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Abstract: Paleogenomics focuses on the recovery, manipulation, and analysis of ancient DNA (aDNA)
from historical or long-dead organisms to reconstruct and analyze their genomes. The aDNA is
commonly obtained from remains found in paleontological and archaeological sites, conserved in
museums, and in other archival collections. Herbarium collections represent a great source of pheno-
typic and genotypic information, and their exploitation has allowed for inference and clarification
of previously unsolved taxonomic and systematic relationships. Moreover, herbarium specimens
offered a new source for studying phenological traits in plants and for disentangling biogeography
and evolutionary scenarios of species. More recently, advances in molecular technologies went in
parallel with the decreasing costs of next-generation sequencing (NGS) approaches, which paved the
way to the utilization of aDNA for whole-genome studies. Although many studies have been carried
out combining modern analytic techniques and ancient samples, such as herbarium specimens, this
research field is still relatively unexplored due to the need for improving strategies for aDNA manip-
ulation and exploitation from ancient samples. The higher susceptibility of aDNA to degradation and
contamination during herbarium conservation and manipulation and the occurrence of biochemical
postmortem damage can result in a more challenging reconstruction of the original DNA sequence.
Here, we review the methodological approaches that have been developed for the exploitation of
historical herbarium plant materials, such as best practices for aDNA extraction, amplification, and
genotyping. We also focus on some strategies to overcome the main problems related to the utilization
of herbarium specimens for their exploitation in plant evolutionary studies.

Keywords: plant genetic resources; population genomics; crop evolution; food legumes

1. Introduction
1.1. History and State of the Art of Herbaria

Herbarium collections represent large and not entirely explored deposits of genetic
and phenotypic information [1] that are able to provide snapshots of the diversity that was
present in the past. Initially, herbaria consisted of figurative books (Figure 1a) describing
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the characteristics of medicinal plants [2]. Over time, herbaria evolved to contain preserved
plants, seeds, fungi, and algae collected at different phenological stages [3]. Herbarium
specimens are commonly preserved or dried on paper sheets or stored in folded packets
or small boxes, which can be treated with solvents or pesticides to protect the specimens.
However, it is also possible to find plant material conserved in liquid solutions that may
contain acids, aldehydes, alcohols, or other organic solvents for specimen preservation [4].
More recently, herbarium samples are usually provided with supplementary label notes,
often including details about the collection site and observations made by the collector, as
shown in Figure 1b [5]. The history of modern herbaria began in the 16th century, when
Luca Ghini (1490–1556), a professor of medical botany at the University of Bologna and
Pisa, developed a method to make plant specimens transportable and preservable over
time [6,7]. However, his legacy mainly consists of books, manuscripts, and letters, since
the dried plants collected by Ghini have been largely lost after his death. Ghini’s con-
tribution to the field is highly recognized, also thanks to the herbaria established by his
disciples. Some notable examples include the oldest surviving herbarium, the “Erbario
Cibo”, preserved at the Pontifical University Library in Rome, and the herbarium of Ulisse
Aldrovandi (1522–1605) that is conserved in Bologna (Figure 1c) [8–11]. In the 18th cen-
tury, Carl Linnaeus developed his herbarium “cabinet” collection, including approximately
14,000 sheets of plant specimens and several zoological specimens [12]. In addition to his
herbaria, Linnaeus provided innovative instruction on how to establish an herbarium col-
lection, including proper techniques for collecting, drying, pressing, and mounting plants
onto paper. Linnaeus also emphasized the relevance of collecting closely related specimens
and using standardized collecting procedures to facilitate the exchange of materials and
information among botanists. His efforts laid the foundations for the establishment of
modern herbarium collections, which are still essential resources for botanical research
and education [13]. In 1935, the International Association for Plant Taxonomy (IAPT)
established the “Index Herbarium” (http://sweetgum.nybg.org/science/ih/), a compre-
hensive resource that serves as a global directory of herbaria from different independent
contributors. Nowadays, it includes almost 400 million specimens provided by more than
3500 active herbaria worldwide [14]. Among them, the largest number of specimens are
preserved at the “Muséum National d’Histoire Naturelle” (France), at the “New York
Botanical Garden” (USA), at the “Komarov Botanical Institute” (Russia), and at the ”Royal
Botanic Gardens” (UK) [14]. Until the mid-20th century, researchers had two options for
examining herbarium collections: either by physically visiting the herbaria or by requesting
specimens on loan for study. Towards the end of the 20th century, significant advances
took place with the massive process of digitalization of herbarium collections [15], which
resulted in the development of virtual herbaria. Thus, herbarium specimens were available as
high-resolution images linked to electronically associated notes [16,17] that are accessible
through online platforms. Such databases improved the exploitation and the exchange of
plant specimens, facilitating collaborative research and conservation efforts and providing
a powerful source for investigating plant diversity and evolution dynamics. However, as
discussed below, aDNA can be fragmented, damaged, and present in minute amounts,
posing several challenges associated with its exploitation for genomics studies.

