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A B S T R A C T

Microstructuring surfaces may strongly affect the adhesive behaviour at the contact interface, resulting in
enhanced or weakened adhesion depending on the geometry of the surface structures and material properties.
In this study we investigate the effects of size, shape and geometrical distribution of micro-cavities on the
adhesion between an elastic solid and a rigid substrate. We show that reducing the lattice size by keeping
constant the cavity size, may significantly weak the adhesion strength of the interface as a consequence of the
interaction of the elastic stress and deformation fields generated by each single microcavity.
1. Introduction

The design of reversible surfaces is a research topic that has been
dealt with very intensively in recent years [1–5], but it still requires a
lot of in-depth analyses in the context of adhesive performance between
elastic solids. Switchable adhesives in contact mechanics, indeed, play a
crucial role in many practical applications, ranging from robotics [6,7]
to biomedics [8,9]. In nature, so many examples have been observed
that have inspired researchers. One of the most popular case study is
the tokay-gecko, which is able to efficiently modulate the interfacial
adhesion and grip leading to unparallelled climbing abilities [10,11].
Most of the studies presented so far, have mainly dealt with the im-
provement of adhesive performance of solids, through the optimization
of the morphological properties of the contact surfaces [12]. In this
view, both theoretical and experimental analyzes have been carried out
to find solutions to enhance the adhesive pull-off force. Among such
solutions we recall: (i) micro-patterned surfaces [13–15], (ii) optimized
micro-fibrillars geometries [16,17], or (iii) specifically tuned material
viscoelastic properties mimicking biomaterials already existing in na-
ture [18–21]. All these studies have proved the feasibility of effective
methods to tune the pull-off force needed to debond an elastic solid
from a rigid substrate. However, how strong adhesion can be switched
to low adhesion and easen the contact release has not been fully
addressed yet and requires additional investigations — see Ref. [22]
for a thorough collection of the state of the art on this topic. Among
the proposed methods for tuning the interaction between two surfaces,
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we find electrically [23–25], thermally [26] or magnetically [27] -
controlled adhesion. Most recently researchers have investigated the
possibility to surface micro-cavities to generate micro-suction effects
and tailor the adhesive properties of contacting surfaces. By adding
micro-cups on the contact area [28], or by realizing micro-dimples on
the substrate surface [29,30], it is possible to adjust the gas pressure
entrapped in such voids, so to enhance the adhesion or to quickly
suppress the grip, depending on the specific contact stage. Many ex-
periments on texturized substrates, have shown that the amount of gas
inside these prefabricated rigid bubbles is the key factor for effective
adhesion at a given time. So far, the main efforts have been devoted in
understanding the best shape of the gas volume geometry at the inter-
face [31], e.g. cylindrical or hemispherical [32], the proper number of
micro-cavities [33,34], and their possible periodic distribution on the
surface [32,35].

Most of the studies found in literature are numerical ones, which
makes it rather difficult identify the crucial parameters controlling
multiple defect propagation at the interface and, in turn, adhesion. In
the present paper we make an attempt to shed light on phenomena
affecting adhesive performance of an elastic flat punch in contact with
a rigid substrate, in presence of both a single hemispherical cavity
and a periodic array of cavities with same shape. Starting from an
accurate analytical model previously presented by the authors [36],
where the effects on adhesion due the presence of a bubble of gas
at the interface between a mushroom shaped micro-pillar and a rigid
substrate have been deeply analysed, we now point out our attention
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Fig. 1. The elastic punch in contact with a rigid substrate, in presence of a semi-spherical cavity, with radius 𝑎0, and with air inside at 𝑝 = 𝑝𝑎𝑡𝑚 (a); the interfacial stress distribution,
when a uniform external load 𝜎 is applied (b).
m
p
𝑝

to what happens when the voids are placed on the rigid counterpart
of the contact interface, and investigate the effect on adhesion of the
geometry of the cavity, as well as the influence of the initial air pressure
inside the void. Then we extend the investigation to the case of an array
of cavities and examine how the pull-off stress is also affected by the
lattice constant of the square array of cavities. The effect of cavity inter-
spacing originates from the interaction between the elastic stress and
strain field originated by each single crack. This will lead to a change of
the stress intensity factors along the perimeter of the cavities as showed
in Ref. [37] for the case of a periodic array of coplanar penny-shaped
cracks.

