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Abstract: Owing of their accessibility and wide range of reactivities, alkynes make for fascinating
building blocks. Either a selective alkyne carbon-carbon triple bond reaction or activation of the
terminal alkyne C-H bond may be employed to functionalize them. Monocationic coinage metal
complexes with a d10 electronic configuration are effective catalysts for alkyne activation. Silver(I)
and gold(I) N-heterocyclic (NHC) systems are emerging as promising catalysts in multicomponent
alkyne activation reactions; this review paper focuses on A3 (aldehyde-amine-alkyne)-coupling
reaction and carbon dioxide fixation, furnishing a systematic overview of the scientific advances
achieved during the last two decades. This study will carefully compare the corresponding silver
and gold complexes employed in the two processes. The differences in reaction routes brought about
by the catalyst ligand structure will be investigated with an emphasis on evaluating the benefits
provided by the easily tuneable NHC backbone, in terms of chemo- and stereo-selectivity.

Keywords: NHC complexes; silver complexes; gold complexes; A3-coupling; CO2 fixation

1. Introduction

Alkynes provide for intriguing building blocks as they are easily accessible and display
a variety of reactivities. Their functionalization can be carried out either with a selective
alkyne carbon-carbon triple bond reaction or as activation of the terminal alkyne C-H
bond. A single or multiple functional groups can be introduced by π-bond breaking; on
the other hand, alkynyl C-H bonds (pKa = 25) are particularly responsive, since they are
significantly more acidic than their equivalent alkenyl and alkyl C-H bonds (pKa = 43 and
>50, respectively). Hence, under various basic circumstances, base-promoted additions of
terminal alkynes to carbonyl compounds can occur [1]. Classical, stoichiometric alkyne
addition have been taken over by more sustainable processes, which take into account
atom economy and chemoselectivity. Innovative, effective procedures that take use of
the substrate’s coexisting π-donor and π-acceptor features are transition metal-catalyzed
insertion techniques across the triple bond of alkynes [1–3]. Monocationic coinage metal
complexes with a d10 electronic configuration are effective catalysts for alkyne activation
due to metal donation from p to s and metal to p* back-bonding. Although copper catalysis
is the most investigated in the literature, silver(I) and gold(I) systems are emerging as
efficient alternatives, thanks to their enhanced stability and ease management [3–5]. N-
Heterocyclic Carbenes (NHCs) are ideal systems for suitably modifying ligands to fine-tune
reactivity, chemo-, and stereo-selectivity; these two-electron donor ligands combine strong
σ-donating properties with a steric profile that permits both stabilisation of the metal centre
and improvement of its catalytic activity [6,7]. The synthesis of such complexes has been
extensively investigated over the past couple of decades, as well as their catalytic applica-
tions, which are widespread [8–10]. The main focus of this review article is the application
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of NHC-silver(I) and gold(I) complexes in multicomponent (MC) reactions, with a specific
attention to A3 (aldehyde-amine-alkyne)-coupling reaction and carbon dioxide fixation.
Such processes have gained more and more attention over the past decade, as testified
by the exponential growth in published papers. One-pot catalysis, performed in classical
organic solvents, as well as neat conditions or even polar solvents such as water, renders
for efficient, atom-economic processes. The main products, namely propargylamines and
propiolic acids, constitute interesting, versatile building blocks towards more complex
chemical architectures, some of which are mentioned in this paper. The variations in catalyst
performance brought on by the various NHC backbones will be addressed, and a careful
comparison of the analogous silver and gold complexes used in the two MC reactions will
be conducted. With a focus on examining the reaction mechanism, the variations in reaction
pathways brought about by the catalyst structure will be explored with the purpose of
generating fresh ideas for the design and development of novel and ever more efficient
catalytic complexes.

2. A3–Coupling Reaction

The A3-reaction is a three-component coupling involving an aldehyde, a terminal
alkyne and an amine (Scheme 1). It represents the most efficient method to obtain propar-
gylamines.
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Propargylamines constitute an important family of chemicals employed as organic
building blocks and for realizing medicinal drugs such as Selegenine [11] and Rasagi-
line [12], that are currently used in the early treatment of Parkinson’s and Alzheimer’s
diseases. The classical route for the synthesis of propargylamines is the nucleophilic ad-
dition of a metal acetylide to an imine. The acetylide is obtained by reaction of terminal
alkynes with a strong base, such as butyllithium. The need to use stoichiometric amounts
of acetylide, anhydrous conditions, and low temperatures, makes this method inconve-
nient. An alternative synthetic strategy has been developed over the past decade; catalytic
amounts of transition metal inorganic salts can be used in the coupling reaction of equimo-
lar quantities of aldehydes, amines and alkynes (A3) [13,14]. Thanks to its atom economy
and high chemical selectivity, this synthetic strategy has received more and more attention.

The first catalysts used in the A3-coupling reactions [15] displayed a few drawbacks:
high catalyst loading percentages and high temperatures. Copper [16], silver and gold
complexes with N-heterocyclic carbenes (NHCs) were synthesized and tested as valid
catalytic alternatives meant to overcome these downsides [5].

A proposed plausible mechanism for this three-components reaction, catalyzed by a
late-transition metal NHC complex, is reported in Scheme 2 [15,17]. After the formation of
an intermediate complex by side-on coordination of the alkyne to the metal, the weakly
basic amine deprotonates the alkyne (whose acidity is now increased) and thus generates
the corresponding metal acetylide. Lastly, the addition of this intermediate to an in situ
generated imine (or iminium ion), leads to the desired propargylamine [18–22].
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Figure 1. NHC-Ag(I) and PS-NHC-Ag(I) synthesized by Wang [23]. 

They were employed in the A3-coupling reaction of paraformaldehyde (1.0 mmol), 
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a 2 mol% amount of the silver catalyst in CH2Cl2, under nitrogen atmosphere. The results 
are summarized in Table 1. The catalytic activity of NHC-Ag(I) and PS-NHC-Ag(I) com-
plexes decreased in this order: 1b > 1c > 1d > 1a and 2b > 2c > 2d > 2a, and this was the 
result of the influence of the substituted groups of the imidazolium salts: CH2Ph > Ph > t-
Bu > Me. 

Table 1. Effect of Silver catalysts on A3-coupling reaction. 
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5 2a 69 

Scheme 2. Proposed reaction mechanism for NHC-M-X catalyzed A3-coupling reactions.

In 2008, Wang and co-workers reported the synthesis of a series of NHC-Ag(I) (1a–d)
and polystyrene supported PS-NHC-Ag(I) (2a–d) complexes (Figure 1) [23].
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Figure 1. NHC-Ag(I) and PS-NHC-Ag(I) synthesized by Wang [23].

They were employed in the A3-coupling reaction of paraformaldehyde (1.0 mmol),
phenylacetylene (1.1 mmol) and piperidine (1.1 mmol) at room temperature for 24 h, with a
2 mol% amount of the silver catalyst in CH2Cl2, under nitrogen atmosphere. The results are
summarized in Table 1. The catalytic activity of NHC-Ag(I) and PS-NHC-Ag(I) complexes
decreased in this order: 1b > 1c > 1d > 1a and 2b > 2c > 2d > 2a, and this was the result of
the influence of the substituted groups of the imidazolium salts: CH2Ph > Ph > t-Bu > Me.

Thus, 1b and 2b (Table 1, Entries 2 and 6) resulted as the best catalysts for the A3-
coupling reaction. Low catalytic activities were observed with Ag2O or AgI (Table 1,
Entries 9 and 10); moreover, there was no propargylamine formation in the absence of the
silver source.
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Table 1. Effect of Silver catalysts on A3-coupling reaction.
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Entry a Catalyst Yield (%) b

1 1a 61
2 1b 80
3 1c 74
4 1d 68
5 2a 69
6 2b 90
7 2c 80
8 2d 75
9 Ag2O 37
10 AgI 31

a Reaction conditions: paraformaldehyde (1.0 mmol), piperidine (1.1 mmol), phenylacetylene (1.1 mmol), silver
catalyst (2 mol%), CH2Cl2 (0.5 mL), nitrogen atmosphere, room temperature, 24 h. b Isolated yields.

The authors evaluated the effect of the solvent on the A3-coupling reaction as well,
using catalyst 2b. Among the various solvents tested, acetone, acetonitrile, dimethyl
sulfoxide, and dichloromethane proved to be the best, but the highest yield (97%) was
obtained under neat conditions (Table 2, Entry 10).

Table 2. Effect of the solvent on A3-coupling reaction using 2b as catalyst.
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Entry a Solvent Yield (%) b

1 Acetone 95
2 Acetonitrile 91
3 Dimethyl sulfoxide 90
4 Dichloromethane 90
5 Dimethylformamide 84
6 Toluene 69
7 Tetrahydrofuran 62
8 Ethanol 49
9 Water 42
10 Neat 97

11 c Neat 71
a Reaction conditions: paraformaldehyde (1.0 mmol); piperidine (1.1 mmol); phenylacetylene (1.1 mmol); 2b
(2 mol%); solvent (0.5 mL); nitrogen atmosphere; room temperature; 24 h. b Isolated yields. c 2b (1 mol %)
was used.

Furthermore, the recyclability of PS-NHC-Ag(I) catalyst 2b was also investigated.
The catalyst recovered by filtration maintained its ability to give A3-coupling reaction
for 12 consecutive cycles. The catalysis tests with these complexes were extended to
different combinations of amines, aldehydes and alkynes obtaining the corresponding
propargylamines in good to excellent yields (85–98%).

In 2010, Zou et al. [15] described the synthesis of some NHC-Ag-X complexes: 1-
cyclohexyl-3-benzylimidazolylidene and 1-cyclohexyl-3-naphtylimidazolylidene chloride
and bromide (3a–d) that are reported in Figure 2.
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Figure 2. NHC-Ag-X complexes synthesized by Zou et al. [15].

These compounds were obtained by reaction of silver oxide with the corresponding
imidazolium salts in dichloromethane, following a procedure reported previously in the
literature [24].

One equivalent of sodium nitrate was added to the reaction mixture of silver oxide and
1-cyclohexyl-3-benzylimidazolylidene in tetrahydrofuran to give a weakly coordinating
anion; in this way the desired biscarbene silver nitrate (4) was obtained (Figure 3).
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Figure 3. (A) [(CyBn-NHC)AgCl]2 complex 3a structure and relative (B) dimeric trans conformation
crystal structure; (C) [(CyBn-NHC)2Ag]+ NO3

− complex 4 structure and relative (D) dimeric cis
conformation crystal structure (anion omitted).