1.2. Herbarium Genomics

In recent decades, paleogenomics has greatly benefited from significant advances in
the field of molecular biology [18], including those in DNA extraction and amplification
procedures and improvements in next-generation sequencing (NGS) strategies. This has
enabled researchers to obtain molecular markers as well as whole-genome sequences (WGS)
from specimens dating back several centuries, including those preserved in herbaria. Pale-
ogenomics studies were also applied to the analysis of pathogens preserved within these
specimens, which allowed detailed explorations of temporal signals of divergence among
modern and ancient strains [19,20]. As stated above, the characterization and digitization
processes of collections have greatly promoted the accessibility and utilization of ancient
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samples in a wide range of studies [15]. Traditionally, herbarium specimens have been em-
ployed for taxonomy and systematics studies. These collections still represent a significant
resource for both the discovery and formal description of plant taxa. Moreover, molecular
approaches have revolutionized the study of taxonomy, bringing significant advancements
in resolving ambiguous phylogenetic relationships and classifications [21]. By exploiting
aDNA from now-extinct species or ancient samples, researchers can gain valuable insights
into the evolutionary history of different organisms and species and bridge gaps in our
understanding of past biodiversity and present genetic diversity, also allowing for the
reconstruction of phylogenetic trees [21]. Moreover, taking into consideration that the
dissemination of species in novel geographic areas is associated with molecular adaptative
mechanisms as well as significant phenotypic and phenological changes [22,23], herbaria
can be exploited to dissect the plant response to changing environmental conditions across
time [24,25]. Indeed, recruiting phenotypic and genotypic information from historical ma-
terials collected in different geographical areas is crucial to reconstructing the evolutionary
dynamics and adaptation processes of a species. For example, Myers et al. (2022) [26]
analyzed phenotypic data acquired from illustrations of the common bean from the XVI
century to provide historical support to the dynamics of the introduction of the two main
gene pools of this species (i.e., Mesoamerican and Andean) from the Americas to Europe
following the travels of Columbus. The application of molecular tools to ancient biological
samples might provide the opportunity to investigate population dynamics across different
time points as a result of migration processes, gene flow, occurrence of novel mutations, and
changes at the genome level also driven by genetic drift and by natural selection, although
limitations can arise depending on the quality of the aDNA. This makes it possible to inves-
tigate the complex interplay between genetics, environment, and evolution of a population
across time [27,28]. In genomic studies, the comparison of data from herbaria and modern
samples can provide valuable information for optimizing the management of plant genetic
resources [29]. Cozzolino et al. (2007) [30] evaluated changes in the genetic diversity of
the Anacamptis palustris population because of habitat transformation in Italy over time.
To do so, authors sequenced and compared a plastid region between herbarium specimens
collected prior to the Second World War and modern samples. Thus, this approach could
be very useful as a complement to large genotyping and phenotyping programs of modern
accessions aimed at understanding the environmental adaptation and the evolutionary
dynamics of genetic diversity, such as the INCRESE project [31], which is focused on food
legumes such as chickpeas [32], the common bean [33], lupin [34], and lentil [35]. How-
ever, from the work carried out by Cozzolino et al. (2007) [30], some possible limitations
of complementing modern collections with herbarium collections have arisen due to the
limited sample size (i.e., the number of specimens) and potential methodological biases
in collecting procedures. For instance, only a few individuals could have been collected
from each collection site, which may not capture the full extent of genetic diversity within
a population. Despite these limitations, herbaria can be considered a valuable source for
detecting variations in the distribution and frequency of haplotypes and alleles.