2. Single cavity

Let us consider the elastic flat punch shown in Fig. 1, in contact with
a rigid substrate, which presents a hemispherical cavity of radius 𝑎0 and
volume 𝑉0 = 2∕3𝜋𝑎30, with a certain amount of gas entrapped inside.
With the aim of calculating the pull off force required to detach the
elastic pillar from the rigid substrate, we follow the thermodynamical
approach previously proposed by the authors [36] , where the solution
of the contact is obtained by minimizing the total energy stored at the
interface as a consequence of local interfacial deformations [38]. To
carry out the calculation we assume that the radius 𝑎0 of the cavity is
much smaller than the diameter and the height of the pillar, enabling
us to consider the pillar as an elastic half-space in contact with a
rigid substrate. We define the total Helmholtz free interfacial energy
 [36,38] as

 (𝑉 , 𝑎) =  (𝑉 , 𝑎) + 𝑈𝐺 (𝑉 ) + 𝑈𝐴 (𝑎) (1)

being  = (𝑝 + 𝜎)𝑉 ∕2 the interfacial elastic energy, 𝑉 = ∫ 𝑣 (𝐱) 𝑑2𝑥 is
the contribution to the volume of the void at the interface [Fig. 1(b)]
due to the gap distribution 𝑣 (𝐱) = 𝑢0−𝑢 (𝐱) at the interface, where 𝑢0 is
the total displacement and 𝑢 (𝐱) is the elastic displacement distribution,
𝜎 is the external applied stress, 𝑝 is the air pressure inside the cavity.
The adhesion energy is 𝑈𝐴 (𝑎) = 𝜋𝑎2𝛥𝛾, with 𝛥𝛾 being the Duprè energy
of adhesion and 𝜋𝑎2 the detached area, whereas 𝑈𝐴 (𝑉 ) is the free
energy of the entrapped gas under isothermal conditions. We assume
that the entrapped gas satisfy the ideal gas law 𝑝𝑉 = 𝑛𝑅𝑇 , being 𝑛
2

the number of moles, 𝑅 the ideal gas constant and 𝑇 the absolute
temperature. Under these conditions, the free energy of the gas can
be calculated as 𝑈𝐺 (𝑉 ) = −𝑛𝑅𝑇 ln

[(

𝑉 + 𝑉0
)

∕𝑉0
]

. Moreover, linear
elasticity yields 𝑉 = 𝜅 (𝜎 + 𝑝), being 𝜅 = 8𝑎3∕(3𝐸∗) [36,39], 𝐸∗ =
𝐸∕

(

1 − 𝜈2
)

, 𝜈 the Poisson’s ratio and 𝐸 the Young’s modulus.
In our analysis, we keep constant the asymptotic load 𝜎 so that

the volume 𝑉 of the void changes as the radius 𝑎 of the contact
area is changed. Therefore, for constant asymptotic load the proper
thermodynamic potential is the interfacial Gibbs energy  (𝜎, 𝑎) that is
obtained by taking the Legendre transform of the Helmholtz free energy
 (𝑉 , 𝑎) (see Appendix A in Ref. [36]), i.e.

 (𝜎, 𝑎) =  (𝑉 , 𝑎) − 𝜕
𝜕𝑉

|

|

|

|𝑎
𝑉 (2)

which leads to

 (𝜎, 𝑎) = 1
2
(𝑝 − 𝜎)𝑉 − 𝑛𝑅𝑇 ln

𝑉 + 𝑉0
𝑉0

+ 𝜋𝑎2𝛥𝛾 (3)

We note that in order to increase the suction effect and augment the
ability of the pillars to remain attached to the substrate, a compressive
preload is often applied [Fig. 2-(b)] which causes part of the entrapped
gas to leak out of the cavity. This is equivalent to reduce the number
of moles 𝑛 entrapped in the cavity, or, recalling that 𝑝0𝑉0 = 𝑛𝑅𝑇 , to

odify the reference gas pressure 𝑝0 = 𝑛𝑅𝑇 ∕𝑉0. The more the pillar is
ushed towards the rigid substrate, the lower is the reference pressure
0.

