255 −0.22798 0.478908 0
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variables. �e primary outcome of a PCA is a new set of ordered 
uncorrelated variables (PCs), which keep most of the variation 
of the original ones. �ere is a growing body of research using 
PCA pre-processing of datasets aimed at reducing the number 
of variables (e.g., ~350 or even 100,000) to a relatively small 

number of PCs (e.g., ~20) to be used as input of BPNNs [47]. 
�e PCA performed over the original RGB-based colorimetric 
indexes showed that the �rst 2 PCs explained ~85% of the total 
variance, which falls in the common range (75% to 90%) of the 
cuto� point [48]. Hence, these 2 PCs were used as input for the 
PCA_BPNN. �e performance of the BPNNs will be discussed 
in the next section.

In our study, the PCA pre-processing was employed to 
replace the colorimetric indexes with the scores of the PCs, 
and also to aid the selection of relevant colorimetric indexes 
(out of the total 35) to be used as input of the SPCA_BPNN. 
The loadings of PCA provide information about the relative 
importance of a variable to a PC. However, the interpretation 
of loadings aiding the selection of variables to be retained or 
discarded is not easy [27]. Hence, several techniques have been 
proposed to improve loading interpretability, including forcing 
them to be exactly zero, meaning the corresponding variables 
are not in�uential on PCs and therefore discarded (see Ref. [27] 
and references therein). Following this, the SPCA was employed 
in this study to identify the most important RGB-based vari-
ables, i.e., those with nonzero loadings. A�er the SPCA, the 
original 35 variables were reduced to 28, which were used as 
input of the SPCA_BPNN (see variables with nonzero loadings 
in Table 3).

In addition to the structure, an important feature of ANNs 
is their repeatability, which is in�uenced by the randomness of 
the test and training datasets [49]. �erefore, the 3 BPNNs have 
been iterated over the same 5 benchmark datasets, to ensure 
an unbiased comparison. However, the starting value of the 
weights for model initialization still represents a random 
component likely reducing the repeatability of models and their 
comparison. To face this issue, an algorithm-based initiali-
zation of models has been proposed in place of the random 
one, but with a minor improvement of the model accuracy 
[50]. Hence, the random component of weights initialization 
in our models would have been negligible, but this remains to 
be speci�cally tested.

Prediction accuracy of the BPNNs
�e modeling of the oil concentrations reached the highest 
mean R2 values of 0.92 ± 0.01 (±SE) (Coratina, BPNN), 
0.87 ± 0.02 (Frantoio, SPCA_BPNN), and 0.95 ± 0.01 (Leccino, 
SPCA_BPNN) across the various ANNs (Fig. 9). Ram et al. [51] 
used 20 morphometric and 9 colorimetric fruit features as input 
of a neural network to predict the oil content in olive fruit. 
However, results showed a variable importance in the color-
based features, which was ascribed by the authors to the late 
sampling period. In the present study, phenotyping of oil and 
phenols was implemented throughout almost the entire accu-
mulation period, capturing a wide range of variation of the 
response variables (quality traits) and predictors (colorimet-
ric features). A wide range is pivotal for model generalization 
and for the high predictive capability of a neural network in an 
actual scenario [52].

�e prediction accuracy of phenols varied with the ANNs 
and showed the highest mean R2 values equal to 0.90 ± 0.02 
(±SE) (Coratina, PCA_BPNN), 0.81 ± 0.02 (Frantoio, 
SPCA_BPNN), and 0.87 ± 0.03 (Leccino, SPCA_BPNN). 
This result is comparable to that reported for pulp samples 
of single olives predicted using portable NIR equipment 
[53]. �e overall lower performance of BPNNs for prediction 

Fig. 9. Point plot of the coefficient of determination (R2, left column) of the root mean 

squared error (RMSE, middle column) and of the mean absolute error (MAE, right 

column) retrieved after 5 iterations of the various BPNNs to predict oil (•, upper row) 

and total phenol (•, bottom row) concentrations in developing (A) Coratina, (B) Frantoio, 

and (C) Leccino cultivars. The same training and testing benchmark sets were used 

across the various BPNNs. Comparing the different BPNNs within the same parameter 

and cultivar, different letters indicate statistically significant differences at P < 0.05 