1.3. Challenges in the Use of Herbaria and Ancient Samples for Genomics Studies

The advent of NGS platforms has opened unprecedented possibilities for studying
genome-level diversity from herbaria and ancient samples. However, for this purpose,
the successful implementation of NGS may be challenging due to the unique nature and
the issues associated with the manipulation of ancient samples, such as damage and
fragmentation of the aDNA. The development of robust protocols for aDNA purification,
amplification, and sequence data analysis is crucial for obtaining reliable results [18]. The
aDNA from herbaria and ancient samples is often degraded and fragmented, and it is
often challenging to purify fragments longer than 500 bp [36–38]; thus, the optimization
of extraction protocols can represent a crucial bottleneck in obtaining high-quality aDNA
suitable for sequencing. Additionally, the limited amount of aDNA that can be rescued
from ancient specimens poses the risk of contamination between samples and from modern
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DNA while handling and processing [39,40]. Moreover, aDNA in herbarium-preserved
samples can be susceptible to biochemical postmortem damage [41]. Indeed, over time, the
aDNA molecules can undergo various forms of degradation, including fragmentation and
chemical modifications; these damages pose additional challenges when the original DNA
sequence must be assembled and in the analysis of sequences. The biochemical postmortem
damage in herbarium samples can result from different factors, such as light exposure, not-
controlled moisture, temperature fluctuations, and the presence of reactive chemicals.
These factors can lead to DNA strand breaks, base modifications, and crosslinking of
DNA molecules, which can affect the quality and integrity of the assembled sequence [42].
Efficient protocols have been developed to overcome these issues, especially regarding
aDNA purification. Here, we report the most relevant protocols for aDNA purification from
herbaria specimens (Table 1). Furthermore, the choice of the bioinformatics pipeline and of
the strategy for the analysis of NGS data from herbaria and ancient samples is particularly
relevant, especially in the case of low-quality and fragmented aDNA. In the present review,
we want to give insight into the best strategies for the extraction, purification, amplification,
and sequencing of herbarium aDNA, which can be exploited in genetic diversity and
evolutionary studies of plant species as well as in the reconstruction of phylogenetic and
taxonomic relationships.
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Figure 1. Herbaria illustrations. (a) The oldest illustration of a European common bean plant (Phaseolus
vulgaris) from “Di Historias Stirpium” (Fuchs, 1542); “Courtesy of Hunt Institute for Botanical Docu-
mentation, Carnegie Mellon University, Pittsburgh, PA”. (b) Phaseolus vulgaris specimen from the
Muséum National d’Histoire Naturelle (MNHN) (France), Paris, Collection: Vascular plants (P), Spec-
imen P02872197, dated 1833. The label notes include information about the collector, the collection
site, and the date. (c) Phaseolus vulgaris specimen from the herbarium of Ulisse Aldrovandi; “Courtesy
of Alma Mater Studiorum University of Bologna—University Museum System—Herbarium and
Botanical Garden”.

Table 1. Summary of relevant aDNA purification protocols from herbaria specimens. The source of
plant material, timing of the sampling before storage, success with the tested samples, procedures for
the evaluation of aDNA quality, and the reference are provided for each of the tested protocols.

DNA
Extraction/Purification

Protocol

Source of Plant
Material

Timing of
Sampling

Suitable for
Extracting

Herbarium DNA

Quality
Evaluation
Approach

Reference

CTAB, according to the
protocol of Doyle and

Doyle (1990)

Juncus and Luzula
genera (Juncaceae) * Yes PCR amplification [43]

CTAB + pre-wash with a
sorbitol-containing

buffer
Lafoensia spp. N.A. Yes PCR amplification [44]
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Table 1. Cont.

DNA
Extraction/Purification

Protocol

Source of Plant
Material

Timing of
Sampling

Suitable for
Extracting

Herbarium DNA

Quality
Evaluation
Approach

Reference

Modified CTAB

Agropyronjunceum
(Gramineae), Poa

juncifolia
(Gramineae), Poa
palustris, Triticum

aestivum
(Gramineae), Vicia
faba (Fabaceae), Zea

mays ssp. mays

N.A. Yes Restriction
enzymes [45]

Juncus and Luzula
genera (Juncaceae) N.A.