In order to find the equilibrium state of the system we must require
that 𝜕 (𝜎, 𝑎) ∕𝜕𝑎|𝜎 = 0, which is the closure equation leading to the
value of 𝑎 = 𝑎𝑒𝑞 at the equilibrium. Of course, because of the presence
of the hemispherical cavity of radius 𝑎0 and volume 𝑉0 = 2𝜋𝑎30∕3,
solutions with 𝑎𝑒𝑞 < 𝑎0 are not physically meaningful as the contact
void cannot have a radius smaller than 𝑎0. In such a case 𝑎 = 𝑎0 is
a stable equilibrium solution provided that 𝜕 (𝜎, 𝑎) ∕𝜕𝑎|𝜎,𝑎0 > 0. For
𝑎𝑒𝑞 ≥ 𝑎0 the equilibrium stability requires 𝜕2 (𝜎, 𝑎) ∕𝜕𝑎2||

|𝜎,𝑎𝑒𝑞
> 0. For

stable contacts the load 𝜎 can be supported by the system, however as
soon as 𝜕2 (𝜎, 𝑎) ∕𝜕𝑎2||

|𝜎,𝑎𝑒𝑞
= 0 the equilibrium becomes unstable and

the load cannot be supported any longer, we name this critical load

as the pull-off stress 𝜎𝑐𝑟. To find the equilibrium solution, we need to
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Fig. 2. The elastic punch in contact with a rigid substrate, in presence of a semi-spherical cavity, with radius 𝑎0 (a); the interfacial deformation, due to the compressive preload,
make the air volume reduced to 𝑉0 − 𝑉1, and the pressure inside the cavity equal to 𝑝1 (b); the volume of the entrapped air 𝑉 + 𝑉0 corresponding to an external uniform tractive
stress 𝜎 (c).
Fig. 3. The elastic flat punch approached towards the rigid substrate, which presents
a periodic distribution of hemispherical dimples, of radius 𝑎0 and periodicity 2𝑏.

write  (𝜎, 𝑎) as a function of 𝜎 and 𝑎 only. To this end, we recall that
𝑝𝑉 = 𝑝0𝑉0 = 𝑛𝑅𝑇 and that 𝑉 = 𝜅 (𝜎 + 𝑝), with 𝜅 = 8𝑎3∕(3𝐸∗). Solving
these two equations for 𝑉 and 𝑝 we get

𝑝 (𝜎, 𝑎) = 1
2

⎛

⎜

⎜

⎝

−𝜎 +

√

𝜎2 + 𝜋𝑝0𝐸∗
𝑎30
𝑎3

⎞

⎟

⎟

⎠

(4)

and

𝑉 (𝜎, 𝑎) = 4
3
𝑎3

𝐸∗

⎛

⎜

⎜

⎝

𝜎 +

√

𝜎2 + 𝜋𝑝0𝐸∗
𝑎30
𝑎3

⎞

⎟

⎟

⎠

(5)

which then give

 (𝜎, 𝑎) = −2
3
𝑎3

𝐸∗

⎛

⎜

⎜

⎝

𝜎2 + 𝜎

√

𝜎2 + 𝜋𝑝0𝐸∗
𝑎30
𝑎3

− 𝜋
2
𝑝0𝐸

∗
𝑎30
𝑎3

⎞

⎟

⎟

⎠

(6)