(Kruskal–Wallis test). The horizontal line represents the median, and the biggest 

black dot represents the mean.
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of phenols compared to that of oil could be explained con-
sidering the changes of colors of the inner pulp layers. �ese 
changes were not harvested by our contactless experiment 
and would be associated to changes of phenols. �e image-
based prediction of phenols collected only the changes in the 
color of the fruit skin. While using a destructive assessment 
method, the changes in color within the pulp layer are also 
recognized (i.e., Jaèn index) [37]. Hence, it would be interesting 
in a future study to account for this variation of color of the 
deep layers particularly for early ripening varieties (e.g., Leccino) 
having the veraison completed in advance compared to late 
ripening ones (e.g., Coratina) [2] while quality traits are still 
changing.

�e e�ect of PCA pre-processing on the model predictions’ 
accuracy (R2) was variable. �at is, the BPNN and SPCA_
BPNN were comparably accurate when referring to the oil 
concentration in Coratina and phenols in Frantoio. At the same 
time, an improvement of the R2 was achieved when the SPCA 
pre-processing was employed in the case of phenol estimations 
in Coratina and Leccino cultivars and of oil in Frantoio and 
Leccino.

�e PCA_BPNN showed the lowest R2 values across cul-
tivars and quality traits if the phenols of the Coratina were 
excluded (Fig. 9).

However, the choice of statistics to evaluate the accuracy of 
neural network prediction models is still debated and there is 
a consensus that a single one would not collect the overall accu-
racy of the model. Particularly when various models have to 
be compared, because the coe�cient of determination (R2) is 
highly sensitive to outliers, it is widely used in association with 
the scale-dependent RMSE and MAE [54,55]. In addition, the 
use of MAE would be encouraged as it is less sensitive to out-
liers than RMSE [56].

In our study, the PCA_BPNN tends to have a statistically 
signi�cantly higher MAE and RMSE than the SPCA_BPNN, 
highlighting the reliability of the SPCA procedure in discarding 
non-relevant variables.

However, PCA-based BPNN improved the model’s predic-
tion accuracy when the number of PCs retained as input was 
selected at a high cuto� (96% of total variance) [48]. Although 
SPCA pre-processing was intended to improve the PCA-based 
BPNN, it could be recognized that the SPCA_BPNN determined 

BPNN                                  PCA_BPNN                         SPCA_BPNN

A                                                         B                                                         C

D                                                         E                                                         F

G                                                         H                                                         I

Fig. 10. Residual plots of the BPNN, PCA_BPNN, and SPCA_BPNN models for the estimates of oil concentration in (A to C) Coratina, (D to F) Frantoio, and (G to I) Leccino 

cultivars. Residuals were calculated on the estimates resulting after 5 iterations of the various BPNNs 11 12; n = 75 in Coratina and Frantoio, n = 85 in Leccino. The bold 

horizontal lines represent zero in the ordinate values, dashed horizontal lines define the interval of the ±2 standard deviations calculated on the residuals, and the red line 

is the locally weighted scatterplot smoothing line.
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R2 values comparable to those of the BPNN or even better when 
the oil of the Frantoio cultivar was considered.

In order to provide an overall appraisal of the performance 
of the 3 ANN models, the values of R2, RMSE, and MAE were 
combined in a single GPI [34] similarly to an image-based study 
in grapevine [24]. In our study, the rank of the GPI reveals 
that the various BPNNs were inconsistently the best (or the 
worst) prediction models across the cultivars and quality traits. 
�ese results align with those in grapevine [24] and the rec-
ommendation in Ref. [51] to use cultivar-speci�c prediction 
models.