Yes, but may
present CTAB
contamination

PCR amplification [43]

N.A. ≥60 years Yes PCR amplification [46]

Species from nine
genera of the

Papilionoideae
N.A. Yes PCR amplification [47]

DNeasy Plant Mini Kit
(QIAGEN)

Juncus and Luzula
genera (Juncaceae) N.A. Yes PCR amplification [43]

DNA extraction with
phenol purification and

liquid nitrogen

Juncus and Luzula
genera (Juncaceae) N.A. No PCR amplification [43]

Long-term precipitation
in isopropanol and CsCl

gradient

Juncus and Luzula
genera (Juncaceae) N.A. No PCR amplification [43]

Proteinase K and
sodium dodecyl sulfate

(SDS)
Scripus hattorianus 1934 Yes PCR amplification [48]

N-phenacylthiazolium
bromide

(PTB)—dithiothreitol
(DTT)

Arabidopsis thaliana Between 1839 and
1898 Yes NGS [49]

Phenol-chloroform and
silica spin column

purification

Herbarium grape
leaf tissue

(unpublished data)
N.A. Yes PCR amplification [50]

Polyvinylpyrrolidone
PVP genus Dalbergia N.A. Yes PCR amplification [51]

AMPure XP magnetic
beads/PEG

8000-containing buffer
genus Scorzonera Between 1920 and

1960 Yes PCR amplification [52]

* Modern plant samples that have been dried using sheets of paper to simulate herbarium specimen preparation.
N.A.: not available.

2. Extraction and Purification of aDNA from Herbarium Specimens

The utilization of herbarium specimens in molecular studies poses significant challenges
due to the difficulties in obtaining a substantial amount of high-quality purified aDNA [53].
Working with herbarium specimens involves the handling of a limited amount of tissues
that are often stored under suboptimal conditions for long periods, leading to aDNA
damage and an increased risk of contamination [43]. Doyle and Dickson (1987) [54] raised
the importance of testing different methods to preserve aDNA integrity within herbarium
specimens, and several subsequent studies have consistently found that air-drying of plant
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material is a reliable preservation method, preventing degradation and better preserving
aDNA when compared to alternative practices, such as microwaving, boiling, or immersion
in chemical solutions [37]. Moreover, it has been observed that well-preserved older
materials tend to yield higher quantities of purified aDNA of better quality when compared
to younger materials that have been subjected to unfavorable storage conditions [38,43,54].
As a general consideration, we also have to take into account that the initial condition of the
tissues at the sampling stage, before storage, inevitably impacts the quality and the quantity
of the purified aDNA [55]. Overall, the purification from herbarium specimens results
in a lower yield of DNA when compared to the utilization of fresh plant tissues [4,56].
In their pioneering work, Rogers and Bendich (1985) [45] employed a modified CTAB
(cetyltrimethylammonium bromide) nucleic acid extraction protocol to purify DNA from a
small number of mummified seeds, herbarium specimens, and fresh plant tissues. Although
this extraction method confirmed a higher yield when applied to fresh tissue, it has also
proven to be effective for the extraction and purification of aDNA from ancient plant
materials. A relevant step during aDNA purification is the grinding of the plant material
obtained from the herbarium specimen. One of the most adopted practices relies on bead-
based homogenization equipment, such as a mixer mill or bead mill. As noted by Drábková
(2014) [57], this approach can reduce aDNA loss and the risk of contamination compared to
alternative methods, such as grinding in mortars with liquid nitrogen. Additionally, the use
of a bead-based homogenization approach enables the simultaneous processing of multiple
samples, ensuring consistent and homogenous results [43]. It is important to remember
that best practices must always be adopted in the laboratory to prevent contamination
since the use of bead-based grinding methods might introduce a risk of contamination,
which can particularly impact the analysis of aDNA. Over the past two decades, numerous
aDNA extraction protocols have been developed, tested, and compared to optimize the
quality and quantity of purified aDNA from herbaria specimens, for which a report is
provided in Table 1. Drabkova et al. (2002) [43] tested seven DNA extraction protocols in
herbarium specimens from Juncus and Luzula genera (Juncaceae) species collected during
the twentieth century, including fresh tissue materials as a control. They evaluated quality
parameters, such as the aDNA A260/280 and A230/280 absorbance ratios, and estimated
the quantity of aDNA through spectrometry. From their results, they concluded that the
use of a DNeasy Plant Kit (Qiagen), with some modifications, was the best approach for the
aDNA purification. In detail, the authors found that both optimal homogenization of the
plant tissue and extension of the precipitation time were crucial steps. Modifications to the
manufacturer’s protocol included a longer cell lysis time (i.e., 30 min), an increased volume
of AP1 buffer (i.e., 450 µL), a reduced volume of elution buffer (i.e., 50 µL) that increased
aDNA concentration, and an extended elution time (i.e., 10 min). They also pointed out the
protocols that gave the worst results, particularly the phenol extraction due to the potential
contamination of aDNA with phenol, which can negatively affect downstream reactions,
including amplification and sequencing, and, similarly, the CsCl gradients protocol, as
aDNA could be lost within the gradient due to the limited amount of tissue [43].