NMR and elemental analyses provided only a few information on the NHC silver com-
plexes’ molecular structure, thus single crystal X-ray diffraction analysis was performed.
The analysis revealed that the complexes 3a and 3b have a trans conformation dimeric struc-
ture with a non-polar Ag-Ag bond (Figure 3A,B) report the exemplificative structure for
complex 3a); the complex 4 contains two NHC ligands with a cis orientation (Figure 3C,D),
while the complexes 3c and 3d show the desired monomeric structure complexes 3a–d
and 4 were tested as catalysts in the A3-coupling reaction of 3-phenylpropionaldehyde,



Catalysts 2023, 13, 811 6 of 46

phenylacetylene and piperidine; the same were used, at 100 ◦C in air, also with alkyl
alkynes, such as octyne, and aromatic aldehydes, both electron rich and deficient ones,
giving the desired propargylamine in good yields. The results are shown in Table 3.

Table 3. Complexes 3a–d and 4 catalytic activity in the A3-coupling reaction.
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2 3b 3-phenylpropionaldehyde phenylacetylene 100 2 61
3 4 3-phenylpropionaldehyde phenylacetylene 100 2 77
4 3c 3-phenylpropionaldehyde phenylacetylene 100 2 99
5 3d 3-phenylpropionaldehyde phenylacetylene 100 2 84
6 AgCl 3-phenylpropionaldehyde phenylacetylene 100 2 80
7 AgBr 3-phenylpropionaldehyde phenylacetylene 100 2 64
8 AgI 3-phenylpropionaldehyde phenylacetylene 100 2 49
9 AgNO3 3-phenylpropionaldehyde phenylacetylene 100 2 61

10 Ag2O 3-phenylpropionaldehyde phenylacetylene 100 2 78
11 3c 3-phenylpropionaldehyde phenylacetylene 50 12 81
12 3c 3-phenylpropionaldehyde phenylacetylene r.t. 72 69

13 c 3c 3-phenylpropionaldehyde phenylacetylene 100 12 31
14 3c 3-phenylpropionaldehyde octyne 100 6 64
15 3c 4-chlorobenzaldheyde phenylacetylene 100 12 77
16 3c Piperonaldheyde phenylacetylene 100 12 49

a Reaction conditions: aldehyde (1.0 mmol); piperidine (1.2 mmol); alkyne (1.5 mmol); NHC-Ag-X catalysts
(3 mol%); dioxane (3 mL). b Isolated Yield. c Run in water. r.t. Room temperature.

The activities of NHC silver halides 3a and 3b were scarce when compared with simple
inorganic silver halides AgCl and AgBr (Table 3, Entries 1–2 and 6–7). The yields increased
with the complexes 3c and 3d thanks to the improved steric hindrance of 1-cyclohexyl-3-
naphthalen-2-ylmethylimidazolylidene: in particular, the reaction with complex 3c com-
pleted in 2 h giving the product in a 99% yield (Table 3, Entries 4–5). Although cationic
complexes are reported to exhibit high catalytic activity in the A3-coupling reaction, the
cationic biscarbene silver nitrate complex 4 did not show better catalytic performance
than the one observed with silver halides, due to the steric hindrance of the silver in the
biscarbene cation [(NHC)2Ag]+ (Table 3, Entry 3). Reaction times were longer at lower
temperatures (Table 3, Entries 11–12).

In 2012 Navarro and co-workers [25] reported a study on A3-coupling reaction using
analogous silver complexes with carbenes as ligands. They described the synthesis of
NHC-Ag-X complexes starting from commercially available NHCs or their precursors,
imidazolium salts [26–29]. These complexes, reported in Figure 4 (5a–d and 6a–b), were
tested in the reaction of cyclohexanecarboxaldehyde (1.0 mmol), piperidine (1.1 mmol) and
phenylacetylene (1.1 mmol) at 25 ◦C, with an amount of the catalyst of 1–2 mol% and with
different solvents.



Catalysts 2023, 13, 811 7 of 46

Catalysts 2023, 13, x FOR PEER REVIEW 7 of 47 
 

 

tested in the reaction of cyclohexanecarboxaldehyde (1.0 mmol), piperidine (1.1 mmol) 
and phenylacetylene (1.1 mmol) at 25 °C, with an amount of the catalyst of 1–2 mol% and 
with different solvents. 

 
Figure 4. NHC-Ag(I) complexes synthesized by Navarro and co-workers [25]. 

The authors used 5a ((IPr)AgCl) complex to optimize the reaction conditions. As 
shown in Table 4 (Entry 11, the use of methanol as solvent led to the highest yields when 
1 mol% of the complex was employed. 

Table 4. Effect of the solvent on the A3-coupling reaction. 

 

Entry a Solvent Time (h) Yield (%) b 
1 Neat 3 62 
2 Acetone 3 63 
3 Dichloromethane 3 69 
4 Acetonitrile 3 96 
5 Toluene 3 9 
6 Dimethylformamide 3 57 
7 Water 3 19 
8 Isopropanol 1 88 
9 Methanol 1 98 

10 Isopropanol 0.25 68 
11 Methanol 0.25 94 

a Reaction conditions: cyclohexanecarboxaldehyde (1.0 mmol); piperidine (1.1 mmol); phenylacety-
lene (1.1 mmol); catalyst 5a (1.2 mol%); solvent (0.5 mL); 25 °C. b GC yield (hexamethylbenzene as 
internal standard); average of 2 runs. 

Subsequently, they carried out a study using methanol as solvent to evaluate the ac-
tivity of the synthesized catalysts, i.e., 5a–d and 6a–b. The counterion has a notable effect, 
in fact the acetate ion gives the highest activity, while the halides follow the order Cl > Br 
>> I. Probably the polarizability of the counterion and its electronegativity are important 
factors. It should be noted that there are no important differences in the formation of the 
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The authors used 5a ((IPr)AgCl) complex to optimize the reaction conditions. As
shown in Table 4 (Entry 11, the use of methanol as solvent led to the highest yields when
1 mol% of the complex was employed.

Table 4. Effect of the solvent on the A3-coupling reaction.
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Entry a Solvent Time (h) Yield (%) b

1 Neat 3 62
2 Acetone 3 63
3 Dichloromethane 3 69
4 Acetonitrile 3 96
5 Toluene 3 9
6 Dimethylformamide 3 57
7 Water 3 19
8 Isopropanol 1 88
9 Methanol 1 98
10 Isopropanol 0.25 68
11 Methanol 0.25 94

a Reaction conditions: cyclohexanecarboxaldehyde (1.0 mmol); piperidine (1.1 mmol); phenylacetylene (1.1 mmol);
catalyst 5a (1.2 mol%); solvent (0.5 mL); 25 ◦C. b GC yield (hexamethylbenzene as internal standard); average of
2 runs.

Subsequently, they carried out a study using methanol as solvent to evaluate the
activity of the synthesized catalysts, i.e., 5a–d and 6a–b. The counterion has a notable effect,
in fact the acetate ion gives the highest activity, while the halides follow the order Cl > Br
>> I. Probably the polarizability of the counterion and its electronegativity are important
factors. It should be noted that there are no important differences in the formation of
the propargylamine, using a complex with saturated N-heterocyclic carbene based ligand
(6a–b), compared to the complex with unsaturated ones (5a–d).

As shown in Table 5, the highest yield (96%, in 20 min) was obtained with 1 mol% of
the complex 6b. The study was extended to different amines, aldehydes and alkynes. The
complex 6b was able also to catalyze the coupling reaction of inactivated aryl aldehydes at
room temperature, even if the reaction times resulted longer. Times could be shortened by
increasing the temperature and/or the catalyst loading.
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Table 5. Effect of the catalyst on the A3-coupling reaction after 20 min.
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Entry a Complex Yield (%) b

1 5a 86
2 6a 88
3 5b 70
4 5c 9
5 5d 91
6 6b 96

a Reaction conditions: cyclohexanecarboxaldehyde (1 mmol); piperidine (1 mmol), phenylacetylene (1.1 mmol);
catalyst (1 mol%); methanol (0.5 mL); 25 ◦C; 20 min. b GC yield (hexamethylbenzene as internal standard); average
of 2 runs.

The synthesis and the catalytic activity in A3-coupling reactions of a supported Ag(I)-
NHC-MOF complex was reported in 2013 [30]. Metal-organic frameworks (MOFs) are
efficient heterogeneous catalysts featuring a metallic core and malleable organic linkers
(see Figure 5). They display large pores, high surface area, and can selectively adsorb small
molecules. To combine the advantageous properties of MOFs and NHCs, the latter can be
integrated into MOFs. In this way, systems with multiple, embedded catalytic sites in a
single structure can be obtained. According to a previous work by Kitagawa et al., Mousavi,
Verpoort and co-workers [31] reported the synthesis of the MOF A, consisting of the [Zn8O]
clusters with six metallomacrocycles and NHC moieties, as shown in Figure 5 [30].
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The NHC carbon of the MOF A was deprotonated and, then, different amounts of
Ag(OAc) were added in order to obtain MOF-NHC-Ag(I) complexes (7–10), as shown in
Table 6.

Table 6. MOF-NHC-Ag(I) synthesized complexes with different amounts of silver.

Entry a Catalyst Ag(OAc) MOF A

1 7 25.0 mg, 0.15 mmol 60.0 mg, 0.1 mmol
2 8 20.0 mg, 0.12 mmol 60.0 mg, 0.1 mmol
3 9 12.5 mg, 0.075 mmol 60.0 mg, 0.1 mmol
4 10 7.5 mg, 0.045 mmol 60.0 mg, 0.1 mmol

a Reaction conditions: Ag(OAc) (different amounts), MOF (60.0 mg, 0.1 mmol), CH2Cl2 (60 mL), nitrogen
atmosphere, room temperature, 12 h; and then 39 ◦C, 24 h.
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These complexes were tested in A3-coupling reaction of phenylacetylene (1.1 mmol),
para-formaldehyde (1.0 mmol) and diisopropylamine (1.1 mmol) at room temperature in
dichloromethane as solvent. In Tables 7 and 8, the activities of MOF A and MOF-NHC-Ag(I)
complexes in the A3-coupling reaction are reported.

Table 7. Effect of the catalyst on A3-coupling reaction.
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Entry a Catalyst Time Conversion (%) b

1 MOF A 2 h 30
2 MOF A 6 h 57
3 MOF A 15 h 86
4 MOF A 24 h >99
5 MOF A 36 h >99
6 9 15 min 22
7 9 30 min 67
8 9 45 min 83
9 9 1 h >99

a Reaction conditions: paraformaldehyde (1.0 mmol); diisopropylamine (1.1 mmol); phenylacetylene (1.1 mmol);
MOF or MOF-NHC-Ag(I) (5 mg); CH2Cl2 (2.0 mL); nitrogen atmosphere; room temperature. b Conversions were
determined by 1H-NMR.

Complex 9 led to a full conversion of the reagents into the propargylamine after 1 h
unlike the MOF A which led to the complete conversion in 24 h. This demonstrated that
silver plays a crucial role in the catalysing the A3-coupling reaction. This is evident by
observing Figure 6, which shows the conversions as a function of the amount of catalyst.
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Using complex 9 as catalyst, the effect of the solvent on the A3-coupling reaction
was also studied, and the results are summarized in Table 9. Reactions carried out in
dichloromethane, acetone, acetonitrile gave the highest conversions. Toluene produced
modest results and the reaction did not occur at all in solvents such as dimethyl sulfoxide
and dimethylformamide. Reactions in tetrahydrofuran and in neat conditions generated
the desired product.

