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Abstract
We consider the random motion of a particle that moves with constant velocity in R

3. The
particle can move along four different directions that are attained cyclically. It follows that
the support of the stochastic process describing the particle’s position at a fixed time is a
tetrahedron. We assume that the sequence of sojourn times along each direction follows a
Geometric Counting Process (GCP).When the initial condition is fixed, we obtain the explicit
form of the probability law of the process, for the particle’s position. We also investigate the
limiting behavior of the related probability density when the intensities of the four GCPs
tend to infinity. Furthermore, we show that the process does not admit a stationary density.
Finally, we introduce the first-passage-time problem for the first component of the process
through a constant positive boundary providing the bases for future developments.

Keywords Counting process · Finite-velocity · Random motion · Random evolution ·
First-passage time

MSC Classification 60K99 · 60K50

1 Introduction

In the last decades, finite-velocity randommotions have beenwidely studied as a natural class
of stochastic processes to model real phenomena on multi-dimensional Euclidean spaces. In
the one-dimensional case, the model that describe these motions is the telegraph process, in
which the changes of the two possible velocities are governed by the Poisson process. The
classical case has been studied in Orsingher (1990) where the author derives the explicit form
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of the probability law of a random motion governed by the telegraph equation in terms of
the Bessel function. Differently, in Beghin et al. (2001) the authors examine the telegraph
process with drift; its distribution was obtained by means of the Lorentz transformation.
Another interesting study of a one-dimensional telegraph process is presented in Stadje and
Zacks (2004) where the particle moves at constant velocity between Poisson times such
that new velocities are chosen randomly. Later, the study of random motions in two or
more dimensions has been performed by many authors over the years. In particular, finite-
velocity planar random processes in continuous time have been investigated by Orsingher
(1986) and Masoliver et al. (1993). A general model of one-dimensional random evolution
with n velocities (n ≥ 2), switching according to a Poisson process, is studied in Kolesnik
(1998). An overview of telegraph processes and their multidimensional counterparts is given
in Kolesnik and Ratanov (2023). Further investigations have been oriented to investigate
the distribution for Markovian random motion in the plane (cf. Kolesnik and Turbin (1998)
and Kolesnik (2006)), and the random motion with possible reflections at Poisson-paced
events (cf. Kolesnik and Orsingher (2002)). The analysis of these randommotions with finite
direction is performed analytically by solving partial differential equations. Other methods
use probabilistic approaches based on order statistics, or on more general renewal processes
as in Di Crescenzo (2002) (with arbitrary random steps between successive switches) where
the author obtains the probability law of the two-dimensional stochastic process by means
of a modified two-index Bessel function.

Several generalizations of the basic model to multi-dimensional space have been proposed
especially in biology and physics, motivated by the need of describing a variety of random
motions performed by cells, micro-organisms and animals. These problems have been ana-
lyzed in Stadje (1987) to model the moving of micro-organisms on surfaces, in Martens et al.
(2012), Hartmann et al. (2020) and Santra et al. (2020) to examine run-and-tumble processes
for describing the bacterial motility, and in Pogorui and Rodríguez-Dagnino (2021) to study
the properties of an ideal gas.

The main aim for the study of finite-velocity random motions in one or more dimensions
is the determination of the probability distribution of the position vector X(t) of a particle at
time t . For instance, cyclic planar motions with three and four directions have been treated
by Orsingher (2002) and Orsingher and Sommella (2004) in which the changes of direc-
tion are governed by a homogeneous Poisson process. Moreover, the authors have found
a connection between the equations governing the probability distributions and the Bessel
functions of higher order. The probability law of the motion of a particle performing a cyclic
random motion is determined in Lachal (2006) where the particle can take a finite number of
possible directions with different directions. Here, the changes of direction occur at Poisson
random times. For instance, see also Lachal et al. (2006) in which the probability distribution
is obtained by using order statistics and is expressed in terms of hyper-Bessel functions of
higher order. Recently, planar random motions with orthogonal directions switching at Pois-
son time have been examined in Orsingher et al. (2020), Cinque and Orsingher (2023) and
Cinque and Orsingher (2023). Other remarkable results concerning randommotions in mul-
tidimensional spaces in inhomogeneous and semi-Markov media are illustrated in Orsingher
and De Gregorio (2007) and Pogorui (2012). The case in which the direction alternations
occur at the renewal epochs of a K-Erlang distribution is presented in Pogorui and Rodríguez-
Dagnino (2011). Moreover, De Gregorio (2012) analyzes a spherically asymmetric random
motion in the real space Rd , d ≥ 2, where the directions are non-uniformly distributed.

Somemodified versions of the telegraph process have been considered also by substituting
the underlying Poisson process with different kinds of counting processes. For instance, in Di
Crescenzo et al. (2023) the authors study a stochastic process which describes the dynamics
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of a particle performing a finite-velocity randommotion inR andR2, that alternates cyclically
along two and three different directions, respectively, with possibly unequal velocities. The
novelty of this last paper is that the number of displacements of themotion along each possible
direction follows a Geometric Counting Process (GCP) (see Cha and Finkelstein (2013)).
This new approach has the advantageous characteristic that consists in the possibility of
describing phenomena whose interarrival times have heavy tails rather than the memoryless
property, as observed often in real cases. Specifically, the properties of the interarrival times
GCP’s are declined in several areas, such as in software reliability or actuarial theory, where
such counting processes are often considered to describe occurrences of shocks or claims,
and in earth sciences (climatology, hydrology, etc) to model the failures along times. For
instance, some examples of applied fields where GCPs can be used are discussed in Section
6 and 7 of Di Crescenzo and Pellerey (2019).

Therefore, starting from the results obtained in Di Crescenzo et al. (2023), here, we
propose an extension of the classical telegraph process in R3 with the aim of (i) determining
the explicit general laws of the distribution of the current position, and (ii) presenting an
approach of resolution based on the study of the intertimes between consecutive changes of
direction. In particular,we assume that themotionproceeds along four directions that alternate
cyclically, where the intertimes between two subsequent changes toward each direction are
distributed as a GCP. Specifically, the motion of the particle is formed by continuous straight
lines that change directions at each epoch of the GCP. The sequence of attained directions
is cyclic in the sense that at each event the particle switches from direction �v j to �v j+1, for
1 ≤ j ≤ 4, with �v4 = �v0 and, in general, �v4k+ j = �v j , for k ∈ N. Moreover, differently from
the strategy illustrated in Lachal (2006) and Lachal et al. (2006), we consider the spherical
coordinates to represent the possible directions and the support of the cyclic random motion
in R

3. This approach allows us to obtain the explicit expression of the probability law of
the process. The use of a limited number of directions is justified by the results presented
in Orsingher and Sommella (2004) where the authors consider a cyclic random motion with
four directions forming a regular tetrahedron in R

3 but where the changes of direction are
governed by a homogeneous Poisson process. Precisely, in our case the intertimes possess
a heavy-tailed distribution, differently to the classical telegraph process in which the times
between direction changes have exponential distribution. The scheme of the present paper is
useful in describing suitable dynamics where random occurrences between two events have
infinite expectations, and are dependent. Thus, the proposed stochastic process provides new
models for the description of phenomena that are no more governed by hyperbolic PDE’s as
the classical telegraph equation. Another benefit of the present study is the construction of
new solvable models, whose probability laws are obtained in tractable and closed form (as
in the special case with symmetry) using an approach based on the analysis of the intertimes
between consecutive direction changes. Note that the introduction of these finite-velocity
random motions is also useful to describe the movement of a particle that chooses the new
direction among all the possible ones in a cyclical manner.

