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Abstract: This paper presents an easy-to-implement model to predict the voltage in a class of Li-ion
batteries characterized by non-flat, gradually decreasing voltage versus capacity. The main application
is for the accurate estimation of the battery state of the charge, as in the energy management systems
of battery packs used in stationary and mobility applications. The model includes a limited number
of parameters and is based on a simple equivalent circuit representation where an open circuit
voltage source is connected in series with an equivalent resistance. The non-linear open circuit
voltage is described using a Nernst-like term, and the model parameters are estimated based on
the manufacturer discharge curves. The results show a good level of model accuracy in the case of
three different commercial batteries considered by the study: Panasonic CGR18650AF, Panasonic
NCR18650B and Tesla 4680. In particular, accurate description of the voltage curves versus the state of
charge at different constant currents and during charging/discharging cycles is achieved. A possible
model reduction is also addressed, and the effect of the equivalent internal resistance in improving
the model predictions near fully depleted conditions is highlighted.

Keywords: Li-ion battery modeling; SoC prediction; Nernst equation; energy management system;
CGR18650AF; NCR18650B; Tesla 4680

1. Introduction

Energy storage in electrochemical batteries currently plays a vital role in both station-
ary renewable energy production and electric vehicle systems. Various technologies exist,
including lead–acid, nickel–cadmium, nickel–metal hydrides, lithium-ion, etc., and the
differences mainly lie in the materials used for the electrodes and the electrolyte, which
determine energy density and other desired features. Over the past few decades, these
systems have been the subject of significant enhancements in order to meet more and more
challenging requirements. In this scenario, the lithium-ion batteries have demonstrated
important advantages over other technologies due to their high density, low self-discharge
and long life [1] and have been, therefore, the focus of an increasing number of scientific
investigations aimed at improving performance and durability, as well as understanding
the relevant underlying physical and chemical phenomena.

Within energy storage systems, the Li-ion battery is typically monitored and controlled
by an energy management system (EMS), which ensures efficient and reliable operation.
This is achieved by continuously assessing the current battery’s conditions during operation,
particularly by estimating key parameters such as the battery state of charge (SoC), state of
health (SoH) and remaining useful life (RUL) [2]. In particular, the SoC is a measure of how
much energy is available in the battery at any given moment and, therefore, plays a crucial
role in the EMS, where it helps prevent over-charging and over-discharging, enhances
user experience by providing information on available energy and improves the battery
cycle life [3].
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Since the SoC is a quantity that cannot be easily measured, and due to its crucial
importance in real applications, many authors have developed various methods to es-
timate the SoC, each characterized by distinct levels of accuracy, complexity and the
number of parameters involved [3,4]. Such methods can be classified in different groups [5].
Experiment-based methods involve an assessment of the cell dynamics and may include
ampere integration methods, electrochemical impedance spectroscopy, etc. [6]. The data-
driven methods involve compiling the available data on battery behavior and fitting them
against measurements through various machine learning algorithms that rely on neural
networks, regression or fuzzy logic approaches [7]. The multiple fusion methods are de-
fined as the combination of model-based, experimental and data-driven methods, which
helps improve the accuracy, as well as reduce computational time by learning from each
other [8]. Finally, the model-based estimation methods typically consist of electrochemi-
cal models (EM), equivalent circuit models (ECM) or electrochemical impedance models
(EIM) [9,10]. They rely on state equations and adaptive filters to estimate the internal
behavior of the battery. In more detail, EM methods try to describe on a very microscopic
level the relevant phenomena (charge transfer, reaction kinetics, etc.) and the spatial and
temporal distribution of the related physical quantities (concentrations, potential, current,
temperature, etc.) [11,12]. However, even after many simplifications, these models remain
very complex and the parameters involved are numerous and difficult to quantify. The EIM
models involve a deep analysis of the dynamic behavior of the battery through harmonic
small-signal excitation, which allows for direct measurement of the voltage response at
any operating point. They usually require high computational power, and the results are
difficult to obtain in a short time. The ECM models have been widely used to describe the
battery dynamics [13–18]. They represent the battery as an equivalent electrical circuit with
resistors, capacitors and voltage sources suitably connected together in order to produce
the actual terminal voltage of the battery [19]. This approach appears to be a good compro-
mise between complexity and accuracy and typically allows for a quick estimation of the
battery response under different loads, charging and discharging conditions, temperature,
etc. [20,21]. Therefore, the modeling approach in this paper is based on the ECM concept,
which requires, however, a good estimation of quantities such as the open circuit voltage
and a proper description of the sources of energy dissipation.