However, it could be noted that the SPCA_BPNN model 
ranked �rst in 2/3 (oil) and 1/3 (phenols) cultivars. In the case 
of the Leccino cultivar, it was always less accurate, ranking 
lower than the BPNN. The different ripening time of the 
cultivars can help to explain the variable rank of GPI. �at is, 
globally, the Leccino and Coratina cultivars are considered 
early and late-ripening varieties, respectively [2,5]. �e visual 
appearance of the fruit skin at the same time (e.g., Fig. 5) and 
the advanced decline of the R and G mean values in Leccino 
compared to Coratina (Fig. 3) con�rm that these cultivars 

belong to a di�erent ripening group. Hence, the inconstant GPI 
rank of predicting models suggests that a neural network with 
speci�c topologies might be designed for cultivars grouped 
according to their ripening period.

To improve model accuracy evaluation, graphical analysis 
of residuals has been proposed since the 1960s [36]. It was 
di�cult to discuss our results due to the limited information 
existing on this speci�c research topic in olive. In our study, 
the stochastic characteristic of residuals and their homogeneity 
of variance across the range of the �tted values were examined. 
�is revealed a di�erent behavior between oil and phenols in 
terms of homogeneity of variance. For high values of oil con-
centrations, the linearity of variance degrades making the 
stochastic nature of the residuals criticizable. �is suggests a 
di�erential ability of BPNN models to deal with the quality trait 
uncoupled from the phenotype, because oil continued to accu-
mulate late in the season while RGB signals remained more 
stable (Figs. 2 and 3). �e stage of the season had a statistically 
signi�cant e�ect on the quality traits (Tab. 2), suggesting the 
introduction of a stage-based predictor into the model. �is 
might improve the homogeneity of variance of residuals late in 

BPNN                                  PCA_BPNN                         SPCA_BPNN

A                                                                   B                                                                    C

D                                                                   E                                                                    F

G                                                                     H                                                                     I

Fig. 11. Residual plots of the BPNN, PCA_BPNN, and SPCA_BPNN models for the estimates of phenol concentrations (mg GAE g−1 DW) in (A to C) Coratina, (D to F) Frantoio, 

and (G to I) Leccino cultivars. Residuals were calculated on the estimates resulting after 5 iterations of the various BPNNs 12;  n = 75 in Coratina and Frantoio, n = 85 in 

Leccino. The bold horizontal lines represent zero in the ordinate values, dashed horizontal lines define the interval of the ±2 standard deviations calculated on the 

residuals, and the red line is the locally weighted scatterplot smoothing line.
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the season when oil concentrations are high. �e non-linearity 
of the LOWESS (locally-weighted scatterplot smoothing) �tting 
curves con�rms the heteroscedasticity of some distributions, 
which was anticipated by the violin and density plots (Fig. 12 
and Fig. S4). However, the SPCA_BPNN and BPNN models 

had a roughly constant variance for Leccino (Fig. 11I), Coratina, 
and Leccino (Fig. 11A and G), respectively. Hence, more 
e�orts are necessary to unravel the potential in�uence of a 
genotype-based factor if a unique model working for more than 
one cultivar is to be developed.

Table 4. Rank and values of the general performance indicator (GPI) calculated for the various back propagation neural networks (BPNN, PCA_BPNN, 

and SPCA_BPNN) used to predict the concentration of oil and total phenols in developing olive cultivars. The values in bold correspond to first rank.

GPI Cultivar BPNN PCA_BPNN SPCA_BPNN

Phenols Oil Phenols Oil Phenols Oil

Rank Coratina 2 3 1 2 3 1

Frantoio 3 3 2 2 1 1

Leccino 1 1 3 2 2 3

Values Coratina −0.15014 −0.1025 0.17129 0.21589 −0.17755 0.37732

Frantoio −0.41955 −0.51611 0.03186 −0.34027 0.43254 0.17350

Leccino 0.41724 −0.05665 0.10131 −0.16239 0.17279 −0.62195
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Fig. 12. Distribution of residuals values (jittered dots) of the estimates of (A, C, and E) oil and (B, D, and F) phenol concentrations calculated through various BPNN models. 