Moreover, a further strength of this work concerns some interesting asymptotic results.
In particular, we are able to obtain the limiting density of the process in a closed form
when the parameters of the intertimes between direction changes tend to infinity. In addition,
we show that the process does not admit a stationary density as t goes to +∞. All these
motivations allow us to study the motion inR3 because it can be applied to various situations
and, moreover, the amount of calculations needed is quite acceptable. In this framework we
recall the recent books by Pogorui et al. (2021) and Pogorui et al. (2021), where a variety
of applications of random motions in Markov and semi-Markov random environments have
been considered. For instance, results and closed-form expressions for one-dimensional and
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multidimensional random motions, also in the presence of different types of boundaries, are
presented for applications to the reliability of storage systems, as well as to model stock price
dynamics and other issues of interest in mathematical finance.

In detail, we analyze the process {(X(t), V (t)), t ≥ 0} in R
3 which describes the posi-

tion of randomly moving particle performing a cyclic alternating motion with four specific
and possible different directions �v j , for 1 ≤ j ≤ 4. The direction-vectors form a (pos-
sibly irregular) tetrahedron, say T (t), i.e., the set of all possible positions of the moving
particle at time t > 0 on the surface of the support in R

3. Note that the analysis of ran-
dom motions in multidimensional Euclidean spaces is quite rare in the literature, since its
analysis is rather difficult. Hence, to overcome the difficulties of the study we will refer
in detail to the simpler case in which the region T (t) is regular and centered in the ori-
gin. Once defined the geometry of the region T (t), the probability law of the process is
determined when (i) the initial components are given by three terms, describing the sit-
uations in which the particle is found on the vertices, edges and faces of T (t), at the
beginning of its motion, and (ii) the density concerning the absolutely continuous part
is related to the motion of the particle in the interior of T (t). In particular, for the latter
absolutely continuous component we exhibit an integral representation involving the proba-
bility density functions and the conditional survival function of the intertimes between two
successive events.

This is the plan of the paper. In Section 2 we introduce the process {(X(t), V (t)), t ≥ 0}
describing the position of a particle performing a cyclic, minimal, randommotion inR3 with
four possible directions �v j , for 1 ≤ j ≤ 4, and constant velocity c > 0. Some preliminary
results on theGCPare also briefly illustratedwith reference to the distribution of the intertimes
between two consecutive events. Then, in Section 3, we study the direction vectors and the
analytic representation of the support in R

3 identifying the tetrahedron T (t). In Section
4 we investigate the stochastic process and its probability laws with underlying GCP, and
determine the explicit expression of the initial and absolutely continuous components. Section
5 illustrates a special case with four fixed cyclic directions forming a regular tetrahedron in
R
3. Moreover, we examine the limiting distribution of the process when the parameters of the

intertimes tend to infinity andwhen the time t goes to infinity. Finally, in Section 6we provide
some basic lines for the study of the first-passage-time problem of the first component of the
process through a constant positive boundary β > 0.

2 A RandomMotion inR
3 with Cyclic Directions

Let X(t) = (X1(t), X2(t), X3(t)) and V (t) be respectively the position and the direction of
the particle at an arbitrary time t ≥ 0 in the space R3. Assume that each point in R3 is repre-
sented by a triple x = (x1, x2, x3).We consider a cyclic randommotion {(X(t), V (t)), t ≥ 0}
performed by a particle which can take four possible directions �v j , for 1 ≤ j ≤ 4, and moves
with constant velocity c > 0 through out the motion. The motion is cyclic which means that
at each event the particle changes from direction �v j to �v j+1, for 1 ≤ j ≤ 4, with �v4 = �v0
and, in general, �v j+4k = �v j , for k ∈ N. Let Dj,k be the random duration of the k-th time
interval during which the motion proceeds with velocity c. For any 1 ≤ j ≤ 4, the set
Dj,· := {Dj,k, k ∈ N} constitutes a sequence of non-negative and dependent absolutely
continuous random variables such that

D(0)
j = 0, D(k)

j =
k∑

i=1

Dj,i , k ∈ N. (1)
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Moreover, the sets Dj,·, for 1 ≤ j ≤ 4, are mutually independent.
Now, let {N (t), t ≥ 0} be the alternating counting process having arrival times T1, T2, . . .

(i.e., the instants when the events occur), such that N (t) counts the total number of direction
reversals of the particle in [0, t], i.e.

N (0) = 0, N (t) =
∞∑

k=0

1{Tk≤t}, t ≥ 0. (2)

In order to obtain the probability law of the stochastic process {(X(t), V (t)), t ≥ 0}
introduced so far, we consider the stochastic equations for the position X(t) and the direction
V (t) of the particle at time t ≥ 0. Specifically, we have

V (t) =
∞∑

k=0

1{Tk−1≤t<Tk } �vk,

with V (0) ∈ {�v1, �v2, �v3, �v4}, and

X(t) = X(0) +
∫ t

0
V (s)ds =

N (t)−1∑

k=1

(
Tk − Tk−1

)�vk + (
t − TN (t)−1

)�vN (t), (3)

with X(0) = 0 ≡ (0, 0, 0) and
∑N (t)−1

k=1 (Tk − Tk−1) = TN (t)−1, since T0 = 0. The sum in
Eq. (3) refers to the case where at least one change of direction has occurred before t , while
the last term is related to the displacement along the current direction at time t .

We indicate with Tk the k-th random instant in which the motion modifies its direction,
for n ∈ N0. Remembering Eq. (1) the following identity holds:

T4n+ j =
4∑

r=1

D
(n+m j,r )
r , (4)

where, for fixed j ∈ {1, 2, 3, 4}, M = (
m j,r

)
1≤r≤4 ∈ R

4×4 is equal to

M =

⎛

⎜⎜⎝

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎞

⎟⎟⎠ . (5)

The relations obtained above will be used in Section 4 to study the probability law of the
process {(X(t), V (t)), t ≥ 0}.

2.1 The Distribution of the Intertimes as a Geometric Counting Process

We introduce some preliminary results on the GCP (for more details, see Cha and Finkelstein
(2013) and Di Crescenzo and Pellerey (2019)). Specifically, we assume that the random
intertimes between consecutive changes of directions are governed by possible different
GCPs (see, for instance, Di Crescenzo et al. (2023)).

For this purpose, we consider a mixed Poisson process {N (t), t ≥ 0} characterized by the
following marginal distribution expressed as a mixture:

P[N (t) = k] =
∫ t

0
P[N (α)(t) = k]dU (α), t ≥ 0, k ∈ N0,
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where {N (α)(t), t ≥ 0} is a Poisson process with intensity α and U is an exponential
distribution with support R+. Here, we consider the special case when U (·) = Uλ(·) is an
exponential distribution with mean λ ∈ R

+. Therefore, we refer to the process N (t) as a
GCP with intensity λ, according to Cha and Finkelstein (2013), where the authors studied
dependence properties of its increments in the general case of non-constant intensities. The
probability distribution of the process N (t) satisfies the following properties:

• at time t = 0, one has N (0) = 0,
• for all s, t ≥ 0 and k ∈ N0 it holds:

P{N (t + s) − N (t) = k} = 1

1 + λs

(
λs

1 + λs

)k

.