− 2
3
𝜋𝑝0𝑎

3
0 ln

⎡

⎢

⎢

⎣

1 + 2
𝜋
𝑎3

𝑎30

1
𝐸∗

⎛

⎜

⎜

⎝

𝜎 +

√

𝜎2 + 𝜋𝑝0𝐸∗
𝑎30
𝑎3

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

+ 𝜋𝑎2𝛥𝛾
3

3. Periodic array of interacting cavities

Now let us consider the case of a square-lattice of periodic distri-
bution of hemispherical defects at the interface with spatial period (or
lattice constant) 2𝑏 and area 𝐴0 = 4𝑏2 (Fig. 3). In this case the problem
can be formulated as done in Sec. 2 for the case of the single defect
at the interface. However, this time the constant of proportionality 𝜅𝑃
appearing in the linear relation 𝑉 = 𝜅𝑃 (𝜎 + 𝑝), where 𝑉 = ∫𝐴0

𝑣 (𝐱) 𝑑2𝑥
will differ from 𝜅 because of the elastic interaction among the different
square cells. We show in Appendix that 𝜅𝑃 can be calculated if one
knows the stress intensity factor distribution along the boundary of the
defect as a function of the linear size of the defect. Indeed we show that

𝜅𝑃 (𝐴) = −2
𝑈 (𝜎, 𝐴)

𝜎2
= 1

𝜎2𝐸∗ ∫

1

0
𝑑𝜁𝜁 ∫

2𝜋

0
𝑑𝜃𝑟2 (𝜃)𝐾2

𝐼 [𝜁𝑟 (𝜃) , 𝜃] (7)

In what follows we assume that the detached area can be well approx-
imated by a circle of radius 𝑎. This approximation is very accurate
provided that 𝑎 is sufficiently smaller than the lattice constant 𝑏. For
larger value of 𝑎 the approximation is less accurate, but except for
a factor of order unity, the specific shape of the detached area do
not change the qualitative physical behaviour of the system. So let as
assume 𝑟 (𝜃) = 𝑎 independent of 𝜃 so Eq. (7) reads

𝜅𝑃 (𝑎) = 2𝜋
𝜎2𝐸∗ ∫

𝑎

0
𝑑𝜌𝜌�̄�2

𝐼 (𝜌) (8)

where we have defined the average square value �̄�2
𝐼 (𝜌) = (2𝜋)−1 ∫ 2𝜋

0 𝐾2
𝐼

(𝜌, 𝜃) 𝑑𝜃.
The stress intensity factor 𝐾𝐼 (𝑎, 𝑏, 𝜃) is given for the case of a square

lattice of penny shaped crack in Ref. [37]

𝐾𝐼 (𝑎, 𝑏, 𝜃) = 𝐾0
𝐼ℎ

(𝑎
𝑏
, 𝜃
)

(9)

where 𝜃 is the angular position of the generic point along the circular
crack, and 𝐾0

𝐼 = 2𝜎
√

𝑎∕𝜋 is the stress intensity factor for an interfacial
single penny shaped crack. Once the quantity 𝜅𝑃 (𝐴) is calculated, it is
possible to proceed to the evaluation of the energy  (𝜎, 𝑎) following
exactly the same argument reported in Sec. 2, see Eqs. (3) –(6), and
determine the pull-off stress 𝜎𝑐𝑟 required to cause detachment.

4. Dimensionless formulation

The equations presented above can be reformulated in a dimension-
less form, through the introduction of the following quantities �̃� =
𝜎∕𝐸∗, �̃� = 𝑝∕𝐸∗, �̃� = 𝑎∕𝛿, �̃� = 𝑏∕𝛿, 𝑉 = 𝑉 ∕𝛿3, being 𝛿 = 𝛥𝛾∕𝐸∗ the
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Fig. 4. The total energy variation 𝛥̃ in the case of a single cavity at the interface, for �̃�0 = 200, and different values of the external applied stress �̃� (a), and for a fixed load
�̃� = 0.042, considering different sizes of the hemispherical dimple (b). In both the cases, the dashed lines indicate the areas with �̃�𝑒𝑞 < �̃�0, which has no physical significance.
𝜎

Fig. 5. The elastic pillar in contact with the rigid substrate, with a pre-existing volume
𝑉0 of air at the interface of the rigid substrate (a), and with a circular detached area
(b). The critical stress �̃�𝑐𝑟 is shown as a function of the radius �̃�0, in presence of an
initial volume of air 𝑉0 (solid line), and for a circular detached area with 𝑉0 = 0 (dotted
line) (c).