Table 9. Effect of the solvent on A3
-coupling reaction using complex 7.
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Entry a Solvent Conversion (%) b Yield (%) b

1 Dichloromethane >99 97
2 Acetone 78 75
3 Acetonitrile 92 89
4 Dimethyl sulfoxide n.d. c n.d.
5 Dimethylformamide n.d. n.d.
6 Tetrahydrofuran 62.5 59
7 Toluene 29 25
8 Neat 53 50

a Reaction conditions: paraformaldehyde (1.0 mmol); diisopropylamine (1.1 mmol); phenylacetylene (1.1 mmol);
complex 7 (5 mg); CH2Cl2 (2.0 mL); nitrogen atmosphere; room temperature. b Conversions and yields were
determined by 1H-NMR. c Not detectable.

In the years 2015–2017, Bantreil, Mètro, and co-workers [32–34] reported the solvent-
free synthesis of NHC complexes bearing non-coordinating tetrafluoroborate or hexafluo-
rophosphate counter-anions (11a–d, 12a–d, 13a–d, and 14a–b; Figure 7).
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Figure 7. NHC–silver(I) complexes synthesized by Bantreil, Mètro et al. [32–34].

In 2017, they tested these complexes in the A3-coupling reaction of benzaldehyde
(1.0 equiv.), piperidine (1.2 equiv.) and phenylacetylene (1.5 equiv.) in order to obtain the
respective propargylamine [35]. The complexes were used at 3 mol% and the reactions
were performed in methanol at 110 ◦C under microwave irradiation for 1 h. The results are
shown in Table 10.

Table 10. Catalytic activity of synthesized complexes in A3-coupling reaction.
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Entry a Catalyst Yield (%) b

1 13a 51
2 13b 36
3 13c 11
4 13d 30
5 14a 8
6 14b 12
7 11a 66
8 11b 53
9 11c 52
10 11d 55
11 12a 24
12 12b 81 c, 77 d

13 12c 14
14 12d 7

a Reaction conditions: benzaldehyde (1.0 mmol); piperidine (1.2 equiv.); phenylacetylene (1.5 equiv.); catalyst
(3 mol%); MeOH (2 mL); microwave irradiation; 110 ◦C; 1 h. b Determined by HPLC analysis by using mesitylene
as an internal standard. c Yield of isolated product. d Yield of isolated product upon using 1.1 equiv. of both
piperidine and phenylacetylene along with 4 mol% of the complex 12b.

The best yield was obtained with complex 12b which led to the desired propargy-
lamine in 81% yield. (Table 10, Entry 12). Considering these good results, the catalytic
activity of the complex 12b was evaluated for the synthesis of a wide range of propargy-
lamines. This catalyst turned out to be versatile and compatible with aliphatic and aromatic
aldehydes and alkynes. Propargylamines were obtained with good yield (73–95%) in fast
reaction times (1–4 h) with reduced catalyst loads (4 mol%) and in a low-toxicity solvent,
methanol (2 mL).



Catalysts 2023, 13, 811 12 of 46

In 2017 Kılınçarslan and co-workers [36] reported the synthesis and catalytic activity
in A3-coupling reaction of NHC-Ag(I) complexes based on 1-(methyl)-3-(alkyl)imidazole:
15a-c depicted in Figure 8.
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Figure 8. NHC-Ag(I) complexes synthesized by Kılınçarslan et al. [36].

These complexes were tested using piperidine (1.2 mmol), several aldehydes (1.0 mmol)
and phenylacetylene (1.5 mmol); the results are shown in Table 11. The complex 15a
showed scarce catalytic activity in the presence of benzaldehyde, and high efficiency with
paraformaldehyde. The reaction was carried out in different solvents and in neat conditions,
at 80 ◦C, achieving yields ranging from 12% to 88%.

Table 11. Catalytic activity in A3-coupling reaction.
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Entry a Aldehyde Solvent Catalyst Yield (%) b,c

1 Paraformaldehyde Dioxane 15a 84
2 Cyclohexanecarboxaldehyde Dioxane 15a 76
3 Cyclohexanecarboxaldehyde Dioxane 15b 70
4 Cyclohexanecarboxaldehyde Dioxane 15c 68
5 Benzaldehyde Dioxane 15a 12
6 H Dioxane Ag2O 47

8 d H Acetone 15a 80
9 H Dimethyl sulfoxide 15a 82

10 e H Water 15a 13
11 f H Ethanol 15a 14
12 H Neat 15a 88
13 Cyclohexanecarboxaldehyde Neat 15a 82
14 Benzaldehyde Neat 15a 27

a Reaction conditions: aldehyde (1.0 mmol); piperidine (1.2 mmol); phenylacetylene (1.5 mmol); NHC-Ag(I)
catalyst (3 mol%); dioxane (2.0 mL); argon atmosphere; 80 ◦C; 8 h. b Isolated yields. c Average of two runs. d At
56 ◦C. e For 12 h. f At 78 ◦C.

In the same year Quayle et al. [37] reported a study concerning synthesis, characteriza-
tion and evaluation of the catalytic activity of the gold complexes reported in Figure 9.
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Figure 9. Gold complexes tested in A3-coupling reaction.

These complexes were tested as catalysts in the A3-coupling reaction of a variety of alde-
hydes, alkynes and amines. [AuCl2(η2-C,N-C6H4CH2NMe2)] 16a and (S)-[AuCl2(η2-C,N-
C6H4CH(Me)NMe2)] 16b, used at 1 mol%, in water at 40◦C, led to quantitative conversion
after 24 h. Instead, only 9 and 10% of aldehyde conversion was reported when the NHC-Au
complexes 18a–b and 19 were tested, thus showing low activity in the A3-coupling reaction.
In addition, a lack of enantioselectivity was also observed with the chiral complexes 16a,
17, and 18a–b and this was in line with what has been reported in the literature about
obtaining enantiomers with gold complexes[38].

In 2019 A. Neshat et al. [22] presented a study on the synthesis of novel NHC-Ag(I)
complexes 21 and 22 by substitution of chlorides in the previously reported complex 5a
with homoscorpionate sulphur donor borate ligands (Figure 10). Complex 21 was tested in
A3-coupling reactions, and its catalytic activity was compared with that of the complexes 5a
and 20 already known. Since complexes 21 and 22 have close characteristics, the catalytic
activity of complex 22 was not tested.
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Various amount of the complexes 5a, 20, 21 were tested in A3-coupling reaction of
benzaldehyde (0.5 mmol), piperidine (0.75 mmol) and phenylacetylene (0.75 mmol) under
different temperatures and reaction times. Employing a 1% mol amount of the 5a, 20, 21
catalysts, and running the reaction at 50◦C and for 24 h, yields of 95%, >99% and >99%,
were, respectively, obtained (Table 12, Entry 1).

Table 12. A3-coupling of benzaldehyde, piperidine and phenylacetylene with catalysts 5a, 20, 21
under different reaction conditions.

Catalysts 2023, 13, x FOR PEER REVIEW 14 of 47 
 

 

 

Figure 10. Ag-NHC and Au-NHC complexes tested by Neshat et al. [22]. 

Various amount of the complexes 5a, 20, 21 were tested in A3-coupling reaction of 

benzaldehyde (0.5 mmol), piperidine (0.75 mmol) and phenylacetylene (0.75 mmol) under 

different temperatures and reaction times. Employing a 1% mol amount of the 5a, 20, 21 

catalysts, and running the reaction at 50°C and for 24 h, yields of 95%, >99% and >99%, 

were, respectively, obtained (Table 12, Entry 1). 

Table 12. A3-coupling of benzaldehyde, piperidine and phenylacetylene with catalysts 5a, 20, 21 

under different reaction conditions. 

 

Entry a Catalyst 
Cat. 

(mol%) 

Temp. 

(°C) 

Time 

(h) 
Yield (%) b 

1 5a  1 50 24 95 

 20     > 99 

 21    >99 

2 5a 1 r.t. 24 87 

 20    >99 

 21    >99 

3 5a 0.5 r.t. 24 30 

 20    >99 

 21    >99 

4 5a 0.2 r.t. 24 <5 

 20    >99 

 21    >99 

5 5a 0.2 r.t. 12 <5 

Entry a Catalyst Cat.
(mol%)

Temp.
(◦C)

Time
(h) Yield (%) b

1 5a 1 50 24 95
20 >99
21 >99

2 5a 1 r.t. 24 87
20 >99
21 >99

3 5a 0.5 r.t. 24 30
20 >99
21 >99

4 5a 0.2 r.t. 24 <5
20 >99
21 >99

5 5a 0.2 r.t. 12 <5
20 82
21 45

6 5a 0.1 r.t. 24 0
20 50
21 39

a Reaction conditions: benzaldehyde (0.5 mmol); piperidine (0.75 mmol); phenylacetylene (0.75 mmol); catalyst
(indicated in the column); H2O:THF (10:1, 2 mL). b Yield determined by 1H-NMR. r.t. Room temperature.

Subsequent decrease of the temperature to ambient, with complex 5a, caused a drop in
the yield from 95 to 87%, while it remained unchanged by employing complexes 20 and 21
(Table 12, Entry 2). A similar trend was observed by stitching the amount of catalyst from
1% to 0.5% and 0.2% (Table 12, Entries 3–4). They also tried reducing the reaction time from
24 to 12 h, employing the 0.2% catalysts, but, again, lower yields were obtained (Table 12,
Entry 5) and the same occurred when they tried to lower the percentage of catalyst by
going to 0.1% (Table 12, Entry 6).

As a conclusion, NHC-Ag(I) complexes with bidentate sulphur donor ligands (i.e.,
complex 21), showed great catalytic activity in A3-coupling reactions. The catalytic activity
of the novel catalyst 21 was comparable with that of complex 20 and higher than that of the
complex 5a.

In 2020 Mariconda and co-workers [19] synthetized two novel complexes of silver
and gold bearing 4,5-dichloro-N-methyl-N’-(2-hydroxy-2-phenyl)ethyl-imidazole-2-ylidine
ligand (23a, 24a) (Figure 11).
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Figure 11. Silver(I) and gold(I) catalysts used in A3-coupling reactions.

According to the results of conductivity measurements, these complexes can be present
in solution as ionic species [M(NHC)2]+ [MX2]– or neutral species M(NHC)X, where the
last were considered responsible of the catalytic activity in A3-coupling reaction (Figure 12).
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Figure 12. Equilibrium between ionic and neutral species of NHC-M complexes.