Preserving the integrity of museum collections, which prioritizes maintaining speci-
mens in their original state [58], poses a significant challenge when extracting DNA from
ancient materials. To address this issue, efficient DNA extraction protocols that use minimal
tissue have been established for historical specimens. Shepherd (2017) [59] introduced a
non-invasive approach to sampling material directly from herbaria by using a Staedtler
“Mars Plastic” eraser that minimized damage to the specimens while obtaining the neces-
sary amount of tissue for DNA extraction. Sugita et al. (2020) [48], taking as an example
a previously published protocol for DNA extraction in arthropods, established a plant-
suitable non-disruptive protocol, particularly useful in species with small (i.e., <25 mm2)
and fragile leaves [60,61]. Nevertheless, despite the importance of non-disruptive methods,
CTAB and modified DNeasy Plant Mini Kit (QIAGEN) protocols are the most frequently
adopted methods for aDNA extraction [57]. Among the reasons for this, aDNA-specific
protocols are generally more expensive, more time-consuming, and require specific proto-
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cols and facilities to avoid contamination. As stated above, storage conditions for herbarium
specimens (e.g., fluctuating temperatures or high humidity) and the species from which
the tissue is obtained can influence the efficiency of the aDNA extraction [62]; thus, such
factors must be taken into account when choosing the aDNA extraction protocol. With this
regard, Marinček et al. (2022) [63] compared the standard Qiagen DNeasy Plant Mini Kit
and a specific dithiothreitol (PTB)-dithiothreitol (DTT) protocol, previously developed by
Gutaker et al. (2017) [49], with the aim of evaluating the efficiency of these protocols on
specimens from the genera Xanthium L. and Salix L. They showed a lower efficiency of the
Qiagen DNeasy Plant Mini Kit when working with older specimens (i.e., collected before
1900). Thus, a researcher might want to consider the PTB-DTT protocol as an alternative
for aDNA extraction in older and more challenging specimens, for example, due to the
higher concentration of secondary metabolites in the tissue. Indeed, several protocols
have been developed, specifically taking into account the issues related to the presence of
secondary metabolites that can inhibit PCR reactions. Ribeiro and Lovato (2007) [51] tested
five DNA extraction protocols on fresh and herbarium leaves of various species belonging
to the genus Dalbergia, known to contain significant amounts of secondary metabolites
potentially interfering with DNA amplification. Based on their results, the most efficient
protocol was developed by Jobes et al. (1995) [64]. This protocol uses three key reagents:
polyvinylpyrrolidone (PVP), which binds phenolic compounds, sodium chloride with a
high molar concentration, which inhibits the co-precipitation of polysaccharides and DNA
and, in turn, enhances the solubility of polysaccharides in ethanol, and, finally, lithium chlo-
ride, which is useful to selectively precipitate and subsequently remove RNA. Krinitsina
et al. (2015) [52] proposed a cost-effective DNA extraction method specifically designed for
herbarium specimens that involves the utilization of AMPure XP magnetic beads diluted in a
buffer containing PEG 8000. The authors suggest that the use of magnetic beads can reduce
the concentration of PCR inhibitors in the aDNA. Hofreiter (2012) [65] adapted a protocol
that had been originally designed for isolating aDNA from human hair samples [66] to
ancient plant specimens. In particular, the protocol includes two key steps: a phenol–
chloroform extraction followed by a silica spin column purification. Phenol–chloroform
extraction has proven to be effective for those samples containing low amounts of DNA
and that may contain polymerase chain reaction (PCR) inhibitors, affecting the enzymatic
activity of the Taq polymerase [38,67]; although, one may consider minimizing the use of
phenol-chloroform due to the environmental hazards associated with its use. However, the
use of phenol–chloroform for DNA extraction can introduce contamination issues associ-
ated with phenol–chloroform residues that can significantly impact downstream processes,
particularly DNA quantification and PCR, potentially compromising data accuracy [43].