Let Tk , with k ∈ N, be the random times denoting the arrival instants of the process N (t)
such that T0 = 0. It is interesting to observe that the probability density function (p.d.f.) of
Tk is expressed as follows:

fTk (t) = − d

dt

[
1 −

(
λt

1 + λt

)k]
= k

(
λt

1 + λt

)k−1
λ

(1 + λt)2
, t ≥ 0.

We define Dj,k = Tk − Tk−1, with 1 ≤ j ≤ 4 and k ∈ N, the increments between two
consecutive events. Differently from the Poisson process, the GCP does not have the prop-
erty of independent increments, hence, the random variables Dj,k are dependent. Moreover,
making use of Eq. (10) in Di Crescenzo and Pellerey (2019), we get the marginal density for
all intertimes Dj,k , 1 ≤ j ≤ 4 and k ∈ N,

fD j,k (t) = λ

(1 + λ t)2
, t ≥ 0. (6)

Moreover, we point out that the marginal cumulative distribution function (c.d.f.) for all
( j, k) is FDj,k (t) = λt/(1+ λt), t ≥ 0. This c.d.f. does not have finite moments. We remark
that Dj,k has a long right tail (see, for instance, Asmussen (2003)) since, for all t > 0,

lim
x→∞P{Dj,k > x + t |Dj,k > x} = 1.

From density (6) it is not hard to see that Dj,k has a modified Pareto distribution which
means that the intertimes of the GCP {N (t), t > 0} have non-finite expectations. In addition,
to obtain the explicit expressions of the process X(t), we recall the conditional survival
function of Dj,k conditional on Tk−1 = t , for k ∈ N, is given by

FDj,k |Tk−1(s|t) =
(

1 + λt

1 + λ(t + s)

)k

, s, t ≥ 0, (7)

and the corresponding probability density function (p.d.f.) of Dj,k conditional on Tk−1 = t ,
for k ∈ N, i.e.,

fD j,k |Tk−1(s|t) = kλ(1 + λt)k

[1 + λ(t + s)]k+1 , s, t ≥ 0. (8)

In the following, we determine the initial and absolutely continuous components of the
probability law of the stochastic process {(X(t), V (t)), t ≥ 0}, which describes a cyclic
alternating random motion along four directions �v j , for 1 ≤ j ≤ 4, driven by independent
GCPs with intensity λ j (1 ≤ j ≤ 4). We remark that the intertimes of the GCPs are in
practice more realistic since in real cases the counting processes under investigation do not
have necessarily the independent increments property. Some applications may be found in
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geophysics (see Benson et al. (2007)), in climatology (see Lavergnat and Golé (1998)) or
in modeling for internet traffic (see Clegg et al. (2010)). Moreover, in real applications the
number of events in a fixed time interval does not always follow the Poisson distribution.
Therefore, the class of GCPs is a possible alternative to Poisson processes. At least, the use
of GCPs allows us to obtain the probability law of the process X(t) in a tractable way as
shown in the remainder of the paper.

3 The Direction Vectors and the Support

In this section, we discuss the properties of the direction vectors and the geometrical features
of the region generated by them, i.e., the set of all possible positions of the moving particle
at time t > 0.

3.1 The Direction Vectors

Let �v j , 1 ≤ j ≤ 4, be the vectors representing the possible directions of the cyclic motion
in R

3 moving with a constant velocity c > 0. We recall that 4 is the minimal number of
directions for a non trivial motion in R

3. The direction �v j can be expressed by using the
spherical coordinates, as

�v j = (�l cos θ j sin ϕ j + �m sin θ j sin ϕ j + �n cosϕ j ), 1 ≤ j ≤ 4,

where �l, �m, �n are the unit vectors along theCartesian coordinate axes inR3,ϕ j is the azimuthal
angle in the xy-plane from the x-axis with θ j ∈ [0, 2π] and θ j is the polar angle from the
positive z-axis with ϕ j ∈ [0, π ], for 1 ≤ j ≤ 4. This approach extends the strategy based
on polar coordinates used for the planar motions studied in Di Crescenzo et al. (2023), for
instance. The analytic representation of the directions is provided in Eq. (10), below.

The particle starts from the origin 0 = (0, 0, 0) ∈ R
3 at time t = 0, running with constant

velocity c > 0. Initially, it moves along the direction �v1. Then, after a random duration D1,1,
the particle switches instantaneously its direction, moving along �v2 for a random duration
D2,1. Subsequently, it goes along �v3 and �v4 for a length of time D3,1 and D4,1, respectively.
Thus, the particle motion proceeds cyclically along directions �v j for the random periods
Dj,2, Dj,3, Dj,4, . . ., such that, for each 1 ≤ j ≤ 4 and k, i ∈ N, we have

Dj,4k+i
d= Dj,i , (9)

where
d=means equality in distribution. Hence, during the n-th cycle the particle moves along

directions �v j in sequence for the random lengths Dj,n , with 1 ≤ j ≤ 4 and n ∈ N. In other
words, the particle runs along direction �v j and, after an intertime distributed as a CGP, it
takes the direction �v j+1, with �v j+4n = �v j , for 1 ≤ j ≤ 4 and n ∈ N. We note that the results
concerning the cases of other initial direction, i.e., �v2, �v3, �v4, may be easily deduced. Now,
in order to define the set of all possible positions occupied by the particle at an arbitrary time
t > 0, we consider the following Remark.

Remark 1 Let be {(X(t), V (t)), t ≥ 0} the stochastic process defined in Section 2. Given
the direction vectors �v j with �v j+4n = �v j , for 1 ≤ j ≤ 4 and n ∈ N, we have that the particle
motion reaches any state of R3 in a sufficiently large time t > 0, if and only if,

(i) The set of direction vectors {�v1, �v2, �v3} are linearly independent;
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(ii) The direction vector �v4 ∈ S with

S =
{
ξ(−�v1) + η(−�v2) + (1 − ξ − η)(−�v3), 0 ≤ ξ, η ≤ 1, ξ + η ≤ 1

}
.

Hence, the set of all possible positions under the hypothesis of Remark 1 identifies as
state space at time t a tetrahedron whose vertices coincide with the endpoints of the vectors
ct �v j . In other words, the tetrahedron is defined as a 3-dimensional simplex where the interior
points are convex combinations of the four vertices such that

∑4
j=1 α j �v j with

∑4
j=1 α j = 1

and α j ≥ 0.