The horizontal dashed line indicates 0. The interquartile range (IQR) is reported next to the distribution.
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Limitations
In this study, images were captured under laboratory standard 
conditions, whereas a direct imaging in an open field would 
have been influenced by variable conditions (e.g., light). 
Approaches that bring plant phenotyping from the lab to an 
open field to improve the reliability of a model are challeng-
ing [57]. Hence, more efforts are advisable before exploiting 
our findings. In this study, we employed RGB-based indexes 
because of their association with some intrinsic features related 
to olive quality traits (e.g., chlorophyll, phenols, and water 
content). �is is in line with the idea that the successful use of 
image-based phenotyping to collect plant organ morphological 
and physiological traits would require the employment of an 
adequate proxy for image segmentation and processing [57]. 
However, the use of additional color spaces (e.g., L*a*b*) 
as suitable proxy of quality traits needs to be explored for a 
wider understanding in this speci�c research �eld.

�e volume of data used in our study might potentially trigger 
criticism of the robustness of the method. In contrast with this, 
the volume is in the magnitude of those employed in other phe-
notyping studies, for example, to map the color of the berry in 
relation to genetic population variability and to quality traits 
([24,58]). Importantly, the robustness of a predicting model is also 
related to its generalization capability. In line with this, the timing 
of the sampling procedure of our study has generated learning 
and validation datasets whose range almost entirely covered the 
variation of the colorimetric and quality traits. �us, this would 
strengthen the generalization capability of each model [52,59].

�e seasonal dynamics of fruit phenotype (i.e., skin color) 
in various growing areas might di�erentially be coupled with 
that of oil and phenols because of a variable gene × environ-
ment interaction. In this study, the genotype e�ect could be 
somehow envisaged by the signi�cantly di�erent R, G, and B 
channels observed in various cultivars at pith hardening (Fig. 3). 
However, the integration of the model with a parameter accounting 
for that interaction would be desirable. In addition, the putative 
genotype e�ect might contribute to explaining the fact that 
each variety has a di�erent optimal ANN model. Furthermore, 
this suggests that the learning set of each cultivar conceivably 
belongs to a di�erent domain of validity in sensu [59]. Although 
the estimation of the domain of validity of neural networks has 
inspired speci�c research for a long time (e.g., [59]), it remains 
challenging and was not targeted in our paper. However, it could be 
noted that “cultivar” resembles information of the “knowledge 
domain”, which should be provided to an ideal ANN working 
over several cultivars to improve its performance [60]. Hence, 
in such an ideal ANN, the cultivar would code for the change 
of the input feature (i.e., in our study, the RGB-based indexes, 
the scores of the PC1 and PC2, and the RGB indexes having 
nonzero loadings) to automatically switch to the best model.

Colorimetric indexes retrieved from RGB-based imaging 
of olive fruit were combined with a multilayer feed-forward 
neural network and applied as a phenotyping method to predict 
key fruit quality traits. �e outcomes revealed that this method 
was satisfactorily able to predict oil and phenol concentra-
tions in developing fruit. �e use of 3 worldwide cropped 
varieties belonging to early, middle, and late ripening periods 
also revealed that a BPNN with speci�c topology might be 
designed for cultivars grouped according to their ripening 
period. �e analysis of residuals claims future e�orts to inte-
grate the models with predictors accounting for genotype and 
stage e�ects in order to develop a unique model suitable at least 

for groups of cultivars. �e use of RGB-based predicting mod-
els o�ered in this paper would favor an a�ordable phenotyping 
within the digital agriculture domain.
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Fig. S1. (A) Annual records of the daily mean temperature, 
evapotranspiration (ET0, Hargreaves method), and rainfall 
(bars) recorded during 2020 and (B) 2021 at the olive groves 
growing area (source: SAL Service, ALSIA Basilicata Region).
Fig. S2. Example of some steps for the image-based data 
acquisition procedure with (A) raw image including the color 
reference card, (B) selection of the object of interest, and (C) 
segmented olive sample image, which will be processed for R, 
G, and B data extraction.
Fig. S3. Results of the PCA conducted over all the 35 RGB-
based colorimetric indexes.
Fig. S4. Histograms of residual data values and kernel density 
curves (red line) determined for the estimates of (A) oil and 
(B) phenol concentrations in (le� column) Coratina, (middle) 
Frantoio, and (right) Leccino cultivars using the various BPNN 
models; n = 75 in Coratina and Frantoio, n = 85 in Leccino.