During the recent decades, many authors have addressed the problem of accurately
predicting the open circuit voltage of a Li-ion battery, and a number of different solutions
have been proposed. Some of them rely on the complete knowledge of the composition
and chemistry of the materials in the cell, which can be then described by thermodynamic
equilibrium relationships, continuously adjusted to take into account the transfer of charges
between cathode and anode. Very often, however, in the lack of a full characterization
effort for the materials involved, the level of information available does not allow for such
a detailed description. Alternatively, it is possible to resort to fully empirical correlations
based on the observed voltage measurements, as in the example in [22], where a polyno-
mial, an exponential, a sum of sin functions and a Gaussian model are tested in order to
describe the open circuit voltage of a high-capacity Li-ion battery. These models, however,
fail to explain the nature of the physical phenomena occurring inside the battery and,
therefore, suffer from difficulties in generalization. As a good compromise, semi-empirical
approaches, which try to some extent to keep a connection between model formulation
and real phenomena, seem to have received particular attention. These mostly date back to
the early work of C.M. Shepherd [23] on Li-ion batteries, with significant improvements
achieved later by other authors in physical and numerical accuracy. In particular, this
model has been further improved in [24,25] with the introduction of an additional non-
linear term and a filtered current to address algebraic loop numerical issues and to better
describe the battery fast dynamics. Due to its simplicity and the possibility to extract model
parameters directly from the manufacturer’s discharge curves without the need to apply
non-linear optimization methods, one version of this approach has been also implemented
and made publicly available in the Matlab/Simulink library [26], contributing further to
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its popularity and widespread use in the scientific community [27,28]. The main idea
behind Shepherd-like approaches is to build the voltage curve around a constant value,
and these are, therefore, particularly suitable for modeling batteries with a main central
voltage plateau, as is typical for LFP electrodes. Preliminary investigations by the authors
and conclusions drawn from similar studies [29,30] indicate that these models are often less
suitable for describing batteries that lack a clear main plateau, exhibiting instead a number
of smaller plateaus or a smooth, gradually decreasing curve.

This paper tries to fill this gap by proposing an alternative model to address batteries
without a clear voltage plateau, avoiding, at the same time, the over-complexity of a
detailed description of solid state chemistry. The simplifications introduced allow us to
resort to the classical Nernst equation to account for the continuous or quasi-continuous
change in equilibrium potentials by means of a continuous function of the activities of
the lithiated phases. The model presents a limited number of unknown parameters that
can be easily estimated in the light of the typical discharging curves made available by
battery manufacturers or from direct voltage measurements. The model is successfully
applied to describe the voltage curves versus SoC for popular commercial batteries with
cobalt-containing electrodes.

2. Mathematical Model

2.1. Theoretical Background

The operation of a Li-ion battery cell involves, unlike most other batteries, the interca-
lation of lithium ions between the layers of a suitable solid matrix, without significantly
altering the original solid structure. In particular, during discharging, Li-ions deintercalate
from the layered anodic material and migrate to intercalate between the layers of the
cathodic material, and the opposite happens during charging. The resulting battery open
circuit voltage is linearly related to the specific (per transferred ion and electron) Gibbs free
energy change in the overall redox process according to the following expression:

Voc = −
∆gr

F
(1)

where F is the Faraday constant (96,485 C mol−1).
In some cases, the chemistry at a certain electrode involves a single lithiated phase

and a single non-lithiated phase transforming into each other, without the formation
of intermediate stages. This corresponds to a rather constant ∆gr of the corresponding
semi-reaction due to the approximately invariant thermodynamic activities of these solids.
The resulting electrode potential shows, therefore, a typical main plateau as in Figure 1a,
measured versus an arbitrary standard electrode. Common cathode materials such as
LiFePO4 in the so-called LFP batteries fall in this category.