3.2 Analytic Representation of the Support

Let us consider the points A j (t), 1 ≤ j ≤ 4, defined by
−−−−→
0A j (t) = �v j t , where 0 = (0, 0, 0)

is the origin of the Cartesian coordinate system. The points A j (t), 1 ≤ j ≤ 4, given by

A j (t) = (ct cos θ j sin ϕ j , ct sin θ j sin ϕ j , ct cosϕ j ), 1 ≤ j ≤ 4 (10)

are the vertices of the support in R
3 at time t > 0, i.e., a time-dependent tetrahedron with

edges Ei j (t) and faces Fi jk(t), 1 ≤ i, j, k ≤ 4 and i < j < k. In particular, if the three
different vertices Ai (t), A j (t) and Ak(t) are not aligned, then the particle reaches any point of

the support inR3. This is true since thematrix generated by two adjacent segments
−−−−−−−→
Ai (t)Ak(t)

and
−−−−−−−→
Ak(t)A j (t) has maximum rank, i.e. 2. Therefore, under the assumptions of Remark 1

the equations linking two adjacent vertices can expressed as

ai jk x1 + bi jk x2 + ci jk x3 − ctqi jk = 0, 1 ≤ i, j, k ≤ 4, i < j < k, (11)

where
ai jk = (sin θ j sin ϕ j − sin θi sin ϕi )(cosϕk − cosϕi )

− (sin ϕk sin θk − sin ϕi sin θi )(cosϕ j − cosϕi ),

bi jk = (sin ϕk cos θk − sin ϕi cos θi )(cosϕ j − cosϕi )

− (sin ϕ j cos θ j − sin ϕi cos θi )(cosϕk − cosϕi ),

ci jk = sin ϕi cos θi (sin ϕ j sin θ j − sin ϕk sin θk)

+ sin ϕ j cos θ j (sin ϕk sin θk − sin ϕi sin θi )

+ sin ϕk cos θk(sin ϕi sin θi − sin ϕ j sin θ j ),

and,
qi jk = ai jk cos θi sin ϕi + bi jk sin θi sin ϕi + ci jk cosϕi .

We recall that V (t) is the current direction of motion at time t . Assuming that V (0) takes
value �v1, we are able to determine the analytic expression of the support inR3, say T (t), i.e.,
the set of all positions allocated by the particle when it is confined in a tetrahedron, defined
as

T (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
(x1, x2, x3) ∈ R

3 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a123x1 + b123x2 + c123x3 − ctq123 ≥ 0

a124x1 + b124x2 + c124x3 − ctq124 ≥ 0

a234x1 + b234x2 + c234x3 − ctq234 ≥ 0

a134x1 + b134x2 + c134x3 − ctq134 ≤ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (12)

where the given conditions derive from Eq. (11). In general, the particle motion includes
different mutually exclusive cases based on the initial assumptions X(0) = 0 and V (0) = �v j ,
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for a fixed 1 ≤ j ≤ 4. More precisely, the particle is situated on the vertices A j (t) of T (t)
if no direction changes occur up to time t , while if one event occurs then, at time t , it will
be located on some edge Ei j of T (t). Two events allow the particle to reach one of the faces
Fi jk of T (t) and three or more changes of direction force the particle to be placed inside
T (t). Therefore, recalling Remark 1, the following holds.

Remark 2 For the probability law of the process {(X(t), V (t)), t ≥ 0} we have:
(i) The first component is related to the case when no event occurs in the interval (0, t), i.e.,

N (t) = 0, and the particle is concentrated on the vertices of T (t);
(ii) The second component is concerning the situation in which one event happens at time t ,

i.e., N (t) = 1, and the particle is located on some edge of T (t);
(iii) The third component corresponds to the instance when two events occur, i.e., N (t) = 2

and the particle reaches one of the faces of T (t);
(iv) The forth component, which is absolutely continuous, refers to the case when N (t) ≥ 3,

i.e. when the particle is placed strictly in the interior of T (t), namely Int(T (t)).

4 The Probability Law

To define the conditional distributions of the process {(X(t), V (t)), t ≥ 0}, we denote by
Ci := {X(0) = 0, V (0) = �vi }, (13)

the event that the particle starts its motion from the origin 0 when the initial direction is �vi ,
1 ≤ i ≤ 4. Therefore, let Pi be the probability conditional on Ci .

The conditional probability laws given Ci are composed by two contributions:

(i) The initial components given by the terms related to the beginning of the motion. Specif-
ically, they describe the cases in which the particle is over the border of the support T (t)
in R

3.
(ii) The absolutely continuous component related to the particle motion inside the support

T (t) in R
3.

For the case (ii) we define

pi j (x, t)dx = Pi {X(t) ∈ dx, V (t) = �v j }
= Pi {X1(t) ∈ dx1, X2(t) ∈ dx2, X3(t) ∈ dx3, V (t) = �v j }, (14)

with 1 ≤ i, j ≤ 4 and where dx is the infinitesimal element in the space R
3 with the

Lebesgue measure μ(dx) = dx1dx2dx3 (i refers to the initial velocity, and j to the current
velocity at time t). The right-hand-side of Eq. (14) represents the probability that the particle
at time t > 0 is located in a neighborhood of x ∈ R

3 and moves along direction �v j , given
the initial condition represented by Ci . Moreover, we can introduce the probability density
function (p.d.f.) of the particle location X(t) at time t > 0, i.e.,

pi (x, t) = Pi {X(t) ∈ dx}, 1 ≤ i ≤ 4. (15)

Due to Eqs. (14) and (15), one immediately has

pi (x, t) =
4∑

j=1

pi j (x, t), 1 ≤ i ≤ 4. (16)
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In order to determine the probability law of the stochastic process {(X(t), V (t)), t ≥ 0},
we assume that the starting direction at time t is �v1, so that, the initial condition is C1 as
defined in Eq. (13). Therefore, the following results are obtained by taking into account the
cases (i)-(iv) considered in Remark 2.

Theorem 1 (Initial components) Let be {(X(t), V (t)), t ≥ 0} the stochastic process defined
in Section 2. For t ≥ 0 we have

P1{X(t) = (ct cos θ j sin ϕ j , ct sin θ j sin ϕ j , ct cosϕ j ), V (t) = �v1}
= P{D1,1 > t}, (17)

P1{X(t) ∈ E12(t), V (t) = �v2} = P{D1,1 < t ≤ D1,1 + D2,1}, (18)

and

P1{X(t) ∈ F123(t), V (t) = �v3} = P{D1,1 + D2,1 < t ≤ D1,1 + D2,1 + D3,1}, (19)

where D j,k is the random duration of the k-th time interval during which the particle moves
with velocity �v j , for 1 ≤ j ≤ 3 and k ∈ N.

Proof Equations (17), (18) and (19), when V (0) = �v1, are easily obtained, under the condi-
tions (i), (ii) and (iii) of Remark 2. �

Using Eq. (14) and recalling (iv) of Remark 2, we determine the absolutely continuous
components of the probability law of the X(t) conditioned on C1, for t > 0 and 1 ≤ j ≤ 4,
i.e., the densities

p1 j (x, t)dx = P1{X(t) ∈ dx, V (t) = �v j }. (20)

In order to give the expression of p1 j (x, t) we introduce the linear map ζ : R4 −→ R
4

defined by:

ζ(t) =
(
c

4∑

j=1

x1�v j t j , c
4∑

j=1

x2�v j t j , c
4∑

j=1

x3�v j t j ,
4∑

j=1

t j

)
, (21)

for t = (t1, t2, t3, t4), and where x1 �v j , x2 �v j and x3�v j are the components of the vectors �v j

(1 ≤ j ≤ 4) respectively along the x-axes. When a cycle of the random motion ends after a
period t the function ζ(t), given in Eq. (21), provides a vector containing the displacements
performed along the x-axes during the cycle, as well as its whole duration.