References

 1. Navarro-Hortal MD, Romero-Márquez JM, Jiménez-Trigo V,  
Xiao J, Giampieri F, Forbes-Hernández TY, Grosso G,  
Battino M, Sánchez-González C, Quiles JL. Molecular bases for 
the use of functional foods in the management of healthy 
aging: Berries, curcumin, virgin olive oil and honey; three 
realities and a promise. Crit Rev Food Sci Nutr. 2022.

 2. Kong W, Han R, Liu N, Bai W, Ma J, Bai X, Liang J, Wang J, Zhang J. 
Dynamic assessment of the fruit quality of olives cultivated in 
Longnan (China) during ripening. Sci Hortic. 2019;253:8–16.

D
ow

nloaded from
 https://spj.science.org on June 23, 2024

https://doi.org/10.34133/plantphenomics.0061


Montanaro et al. 2023 | https://doi.org/10.34133/plantphenomics.0061 16

 3. Gutiérrez F, Arnaud T, Garrido A. Contribution of polyphenols 
to the oxidative stability of virgin olive oil. J Sci Food Agric. 
2001;81(15):1463–1470.

 4. Inglese P, Famiani F, Galvano F, Servili M, Esposto S, Urbani S.  
Factors a�ecting extra-virgin olive oil composition, Horticultural 
Reviews; John Wiley & Sons; 2011.

 5. Camposeo S, Vivaldi GA, Gattullo CE. Ripening indices and 
harvesting times of di�erent olive cultivars for continuous 
harvest. Sci Hortic. 2013;151:1–10.

 6. Yousfi K, Cert RM, García JM. Changes in quality and  
phenolic compounds of virgin olive oils during objectively 
described fruit maturation. Eur Food Res Technol. 2006; 
223:117–124.

 7. Fiorani F, Schurr U. Future scenarios for plant phenotyping. 
Annu Rev Plant Biol. 2013;64:267–291.

 8. Gill T, Gill SK, Saini DK, Chopra Y, de Ko� JP, Sandhu KS.  
A comprehensive review of high throughput phenotyping and 
machine learning for plant stress phenotyping. Phenomics. 
2022;2(3):156–183.

 9. Figorilli S, Violino S, Moscovini L, Ortenzi L, Salvucci G, 
Vasta S, Tocci F, Costa C, Toscano P, Pallottino F. Olive fruit 
selection through ai algorithms and RGB imaging. Foods. 
2022;11(21):Article 3391.

 10. Salvucci G, Pallottino F, De Laurentiis L, Del Frate F, 
Manganiello R, Tocci F, Vasta S, Figorilli S, Bassotti B,  
Violino S, et al. Fast olive quality assessment through RGB 
images and advanced convolutional neural network modeling. 
Eur Food Res Technol. 2022;248:1395–1405.

 11. Sweet DD, Tirado SB, Springer NM, Hirsch CN, Hirsch CD. 
Opportunities and challenges in phenotyping row crops using 
drone-based RGB imaging. Plant Phenome J. 2022;5(1): 
Article e20044.

 12. Ninomiya S. High-throughput �eld crop phenotyping: Current 
status and challenges. Breed Sci. 2022;72(1):3–18.

 13. Reynolds D, Baret F, Welcker C, Bostrom A, Ball J, Cellini F,  
Lorence A, Chawade A, Kha�f M, Noshita K, et al. What is 
cost-e�cient phenotyping? Optimizing costs for di�erent 
scenarios. Plant Sci. 2019;282:14–22.