V

q

V

q

V

q

)a( )b( )c(

Figure 1. Possible shapes for the electrode potential during charging (anode) or discharging (cathode):
(a) main plateau, (b) multiple plateaus and (c) smooth shape. Based on [31].

In other cases, the electrode can go through the formation of intermediate stable and
meta-stable solid phases characterized by variable lithium content, creating a sequence of
intermediate plateaus in the electrode potential, as in Figure 1b. A typical material falling
in this category is the lithiated graphite, widely used as the anode in Li-ion batteries, where
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the Li:C ratio in the intermediate stages of the discharging process goes from 1:6 in fully
charged conditions to 1:12, 1:24, etc., until the lithium is almost fully removed from the
graphitic layers [32]. As a consequence, the anodic potential increases in discrete steps and
reaches a maximum when the battery is fully discharged [31]. In other cases, the phase
transition is a continuous process that does not produce any noticeable discontinuity in the
electrode potential, which appears as a smooth S-shaped curve, as in Figure 1c. This is the
case of most cobalt-based electrodes, as in the so-called NMC batteries, which use mixed
metal oxides of lithium, nickel, manganese and cobalt as a cathode.

The resulting cell voltage is a combination of the potentials of both the anode and
cathode, and so the individual effects of the three behaviors illustrated in Figure 1 tend to
blend together and contaminate each other. However, since the anodic potential is typically
an order of magnitude lower than the cathodic potential, the overall voltage profile is
expected to be predominantly influenced by the characteristics of the cathode material.

2.2. Open Circuit Voltage Modeling

As already pointed out, semi-empirical expressions are very popular in modeling the
open circuit voltage of Li-ion batteries because of their simplicity. In particular, the approach
adopted in [24,25] has gained attention among researchers since it allows an easy estimation
of the unknown parameters without the need for non-linear model optimization methods.
According to this approach, and by omitting the effect of the current, the open circuit
voltage as a function of the transferred charge q can be expressed as

Voc(q) = Eo − K

(

Q

Q − q

)

q + Ae−Bq (2)

where Q is the total battery capacity, and E0, K, A and B are empirical constants that can be
readily calculated based on specific features of the experimental discharge curve. The model
appears very accurate when describing batteries whose voltage is controlled mainly by first
order phase transitions, i.e., similar to the one in Figure 1a, where the plateau voltage E0 in
Equation (2) is corrected near fully charged conditions by the positive exponential term and
near fully discharged conditions by a hyperbolic negative term. However, the application to
batteries with non-flat characteristic curves appears more challenging since the exponential
and hyperbolic regions are more difficult to identify and may overlap.

In this paper, an alternative semi-empirical approach has been proposed to address Voc

in batteries with quasi-continuous or continuous solid phase transformations (Figure 1b,c).
This approach aims to maintain a closer connection to the actual chemical processes oc-
curring during battery operation while avoiding, at the same time, overcomplexity and
the need for extensive solid phase characterization efforts. In order to cope with the com-
plications of solid state thermodynamics in the presence of multiple phases, especially
when referring to commercial batteries whose exact materials and chemistry may not be
fully known, the scenario depicted in Section 2.1 is simplified here by assuming a single
generic lithiated compound at the anode, LixA, and a single generic lithiated compound
at the cathode, LiyC, where A and C indicate the non-lithiated forms of the anodic and
cathodic materials, respectively. This is equivalent to considering the electrodes as two
solid solutions with variable concentration of such species in a way to reproduce the same
open circuit voltage observed in the actual cell. To this goal, the two semi-reactions are
written for each transferred cation as