Moreover, we consider the transformation matrix A of function ζ(t) expressed in terms
of spherical coordinates, i.e.,

A =

⎛

⎜⎜⎝

c cos θ1 sin ϕ1 c cos θ2 sin ϕ2 c cos θ3 sin ϕ3 c cos θ4 sin ϕ4

c sin θ1 sin ϕ1 c sin θ2 sin ϕ2 c sin θ3 sin ϕ3 c sin θ4 sin ϕ4

c cosϕ1 c cosϕ2 c cosϕ3 c cosϕ4,

1 1 1 1

⎞

⎟⎟⎠ (22)

with
det A = c3

{
sin ϕ1 sin ϕ2[sin(θ2 − θ1)](cosϕ3 − cosϕ4)

+ sin ϕ1 sin ϕ3[sin(θ3 − θ1)](cosϕ4 − cosϕ2)

+ sin ϕ1 sin ϕ4[sin(θ4 − θ1)](cosϕ2 − cosϕ3)

+ sin ϕ2 sin ϕ3[sin(θ3 − θ2)](cosϕ1 − cosϕ4)

+ sin ϕ2 sin ϕ4[sin(θ4 − θ2)](cosϕ3 − cosϕ1)

+ sin ϕ3 sin ϕ4[sin(θ4 − θ3)](cosϕ1 − cosϕ2)
}
.

(23)
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Remark 3 Recalling (10), we observe that the determinant det(t A) represents the volume
Vol(T (t)) of T (t) defined in (12).

Now, given a sample path of the process {(X(t), V (t)), t ≥ 0}, we denote by τ j = τ j (x)

the non negative random variables representing the dwelling times of the particle motion in
each direction �v j (1 ≤ j ≤ 4) during [0, t] (i.e., the residence times for the process X(t) on
the event that X(t) = x, V (t) = �v j ), so that

4∑

j=1

τ j = t .

Therefore, recalling (22) and (10), we can express τ j , 1 ≤ j ≤ 4, as the 4-tuple

ζ−1(x, t) = (τ1(x, t), τ2(x, t), τ3(x, t), τ4(x, t)),

with

τ j (x, t) =
4∑

k=1

σ jk xk + σ j4t, (24)

where σi j = 1
det A cofi j (A) with cofi j (A) = (−1)i+ j det Ai j , 1 ≤ i, j ≤ 4. Moreover, since

the function ζ(t), for all x ∈ R
3, is bijective (see, for more details, Lachal (2006)), it is easy

to see that τ = (τ1, τ2, τ3, τ4)
T is solution of the system Aτ = (x, t)T . More precisely, in

the following proposition the explicit form of Eq. (24) can be obtained.

Proposition 2 Making use of Eq. (24), for all x ∈ R
3 the coordinates τ j , for 1 ≤ j ≤ 4 and

c > 0, are expressed as

τ j = c2

det A

[
L j x1 + Mj x2 + N j x3 − ct Pj

]
, 1 ≤ j ≤ 4, (25)

where

L j =
3∑

i=1

sin ϕ j+̂i sin θ j+̂i

(
cosϕ j+̂(i+1) − cosϕ j+̂(i+2)

)
,

Mj =
3∑

i=1

sin ϕ j+̂i cos θ j+̂i

(
cosϕ j+̂(i+2) − cosϕ j+̂(i+1)

)
,

N j =
3∑

i=1

sin ϕ j+̂i cos θ j+̂i

(
sin ϕ j+̂(i+1) sin θ j+̂(i+1) − sin ϕ j+̂(i+2) sin θ j+̂(i+2)

)
,

Pj =
3∑

i=1

sin ϕ j+̂i cos θ j+̂i

×
(
sin ϕ j+̂(i+1) sin θ j+̂(i+1) cosϕ j+̂(i+2) − sin ϕ j+̂(i+2) sin θ j+̂(i+2) cosϕ j+̂(i+1)

)
,

where a+̂b denotes (a + b) mod 4 and det A can be recovered from (22).

Proof Recalling Eqs. (10), (23) and (24), after straightforward calculations Eq. (25)
is determined. �
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Now, for the process {(X(t), V (t)), t ≥ 0}we are able to formulate the following theorem
about the absolutely continuous component concerning assumption (iv) of Remark 2. For
this purpose, we indicate with f

D(n)
j

the probability density function (p.d.f.) of D(n)
j given in

Eq. (1), 1 ≤ j ≤ 4, and with F
Dj,k+1|D(k)

j
the conditional survival function of Dj,k+1 given

D(k)
j , for 1 ≤ j ≤ 4 and k ∈ N0.

Theorem 3 (Absolutely continuous component) For the stochastic process {(X(t), V (t)), t ≥
0} defined in Section 2, under the initial condition given in Eq. (13) with direction �v1, we have
that, for all x ∈ Int(T (t)) and t > 0, the absolutely continuous component of the probability
law is given by

p1 j (x, t) = 1

det A

∞∑

k=0

{ j−1∏

i=1

f
D(k+1)
i

(τi )

4∏

i= j+1

f
D(k)
i

(τi )

×
∫ t

t−τ j

f
D(k)

j
(s − (t − τ j ))FDj,k+1|D(k)

j
(t − s|s − (t − τ j ))ds

}
,

(26)

where τ j = τ j (x, t), for 1 ≤ j ≤ 4, is defined in Eq. (25), and det A is given in Eq. (23).

Proof By conditioning on the number of direction switches in (0, t), say k, and on the last
time s previous t in which the particle changes its velocity from �v4 to �v1 in order to restart a
new cycle, we reformulate Eq. (20), for x ∈ R

3 and t > 0, as follows:

p1 j (x, t)dx =
∞∑

k=0

∫ t

0
P{T4k+ j−1 ∈ ds, X1(s) + c(t − s) cos θ j sin ϕ j ∈ dx1,

X2(s) + c(t − s) sin θ j sin ϕ j ∈ dx2,

X3(s) + c(t − s) cosϕ j ∈ dx3, Dj,k+1 > t − s},

(27)

for 1 ≤ j ≤ 4 and where T4k+ j−1 is the instant occurring at time s in which the particle
changes its direction to velocity �v j . Thus, X(s) = (X1(s), X2(s), X3(s)) is the position of
the particle when a change of direction occurs. Therefore, due to Eq. (4), we have

T4k+ j−1 =
j−1∑

i=1

D(k+1)
i +

4∑

i= j+1

D(k)
i + D(k)

j .

Hence, for s = T4k+ j−1 and using Eq. (1), we can express the coordinates of the particle
position X(s) as follows

X1(s) = c

[ j−1∑

i=1

D(k+1)
i cos θi sin ϕi +

4∑

i= j+1

D(k)
i cos θi sin ϕi + D(k)

j cos θ j sin ϕ j

]
,

X2(s) = c

[ j−1∑

i=1

D(k+1)
i sin θi sin ϕi +

4∑

i= j+1

D(k)
i sin θi sin ϕi + D(k)

j sin θ j sin ϕ j

]
,

X3(s) = c

[ j−1∑

i=1

D(k+1)
i cosϕi +

4∑

i= j+1

D(k)
i cosϕi + D(k)

j cosϕ j

]
.