They were tested as catalysts in A3-coupling reaction of aldehydes (i.e.,: formaldehyde
or paraformaldehyde or cyclohexanecarboxaldehyde or benzaldehyde, 1.0 mmol) with
piperidine (1.2 mmol) and phenylacetylene (1.5 mmol), in the absence of solvent or using
dioxane (Tables 13 and 14). The activity of complexes 23a and 24a were compared with two
analogous complexes with hydrogens on the backbone (23b and 24b) synthesized by the
same group [39,40]. The results, in neat conditions, are reported in Table 13.
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Table 13. Solvent free synthesis of propargylamines via A3- coupling reactions catalyzed by NHC-
Ag(I) (23a–b) and NHC-Au(I) (24a–b).
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Entry a Catalyst Aldehyde Conversion (%) b

1 23b Formaldehyde solution (38%) 58
2 Paraformaldehyde 13
3 Cyclohexanecarboxaldehyde 99
4 Benzaldehyde 13
5 24b Formaldehyde solution 96
6 Paraformaldehyde 99
7 Cyclohexanecarboxaldehyde 99
8 Benzaldehyde 83
9 23a Formaldehyde solution 64
10 Paraformaldehyde 94
11 Cyclohexanecarboxaldehyde 99
12 Benzaldehyde 38
13 24a Formaldehyde solution 81
14 Paraformaldehyde 99
15 Cyclohexanecarboxaldehyde 96
16 Benzaldehyde 86

a Reaction conditions: aldehyde (1.0 mmol); piperidine (1.2 mmol); phenylacetylene (1.5 mmol); catalyst (3 mol%);
nitrogen atmosphere; 80 ◦C; 6 h. b Conversions were determined by 1H-NMR analysis using 2-bromo mesitylene
as internal standard.

Table 14. Synthesis of propargylamines via A3-coupling reactions catalyzed by silver and gold NHC
complexes in the presence of dioxane as solvent.
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3  Cyclohexanecarboxaldehyde 71 

4  Benzaldehyde n.d. 

5 24b Formaldehyde solution 65 
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Entry a Catalyst Aldehyde Conversion (%) b

1 23b Formaldehyde solution (38%) n.d.
2 Paraformaldehyde n.d.
3 Cyclohexanecarboxaldehyde 71
4 Benzaldehyde n.d.
5 24b Formaldehyde solution 65
6 Paraformaldehyde 67
7 Cyclohexanecarboxaldehyde 68
8 Benzaldehyde 22
9 23a Formaldehyde solution 62
10 Paraformaldehyde 30
11 Cyclohexanecarboxaldehyde 99
12 Benzaldehyde 14
13 24a Formaldehyde solution 99
14 Paraformaldehyde 71
15 Cyclohexanecarboxaldehyde 99
16 Benzaldehyde 68

a Reaction conditions: aldehyde (1.0 mmol); piperidine (1.2 mmol); phenylacetylene (1.5 mmol); catalyst (3 mol %);
nitrogen atmosphere; 80 ◦C; 6 h. b Conversion determined by 1H-NMR analysis using 2-bromo mesitylene as
internal standard. n.d. Not detected.
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All complexes were found to be capable to catalyze the A3-coupling reaction. By
comparing Entries 1–16 of Table 12, it was evident that the gold catalysts were much more
efficient than silver ones. Cyclohexanecarboxaldehyde and paraformaldehyde were the
most reactive in presence of all the catalysts (except 23b for the paraformaldehyde), whereas
the benzaldehyde resulted the least reactive. As far as formaldehyde in aqueous solution
is concerned, this was moderately reactive in the presence of silver complexes (Table 13,
Entries 1 and 9), while good reactivity was observed with gold-based complexes (Table 13,
Entries 5 and 13).The same reactions were performed using dioxane as solvent and the
results are reported in Table 14. A trend of reactivity emerged from the results in Table 14:
24a > 24b > 23a > 23b. In conclusion, gold-based complexes were more performing than
silver ones and the new complexes with chlorines on NHC backbone (23a and 24a) were
more active than the previously synthesized complexes (23b and 24b).

Recently [21], a green approach for A3-coupling reactions using water as solvent or
working in neat condition was proposed. In order to enhance the solubility of catalysts
in water, four new complexes (25a–b, 26a–b) were designed by substitution of the alcohol
group of the previously described 23b and 24b with sodium alcoholate or methoxyl group,
as shown in Figure 13.
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Figure 13. Silver and gold complexes with sodium alcoholate or methoxyl groups.

These complexes were tested as catalysts in A3-coupling reactions of an aldehyde (i.e.,:
paraformaldehyde, butyraldehyde, cyclohexanecarboxaldehyde, and benzaldehyde) with
piperidine and phenylacetylene in neat conditions or using water as solvent.

In Table 15 the catalytic activity of these new complexes, in the absence of solvents, are
depicted. Gold complexes (25b and 26b) have shown better catalytic activity than silver
analogues: 26b ≥ 25b > 26a ≥ 25a.

Table 15. NHC–Ag(I) and NHC–Au(I) catalyzed A3-coupling reaction.
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Entry a Aldehyde
Yield (%) b

25a 25b 26a 26b

1 Formaldehyde 20 90 29 88
2 Butyraldehyde 43 74 46 87
3 Cyclohexanecarboxaldehyde 40 60 43 76
4 Benzaldehyde 10 47 11 43

a Reaction conditions: aldehyde (1.0 mmol); piperidine (1.2 mmol); phenylacetylene (1.5 mmol); catalyst (3 mol%);
nitrogen atmosphere; 80 ◦C; 6 h. b Conversions were determined by 1 H-NMR analysis using 2-bromo mesitylene
as internal standard.
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In particular, paraformaldehyde was the most reactive substrate when gold complexes
were used. Both gold and silver complexes with a methoxyl group performed better than
the ones with sodium-alcoholate groups. The catalytic behaviour of the gold complexes
25b and 26b in the A3-coupling reaction of cyclohexanecarboxaldehyde and benzaldehyde
with piperidine and phenylacetylene was investigated, in water. Comparing the activity
of the complexes 25b and 26b with that of the previously reported 24b and 24a analogues
(see Table 14), catalyst 24a, bearing chlorines on the NHC backbone, showed to be the most
active (Table 16).

Table 16. NHC–Au(I) catalyzed A3-coupling reaction.
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Entry a Aldehyde Yield (%) b 
Entry a Aldehyde

Yield (%) b

24b 24a 25b 26b

1 Cyclohexanecarboxaldehyde 66 70 43 37
2 Benzaldehyde 19 25 20 11

a Reaction conditions: aldehyde (1.0 mmol); piperidine (1.2 mmol); phenylacetylene (1.5 mmol); catalyst (3 mol%),
water (3.0 mL), nitrogen atmosphere; 80 ◦C; 6 h. b Conversions were determined by 1H-NMR analysis using
2-bromo mesitylene as internal standard.

Further improvement of the catalysts’ structure [41] resulted in four new complexes
having an hydroxyl functional group on each of the nitrogen atoms of the imidazole ring
(Figure 14). These complexes were even more soluble in green solvents and in physiological
environments.
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Figure 14. Water-soluble NHC-Ag(I) and NHC-Au(I) complexes.

As shown in Figure 14, silver and gold complexes 27a and 28a differ from complexes
27b and 28b for the presence of the chlorines on the backbone. These complexes were tested
as catalysts in A3-coupling reactions of phenylacetylene, piperidine and three different
aldehydes (paraformaldehyde, cyclohexanecarboxaldehyde, and benzaldehyde), at 80 ◦C
in neat conditions. As shown in Table 17, all complexes were able to catalyze the coupling of
aldehydes, piperidine, and phenylacetylene. By comparing Entries 1–12, it was evident that
silver complexes (27a–b) having N-heterocyclic carbene with hydrogens on the backbone
were less active than the gold complexes (28a–b) with chlorine atoms on the backbone.
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Table 17. Catalytic activity of the water-soluble NHC-Ag(I) and NHC-Au(I) complexes in A3-coupling
reactions.
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Entry a Catalyst Aldehyde Yield (%) b

1 27b Paraformaldehyde 25
2 27b Cyclohexanecarboxaldehyde 47
3 27b Benzaldehyde 23
4 27a Paraformaldehyde 65
5 27a Cyclohexanecarboxaldehyde 52
6 27a Benzaldehyde 36
7 28b Paraformaldehyde 86
8 28b Cyclohexanecarboxaldehyde 65
9 28b Benzaldehyde 60

10 28a Paraformaldehyde 99
11 28a Cyclohexanecarboxaldehyde 99
12 28a Benzaldehyde 60

a Reaction conditions: aldehyde (1.0 mmol), piperidine (1.2 mmol), phenylacetylene (1.5 mmol), catalyst (3 mol%);
nitrogen atmosphere; 80 ◦C; 6 h. b Conversions were determined by 1H-NMR analysis using as internal standard
2-bromo mesitylene.

In 2022 Mateus et al. [42] reported the synthesis of a chelating bidentate NHC-based
silver complex containing bisamides linkers (29) (Figure 15).
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The catalytic activity of the complex 29 has been evaluated in the A3-coupling reaction
of cyclohexanecarbaldehyde, pyrrolidine and phenylacetylene, as described in Table 18.

The reaction conducted with 1 mol% of the catalyst 29 at 80 ◦C, led to a full conversion
of the starting reagents and the desired propargylamine was isolated in 89% (Table 18,
Entry 1). Given this interesting result, the catalyst load was lowered to 0.5 mol% and, even
in this case, the full consumption of the reactants occurred leading to 85% of the desired
product (Table 18, Entry 2). The scientists decided to proceed by lowering the reaction
temperature and, then, by decreasing the catalyst load up to 0.1 mol%.

So, by extending the reaction times to 36 h and by using 0.5 mol% of the catalyst, the
reaction gave high yields at temperatures lower than 80 ◦C (Table 18, Entries 3–6), even at
room temperature (Table 18, Entry 6). It was also possible to obtain good yields when the
catalyst load was decreased to 0.1 mol% in 36 h at 80 ◦C (Table 18, Entry 7).



Catalysts 2023, 13, 811 20 of 46

Table 18. Chelating bidentate NHC–Ag(I) complex catalyzed A3-coupling reaction.
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3. Carboxylation Reaction

The greenhouse effect and relative change in climate have been causing concern in
the scientific community, public opinion, and governments for the past few decades. The
massive production of carbon dioxide (CO2) is among the principal causes of climate
change [43]. The increase in CO2 levels is attributable to many factors such as intensive
agriculture, transportation, industries, combustion of petroleum-based resources, and the
rise of the population. In particular, India, China, the US, Russia, Canada, and Japan are
the countries with the highest values of greenhouse emissions [43–45].

Reducing carbon dioxide levels has become a major global concern in the current sce-
nario. Many research groups are involved in converting CO2 into value-added molecules [46].
For example, photocatalysis and electrocatalysis can consent the conversion of carbon
dioxide into methane, methanol, and carbon monoxide [47]. Furthermore, diverse toxic
carbonylation agents, such as carbon monoxide and phosgene, can be replaced by carbon
dioxide for the construction of C-C and C-X bonds (X=H, O, N) [48]. Therefore, developing
an efficient, inexpensive, and eco-sustainable carbon dioxide utilization method is crucial.