αLixA ⇌ αA + Li+ + e−

βC + Li+ + e− ⇌ βLiyC

where the unknown stoichiometric coefficients α = 1/x and β = 1/y are introduced to
provide the model with two adjustable parameters. The overall reaction becomes

αLixA + βC ⇌ αA + βLiyC (3)
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Since the lithiated anodic and cathodic reactants have been defined only in generic
terms, the main idea behind the proposed model is to describe their unknown chemical
potentials µi by relating them to the chemical potentials µi, f c observed in fully charged
conditions and at the same temperature. To this goal, thermodynamic activities ai are
introduced according to their classical definition:

µi − µi, f c = RTlnai (4)

where R is the universal gas constant (8.314 J mol−1 K−1), and T is the absolute temperature
(K), and the difference between the Gibbs free energy change in the overall reaction in
current and fully charged conditions is, therefore,

∆gr − ∆gr, f c = ∑ νi(µi − µi, f c) = βRTlnaLiyC − αRTlnaLix A (5)

where νi is the generic stoichiometric coefficient (taken positive for products and negative
for reactants) and where the activities of non-lithiated solids have been assumed to be equal
to one. The activities of solid lithium at the two electrodes are expressed as the ratio of the
current and the reference content (in fully charged conditions) of the lithiated species:

aLixA =
QA − q

QA
(6)

aLiyC =
QC − Q + q

QC − Q
(7)

where Q is the amount of lithium corresponding to the battery total capacity, q is a measure
of the transferred lithium ions starting from fully charged conditions (so that 0 ≤ q ≤ Q),
QA and QC are the total amounts of lithium at the anode and cathode, respectively, which
leads to Q ≤ min(QA, QC). By bringing Equations (1), (6) and (7) into Equation (5),
and after introducing the state of charge (SoC) of the batter, y defined as

SoC =
Q − q

Q
(8)

one obtains

Voc = Voc, f c −
RT

F
ln
[

λ − SoC

λ − 1

]α[ δλ − 1 + SoC

δλ

]−β

(9)

where λ = QC/Q and δ = QA/QC.
In conclusion, Equation (9) represents the Nernst equation for the battery open circuit

voltage when taking the fully charged conditions as reference. It can be verified that
Voc = Voc, f c when SoC = 1, while the condition SoC = 0 provides the cut-off voltage.

2.3. Equivalent Circuit Model

In order to describe the battery load voltage Vb under operational conditions, the open
circuit voltage needs to be corrected by a term accounting for the dissipative effects of the
current I, which reduces the available theoretical voltage during discharging. To this goal,
the linear term Req I is subtracted from the open circuit voltage:

Vb = Voc − Req I (10)

which corresponds to the adoption of a classical equivalent circuit model (ECM) widely
used in similar studies [29]. In this basic ECM, the electromotive force generated by
the battery is in series with an equivalent internal resistance Req, which accounts for the
impedance of the real battery and concentrates all possible causes of energy dissipation
(ohmic dissipation, kinetic barriers, mass transfer limitations, etc.). More advanced ECMs
may include additional resistances and capacitors to account for a dynamic response due
to rapid changes in the current [27,30], but these effects are omitted here.
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Battery self-discharge and dissipative heating are neglected, and the model is applied
at a constant temperature. Moreover, the model cannot predict battery aging but is expected
to describe the voltage-capacity characteristics at any battery age in all those cases where
the actual capacity Q can be adjusted according to the number of cycles. Equation (10)
can describe the voltage also during charging by reversing the sign of the current from
positive to negative. This transforms the −Req I term into an additive amount that increases
the overall voltage and, hence, the energy provided to the device compared to the energy
retrieved during discharging.