(28)
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The conditions defined in (12) and X(s) ∈ T (s) implies that s > t − τ j , for 1 ≤ j ≤ 4.
Moreover, using (22) and substituting Eq. (28) in Eq. (27). we have:

p1 j (x, t) = 1

det A

∞∑

k=0

{∫ t

t−τ j


 j,k

[
s, x1 − c(t − s) sin ϕ j cos θ j ,

x2 − c(t − s) sin ϕ j cos θ j , x3 − c(t − s) cosϕ j

]

× P

[
Dj,k+1 > t − s|T4k+ j−1 = s, X1(T4k+ j−1) = x1 − x1�v j (t − s),

X2(T4k+ j−1) = x2 − x2�v j (t − s), X3(T4k+ j−1) = x3 − x3�v j (t − s)

]
ds

}
,

(29)
where 
 j,k is the joint p.d.f. of (T4k+ j−1, X1(T4k+ j−1), X2(T4k+ j−1), X3(T4k+ j−1)) with:

T4k+ j−1 =
j−1∑

i=1

D(k+1)
i +

4∑

i= j+1

D(k)
i + D(k)

j ,

X1(T4k+ j−1) =
j−1∑

i=1

x1�vi D
(k+1)
i +

4∑

i= j+1

x1�vi D
(k)
i + x1�v j D

(k)
j ,

X2(T4k+ j−1) =
j−1∑

i=1

x2�vi D
(k+1)
i +

4∑

i= j+1

x2 �vi D
(k)
i + x (k)

2�v j D j
,

X3(T4k+ j−1) =
j−1∑

i=1

x3�vi D
(k+1)
i +

4∑

i= j+1

x3�vi D
(k)
i + x3�v j D

(k)
j .

According to (21), for 1 ≤ j ≤ 4, we have

x1�vi = vi sin ϕi cos θi , x2�vi = vi sin ϕi sin θi , x3�vi = vi cosϕi .

Moreover, given the mutual independence of the variables {Dj,k; k ∈ N}, for 1 ≤ j ≤ 4,
we get


 j,k

[
s, x−c(t − s) cos θ j sin ϕ j , y − c(t − s) sin θ j sin ϕ j , z − c(t − s) cosϕ j

]

=
j−1∏

i=1

f
D(k+1)
i

(τi )

4∏

i= j+1

f
D(k)
i

(t − τ j ) fD(k)
j

[s − (t − τ j )].
(30)

Therefore, Eq. (26) is directly obtained replacing Eq. (30) in Eq. (29). �
Wepoint out that Eq. (26) is in analogywithEq. (4.1) of Lachal (2006) inwhich a particular

case of theminimal cyclic randommotion inRd (n = d+1 directions, n ≤ d) is investigated.
Specifically, the integral formulation given in Eq. (26) is based on the application of Eqs. (7)
and (8) where the assumption of dependent increments, instead of the typical exponential
distribution, is taken into account. Differently, in Orsingher and Sommella (2004) and Lachal
et al. (2006) the explicit form of the absolutely continuous part of X(t) is determined by using
an approach based on the Bessel functions of higher order.

Note that we analyze the motion inR3 since the amount of calculations needed is tractable
and the obtained results are applicable for practical problems.Hence,we can easily conjecture
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Table 1 The values of angles θ j
and ϕ j , 1 ≤ j ≤ 4, related to the
vertices given in (31)

j 1 2 3 4

θ j 0 76
125π 3421

11250π 3421
11250π

ϕ j
π
2

π
2

451
250π 299

250π

that in R
n the structure of the absolutely continuous component of the distribution of a

cyclic motion with n + 1 directions (with directions forming a regular or possible irregular
tetrahedron) is similar to Eq. (26). We remark that the n-dimensional case will be object of
a future work.

Clearly, the results given in Theorems 1 and 3 for the process {(X(t), V (t)), t ≥ 0} can
be extended similarly when the particle starts with velocity �vl , for 2 ≤ l ≤ 4. Using this new
scheme, a fixed initial direction allows us to obtain tractable expressions for the probability
law of the process as illustrated in the following section.

5 A Special Case

In this section we analyze a special case of the process {(X(t), V (t)), t ≥ 0}, with initial
condition defined by Eq. (13) when V (0) = �v1 and for fixed directions.
Assumption 1 The following conditions hold:

(i) The particle’s motion is confined in a regular tetrahedron T (t) characterized by
the vertices:

A1(t) = ct
(
1, 0, 0

)
, A2(t) = ct

(
− 1

3
,
2
√
2

3
, 0

)
,

A3(t) = ct

(
− 1

3
,−

√
2

3
,

√
2

3

)
, A4(t) = ct

(
− 1

3
,−

√
2

3
,−

√
2

3

)
.

(31)

The vertices in (31) refer to (10) with appropriate choices of θ j and ϕ j , 1 ≤ j ≤ 4. More
precisely, the motion is characterized by the four directions led by the angles given in
Table 1. A graphical representation is shown in Fig. 1.

(ii) The vertices in Eq. (31), identified by the directions �v j , for 1 ≤ j ≤ 4, satisfy the
conditions (i)-(iv) listed in Remark 2.

(iii) The random times Dj,n , for n ∈ N and 1 ≤ j ≤ 4, represent the j-th duration of
the motion within the n-th cycle and constitute the intertimes of a GCP with intensity
λ j ∈ R

+.
An example of projections onto the state-space R

3 of suitable paths of the process
{(X(t), V (t)), t ≥ 0} under the Assumptions 1 is shown in Fig. 1. It is easy to see that
the particle can eventually reach any position of R3, since T (t) → R

3 as t → ∞.
Moreover, by taking into account the region defined in (12) and Assumptions 1 we have

that at every time t > 0 the set of possible positions x ∈ R
3 of the moving particle is

the tetrahedron

T (t) =
{
(x1, x2, x3) ∈ R

3 : − ct

3
< x1 < ct; −ct − x1

2
√
2

< x2 <
ct − x1√

2
,

|x3| <

√
6

6
(ct − x1 − √

2x2)

}
.

(32)
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Fig. 1 A sample of the set T (t),
with directions �v j , for 1 ≤ j ≤ 4,
and fixed vertices given in (31)

Remark 4 We observe that the set T (t) grows as time elapses and, recalling Remark 3, the
volume is given by Vol(T (t)) = ( 4

3

)2√3(ct)3.

Two sample paths of the region T (t), defined in (32), with directions �v j , 1 ≤ j ≤ 4, is
illustrated in Fig. 2.

Under the hypothesis of Assumptions 1, we are now able to determine the explicit prob-
ability laws of the process {(X(t), V (t)), t ≥ 0} when the random intertimes of the motion
along the possible directions �v j follow four possible independent GCPs with intensities λ j ,
1 ≤ j ≤ 4. Specifically, in the following theorem, in order to obtain a tractable form for
the third component given in (iii) of Remark 2, we assume that the sojourn times along
the directions �v1, �v2, and �v3 follow three independent GCPs with identical intensity λ (i.e.,
λ1 = λ2 = λ3 := λ).