Unfortunately, the transformations of CO2 are particularly difficult due to its kinetic
inertia and thermodynamic stability. The primary focus is the development of catalytic
systems that can activate this inert molecule. Over recent years, N-heterocyclic carbenes
and their relative complexes have earned significant attention in the activation of carbon
dioxide, thanks to their steric and electronic properties [49]. Moreover, compared to other
catalysts, NHCs are more facile and inexpensive to develop. It has been demonstrated that
there are two approaches by that CO2 can be activated by N-heterocyclic carbene metal
complexes: interaction of the π electrons of the carbon dioxide molecule with the empty
d-orbital of the transition metals. In such manner, it is possible to extend the carbonaceous
chain of alkynes (carboxylation of terminal alkynes) [50]; by oxidative coupling of metal
complexes, carbon dioxide, and olefins to produce cyclic intermediates (2-oxazolidinone
and carbonates) (Figure 16) [51,52].
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Figure 16. Carboxylation reaction catalyzed by Ag/Au(I) NHC complexes reported in this review.

This paragraph of the review summarizes and analyses the results in the functional-
ization/activation of carbon dioxide, obtained by silver(I) and gold(I) NHC complexes.

3.1. Carboxylation of Terminal Alkynes

Alkynyl carboxylic acids are a ubiquitous class of compounds due to their great utility
in medicinal chemistry and in the production of synthetic fibres [53]. Different synthetic
procedures have been developed for the preparation of this class of compounds including
the oxidation of aldehydes or alcohols, or hydrolysis of bromide [54,55]. The carboxylation
of terminal alkynes with carbon dioxide is the most powerful method for the synthesis of
propiolic acids. Zhang’s [56] and Grooben’s [57] groups reported in 2010, for the first time,
that the carboxylation of terminal alkynes, with carbon dioxide, can be catalyzed by copper
or copper-NHC complexes (Figure 17A,B). Furthermore, Zhang and collaborators [50] have
reported the direct carboxylation of alkynes with a transition metal-free catalytic system,
at 120 ◦C and 2.5 atm (Figure 17C). Later, Zhang et al. [58] reported the development of a
ligand-free Ag(I) catalyst, active in the carboxylation of the terminal alkynes under mild
reaction conditions. (Figure 17D). The main limitations of these methods were that the
yields obtained were generally moderate, and the reaction conditions (temperature and
pressure) were quite harsh. In Figure 17 are reported all the early developed protocols to
produce propiolic acids with alkynes and carbon dioxide.

In 2012, Zhang and collaborators [59] reported a heterogeneous catalytic system (poly-
NHC-Ag nanoparticles, Poly-NHC-Ag-NPs) 30, active in the carboxylation of terminal
alkynes with carbon dioxide (Figure 17E). The synthesis of poly-imidazolium salts and its
relative AgNPs catalytic system are reported in Scheme 3 [60].

The nano-composite catalytic system showed excellent yields with different aryl
alkynes, under ambient reaction conditions. In an initial screening the desired propiolic
acid was recovered up to 98% (0.3 mol% of the Ag catalyst). Based on this interesting
result, the authors tested its reusability. Centrifugation and filtering of the reaction mixture
allowed for the recovery of the catalytic system. The solid residue was washed with DMF
and reused in the sequent runs. More than 93% of the yield was produced every five times
the catalytic system was being used, evidencing its high activity. A fraction of the catalyst
was lost throughout the recovery process, which was the cause of the activity’s decline. The
reaction scope was implemented testing the carboxylation reaction of different aryl alkynes
(Table 19).
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Figure 17. Protocols developed for the synthesis of substituted propiolic acids from alkynes.
(A,B) copper or copper-NHC complexes; (C) transition metal-free; (D) ligand-free Ag(I) catalyst;
(E) poly-NHC-Ag nanoparticles, Poly-NHC-Ag-NPs.
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As shown in Table 19, excellent yields were obtained with both electron-donating
groups (Entries 2, 3, 5, 6, 8), and electron-withdrawing groups (4, 7, 9, 10), demonstrating
tolerance to diverse functional groups (OH, CHO, CN, NO2, etc). The authors have not
observed the formation of any by-products. They affirmed that the excellent catalytic
activity is due to the synergistic action of the ligand (NHC) and Ag nanoparticles. Zhang
et al. proposed a possible mechanism, shown in Scheme 4.
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They asserted that the first stage of the cycle is the formation of metal acetylide
intermediate through the deprotonation of the alkyne by the base (I). Later, the carbene
carbon atom reacts with CO2, due to its nucleophilicity, to produce an NHC-carboxylate
specie (II) [61,62]. Since Louie and colleagues [63] reported the activation of CO2 with the
generation of zwitterionic species in a reversible mechanism in 2004, the authors postulated
the formation of carboxylate species (32, Scheme 5). Then, the coordination of the carboxylic
group, near the silver centre, induces the nucleophilic attack by the acetylide species (III).
Finally, the silver acetylide species is regenerated by the alkyne deprotonation by the base.
The proposed mechanism highlights the synergic crucial role between the metal centre and
the poly-NHC ligand.
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In 2016, Fang et al. [64] reported the synthesis, structural characterization and catalytic
activity in the carboxylation of terminal alkynes of four Ag-NHC complexes 33a–d. The
synthesis of the complexes was reported in Scheme 6; they were obtained by the reaction of
the corresponding imidazolium salt with 0.55 eq. of silver oxide (Ag2O), with the exclusion
of the light, at room temperature for 48 h.
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Scheme 6. Synthesis of the complexes 33a–d.

Single crystals of 33a–d were obtained by slow evaporation of a diethyl ether/chloroform
solution of the corresponding silver compounds at room temperature. Surprisingly, the
authors found that whereas complexes 33b and 33d had a mononuclear structure, com-
plexes 33a and 33c revealed a dinuclear structure. The reactivity of complexes was initially
explored in the reaction of phenylacetylene with carbon dioxide. The results are reported
in Table 20.
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Entry a Catalyst
(% mol)

Base
(Equiv.) Yield (%) b

1 - Cs2CO3 (1.5) n.d.
2 33a(1) Cs2CO3 (1.5) 82
3 33a(3) Cs2CO3 (1.5) 82
4 33a(5) Cs2CO3 (1.5) 68
5 33b(1) Cs2CO3 (1.5) 81
6 33c(1) Cs2CO3 (1.5) 81
7 33d(1) Cs2CO3 (1.5) 82

8 c 33a(1) Cs2CO3 (1.5) 83
9 d 33a(1) Cs2CO3 (1.5) 69
10 33a(1) DBU(1.5) 38
11 33a(1) K2CO3(1.5) 20
12 33a(1) KOtBu(1.5) 5
13 33a(1) NaOtBu(1.5) Trace
14 33a(1) NaOH(1.5) Trace
15 33a(1) - n.d.
16 33a(1) Cs2CO3 (1.0) 48
17 33a(1) Cs2CO3 (1.2) 71
18 33a(1) Cs2CO3 (2.0) 81

19 e 33a(1) Cs2CO3 (1.5) 43
20 f 33a(1) Cs2CO3 (1.5) 8
21 g 33a(1) Cs2CO3 (1.5) 37
22 h 33a(1) Cs2CO3 (1.5) n.d.

a Reaction conditions: 1-phenylacetylene (2.0 mmol), CO2 (1 atm), DMF (10 mL), room temperature, 16 h. b Isolated
yields. c 40 ◦C. d 60 ◦C. e In DMSO. f In DCM. g In acetonitrile. h In THF. n.d. Not detected.

The authors demonstrated that the reaction could not occur without the presence of
the silver catalyst (Table 20, Entry 1). They also evaluated the suitable catalytic loading for
the optimization of reaction conditions. The desired propiolic acid was isolated in good
yield (82%), using 1–3 mol% of 33a, in DMF, and using 1.5 equiv. of Cs2CO3 (Table 20,
Entries 2,3). When the reaction was loaded with 5% mol of catalyst, the yield dropped,
probably, as suggested by the authors, due to the ability of the Ag-NHC complexes to
also catalyze the decarboxylation process. (Table 20, Entry 4). It is worth note that in
the literature a few examples of decarboxylation reactions of carboxylic acids catalyzed
by Ag2CO3 are reported [65,66]. Other silver complexes were tested in the carboxylation
reaction of phenylacetylene, using 1 mol% loading; they displayed comparable activity
(Table 20, Entries 5–7). Although the complex 33a showed a dinuclear structure, and the
complex 33b exhibited a mononuclear structure, their time-dependent experiments were
comparable. For silver complex 33a any induction time during the initial period of the
reaction was observed. The authors tried to explain this behaviour by asserting that the
complexes 33a and 33c, in a polar medium, such as DMF, could display a monomeric
structure, due to the weak Ag . . . Cl interaction [9,67]. The increase in temperature did
not positively influence the reaction: when the reaction was conducted at 40 ◦C, the yield
was mostly unvarying (Table 20, Entry 8), while a further increase in temperature (60 ◦C)
gave yield decrease (Table 20, Entry 9). The authors then deepened the influence of the
base (Table 20, Entries 1 vs. 10–15). The best results were obtained with the inorganic base
Cs2CO3. DBU (1,8-Diazabicyclo(5.4.0)undec-7-ene) and K2CO3 were less efficient (Table 20,
Entries 10 and 11), while KOtBu, NaOtBu, and NaOH were ineffective (Table 20, Entries
12–14). Based on these data, the authors asserted that the carboxylation reaction is not
correlated to the basicity. However, the presence of the base is fundamental for the course
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of the reaction (Table 20, Entry 15). The base loading was evaluated (Table 20, Entry 1 vs.
Entries 15–18), e.g.,: when 1.2 or 1.0 equiv. of Cs2CO3 were employed, the quantity of
propiolic acid diminished. Finally, the author explored carefully diverse solvents (Table 20,
Entry 19–22). Once the best reaction conditions were assessed (1 mol% of silver complex,
1.5 equiv. of Cs2CO3, 1 atm of CO2, room temperature, in DMF, 16 h), a scope of the alkyne
substrates was performed. The results are summarized in Table 21.

Table 21. Carboxylation reaction with different terminal alkynes, catalyzed by silver complex 33a.
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Entry a Alkyne Yield (%) b

1 Phenylacetylene 82
2 4-Ethynyltoluene 85
3 1-Ethynyl-4-propylbenzene 83
4 4-Ethynyl-1,’1-biphenyl 78
5 1-Ethynyl-4-methoxybenzene 84
6 1-Ethynyl-4-fluorobenzene 80
7 1-Ethynyl-3-fluorobenzene 76
8 1-Ethynyl-4-chlorobenzene 71
9 4-Ethynylbenzaldehyde 61
10 1-Ethynyl-4-(trifluoromethyl)benzene 63
11 4-Ethynylbenzonitrile 54
12 1-Ethynyl-4-nitrobenzene 64
13 1,3-diethylnylbenzene 77
14 2-ethynylpyridine n.d.
15 2-ethynylthiophene 70
16 (Prop-2-yn-yloxy)benzene 82
17 Ethynylcyclopropane 80
18 3,3-dimethylbut-1-yne 65
19 1-hexyne 79
20 1-heptyne 81
21 1-octyne 82

a Reaction conditions: alkyne (2.0 mmol), 33a (1% mol), solvent (10 mL), Cs2CO3 (3.0 mmol), room temperature,
16 h. b Isolated yields. n.d. Not detected.