3. Results and Discussion

The accuracy of the proposed model is evaluated by predicting the voltage in two com-
mercial batteries of the 18,650 type (18 mm in diameter, 65 mm in length, cylindrical), each
characterized by distinct cathode materials and capacity. This battery format is particu-
larly widespread as most battery packs in both stationary and mobile applications are
assembled from individual cells of this type. The first battery considered in this work
is the Panasonic CGR18650AF, with a cathode made of lithium nickel cobalt manganese
oxide (LiCoNiMnO2 or NMC) and a maximum standard capacity (evaluated at specific
conditions defined by the manufacturer) of 2050 mAh. The second battery is the Panasonic
NCR18650B, with a cathode made of lithium cobalt nickel aluminum oxide (LiCoNiAlO2
or NCA) and a standard maximum capacity of 3350 mAh. The relevant discharge curves at
various constant currents are reproduced in Figure 2, as extracted from the manufacturer’s
datasheets [33,34]. Three different sets of data are available for the first battery at three
different currents (0.39, 1.95 and 3.9 A, corresponding to 0.2 C, 1 C and 2 C, respectively),
while voltage curves for the second battery refer to four different constant currents (0.67,
1.675, 3.35 and 6.7 A, or 0.2 C, 0.5 C, 1 C and 2 C, respectively). The maximum available
capacity of the batteries under real operational conditions, to be used to determine the SoC
in Equation (8), has been considered as dependent on the current and has been read from
the available discharge curves; the relevant values are reported in Table 1 and correspond
to the energy extracted when going from fully charged conditions to the cut-off voltage of
2.5 V for both batteries. According to the Peukert effect, this maximum capacity decreases
when the discharge current increases, although other effects could also influence its value,
such as the conditions under which the last charging and the discharging were carried out
or the age of the battery (maximum capacity usually decreases with age but an increase may
also be observed during early cycling [35]). As a consequence, discharge curves crossing at
low SoC is not rare, as observed in Figure 2b in the case of NCR18650B.

Figure 2. Characteristics discharge curves at 25 °C and different currents for (a) CGR18650AF and
(b) NCR18650B.
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Table 1. Panasonic battery specifications and model parameters.

Symbol Description Units CGR18650AF NCR18650B

Standard capacity mAh 2050 3350
Voc, f c Voltage at fully charged conditions V 4.19 4.20
I Current A 0.39, 1.95, 3.9 0.67, 1.675, 3.35, 6.7
Q Observed capacity at each current mAh 2070, 2010, 1960 3310, 3240, 3280, 3280
a Parameter in Equation (11) mΩ −14.82 −8.64
b Parameter in Equation (11) mΩ 72.69 72.61
α Stoichiometric coefficient at anode - 10.14 11.12
β Stoichiometric coefficient at cathode - 2.55 6.69
λ QC/Q - 1.10 1.14
δ QA/QC - 0.91 0.88

3.1. Equivalent Internal Resistance

With reference to the general form of the model as in Equation (10), the effect of
the current is actually isolated in one linear term, Req I. A plot of the battery voltage
versus the current can be extracted from the available discharge curves at constant SoC
values, as reported in Figure 3, which confirms that any deviation from linearity in the
voltage versus current relationships is modest and mostly limited to very low SoC values
of the second battery. In particular, the observed linearity suggests that ohmic-like losses
dominate over the considered current range and that typical causes of non-linearity, such as
the overpotential produced by mass transfer limitations at high currents, do not onset at the
considered C-rates. Moreover, these plots also allow a direct estimation of the equivalent
resistance as the slope of the best fitting lines. The estimates of Req at different states of
charge are plotted in Figure 4, revealing values in the range 60–75 mΩ. These values show
a slight and fairly linear decreasing trend when moving towards fully charged conditions.
This effect, even if modest, has been taken into account in the model in particular to improve
the accuracy of the voltage predictions at very low SoC, where the sensitivity to the model
parameters is highest. To this goal, the equivalent resistance is expressed as

Req = a · SoC + b (11)

and the corresponding best fit parameters are given in Table 1.