adhesion length. In this way, the dimensionless interfacial Gibbs energy
becomes

̃ (�̃�, �̃�) = 
𝛿3𝐸∗

= −2
3
�̃�3

⎛

⎜

⎜

⎝

�̃�2 + �̃�

√

�̃�2 + 𝜋𝑝0
𝑎03

�̃�3
− 𝜋

2
𝑝0

𝑎03

�̃�3

⎞

⎟

⎟

⎠

(10)

− 2
3
𝜋𝑝0𝑎0

3 ln
⎡

⎢

⎢

⎣

1 + 2
𝜋

�̃�3

𝑎03

⎛

⎜

⎜

⎝

�̃� +

√

�̃�2 + 𝜋𝑝0
𝑎03

�̃�3

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

+ 𝜋�̃�2
4

Fig. 6. The stable (dashed upper branch) and unstable (solid lower branch) equilibrium
states �̃�𝑒𝑞 , as functions of the applied stress �̃�, for different values of the pressure 𝑝0
inside the cavity of volume 𝑉0, corresponding to different compressive pre-loads, and
for �̃�0 = 200. The condition 𝑝0 = 𝑝𝑎𝑡𝑚 corresponds to zero pre-load.

5. Results

In this Section we present the results of our analysis, aimed at un-
derstanding how the presence of an initial volume in the rigid substrate,
both in a single cavity and in a distribution of interacting cavities, can
contribute to the overall adhesive performance of an elastic flat punch.
In our calculations, we assume 𝐸∗ = 4MPa, 𝛥𝛾 = 16mJ∕m2 and 𝑝𝑎𝑡𝑚 =
1bar, having defined the asymptotic applied stress as 𝜎 = 𝜎0 − 𝑝𝑎𝑡𝑚.
The first case under analysis is when only one dimple is present at
the interface, and no compressive pre-load is applied. In Fig. 4-(a), the
corresponding total energy variation, defined as 𝛥̃ (�̃�, �̃�) = ̃ (�̃�, �̃�) −
̃ (�̃�, 0), is shown as a function of the radius �̃� of the detached area,
for �̃�0 = 200 and for four different values of the external applied stress
̃ . The forbidden region is related to solutions which have �̃�𝑒𝑞 < �̃�0,
which are not physically meaningful as previously explained. For an
unloaded pillar [see the solid line for �̃� = −𝑝0 in Fig. 4-(a)], only the
stable equilibrium state is present, corresponding to the minimum of
the curve. Notice that, by increasing the external applied stress, the
energy barrier, defined as the difference between the energy values at
the two equilibrium states, decreases. In a similar way, at fixed tractive
load �̃�, the energy barrier of the system decreases for greater values
of �̃�0, as shown in Fig. 4-(b). However, the presence of the gas in the
hemispherical volume 𝑉0 at the interface of the rigid substrate [Fig. 5 -
(a)], changes the behaviour of the system compared to the sole presence
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Fig. 7. The critical stress �̃�𝑐𝑟 as a function of the radius �̃�0, for different values of
he pressure 𝑝0 inside the cavity of volume 𝑉0, corresponding to different compressive
re-loads. It is evident the stabilizing effect due to lower values of 𝑝0.

f a circular detached area of radius �̃�0 [Fig. 5-(b)], as studied by the
uthors in Ref. [36]. In particular, a sort of stabilizing effect is observed,
.e. given the same values of the radius �̃�0, the energy barrier increases
hen a pre-existing air volume 𝑉0 is present at the interface. This is