Fig. 2 Two possible paths with
the first four segments of the
cyclic motion defined in Section
2 under the conditions of Remark
1 with c = t = 1. The initial
velocity is �v1
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Theorem 4 (Initial components) Let {(X(t), V (t)), t ≥ 0} be the stochastic process defined
in Section 2 under the initial condition defined in Eq. (13) with velocity �v1. If Assumption 1
hold and the four sequences of intertimes are identically distributed and follow a GCP with
intensity λ j , 1 ≤ j ≤ 4, then for all t ≥ 0, we have

η1(t) = P1

{
X(t) = (ct, 0, 0), V (t) = �v1

}
= 1

1 + λ1t
, (33)

η2(t) = P1

{
X(t) ∈ E12, V (t) = �v2

}

= λ1

(λ1 + λ2 + λ1λ2t)2

{
λ1t(λ1 + λ2 + λ1λ2t)

1 + λ1t
+ λ2 log

[
(1 + λ1t)(1 + λ2t)

]}

(34)
and

η3(t) = P1

{
X(t) ∈ F123, V (t) = �v3

}
= Rλ(t), (35)

where for λ1 = λ2 = λ3 = λ one has

Rλ(t) = 1

(2 + λt)2(3 + λt)3
{
2 log(1 + λt)

[
(3 + λt)

(
λt(3 + 2λt)

) + 4(2 + λt)2 log(2 + λt)

]

+ (2 + λt)

[
π2(2 + λt) + λt(3 + λt)2 − 4(2 + λt) log

(
1

2 + λt

)
log

(
1 + λt

2 + λt

)]

+ 4(2 + λt)2
[
Li2

( − (1 + λt)
) + 2Li2

(
1 + λt

2 + λt

)]}

where Li2(·) is the dilogarithm function.

Proof Recalling Theorem 1, under Assumption 1, Eq. (33) is obtained making use of Eq. (6)
in the following expression

P1{X(t) ∈ A1(t), V (t) = �v1} = 1 −
∫ t

0
fD1,1(s)ds.

Similarly, Eqs. (34) and (35), when V (0) = �v2 and V (0) = �v3, are given by

P1{X(t) ∈ E12(t), V (t) = �v2} =
∫ t

0
fD1,1(s)

∫ ∞

t−s
fD2,1(u)du ds

and

P1{X(t) ∈ F123(t), V (t) = �v3} =
∫ t

0
fD1,1+D2,1(s) fD3,1(t − s)ds,

respectively, after some calculations. �

In Fig. 3 are shown some plots of the probabilities given in Eqs. (33), (34) and (35) for
different choices of the intensities λ j , 1 ≤ j ≤ 3, respectively.

Theorem 5 (Absolutely continuous components) Let {(X(t), V (t)), t ≥ 0} be the stochastic
process defined in Section 2 under the initial condition defined in Eq. (13) with velocity �v1.
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Fig. 3 Left to right: plot of η1(t) with λ1 = 1 (solid), 2 (dotted), 10 (dashed); plot of η2(t) with λ1 = 1 and
λ2 = 2 (solid line), λ1 = 2 and λ2 = 4 (dotted line), λ1 = 5 and λ2 = 10 (dashed line); plot of η3(t) with
λ = 1 (solid), 5 (dotted), 10 (dashed)

For all x ∈ Int(T (t)), with T (t) given in (32), we have

p11(x, t) = λ1λ2λ3λ4τ1

×
[
1 + A(τ ) + B(τ ) + C(τ )

]2 + 6D(τ )
[
1 + A(τ ) + B(τ ) + C(τ ) + D(τ )

]

det A
[
1 + A(τ ) + B(τ ) + C(τ )

]4 ,

p12(x, t) = 2λ21λ2λ3λ4τ1τ2(1 + λ2τ2)(1 + λ3τ3)(1 + λ4τ4)

×
[
1 + A(τ ) + B(τ ) + C(τ ) + 3D(τ )

]

detA
[
1 + A(τ ) + B(τ ) + C(τ )

]4 ,

p13(x, t) = 2λ21λ
2
2λ3λ4τ1τ2τ3(1 + λ3τ3)(1 + λ4τ4)

×
[
1 + A(τ ) + B(τ ) + C(τ )

] + 3D(τ )

det A
[
1 + A(τ ) + B(τ ) + C(τ )

]4 ,

p14(x, t) = λ1λ2λ3(1 + λ4τ4)

×
[
1 + A(τ ) + B(τ ) + C(τ )

]2 + 6D(τ )[1 + A(τ ) + B(τ ) + C(τ ) + D(τ )]
det A

[
1 + A(τ ) + B(τ ) + C(τ )

]4 ,

(36)
with

det A = 16
√
3

9
c3, A(τ ) =

4∑

i=1

λiτi , B(τ ) =
4∑

i, j=1
i< j

λiλ jτiτ j ,
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Fig. 4 Plot of p1(x, t) for c = t = 1 and x1 = 1/2 on the left-side and c = 1, t = 2 and x1 = 1 on the
right-side

C(τ ) =
4∑

i, j,k=1
i< j<k

λiλ jλkτiτ jτk, D(τ ) =
4∏

i=1

λiτi ,

and where the terms τ j = τ j (x, t), for 1 ≤ j ≤ 4, are given by

τ1 = ct + 3x1
4c

, τ2 = ct − x1 + 2
√
2x2

4c
,

τ3 = ct − x1 − √
2x2 + √

6x3
4c

, τ4 = ct − x1 − √
2x2 − √

6x3
4c

.

(37)

Proof Equations (36) are obtained in a closed form as an immediate consequence of Theorem
3 after straightforward calculations.

We observe that the values of τ j in (37) are obtained directly from Eq. (25) in Proposition
2. Moreover, due to Eq. (16), under the assumptions of Theorem 5 the p.d.f. p1(x, t) can be
immediately obtained from Eq. (36).

As example, some plots of p1(x, t) are illustrated in Fig. 4 for fixed c > 0 and t > 0 and
x1 ∈ (−ct/3, ct). Note that the domain for (x2, x3) has a triangular form. Moreover, from
Eq. (32) and Theorem 5 it is clear that the dependence on c and t is expressed through the
product ct .

Hereafter, we study the asymptotic behaviour of the p.d.f. of the particle location X(t)
defined in (16)when the intensitiesλ j tend to infinity, for 1 ≤ j ≤ 4. In particular, substituting
Eq. (36) in Eq. (16) we obtain the following corollary.

Corollary 1 Under the assumptions of Theorem 5, for t > 0 and x ∈ Int(T (t)) one has

lim∀ j, λ j→+∞
∀i, λ1/λi→1

p1(x, t) = ξ(x, t),

where ξ(x, t) is the following p.d.f.

ξ(x, t) = 6t(τ1τ2τ3τ4)2

det A[(τ1τ2τ3)4 + (τ1τ2τ4)4 + (τ1τ3τ4)4 + (τ2τ3τ4)4] , (38)

with τ j expressed in (25).
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Fig. 5 Plot of ξ(x, t) for c = t = 1 and x1 = 1/2 on the left-side and c = 1, t = 2 and x1 = 1 on the
right-side

Some instances of ξ(x, t) given in Eq. (38) are plotted in Fig. 5 for fixed c > 0 and t > 0,
with x1 ∈ (−ct/3, ct).