The Ag-NHC complex 33a demonstrated remarkable catalytic performances towards
different substituents. Good yields were obtained with aromatic alkynes having electron-
donating groups on the phenyl ring (e.g.,: CH3, CH3CH2CH2, Ph, OCH3, Table 21, Entries
2–5). Analogous yields were achieved with aromatic alkynes having electron-withdrawing
groups on the phenyl ring, i.e.,: fluoride and chloride. (Table 21, Entries 6–8) However,
a lowering of the yields was observed with aromatic alkynes bearing strong withdrawing
substituents (such as CHO, CF3, CN, NO2, Table 21, Entries 9–12) perhaps due to marked
decrease in nucleophilicity of the α carbon. When the carboxylation reaction was conducted
with 2-ethynyl pyridine (Table 21, Entry 14), the corresponding pyridyl propiolic acid was
not isolated from the reaction mixture, as observed by Gooßet et al. [57]. Finally, good
yields had been recorded with aliphatic terminal alkynes. (Table 21, Entries 16–21).

In 2017, Verpoort et al. [68] reported the catalytic activity of a bis (N-heterocyclic
carbene) Ag complex 34 (Figure 18) in the carboxylation of diverse terminal alkynes with
CO2. The results are listed in Table 22.
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Table 22. Carboxylation reaction with different terminal alkynes, catalyzed by silver complex 34. 

 

Entry a R Yield (%) b 

1 (4-MeO)-Ph 90 

2 Ph- 85 

3 c HC≡C-Ph- 85 

4 c HC≡C-(CH2)3CH2- 77 

Entry a R Yield (%) b

1 (4-MeO)-Ph 90
2 Ph- 85

3 c HC≡C-Ph- 85
4 c HC≡C-(CH2)3CH2- 77
5 (CH3)3Si- 72
6 (CH3)3C- 65
7 H- 40

a Reaction conditions: alkyne (1.0 mmol), 34 (1% mol), solvent (1 mL), Cs2CO3 (1.2 mmol) room temperature, CO2
(1 bar), 16 h. b Catalytic yield was obtained by 1H-NMR integration, using 1,4-ethynylbenzene as the internal
standard. c 2.4 equiv. of Cs2CO3.

As described in Table 22, best yields (upper 85%) were obtained with aromatic alkynes
(Entries 1–3), while a sharp decrease was observed when aliphatic alkynes were tested
(Entries 4–7). It should be noted that the carboxylation reaction of diynes required 2.4 equiv-
alents of base for the formation of dicarboxylic acids (Entries 3,4).

Based on the results obtained by Zhang [59], on the synergistic effects between NHC
and silver, seen above, Verpoort et al. tested a series of NHC/Ag systems (P-L1–P-L4,
Figure 19) in the carboxylation reaction of terminal alkynes to give the corresponding
carboxylic acids, using silver oxide as Ag source. The authors developed this series of
catalytic systems, primarily to avoid the synthesis of the relevant photosensitive silver
complexes, and to exploit the synergistic effects among Ag ions and the NHC-CO2 adduct.
Furthermore, in the catalytic system, different potassium salts were introduced, and the au-
thors observed that the nature of the halogen played an important role in the catalysis. The
authors have preliminary investigated the carboxylation reaction, using phenylacetylene as
a standard substrate; the results are reported in Table 23.
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Entry a Catalytic System Yield (%) b

1 P-L1 + Ag2O + KI 98
2 P-L2 + Ag2O + KI 94
3 P-L3 + Ag2O + KI 97
4 P-L4 + Ag2O + KI 93

5 c AgI 83
6 d P-L2 + Ag2O + KCl 79
7 d P-L2 + Ag2O + KBr 96
8 Ag2O 18

9 e - 10
10 f - 10
11 g - 25
12 h P-L2 + Ag2O + KI n.d.

a Reaction conditions: alkyne (10 mmol), NHC/Ag system (0.0125 mmol of Ag2O, 0.025 mmol of P-L1–P-L4,
0.025 mmol KI), DMF (40 mL), Cs2CO3 (15 mmol) 35 ◦C, CO2 (1 bar), 24 h. b Isolated yield. c AgI (0.1 mmol).
d 0.025 mmol of Ag2O, 0.05 mmol of P-L1–P-L4, KX 0.05 mmol. e 0.025 mmol of KI, 15 mmol of Cs2CO3, DMF
(40 mL), 35 ◦C, 1 bar, 24 h. f 15 mmol Cs2CO3, DMF (40 mL), 35 ◦C, 1 bar. g 15 mmol of Cs2CO3, DMF (40 mL),
35 ◦C, 1bar, 72 h. h Absence of CO2. n.d. Not detected.

The activity of P-L1 and P-L3 were slightly better than their corresponding imidazolin-
ium salts (P-L2, P-L4, Table 23, Entries 1, 3 vs. Entries 2, 4). There was no discernible pattern
that could be attributed to the aliphatic chain’s length. High yields were attained utilising
0.5 mol% of the NHC salt (Table 23, Entries 6, 7); KBr could substitute KI as potassium salt
efficiently. When Ag2O was examined in the absence of NHC and KI, the carboxylic acid
yield significantly decreased (Table 23, Entry 8). Only 10% of the phenyl-1-propionic acid
was produced whether the base was used alone or in combination with KI (Table 23, Entries
10, 11). The authors optimized the reaction condition by evaluating the solvent effect, the
time, and the loading of both base of the catalyst. The results are listed in Table 24.
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Table 24. Optimization of the carboxylation reaction of phenylacetylene with P-L1/Ag system.
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Entry a Base Solvent Catalyst Loading (mol%) Yield (%) b

1 Cs2CO3 DMF 0.25 98
2 Cs2CO3 DMSO 0.25 92
3 Cs2CO3 CH3CN 1.00 11
4 Cs2CO3 H2O 0.50 n.d.
5 Cs2CO3 CH3OH 0.50 n.d.
6 K2CO3

c DMF 0.50 41
7 KOtBu DMF 0.25 47

8 d Cs2CO3 DMF 0.25 48
9 e Cs2CO3 DMF 0.25 80
10 Cs2CO3 DMF 0.10 95
11 Cs2CO3 DMF 0.075 87

a Reaction conditions: phenylacetylene (10 mmol), P-L1/Ag system (0.0125 mmol of Ag2O, 0.025 mmol of P-L1,
0.025 mmol KI), solvent (40 mL), Cs2CO3 (15 mmol) 35 ◦C, CO2 (1 bar), 24 h. b Isolated yield. c Cs2CO3 (30 mmol).
d 12 h, e 18 h. n.d. Not detected.

As seen above, the solvent plays a crucial role in the carboxylation reaction (Table 24,
Entries 1–5). DMF and DMSO showed to be the most suitable for this type of reaction
thanks to their high polarity and aproticity. Verpoort et al. attributed the higher yields with
DMF to its weak alkalinity, which has a beneficial effect in the of the alkyne deprotonation
and promoting the formation of the acetylide species. Another polar and aprotic solvent
was tested (CH3CN, Table 24, Entry 3), but yields in the presence of this solvent were much
lower than those obtained with DMF. H2O and MeOH were found to be unsuitable for the
carboxylation of the terminal alkynes (Table 24, Entries 4,5). The base also plays an essential
role in the catalytic system as well: as seen by Fang et al. [64] Cs2CO3 showed superior
efficiency than the other tested bases such as K2CO3 or KOtBu (Table 24, Entries 6–7).
Twenty four hours was the suitable time for the reaction (Entry 1 vs. Entries 8–9). The
P-L1/Ag system showed interesting activity even when the catalytic loading was lowered
(Table 24, Entries 10–11).

Thus, once the reaction was optimized, the authors tested the catalytic system in the
carboxylation of different terminal alkynes (Table 25).

The results show high tolerance of the catalytic system with a wide range of terminal
alkynes. Aliphatic alkynes were more active towards the carboxylation than aromatics
(Table 25, Entries 13–19 vs. 1–12, 21), owing to their significant electron-donating properties.
Aryl alkynes with strong electron-withdrawing substituents reacted less easily than the
aryl alkynes with electron-releasing substituents (Entries 9–12, 21 vs. Entries 1–8).
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Table 25. Carboxylation reaction of terminal alkynes with P-L1/Ag.
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Entry a Alkyne Yield (%) b

1 Phenylacetylene 95
2 4-Ethynyltoluene 99

3 c 1-Ethynyl-4-n-buthylbenzene 97
4 1-Ethynyl-4-t-buthylbenzene 99

5 c 1-Ethynyl-4-n-penthylbenzene 98
6 1-Ethynyl-4-methoxybenzene 98
7 1-Ethynyl-2-methoxybenzene 98
8 1-Ethynyl-4-penthoxybenzene 98
9 1-Ethynyl-2-fluorobenzene 72
10 1-Ethynyl-3-fluorobenzene 78
11 1-Ethynyl-4-fluorobenzene 96

12 c 1-Ethynyl-4-(trifluoromethyl)benzene 87
13 Ethynylcyclopropane 97
14 Ethynylcyclohexane 97
15 Prop-2-yn-1-ylcylohexane 97
16 3-methoxyprop-1-yne 94
17 1-hexyne 92
18 1-heptyne 98
19 1-octyne 99
20 2-ethynylthiophene 80

21 c 1-Ethynyl-4-nitrobenzene 72
a Reaction conditions: alkyne (25 mmol), P-L1/Ag system (0.0125 mmol of Ag2O, 0.025 mmol of NHC proligand,
0.025 mmol KI), DMF (40 mL), Cs2CO3 (37.5 mmol), 35 ◦C, CO2 (1 bar), 24 h. b Isolated yield. c 36 h.

To the best of our knowledge, only Gooßen et al. [69] dealt with gold-catalyzed
carboxylation reaction of terminal alkynes. They tested the complex 20 (Figure 20, shown
in Figure 10 as well) in the reaction of carboxylation of 1-octyne, obtaining a 9% conversion.
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quired for the carboxylation of the alkyne is 22.9 kcal/mol. The low conversion could be 
attributed to the high stability of the gold acetylide complex and the middle-high energy 
to overcome. 

3.2. Carboxylation Cyclization 
The addition of carbon dioxide to alcohols and amines are two equilibrium transfor-

mations. The main limitation for these reactions is the difficulty to isolate the correspond-
ing carbonate/carbamate, after the quenching the reaction. In fact, until few years ago, the 
synthesis of these compounds was conducted using phosgene, due to its higher reactivity 
than CO2, avoiding the equilibrium condition [71]. 