 14. Alves KS, Guimarães M, Ascari JP, Queiroz MF, Alfenas RF, 
Mizubuti ESG, Del Ponte EM. RGB-based phenotyping of 
foliar disease severity under controlled conditions. Tropical 

Plant Pathol. 2022;47(1):105–117.
 15. Shigeto K, Nakatani M. An algorithm for estimating 

chlorophyll content in leaves using a video camera. Ann Bot. 
1998;81(1):49–54.

 16. Luis Fernando S-S, Alte da Veiga NMS, Ruiz-Potosme NM, 
Carrión-Prieto P, Marcos-Robles JL, Navas-Gracia LM, 
Martín-Ramos P. Assessment of RGB vegetation indices to 
estimate chlorophyll content in sugar beet leaves in the �nal 
cultivation stage. AgriEngineering. 2020;2(1):128–149.

 17. Hoda G, Elsayed S, Elsherbiny O, Allam A, Farouk M. Using 
RGB imaging, optimized three-band spectral indices, and a 
decision tree model to assess Orange fruit quality. Agriculture. 
2022;12(10):1558.

 18. Zakaluk R, Ranjan RS. Predicting the leaf water potential 
of potato plants using RGB re�ectance. Can Biosyst Eng. 
2008;50:7.1–7.12.

 19. López-Bernal Á, Fernandes-Silva AA, Vega VA, Hidalgo JC,  
León L, Testi L, Villalobos FJ. A fruit growth approach to estimate 
oil content in olives. Eur J Agron. 2021;123:Article 126206.

 20. Perin EC, Fontoura BH, Lima VA, Carpes ST. RGB pattern 
of images allows rapid and e�cient prediction of antioxidant 

potential in Calycophyllum spruceanum barks. Arab J Chem. 
2020;13(9):7104–7114.

 21. Aprile A, Negro C, Sabella E, Luvisi A, Nicolì F, Nutricati E,  
Vergine M, Miceli A, Blando F, De Bellis L. Antioxidant 
activity and anthocyanin contents in olives (cv Cellina Di 
Nardò) during ripening and a�er fermentation. Antioxidants. 
2019;8(5):138.

 22. Rosado RDS, Penso GA, Sera�ni GAD, Magalhães dos Santos CE,  
de Toledo Picoli EA, Cruz CD, Barreto CAV, Nascimento M, 
Cecon PR. Arti�cial neural network as an alternative for peach 
fruit mass prediction by non-destructive method. Sci Hortic. 
2022;299:Article 111014.

 23. Huang X, Chen T, Zhou P, Huang X, Liu D, Jin W, Zhang H, 
Zhou J, Wang Z, Gao Z. Prediction and optimization of fruit 
quality of peach based on arti�cial neural network. J Food 

Compos Anal. 2022;111:Article 104604.
 24. Wei X, Wu L, Ge D, Yao M, Bai Y. Prediction of the maturity 

of greenhouse grapes based on imaging technology. Plant 

Phenomics. 2022, 2022;Article 9753427.
 25. Gu J, Yin G, Huang P, Guo J, Chen L. An improved back 

propagation neural network prediction model for subsurface 
drip irrigation system. Comput Electr Eng. 2017;60:58–65.

 26. Bejani MM, Ghatee M. A systematic review on over�tting 
control in shallow and deep neural networks. Artif Intell Rev. 
2021;54:6391–6438.

 27. Gajjar S, Kulahci M, Palazoglu A. Selection of non-zero 
loadings in sparse principal component analysis. Chemom 

Intell Lab Syst. 2017;162:160–171.
 28. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M,  

Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. 
Fiji: An open-source platform for biological-image analysis. 
Nat Methods. 2012;9(7):676–682.

 29. R Core Team, R: A language and environment for statistical 

computing. Vienna (Austria): R Foundation for Statistical 
Computing; 2021.