Figure 3. Vb versus I curves at constant SoC for (a) CGR18650AF, (b) NCR18650B, and extrapolation
to I = 0 for estimation of Voc, f c. Red diamonds indicate Voc, f c for the two batteries.
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Figure 4. Equivalent resistance at different SoC for (a) CGR18650AF and (b) NCR18650B. Empty
circles denote the estimates of Req from experimental V − I data and dotted lines denote the interpo-
lating models according to Equation (11).

3.2. Fully Charged Open Circuit Voltage

From Figure 3, it is possible to obtain a reasonable estimation of the open circuit
voltage in fully charged conditions by linearly extrapolating the voltage at SoC = 1 until
it intercepts the vertical axis at zero current. The extracted values, 4.19 V and 4.20 V,
respectively, are similar and in line with what should be expected from classic Li-ion based
electrode pairs. In the lack of direct observations, this approach assumes that the linear
trends shown in Figure 3 hold until zero currents, hence, neglecting possible non-linear
phenomena and voltage gaps reported at near zero currents [36].

3.3. Model Fitting Results

After extracting the values of the internal equivalent resistance Req and of the open
circuit voltage in fully charged conditions directly from the discharge curves, the model
presents four more adjustable parameters: the stoichiometric coefficients α and β and the
parameters λ and δ, accounting for the relationships among the maximum amounts of
lithium at the electrodes and the battery total capacity. These are estimated through an
optimization process that minimizes, for each battery, the sum of all absolute errors between
model predictions and measured voltage by means of a non-linear generalized reduced
gradient algorithm. The comparison between the actual discharge curves and the best-fit
model predictions is shown in Figure 5 for both batteries and all available constant current
datasets, as a function of the SoC.

Figure 5. Fitting results for battery discharge curves of (a) CGR18650AF and (b) NCR18650B (contin-
uous lines indicate model predictions).

The model generally shows a good level of accuracy over the entire discharging range,
with overall coefficients of determination R2 equal to 0.985 and 0.992, respectively. The val-



Energies 2024, 17, 3914 9 of 14

ues of the best-fit parameters for each battery are reported in Table 1. The two stoichiometric
coefficients are both positive, confirming that the type of effect of the anode and cathode
potential change during discharging is correctly predicted by Equation (9), and since α > β,
the potential variation at the anode tends to dominate the shape of the overall voltage
drop. The values of γ and δ are always close to one, and this is also consistent with their
definitions; in particular, since δ < 1, the maximum amount of virtual lithiated compound
at the anode is estimated to be slightly less than at the cathode.

The region revealing the highest discrepancies between the observed voltage and
predictions is the one at low SoC values, and this is particularly evident when referring to
the residual errors in Figure 6, reported separately for each set of data. Two main reasons
could be behind this. On one hand, there are difficulties in extracting an accurate estimation
of the maximum available capacity for each current, due to some of the discharge curves of
the second battery crossing each other near full depletion conditions. Such uncertainties
produce a larger relative error at low SoC values in the light of Equation (8). On the other
hand, the linear increase adopted for the internal resistance of these two batteries may
not be sufficient to take into account the dissipative phenomena taking place near battery
depletion, suggesting that non linear correlations for Req may benefit (at least numerically)
the model accuracy in this region; this aspect is addressed in more detail in Section 3.5. For
the rest of the SoC range, clear patterns can be observed in the residuals, which fluctuate in
a rather predictable way around zero (overall mean residual error is −3.2 × 10−3 ± 0.033 V
and 2.45 × 10−3 ± 0.039 V, respectively). This is certainly a reflection of the discrete jumps
in the chemical activities of the electrode materials in real batteries due to phase transitions,
whereby the nature of the proposed model denies such discontinuities and provides for
a smoothing of the voltage curves. The largest errors caused by these simplifications are
found in the initial discharge stages of the NCR18650B battery (see residuals at low SoC in
Figure 6b), and in particular, this can be attributed to the solid phase activity in the anodic
lithiated graphite at the start of the discharging process [35].

Figure 6. Residual errors of battery discharge curves for (a) CGR18650AF and (b) NCR18650B.