learly shown in Fig. 5-(c), where the critical stress �̃�𝑐𝑟 is plotted vs. the
adius �̃�0 in the two cases. When an initial volume 𝑉0 of gas is present at
he interface, the required stress to detach the pillar from the substrate
s always greater, independently of the radius �̃�0. Nevertheless, in both
he cases, by increasing the radius �̃�0, the critical stress �̃�𝑐𝑟 tends to
rop, and this happens because of the energy barrier decreases [Fig. 4
(b)]. As mentioned so far, in order to increase the resistance of the
illar in separating from the substrate, usually a compressive preload
s applied to the system [Fig. 2-(b)], which determines the leakage of
certain amount of gas from the cavity, ad a consequent reduction of
umber of moles 𝑛 of entrapped gas or equivalently of the reference
avity pressure 𝑝0, [Fig. 2-(c)]. The more the pillar is pushed towards
he rigid substrate, the lower is the reference pressure 𝑝0 inside the
avity. In Fig. 6, the stable and unstable equilibrium states �̃�𝑒𝑞 of the
ystem are shown versus the remote applied stress �̃�. The upper branch
s the unstable equilibrium and the lower branch is the stable one.
esults are shown for three different values of the initial air pressure
0, and for �̃�0 = 200. It is possible to observe that when a compressive
re-load is applied to the pillar, i.e. by decreasing 𝑝0, the critical stress
̃𝑐𝑟, which is the intersection point of the two equilibrium states, tends
o raise. This result can be more easily observed in Fig. 7, where the
ritical stress �̃�𝑐𝑟 is plotted for increasing values of the radius �̃�0, for
hree different values of the pressure 𝑝0. By increasing the dimension of
he cavity, i.e. for higher values of �̃�0, the stress required to detach the
illar from the substrate becomes smaller, however, given the presence
f the volume 𝑉0 at the interface, it is possible to rise the adhesive
erformance of the pillar in terms of �̃�𝑐𝑟 by applying a pre-compression,
s shown in Fig. 7 for smaller values of 𝑝0.

It is now interesting to evaluate the pillar resistance to the detach-
ent, when an array of cavities is present at the interface. In this
erspective, we consider a rigid substrate with a square distribution
f hemispherical voids with period 2�̃� (Fig. 3). We first compare the
ingle cavity considered so far, with the adhesive behaviour of one
ell of the periodic array, with dimensions 2�̃� × 2�̃�. In Fig. 8, it is
ossible to observe that by increasing the number of the cavities, at
ixed radius �̃�0 = 200, i.e. when the wavelength 2�̃� decreases, the
tress needed to detach the single cell from the substrate, found as
ntersection between the stable and the unstable branches, becomes
maller. Fig. 9 shows the critical stress �̃�𝑐𝑟 as a function of the radius �̃�0,

for different values of the periodicity 2�̃�. In particular, the greater is the
avelength 2�̃�, the more the curves tend to move towards the red line,
hich represents the single cavity case. This behaviour is expected,
5

Fig. 8. The stable and unstable equilibrium values �̃�𝑒𝑞 as functions of the external
applied stress �̃�, for different wavelengths of the cavity array �̃�, and for �̃�0 = 200.
The cross represents, for every line, the value beyond which �̃�𝑒𝑞 cannot increase, as it
exceeds the dimension �̃�.

Fig. 9. The critical stress �̃�𝑐𝑟 as a function of �̃�0, for different values of �̃�. Also the
single cavity case is shown (red curve). By increasing the periodicity 2�̃�, the adhesive
ehaviour of the cell is similar to the one of a single cavity.

Fig. 10. The critical stress �̃�𝑐𝑟 as a function of �̃�0∕�̃�, for �̃�0 = 150. For increasing values
of the ratio �̃�0∕�̃�, the adhesive performance of the pillar drops when an array of cavities
is present at the interface, with respect to the single cavity case.

since the larger the lattice spacing, the more the stress intensity factor
of the periodic array tends to coincide to the equivalent value of a
single cavity [37]. On the contrary, when the cavities are approached,
i.e. when 2�̃� decreases, their interaction becomes very significant and
the stress intensity factor increases, so that the detachment of the cell
takes place at smaller loads. In Fig. 10 the critical stress �̃�𝑐𝑟 is shown
as a function of �̃�0∕�̃�, for a fixed radius �̃�0 = 150. For low values
of the ratio �̃�0∕�̃�, there is no appreciable difference between the two
cases. However, by decreasing the distance between the cavities, i.e. by
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Fig. 11. The critical stress �̃�𝑐𝑟 as a function of the half distance �̃� between the cavities, for different values of �̃�0. Dashed lines have been calculated by considering the extrapolation
of the average square stress intensity factor