 30. Fritsch S, Guenther F, Wright MN. Neuralnet: Training of 
neural networks. R package, version 1.44.2; 2019.

 31. Rachmatullah MIC, Santoso J, Surendro K. Determining the 
number of hidden layer and hidden neuron of neural network 
for wind speed prediction. PeerJ Comput Sci. 2021;7:Article e724.

 32. Zou H, Hastie T. Elasticnet: Elastic-net for sparse estimation 
and sparse PCA. R package, version 1.3; 2020.

 33. Bouckaert RR, Frank E. Evaluating the replicability of 
signi�cance tests for comparing learning algorithms. In: Dai H, 
Srikant R, Zhang C, editors. Advances in Knowledge Discovery 

and Data Mining, Lecture Notes in Computer Science; Berlin, 
Heidelberg: Springer; 2004. p. 3–12.

 34. Despotovic M, Nedic V, Despotovic D, Cvetanovic S. Review 
and statistical analysis of di�erent global solar radiation 
sunshine models. Renew Sust Energ Rev. 2015;52:1869–1880.

 35. Kay M, Elkin LA, Higgins JJ, Wobbrock JO. ARTool: Aligned 
rank transform for nonparametric factorial ANOVAs. R package. 
version 0.11.1; 2021. https://github.com/mjskay/ARTool.

 36. Anscombe FJ, Tukey JW, �e examination and analysis of 
residuals. Technometrics. 1963;5(2):141–160.

 37. Furferi R, Governi L, Volpe Y. ANN-based method for olive ripening  
index automatic prediction. J Food Eng. 2010;101(3):318–328.

 38. Dag A, Kerem Z, Yogev N, Zipori I, Lavee S, Ben-David E. 
In�uence of time of harvest and maturity index on olive oil 
yield and quality. Sci Hortic. 2011;127(3):358–366.

 39. Rondanini DP, Castro DN, Searles PS, Rousseaux MC. 
Contrasting patterns of fatty acid composition and oil 

D
ow

nloaded from
 https://spj.science.org on June 23, 2024

https://doi.org/10.34133/plantphenomics.0061
https://github.com/mjskay/ARTool


Montanaro et al. 2023 | https://doi.org/10.34133/plantphenomics.0061 17

accumulation during fruit growth in several olive varieties 
and locations in a non-Mediterranean region. Eur J Agron. 
2014;52(Part B):237–246.

 40. Alagna F, Mariotti R, Panara F, Caporali S, Urbani S, Veneziani G,  
Esposto S, Taticchi A, Rosati A, Rao R, et al. Olive phenolic 
compounds: Metabolic and transcriptional pro�ling during 
fruit development. BMC Plant Biol. 2012;12:162.

 41. Tura D, Failla O, Pedò S, Gigliotti C, Bassi D, Serraiocco A. 
E�ects of seasonal weather variability on olive oil composition 
in northern Italy. Acta Hortic. 2008;791:769–776.

 42. Ben-Gal A, Dag A, Basheer L, Yermiyahu U, Zipori I, Kerem Z. 
�e in�uence of bearing cycles on olive oil quality response to 
irrigation. J Agric Food Chem. 2011;59:11667–11675.

 43. Guzmán E, Baeten V, Pierna JAF, García-Mesa JA. 
Determination of the olive maturity index of intact fruits using 
image analysis. J Food Sci Technol. 2015;52(3):1462–1470.

 44. Khosravi H, Saedi SI, Rezaei M. Real-time recognition of on-
branch olive ripening stages by a deep convolutional neural 
network. Sci Hortic. 2021;287:Article 110252.

 45. Alkhasawneh MS. Olive oil ripping time prediction model 
based on image processing and neural network. Int J Adv 

Comput Sci Appl. 2021;12(1):503–509.
 46. Warne K, Prasad G, Rezvani S, Maguire L. Statistical and 

computational intelligence techniques for inferential model 
development: A comparative evaluation and a novel proposition 
for fusion. Eng Appl Artif Intell. 2004;17(8):871–885.