Figure 20. NHC-Au(I) complex 20 employed by Gooßen and co-workers.

Using DFT simulations, Maseras and Jover [70] identified the mechanism of the
gold-catalyzed carboxylation process. The authors have used complex 20 as a model and
propyne as olefin for the calculations (Scheme 7).
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Scheme 7. Mechanism for the gold-catalyzed carboxylation, including the free energies in (kcal/mol).
‡ Transition state. Reprinted, with permission, from [70]. Copyright 2014, American Chemical Society.

By the analysis of the mechanism, reported in Scheme 7, the σ-acetylide gold complex
results as the species with the lowest free energy (–62.8 Kcal/mol). The energy barrier
required for the carboxylation of the alkyne is 22.9 kcal/mol. The low conversion could be
attributed to the high stability of the gold acetylide complex and the middle-high energy
to overcome.

3.2. Carboxylation Cyclization

The addition of carbon dioxide to alcohols and amines are two equilibrium transforma-
tions. The main limitation for these reactions is the difficulty to isolate the corresponding
carbonate/carbamate, after the quenching the reaction. In fact, until few years ago, the
synthesis of these compounds was conducted using phosgene, due to its higher reactivity
than CO2, avoiding the equilibrium condition [71].

Transformation of unstable scaffolds into stable products, and development of efficient
catalysts have been the solution of the problems due to equilibrium condition and use of
hazardous chemicals in harsh condition reaction.

In the 2007, the discovery of the catalytic activity of silver salts in the cascade car-
boxylation and cyclization of propargyl alcohols was an important breakthrough in the
transition metal catalyzed conversion of carbon dioxide [72].

3.2.1. Reaction of Carboxylative Cyclization Catalyzed by AuNHC

In 2013, Ikariya and collaborators [73] reported the synthesis of (Z)-5-alkylidene-1,3-
oxazolidin-2-ones, by carboxylative cyclization with 2 mol% of 20 in methanol, under 1 atm
of carbon dioxide. Table 26 reports all the obtained results. The authors did not observe the
formation of any other by-products or isomers. Furthermore, by 1H-NMR spectroscopy
and X-ray crystallographic analysis, the authors outlined the Z configuration of the C-C
double bond.
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Table 26. Fixation of CO2 catalyzed by 20.
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Entry a Substrate R1 R2 Time (h) Yield (%) b

1 PAa Me Me 15 91
2 PAb Et Me 15 83
3 PAc iPr Me 15 87
4 PAd tBu Me 15 81
5 PAe H Me 15 16
6 PAf Me Et 48 85
7 PAg Me Prop 48 86
8 PAh Me Bn 15 83
9 PAi Me iPr 66 27
10 PAj Ph Me 48 76
11 Pak Ph H 48 47

a Reaction condition: the reaction was carried out with 2.0 mmol of propargylamine substrates PAa-k and 20
(2 mol%) in MeOH (2.0 mL) under CO2 (1 atm) at 40 ◦C. b The yields were determined by 1H NMR.

The gold complex 20 converted various N-methylaminoalkynes into analogous ure-
thanes with yields ranging from 81 to 91% (Table 26, Entries 1–4). The reaction between
carbon dioxide and the terminal alkyne (N-methylpropargylamine) led to only 16% of the
corresponding cyclic product (Entry 5). The authors associated the low yields with the
formation of σ acetylide gold complex, less catalytically reactive. The conversion of the
amine was reduced when the alkyl groups were replaced with aromatics, even with longer
reaction times (Entries 10–11).

To gain mechanistic information, the authors evaluated the carboxylation reaction
of the substrate 1-methylamin-2-butyne PAa (Table 26), using a stoichiometric amount of
(IPr)AuOH 35 [74] in non-acid conditions, 1atm of CO2, and in dehydrated THF at 40 ◦C.
As shown in Scheme 8, they obtained the alkenylgold complex 36 in a 54% yield. The
side product of the reaction is H2O, which does not have sufficient acidity to damage the
alkenylgold complex. The successive addition of an equimolar solution of acetic acid in
CD3OD to lead the urethane 37 with an 83% yield in 1 h.

Catalysts 2023, 13, x FOR PEER REVIEW 33 of 47 
 

 

 
Scheme 8. Synthesis of the alkenylgold complex. 

Given these experimental observations, the authors proposed a mechanism of cy-
clization reaction promoted by the NHC gold complexes [75] (Scheme 9). In a polar me-
dium (methanol), the gold precursor forms the catalytic species by dissociation of the chlo-
ride, whereas the carboxylation of the amine moiety (I) produces the formation of a pro-
pargylic carbamate. The triple bond of the propargylic carbamate is activated by the cati-
onic gold(I) centre, which undergoes the nucleophilic attack by the carbamate ion on the 
triple bond to generate the neutral gold alkenyl compound. The subsequent addition of a 
proton (protodeuration) leads to the urethane II and regenerates the catalytic gold cation. 
This mechanism was also investigated by Lin and coworkers through DFT calculations 
[76]. It was found that polar protic solvents, such as CH3OH, can stabilize the negative 
charge on the carboxylic moiety, promoting the catalytic reaction [76]. 

 
Scheme 9. Proposed mechanism of the carboxylation fixation of carbon dioxide by propargyla-
mines, promoted by AuNHCX complexes. Adapted with permission from [75]. Copyright 2013, 
American Chemical Society. 

Fujita et al. [77] conducted further studies, synthesizing a series of amphiphilic den-
dritic NHC gold complexes and evaluating the catalytic activity of carbon dioxide addi-
tion to propargylic amines in aqueous media. The main aim of this research was to intro-
duce a hydrophilic group to a hydrophobic dendron in order to give the complexes am-
phiphilic. Tri(ethylene glycol) (TEG), penta(ethylene glycol) (PEG), and dodecyl(ethylene 
glycol) (DEG) were added to the dendron. The structures of such complexes are reported 
in Figure 21. 

Scheme 8. Synthesis of the alkenylgold complex.

Given these experimental observations, the authors proposed a mechanism of cycliza-
tion reaction promoted by the NHC gold complexes [75] (Scheme 9). In a polar medium
(methanol), the gold precursor forms the catalytic species by dissociation of the chloride,
whereas the carboxylation of the amine moiety (I) produces the formation of a propargylic
carbamate. The triple bond of the propargylic carbamate is activated by the cationic gold(I)
centre, which undergoes the nucleophilic attack by the carbamate ion on the triple bond
to generate the neutral gold alkenyl compound. The subsequent addition of a proton
(protodeuration) leads to the urethane II and regenerates the catalytic gold cation. This
mechanism was also investigated by Lin and coworkers through DFT calculations [76]. It
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was found that polar protic solvents, such as CH3OH, can stabilize the negative charge on
the carboxylic moiety, promoting the catalytic reaction [76].
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Scheme 9. Proposed mechanism of the carboxylation fixation of carbon dioxide by propargylamines,
promoted by AuNHCX complexes. Adapted with permission from [75]. Copyright 2013, American
Chemical Society.

Fujita et al. [77] conducted further studies, synthesizing a series of amphiphilic den-
dritic NHC gold complexes and evaluating the catalytic activity of carbon dioxide addition
to propargylic amines in aqueous media. The main aim of this research was to introduce a
hydrophilic group to a hydrophobic dendron in order to give the complexes amphiphilic.
Tri(ethylene glycol) (TEG), penta(ethylene glycol) (PEG), and dodecyl(ethylene glycol)
(DEG) were added to the dendron. The structures of such complexes are reported in
Figure 21.
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Figure 21. Structure of amphiphilic gold NHC complexes 38–40.

The authors of the paper examined the catalytic activity of the amphiphilic gold com-
plexes in the reaction of carbon dioxide fixation to N-methyl-3-phenylprop-2-yn-1-amine
(substrate PAj, Table 27), which lead in 15–24 h to the corresponding 2-oxazolidinone in
aqueous solution at room temperature. As shown in Table 27, all the complexes are catalyti-
cally active. The NHC gold complex 39 showed the highest production of oxazolidinone
(Entries 3–5). A good yield was obtained using 1% mol of the catalyst (Entries 4 and 5). A
dramatical decrease in yield was recorded lowering the catalyst loading to 0.5% (Entry 6).
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Table 27. Carboxylation of propargylamine in an aqueous solution catalyzed by dendritic NHC gold
complexes 38–40.
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Entry a Complex Au(%mol) Time (h) Yield (%) b

1 38 2 24 85
2 38 1 24 60
3 39 2 24 87
4 39 1 24 82
5 39 1 15 72
6 39 0.5 24 17
7 40 2 24 84
8 40 1 24 77
9 40 1 15 61

a Reaction conditions: PAj (0.8 mmol), MeOH (1 M) under CO2 (1 atm) at rt. b The yields were determined by
1H NMR.

Furthermore, Fujita and collaborators [78] tested the catalytic activity of 39 in the
carboxylation of various propargyl amines in aqueous media. The results are listed in
Table 28. The reaction of carbon dioxide fixation was carried out for 48 h, except for
the propargylamine PAj, using 1%mol of gold complex, to give the corresponding 2-
oxazolidinone in acceptable to good yields. Despite the use of 2 mol% of gold complex,
the reaction with terminal alkynes (Table 28, Entries 1 and 7) gave low chemical yields.
However, terminal amines did not react with the carbon dioxide (Entry 8).

Table 28. Carboxylation of propargylamines catalyzed by complex 39.
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1 PAe H Me 2 72 49
2 PAi CH3 iPr 1 48 63
3 PAj Me Ph 1 48 82
4 PAl 4-Me C6H4 Me 1 48 87
5 PAm Me Bn 1 48 74
6 PAn Et Bn 1 48 72

7 PAo H Bn 2 48 20
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2 72 n.d.

a Reaction conditions: PA (0.8 mmol), MeOH (1 M) under CO2 (1 atm) at rt. b The yields were determined by 1H
NMR. n.d. Not detected.