(

�̄�𝐼∕𝐾0
𝐼

)2 (a). The extrapolation of
(

�̄�𝐼∕𝐾0
𝐼

)2 is shown vs. �̃�∕�̃� (dashed line), together with the values given in Ref. [37] (red points)
(b).
increasing the ratio �̃�0∕�̃�, the critical stress �̃�𝑐𝑟 tends to decrease when
an array distribution is considered. Even more clearly, in Fig. 11-(a),
the critical stress �̃�𝑐𝑟 is plotted vs. �̃�, for different values of �̃�0. The
dashed lines have been obtained by extrapolation of the average square
values

(

�̄�𝐼∕𝐾0
𝐼
)2, shown in Fig. 11 -(b) (dashed line), since the stress

intensity factor (see Eq. (9)) is provided in Ref. [37] only in four points
�̃�∕�̃� = {2.4; 2.6; 3; 4} (red points in Fig. 11-(b)). In all the cases shown in
Fig. 11-(a), the critical stress �̃�𝑐𝑟 raises by increasing the gap between
the cavities, up to an almost constant value, which coincides with that
corresponding to the single cavity.

In conclusion, the enhancement of the adhesion between an elastic
pillar and a rigid substrate by means of an array of micro-cavities
at the interface, increases by decreasing the air reference pressure
within the cavities but it is strongly affected by the interaction of the
elastic fields generated by each single cavity. The proposed analytical
approach enables the evaluation of both the optimal distance and the
correct dimension of the cavities, and allows us to conclude that in
order to get benefits in using a distribution of cavities, it is convenient
to keep the ratio �̃�∕�̃� sufficiently high. This, together with the initial
precompression would improve the adhesive performance of the elastic
solids.

6. Conclusions

In this work we presented a theoretical study to assess the adhesive
performance of structured surfaces covered with a distribution of micro
hemispherical cavities. At first, we considered a single cavity, whose
adhesive strength was compared with the case of a simple circular
detached area at the interface, of same radius and zero volume. The
presence of a micro-void determines a suction effect, very often ex-
ploited in the contact mechanics, because of its beneficial contribute to
the pull-off stress. Additionally, we evaluated the effect of a compres-
sive pre-load on the adhesion performance. By assuming that a certain
amount of gas is squeezed out from the interface, a stronger suction ef-
fect is observed, thus resulting in the rising of the critical stress beyond
which the surface detaches. In this perspective, the effect on adhesion
of a periodic distribution of hemispherical cavities was also considered.
Our results show that when the size of the cavity is small compared
to the lattice constant, the pull-off stress does not change significantly
compared to the case of the single cavity. However, increasing the
radius of the cavities at fixed lattice constant, the interaction of elastic
fields generated by the cavities penalizes the adhesive mechanisms and
reduces the pull-off stress. Our study may help engineers to properly
tune the strength of adhesion by controlling the number and size of
interfacial micro-voids and the preload at the interface.
6
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Appendix. The calculation of the void compliance 𝜿 from the
stress intensity factors 𝑲𝑰

In this section we show how one can calculate the elastic compliance
of the void moving from the knowledge of the stress intensity factors
along the border of the cavity, for cavity size varying from zero to the
actual value. Recall that linear elasticity allows us to state, for any given
shape (non necessarily circular) of the detached area of size (maximum
diameter) 2𝑎, that 𝑉 = 𝜅𝑃 (𝜎 + 𝑝) this time with 𝜅𝑃 ≠ 𝜅. We needs to
calculate 𝜅𝑃 (𝐴) which depends on the specific geometry of the void
and on the fact that the system is periodic or not. Since 𝜅𝑃 (𝐴) does
not depend on the load 𝜎 or on the presence of gas pressure 𝑝 inside
the cavity, we will carry out our argument assuming 𝑝 = 0 (i.e. no gas
entrapped at the interface). We only assume the presence of a constant
remote stress 𝜎 acting on the system. In this case the energy release
rate is defined as 𝐺 = − 𝜕𝑈∕𝜕𝐴|𝜎 where the total energy 𝑈 (sum of
the interfacial elastic energy  and mechanical energy associate with
the load 𝜎) is simply given by the Legendre transform of the interfacial
elastic energy  = 𝜎𝑉 ∕2 = 𝑉 2∕

(

2𝜅𝑃
)

, i.e.