 47. Wang A, Yang H, Chen L, Chen W. A principal component 
analysis and deep back-propagation neural network-based 
approach to gasoline quality prediction. Paper presented 
at: 5th International Conference on Computer Science and 
Application Engineering; 2022 Feb 21–22; Kyiv, Ukraine.

 48. Jolli�e IT. Principal component analysis. 2nd ed. New York 
(NY): Springer-Verlag; 2002.

 49. Alahmari SS, Goldgof DB, Mouton PR, Hall LO. Challenges 
for the repeatability of deep learning models. IEEE Access. 
2020;8:211860–211868.

 50. Rudd-Orthner RNM, Mihaylova L. Non-random weight 
initialisation in deep learning networks for repeatable 
determinism. Paper presented at: 10th International 

Conference on Dependable Systems, Services and 
Technologies (DESSERT); 2019 Jun 5–7; Leeds, UK.

 51. Ram T, Wiesman Z, Parmet I, Edan Y. Olive oil content 
prediction models based on image processing. Biosyst Eng. 
2010;105(2):221–232.

 52. Basheer IA, Hajmeer M. Arti�cial neural networks: 
Fundamentals, computing, design, and application. J Microbiol 

Methods. 43(1):3–31.
 53. Bellincontro A, Taticchi A, Servili M, Esposto S, Farinelli D, 

Mencarelli F. Feasible application of a portable NIR-AOTF 
tool for on-�eld prediction of phenolic compounds during 
the ripening of olives for oil production. J Agric Food Chem. 
2012;60(10):2665–2673.

 54. Jierula A, Wang S, Oh T-M, Wang P. Study on accuracy metrics 
for evaluating the predictions of damage locations in deep piles 
using arti�cial neural networks with acoustic emission data. 
Appl Sci. 2021;11(5):Article 2314.

 55. Kvalseth TO. Cautionary note about R2. Am Stat. 1985;39(4):279–285.
 56. Hodson TO. Root-mean-square error (RMSE) or mean 

absolute error (MAE): When to use them or not. Geosci Model 

Dev. 2022;15:5481–5487.
 57. Li Z, Guo R, Li M, Chen Y, Li G. A review of computer vision 

technologies for plant phenotyping. Comput Electron Agric. 
2020;176:Article 105672.

 58. Underhill AN, Hirsch CD, Clark MD. Evaluating and mapping 
grape color using image-based phenotyping. Plant Phenomics. 
2020;Article 8086309.

 59. Courrieu P. �ree algorithms for estimating the domain 
of validity of feedforward neural networks. Neural Netw. 
1994;7(1):169–174.

 60. Dash T, Chitlangia S, Ahuja A, Srinivasan A. A review of some 
techniques for inclusion of domain-knowledge into deep 
neural networks. Sci Rep. 2022;12(1):1040.

 61. Chen Z, Wang F, Zhang P, Ke C, Zhu Y, Cao W, Jiang H. 
Skewed distribution of leaf color RGB model and application 
of skewed parameters in leaf color description model. Plant 

Methods. 2020;16:Article 23.
 62. Olivoto T. Lights, camera, pliman! An R package for plant 

image analysis. Methods Ecol Evol. 2022;13(4):789–798.

D
ow

nloaded from
 https://spj.science.org on June 23, 2024

https://doi.org/10.34133/plantphenomics.0061

	Phenotyping Key Fruit Quality Traits in Olive Using RGB Images and Back Propagation Neural Networks
	Introduction
	Materials and Methods
	Experimental design
	Image acquisition, processing, and data extraction
	Fruit quality trait determination
	Prediction of fruit quality traits

	Results
	Seasonal variation of olive fruit quality traits
	Seasonal variation of R, G, B, and correlation between colorimetric indexes and quality traits
	Prediction of fruit quality traits

	Discussion
	Seasonal pattern of R, G, B, and fruit quality traits
	Structure of the neural networks
	Prediction accuracy of the BPNNs
	Limitations

	Acknowledgments
	Data Availability
	Supplementary Materials
	References