3.4. Model Reduction

Based on the best-fit parameter values reported in Table 1, it can be observed that for
both batteries, it is λδ ≈ 1 or QA ≈ Q, indicating that the anode is the limiting electrode
for the total capacity so that there is nearly no lithium left at the anode at the end of
the discharging phase. This is not necessarily a general result and does not necessarily
reflect what happens in real batteries, and lacking external information on the quantitative
composition of the electrodes, it is considered here merely as a numerical outcome. Based
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on this result, however, a useful simplification can be introduced in Equation (9) without a
significant loss in model accuracy:

Voc = Voc, f c −
RT

F
ln
[

λ − SoC

λ − 1

]α

SoC−β (12)

which corresponds to reducing the actual number of parameters from 4 to 3.
This model reduction introduces a minor theoretical inconsistency, i.e., the activity at

the anode becomes zero already at the cut-off voltage, as can be verified in Equation (6) by
putting q = Q (from SoC = 0) and Q = QA (from λδ = 1), causing the battery voltage to
approach negative infinity. This is a consequence of the nearly infinite slope of the voltage
curves near battery depletion and the consequent difficulty for the model to discriminate
between cut-off capacity and zero voltage capacity. This inconsistency is not expected
to have practical consequences, since the battery operation beyond the cut-off voltage
is usually irrelevant but requires the exclusion of the cut-off voltage condition during
the non-linear optimization of the reduced model, as this would otherwise produce an
infinite error.

3.5. Charging and Discharging Cycle

To test the model performance through a full charge–discharge cycle, the Tesla 4680 bat-
tery cell was considered. Designed by Tesla for use in their own electric vehicles and
stationary energy storage systems, this cell has a total capacity of 23.35 Ah and is at the
forefront of the current technological developments in the Li-ion battery sector. The materi-
als used for the electrodes are lithiated graphite at the anode and nickel manganese cobalt
(NMC) oxide at the cathode [37]. For the voltage characteristic curves during charging and
discharging as a function of the battery charge, the ones obtained at a constant current of
2.5 A at the Laboratory for Energy Storage and Conversion, University of California San
Diego, and made available in [38] have been used; these are shown in Figure 7a.

Figure 7. Voltage curves for Tesla 4680 at 2.5 A: (a) Charging and discharging curves versus transferred
charge [38], (b) model predictions and observed voltage versus SoC.

This allows for an estimation of the internal resistance at different SoC values as
a function of the measured voltage difference ∆Vb between charging and discharging,
considering that Voc is invariant to the current, and, by means of Equation (10), we obtain

∆Vb(SoC) = 2Req|I| (13)

where the absolute value of I must be used. The resulting Req is shown in Figure 8,
where it oscillates in most of the SoC range without a clear trend, so that the average
value of 18.6 mΩ can be considered to be representative. However, the abrupt increase at
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SoC < 0.1 is not to be neglected if good model accuracy is also required in that range (such
range is often avoided by real battery operation in order to preserve battery life, but its
accurate prediction still significantly contributes to the effectiveness of the EMS). Therefore,
the internal equivalent resistance will be expressed here as

Req [mΩ] =

{

18.6 if SoC ≥ 0.1

−12538SoC3 + 6482SoC2 − 1049SoC + 71.20 if SoC < 0.1
(14)

Figure 8. Equivalent resistance at different SoC for Tesla 4680. Empty circles denote the estimates of
Req from experimental V − I data and dotted black lines denote the interpolating models according
to Equation (14), with the threshold of SoC = 0.1 indicated by the red dashed line.

The plateau value of 18.6 mΩ is on the lower end of the typical impedance values
expected for a Li-ion battery, but the general trend is consistent with what has been
found experimentally in direct measurement campaigns of the internal pulse resistance
carried out on the Tesla 4680 cell [37], where a sharp increase is also observed near fully
discharged conditions.

The open circuit voltage at fully charged conditions, Voc, f c, can be estimated in the
light of Equation (10) and of the plateau value of the equivalent resistance found earlier:

Voc, f c = Vf c + Req I = 4.32 V (15)

where Vf c = 4.27 V is the voltage at SoC = 1 during discharge, and I = 2.5 A is the
applied current.