𝑈 (𝜎, 𝐴) =  − 𝜕
𝜕𝑉

|

|

|

|𝐴
𝑉 = −1

2
𝜎𝑉 = −1

2
𝜅𝑃 𝜎

2 (A.1)

Therefore, from the definition of the energy release rate, one can write,
under the condition of constant remote stress 𝜎

𝑑𝑈 |𝜎 = −𝐺𝑑𝐴 = 1
2
𝜎2𝑑𝜅𝑃 (A.2)

which connects the energy release rate to the change of the compliance
𝜅𝑃 as the contact area has changed of the infinitesimal quantity 𝑑𝐴.
To calculate the potential energy 𝑈 𝜎,𝐴 , which only depends on the
( )
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𝑈

R
𝐾

𝑈

actual configuration of the system, we can choose any reversible trans-
formation which, under constant load 𝜎, modifies the detached area
from zero to the actual value 𝐴. To this end a convenient transformation
is a scaling transformation that keeps unchanged the shape of the area
as it increase from zero to 𝐴. Under a scaling transformation the radial
coordinate of any point of the boundary can be expressed as 𝜌 (𝜃, 𝜁) =
𝜁𝑟 (𝜃) where 𝑟 (𝜃) is the shape function i.e. the function describing the
boundary of the actual area 𝐴 in polar coordinates, and 𝜁 the scaling
actor varying over the interval 0 ≤ 𝜁 ≤ 1. The local change of the
ontact area can be then phrased as 𝑑𝐴 = 𝜌𝑑𝜌𝑑𝜃 = 𝑟2 (𝜃) 𝜁𝑑𝜁𝑑𝜃 and
he change of the total energy 𝑈 writes

𝑑𝑈 |𝜎 = −𝐺 (𝜌, 𝜃) 𝜌𝑑𝜌𝑑𝜃 = −𝐺 [𝜁𝑟 (𝜃) , 𝜃] 𝑟2 (𝜃) 𝜁𝑑𝜁𝑑𝜃 (A.3)

ecalling that for 𝜁 = 0 the interfacial total energy vanishes, performing
double integration yields

(𝜎, 𝐴) = −∫

1

0
𝑑𝜁𝜁 ∫

2𝜋

0
𝑑𝜃𝑟2 (𝜃)𝐺 [𝜁𝑟 (𝜃) , 𝜃] (A.4)

ecalling that within the framework of linear fracture mechanics, 𝐺 =
2
𝐼 ∕ (2𝐸

∗) we also get

(𝜎, 𝐴) = − 1
2𝐸∗ ∫

1

0
𝑑𝜁𝜁 ∫

2𝜋

0
𝑑𝜃𝑟2 (𝜃)𝐾2

𝐼 [𝜁𝑟 (𝜃) , 𝜃] (A.5)

so that the compliance 𝜅𝑃 can be finally calculated as

𝜅𝑃 (𝐴) = −2
𝑈 (𝜎, 𝐴)

𝜎2
= 1

𝜎2𝐸∗ ∫

1

0
𝑑𝜁𝜁 ∫

2𝜋

0
𝑑𝜃𝑟2 (𝜃)𝐾2

𝐼 [𝜁𝑟 (𝜃) , 𝜃] (A.6)

As an example consider the case of an isolated interfacial penny shaped
crack, in such a case the stress intensity factor is

𝐾0
𝐼 = 2𝜎

√

𝜌
𝜋

= 2𝜎
√

𝜁𝑎
𝜋

(A.7)

so by replacing we get

𝜅 = −2
𝑈 (𝜎, 𝐴)

𝜎2
= 8𝑎3

3𝐸∗ (A.8)

which is the correct value for a penny shaped crack.
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