Remark 5 Under the assumptions of Theorem 5, we note that, for t > 0 and 1 ≤ j ≤ 4,
the limit of p1(x, t) for (x1, x2, x3) → (ct cos θ j sin ϕ j , ct sin θ j sin ϕ j , ct cosϕ j ) can be
computed in a closed form that we omit due to its complexity.

Similarly to the classical telegraph process driven by the Poisson process (see, e.g., Lemma
2 of Orsingher (1990)), it is not hard to see that the process X(t) does not admit a stationary
state. In the next corollary making use of Eq. (16) we analyze the asymptotic behaviour of
density p1(x, t) when the time t tends to +∞.

Corollary 2 Under the assumptions of Theorem 5, for t > 0 and x ∈ Int(T (t)) one has

lim
t→+∞ p1(x, t) = 0.

Proof Recalling Eq. (16), the stated result follows by noting that each density p1, j (x, t) in
(36), for 1 ≤ j ≤ 4, behaves as t−3 as t tends to infinity. �

The results expressed in this section forV (0) = �v1 can be extended to the casesV (0) = �v j ,
for 2 ≤ j ≤ 4, by using a similar strategy.

6 Concluding Remarks

In this paper we analyzed a finite random motion in R
3 where the sojourn times along each

direction form four independent GCPs, and where the possible directions alternate cyclically.
This work has been inspired by Di Crescenzo et al. (2023) with the aim to define similar
processes in higher dimensions with possibly variable velocities. Potential applications in
biomathematics, engineering, financial and actuarial sciences allow to investigate possible
future developments also oriented to the study of the first-passage-time problem.

Here, in order to illustrate the basic issues of this problem, we introduce the (upward)
first-passage time for the first component of the process {(X(t), V (t)), t ≥ 0} through a
constant barrier, say β > 0, conditional on C1 (cf. Equation (13)) given by

τβ = inf{t ≥ 0 : X1(t) ≥ β}, X(0) = 0, V (0) = �v1, | �v1| = c, (39)
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Fig. 6 Illustration the constant
barrier β > 0 for the first-passage
time problem introduced in (39)

for c > 0. The probability distribution of (39) can be expressed in terms of the sub-
density functions:

gβ(t, k) := P1{τβ ∈ dt, N (t) = k}
dt

, k ∈ N.

In particular, by the law of total probability, we express the conditional distribution of τβ

in the form

P1{τβ ∈ dt} = P{D1,1 > t}δ β
c
(dt) +

+∞∑

k=1

P1{τβ ∈ dt, N (t) = k}, (40)

where δ β
c
is the Dirac delta measure at β

c , and N (t) is the alternating counting process

introduced in Eq. (2). The first term on the right-hand-side of (40) corresponds to the motion
without any direction switching up to time t . The series on the right-hand side of (40)
represents the absolutely continuous component of the first-passage-time distribution, which
arises when at least one direction reversal occurs. We also recall that D1,1, defined in Eq.
(1), is the random duration of the first time interval during which the particle proceeds with
velocity �v1. In order to describe the first-passage-time problem, we consider as threshold the
plane x1 = β and project the vectors �v j , for 1 ≤ j ≤ 4, onto the x1-axes according to the
following relation

�v jx1
= proj �w1(�v j ) = �w1 · �v j

|| �w1||2 · �w1, 1 ≤ j ≤ 4.

The latter is the projection of the vector �v j on �w1, which is the versor along the x1-axes.
An illustration of the problem is shown in Fig. 6.

Clearly, under Assumption 1 of Section 5, we have:

�v1x1 = c(1, 0, 0), �v2x1 = c
( − 1

3
, 0, 0

)
,

�v3x1 = c
( − 1

3
, 0, 0

)
, �v4x1 = c

( − 1

3
, 0, 0

)
.

Due to the complexity of the problem, we discuss only the first cycle of particle motion
concerning Dj,1 (1 ≤ j ≤ 4). We point out that the particle may reach the threshold x1 = β
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only when it runs with velocity �v1x1 , since the other directions �v2x1 , �v3x1 and �v4x1 refer to
motion in the opposite direction. Moreover, with reference to the first term in the right-hand-
side of (40), one has

P(D1,1 > t) = P

{
X1(τβ) = β, V (τβ) = �v1

}

= P

{
τβ = β

c
, N (τβ) = 0

}

= FD1,1

(
β

c

)
= 1

1 + λ1β/c
.

Clearly, during the randomperiods D2,1, D3,1, D4,1,when the particlemoveswith velocity
�v2x1 = �v3x1 = �v4x1 = − c

3 , it cannot reach the threshold β since it moves in the opposite
direction. Therefore, the position occupied by the particle at the end of the first period of
motion D(1)

1 is given by

X1(t) = cD1,1 − c

3

(
D2,1 + D3,1 + D4,1

)
.

It is worth mentioning that the determination of an explicit form for the terms in the series
of (40) is in general very difficult even when k is small and when the intensities λi are equal.
Hence, in view of possible future developments, in a forthcoming investigation we aim to
apply computational methods to determine the related probabilities.

In conclusion, as already mentioned in Section 1, we stress that the analysis of finite-
velocity random motions in multidimensional domains deserves interest in various applied
fields. In particular, the motion of a particle in a three-dimensional space as studied in this
paper provides possible applications also in chemistry, since the tetrahedral geometry char-
acterizes the shape of many molecules. Indeed, the motion of a particle is isotropic, i.e., the
direction of its movement is uniformly distributed on the unit sphere in R3. Thus, according
to this interpretation, Eq. (15) can be employed to represent the wave function of the electron.
Moreover, applications in chemistry are also motivated as follows. Silicon is a semiconductor
widely present in nature and characterized by a tetrahedral crystalline lattice. Semiconduc-
tor doping techniques consist of introducing impurities into the lattice, and are applied to
alter their electrical conductivity. If phosphorus is introduced into the crystalline structure of
silicon, it happens that 4 electrons of phosphorus replace the 4 ones of silicon, and the last
electron of phosphorus will instead be free to travel within the lattice (cf. Schubert (1993)).
Hence, the stochastic process {(X(t), V (t)), t ≥ 0} studied in this paper may be employed
to describe the alternating motion of such an electron within the tetrahedral structure. Stim-
ulated by this correspondence, possible future developments may be finalized to generate a
more exhaustive model, enriched by a larger number of possible directions of the motion.

Further interesting real applications of finite-velocity random motions for modelling ran-
dom occurrences of events in time and space are related, for instance, to biology (for the
random motions of microorganisms), to geology (for alternating trends in volcanic areas),
and to physics (for the vorticitymotion in two ormore dimensions, seeOrsingher andRatanov
(2008)).Moreover, finite-velocity randommotions inR3 are also useful to describe themove-
ments of particles in gases, see, for instance, Reimberg andAbramo (2013), where the authors
introduce an application to the study of photon propagation in the Cosmic Microwave Back-
ground (CMB) radiation. At least, using a similar approach, relevant real applications in
higher dimensions concerning cyclic randommotions under a GCP can be explored in future
works even if the computation complexity in the resolution of the probability law is a very
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hard task. Hence, in our view the finite-velocity randommotion discussed here is an extension
of the telegraph process to the spaceR3 and it is probably one of the possible ways for which
the explicit distribution of the position X(t), under the assumption introduced in Section 2.1,
can be determined.
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