In 2020, Nolan and collaborators synthesized and characterized eight dinuclear gold(I)
complexes (41–48, Figure 22), evaluating their catalytic activity in the fixation reaction of
carbon dioxide to N-benzylbut-2-yn-1-amine (substrate PAh) [79]. All the eight complexes
were active toward the cyclization of carbon dioxide at room temperature in MeOH. Table 29
reports the catalytic activity of these complexes. The complexes 41–44 (Table 29, Entries
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1–4) bearing a 2,6-diisopropylphenyl group on the N-heterocyclic ligand, showed better
catalytic activity than the mononuclear analogues (Table 29, Entry 9). A counter anion
influence in terms of catalytic activity was not noticed. At the same time, a little drop in
activity when the linker length on the NHC ligand is shortened was observed.
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Entry a Catalyst Yield (%) b

1 41 87
2 42 87
3 43 79
4 44 76
5 45 47
6 46 47
7 47 62
8 48 47
9 20 63

a Reaction conditions: PAh (0.5 mmol) and dinuclear gold NHC complex (1% mol) in MeOH (0.4 mL) under CO2
(1 atm) at room temperature for 15 h. b The yields were determined by 1H NMR using 1,3,5-trimetoxybenzene as
the internal standard.
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3.2.2. Reaction of Carboxylative Cyclization Catalyzed by AgNHC

The carbon dioxide cycloaddition to propargylic alcohol, to achieve cyclic carbamates,
mediated by silver salts, has gained more and more attention in the last years. In 2007,
Yamada and collaborators reported for the first time silver catalyzed cycloaddition of
carbon dioxide to propargyl alcohols (Scheme 10) [72]. They evaluated the catalytic activity
of several inorganic silver salts (AgCN, AgOTf, Ag2CO3, AgOAc, AgBF4, AgF, AgSbF6,
AgClO4, AgOMs). AgOAc showed the best catalytic activity at room temperature in the
incorporation of carbon dioxide, using a stochiometric amount of DBU as a base to reach
cycloadduct yields ranging from good to quantitative. Other metal salts such as Rh(acac)3,
Hg(OTf)2, PtCl2, Pd(OAc)2, CuCl, and AuCl were not effective in this transformation.
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Scheme 10. Propargyl alchol cyclization catalyzed by AgOAc.

In 2015, Takao Ikariya et al. [80] reported, for the first time, the catalytic activity of
NHC silver complexes in the carbon dioxide cycloaddition to the allenyl moiety. Initially,
they tested a series of complexes of Group 11. Complex 5d (infra Figure 2) showed better
catalytic activity (Table 30, Entry 1) than the gold and copper analogues (Table 30, Entries
2–3). Moreover, the silver NHC complex bearing the benzoate ion did not exhibit improved
catalytic activity, and when the acetate ion moiety was replaced with the chloride ligand,
it was found that conversion dramatically worsened (Entries 4 and 5). These findings
imply that the carboxylation process depends critically on the production of active cationic
species. Remarkably, the NHC ligand influences the selectivity of the reaction. In fact, the
use of silver acetate has led to the formation of the carboxylated compound in 71% yield
and the byproduct 49b in 26% yield (Entry 6). Other acetate silver complexes showed a
reduced activity for carboxylation (Entries 8 and 9). As shown in Table 30 (Entries 10–16),
the nature of the solvent plays an important role in the reaction rate and in the selectivity of
cyclization. Aprotic solvents, such as toluene, THF, and CH2Cl2, compared to 2-propanol,
produced low conversions of 1-benzylamino-2,3-butadiene (Entries 10–12). In MeOH and
CF3CH2OH it was observed the formation of hydroamination product 49c (Entries 13 and
15). The authors asserted that the more acidity of these alcohol makes the allenyl moiety
more susceptible to the amine group. Despite the low catalytic loading (0.1 mol%, Entry 16)
the reaction of carboxylation continued in 2-propanol to give the urethane product a 77%
yield with a long reaction time.
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Table 30. Carboxylation of 1-(benzylamino)-2,3-butadiene.
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Entry a Catalyst Solvent
Yield (%) b

49a 49b 49c

1 5d 2-propanol 86 6 7
2 (IPr)Au(OAc) 2-propanol n.d. n.d. n.d.
3 (IPr)Cu(OAc) 2-propanol 3 n.d. n.d.
4 (IPr)AgOBz 2-propanol 85 6 7
5 5a 2-propanol 7 n.d. n.d.
6 AgOAc 2-propanol 71 1 26

7 c (ItBu)Ag(OAc) 2-propanol 69 2 26
8 (PPh3)Ag(OAc) 2-propanol 3 n.d. 3

9 d [(S)-BINAP]Ag(OAc) 2-propanol 3 n.d. 3
10 5d toluene 2 n.d. 2
11 5d THF 5 n.d. 4
12 5d CH2Cl2 50 3 4
13 5d CH3OH 61 4 31
14 5d t-BuOH 71 6 4
15 5d CF3CH2OH 31 2 36

16 e 5d 2-propanol 77 5 7
a The reaction was carried out with 1-(benzylamino)-2,3-butadiene (1.0 mmol) and the catalyst (2% mol) in solvent
(1.0 mL) under CO2 (1 MPa) at 30◦C for 6 h. b The yields were determined by 1H NMR using durene as internal
standard. c 40 ◦C, 7.0 MPa, 15 h. d 5 MPa. e 0.1 mol% of the catalyst for 96 h. BINAP: 2,2′-Bis(diphenylphosphino)-
1,1′-binaphthalene. n.d. Not detected.

Verpoort et al. [81] tested the catalytic precursors represented in Figure 19 (infra
Page 30) in the cycloaddition of carbon dioxide to propargyl alcohols, gaining the corre-
sponding α-alkylidene cyclic carbamates, under atmospheric CO2 pressure; the results are
listed in Table 31. The authors tested Ag2O, KI and NHC precursor as catalyst individually,
observing no formation of the desirable product (Entries 1–3, Table 31). The addition of AgI
to Ag2O or the use of the only AgI ware found to be ineffective to catalyze the cycloaddition
to propargyl alcohol (Entries 4–5, Table 31). Yet, the Ag2O/KI system was able to catalyze
that reaction when NHC precursor was added (Entries 6–9). The imidazolium salt with the
greatest catalytic activity was P-L3. The authors have looked at the impacts of the silver salt
and halide, in order to determine the ideal reaction conditions. The best catalytic system, as
demonstrated in Entries 8 through 13 was composed of Ag2O, KI, and P-L3. The catalytic
system was also examined in several solvents (DMF, DMSO, CH3CN, CH2Cl2, CH3OH).
The system AgI/P-L3/KI has showed excellent activity in both polar and aprotic solvents.
The solvent basicity, which is likely capable of activating the hydroxyl group of substrates,
is the cause of the somewhat greater activity in DMF.

The catalytic system was tested in the reaction of carboxylation with other substrates
under 1 bar of CO2, to lead the α-alkylidene cyclic carbamates. It was observed that
the steric hindrance of the substituted group has influenced the catalytic activity. Less
sterically hindered propargyl alcohols exhibited better tendency to undergo the reaction of
cyclization (Table 32).
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a The reaction was carried out with Ag salts (1 mol%), KX (2% mol), NHC (2% mol), in 10 mL of solvent, at 65 ◦C
for 3 h. 2-methylbut-3-yn-2-ol (5 mmol) was then added and reacted for 12 h at 1 bar of CO2. b Yield determined
by NMR, using 1,1,2,2-tetrachloroethane as internal standard. c Ag2O (2 mol%), KI (4% mol), NHC (4% mol), in
10 mL DMF, at 65 ◦C, for 24 h. 2-methylbut-3-yn-2-ol (2.5 mmol) was then added and reacted for 24 h at 1 bar of
CO2. n.d. Not detected.
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In 2018, an interesting paper by Chen [82] and collaborators was published, in which
they synthesized carbon nanotube (CNT) and graphene (GN) grafted NHC-Ag complexes
as heterogenous catalysts for the cycloaddition of CO2 to propargyl alcohol.

In Scheme 11, the synthesis of these heterogenous catalysts is represented. The compos-
ite materials were synthesized by reaction of polymerization of 3-allyl-1-vinylimidazolium
chloride in presence of CNT or GN suspension. The heterogenous catalysts (Scheme 11,
catalysts 50 and 51) were synthesized by reaction of corresponding materials with Ag2O.
These heterogenous complexes were tested in the cycloaddition of carbon dioxide to termi-
nal propargyl alcohols showing an interesting activity in the formation of carbonate. As
shown in Table 33, the reaction doesn’t occur in absence of the catalyst. Silver salts, like
Ag2O, Ag2CO3, AgOTf, AgOAc were inactive toward the transformation (Entries 1–6).
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Entry a R1 R2 R3 Catalyst Yield (%) b

1 H Me Me CNT-IL n.d.
2c H Me Me Ag2O 2
3c H Me Me Ag2CO3 2
4 c H Me Me AgOTf 1
5 c H Me Me AgOAc n.d.
6 c H Me Me 50 99
7 c H Me Me 51 99
8 c H Me Et 50 99
9 H Me Et 51 99
10 H Me i-Pr 50 97
11 H Me i-Pr 51 95

a The reaction was carried out with propargylic alcohol (0.53 mmol); catalyst (80 mg); PCO2 (3.0 MPa); T 80 ◦C; t
24 h. b Isolated yields based on propargylic alcohols. c Ag species (0.073 mmol) in the Ag catalysts are used on
equimolar amount of Ag sites in the CNT-NHC-Ag. n.d. Not detected.
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Very recently Hashimi and co-workers [83] reported the synthesis, the characterization,
and the catalytic application of new silver carboxylate carbene complexes, in the carbon
dioxide cycloaddition to propargyl alcohols and propargylic amines. The synthesis of
the silver carboxylate complexes is reported in Scheme 12. As shown, the carboxylate
complexes were synthesized by the preparation in the first instance, of the silver bromide
complexes, followed by ion exchange to gain the silver carboxylate salts (acetate, benzoate).
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Scheme 12. Synthesis of carboxylate silver carbene complexes.

Complex 52 showed the best catalytic activity. Under the optimized reaction condi-
tions, a variety of propargylic alcohols were converted to the corresponding carbamates. In
Table 34 the yields obtained using the complex 52 are reported. By the analysis of the yields,
the authors observed that the presence of alkyl or aryl group on the Ph ring contributed
to a slightly better yield than the ones bearing electron withdrawing group (Entries 1–8
vs. 13).

Table 34. Cyclization of various alcohols catalyzed by complex 52.
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4. Conclusions

The plethora of efficient one-pot reactions catalyzed by NHC metal complexes has
expanded greatly in the past couple of decades, since the first isolation of an N-heterocyclic
carbene by Arduengo. NHC complexes of silver(I) and gold(I) have received a great deal
of attention thanks to their easy handling, compared to the parent coinage metal copper.
This advantage, together with the wide applicability, has made possible an exponential
growth of published papers. This review article focused on two particularly interesting
multicomponent reactions involving alkynes, i.e.,: A3-coupling and CO2 fixation, having
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as main aim to furnish an up-to-date comprehensive overview of the application of such
complexes in these processes. Multicomponent reactions outcome can be strictly controlled
employing a late-transition metal catalyst. Particularly, in the presence of a NHC metal
complex, for the A3 coupling, reaction conditions can be easily adjusted towards a greener
process, while maintaining good yields, when compared to the metallic inorganic salt. As
far as carboxylation is concerned, the presence of such catalysts allows the reduction of the
reaction temperatures and CO2 pressure, making for a straightforward synthetic procedure.
The undiscussed versatility of the heterocyclic ring, both from the electronic and steric point
of view, together with the multitude of the counteranions available, produces a platform of
tunable catalytic systems whose metal complexes’ characteristics may be tailored to the
chemist’s imagination and have yet to be fully explored.
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