The open circuit voltage has been described by applying the reduced version of the
model (Equation (12)), following preliminary tests that also revealed, in this case, no
significant loss in accuracy compared to the full model (Equation (9)). To this goal, and as
discussed in Section 3.4, the voltage data at SoC = 0 have been disregarded during the
optimization procedure, both during charging and discharging.

The comparison between observed voltage and model predictions is reported as
a function of the SoC in Figure 7b for both charging and discharging phases. A very
good level of overall accuracy is reached (R2 = 0.991) by using the following best-fit
parameters: α = 18.31, β = 3.69 and λ = 1.28. The parameter values are reasonably aligned
with the two previous batteries; however, no straightforward conclusions can be drawn
from their comparison since they mostly reflect intensive electrode properties (α and β are
stoichiometric ratios, and λ is a capacity ratio) and are, therefore, affected in a way difficult
to predict by differences in the materials used and the overall technologies employed (the
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Tesla battery, for example, benefits from much more recent developments in the sector
compared to the Panasonic batteries).

The overall mean residual error is −0.0117 ± 0.0316 V and the large prediction errors
observed at low SoC for the Panasonic batteries are now absent, confirming that the choice
of a non-linear correlation for Req adequately absorbs the model limitations in this range
and greatly improves the local accuracy. On the other side, the error at SoC approaching one
due to material phase transitions in the electrodes remains evident for both the discharging
and the charging curves. This is expected as it mostly stems from the inability of the
proposed model to describe individual phase transformations in the electrodes.

4. Conclusions

This paper presents a novel approach for estimating the voltage versus the state
of charge of a Li-ion battery, primarily intended for batteries with second order phase
transformations where other popular semi-empirical approaches for open circuit voltage
modeling may not be easily applicable. The general aim of this investigation is to contribute
to the enhancement of energy management systems in mobility and stationary energy
storage systems, as in residential microgrids with energy production from renewable
sources. The accurate prediction of the battery SoC based on voltage measurements is
considered a crucial feature in these systems.

The proposed model is based on the classical Nernst equation to describe the contin-
uous change in the open circuit voltage during charging and discharging. All remaining
effects and uncertainties are lumped into one linear term representing energy dissipations
under load conditions. The model calibration is based on data usually made available
from the manufacturer’s datasheets or from voltage measurements, without the need for
material characterization efforts.

The model has been applied to describe two Panasonic cylindrical cells in order to
test its ability to correctly predict the voltage under different current loads and to the
Tesla 4680 battery cell to describe a full charge–discharge cycle. All tested batteries have
cobalt-containing cathodes, although with different compositions and capacities. In all
three cases, the fit appears to be good quality with R2 values above 0.98, and the model is
able to catch and correctly reproduce all main features of the voltage curves. Considerations
on the values of the best fit parameters suggest a possible reduction in the complexity of
the model, with the number of unknown parameters reduced from 4 to 3.

Major deviations between model predictions and observed values only onset at very
high and very low SoC values. These are mostly due to the model not accounting for
individual phase transformations in the electrodes (in the first case) and uncertainties in the
estimation of the equivalent internal resistance at a very low charging state (in the second
case), although other unaccounted for phenomena may contribute as well.

Furthermore, the applicability of the proposed model to batteries with cathodic mate-
rials not containing cobalt, particularly LFP type batteries and all those characterized by a
main voltage plateau, remains unexplored at the time of writing and may require specific
adjustments to take into account the different solid phase thermodynamics.
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Abbreviations

The following abbreviations are used in this manuscript:

ECM Equivalent circuit model
EIM Electrochemical impedance model
EM Electrochemical model
EMS Energy management system
LFP Lithium iron phosphate
NCA Nickel cobalt aluminum
NMC Nickel manganese cobalt
RUL Remaining useful life
SoC State of charge
SoH State of health
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