Overall, selecting the most appropriate aDNA purification protocols involves care-
ful consideration of factors such as preservation conditions and the specific goals of the
research. By taking these factors into account, researchers can optimize their DNA purifi-
cation methods and enhance the chances of obtaining high-quality aDNA for subsequent
analysis (Figure 2).
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investigation allows for gaining a comprehensive understanding of the available information on
herbarium specimens. The use of web tools, such as web herbaria, academic databases, and online
libraries, allows for finding reliable and up-to-date sources and conducting proper research be-
fore making any material requests; (b) the identification and selection of the best protocol—aDNA
extraction, purification, or genotyping—to obtain molecular information from a specimen should
take into account the characteristics of the material, available resources, and research objectives;
(c) bioinformatics approaches are needed for data processing; (d) maximizing the quality of se-
quencing data is of great importance, as it significantly enhances the chances of reconstructing the
phylogeny, understanding the demographic history of a species, and identifying selection signatures
in response to natural or human-driven selection. Created using BioRender.com.

3. DNA Amplification by PCR from Herbarium Specimens

Since its development, PCR has become a routine and indispensable technique in
several protocols for molecular biology studies that can be extended to the analysis of
ancient samples. Several studies reported on the successful amplification of aDNA from
plant herbarium material collected over a wide range of ages, resulting in variable lengths
of amplified fragments [38,46,68]. Staats et al. (2011) [37] also reported that there are
no significant differences in PCR amplification efficiency among plastid, mitochondrial,
and nuclear aDNA from herbarium material, similar to what can be generally observed in
amplification from plastid, mitochondrial, and nuclear DNA obtained from fresh tissue.
As mentioned, DNA extraction from herbarium material can often yield low quantities of
fragmented genetic material. However, the quality and purity, rather than the quantity, of
the aDNA template mostly affect PCR amplification efficiency [38]. Quality control proce-
dures, including rigorous purification steps and measures for minimizing and identifying
contaminations, are crucial to ensuring the accuracy and reliability of the PCR amplifi-
cation. As stated above, the presence of secondary metabolites in plant cells from fresh
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tissues, and thus in herbarium samples, can have a negative impact on the amplification
efficiency. To address this issue, various extraction protocols have been developed with
the aim of reducing the concentration of these metabolites [47,51,52]. In order to mitigate
the effects of PCR inhibitors, as a post-aDNA purification step, a potential solution is
diluting DNA extracts. However, this approach is not always feasible for herbarium samples
due to the typically low yield and concentration of the eluted aDNA obtained from these
specimens [69]. An alternative approach to improving the quality and quantity of the
aDNA template available for PCR amplification in the presence of potential inhibitors has
been suggested by Samarakoon et al. (2013) [69]; it involves the use of a reagent called
TBT-PAR, which contains trehalose, bovine serum albumin (BSA), and polysorbate-20
(Tween-20). Multiple studies investigated the effects of using high concentrations of BSA
on PCR amplification efficiency when working with poor-quality template aDNA. Overall,
these studies agreed that a higher concentration of BSA can have a strong positive impact
on PCR efficiency [51,57]. In particular, Särkinen et al. (2012) [38] suggested the utilization
of a high concentration of BSA when routinely amplifying aDNA from herbarium specimens.
Several factors can indeed affect PCR amplification efficiency, and among these factors
are the purity and specific type of polymerase and the purity of buffers and reagents
used. It is crucial to consider these factors to ensure reliable and consistent PCR results,
especially in amplifying aDNA [70]. A suitable and cost-effective alternative to mitigate
the effects of potential PCR inhibitors is the adoption of a polymerase enzyme that is less
susceptible to their presence [71]. Särkinen et al. (2012) [38] suggest that the utilization of a
polymerase without proofreading activity may perform better than one with proofreading
activity. Moreover, it is essential to investigate and optimize the performance of different
polymerases to improve the amplification efficiency for aDNA. Furthermore, Särkinen
et al. (2012) [38] reported a significant negative correlation between the length of the aDNA
template fragments from herbarium specimens and PCR efficiency, that is, a strong reduction
in the success rate of the amplification when the template regions have a greater length
than 100 bp. Thus, this suggests that shorter fragments can be easily amplified, which is
an interesting aspect considering the fragmented nature of the aDNA template usually
obtained from these specimens. However, in the case of extreme aDNA fragmentation,
amplification of certain loci may be challenging. It is worth noting that mitochondrial
and chloroplast aDNA can also be successfully retrieved from severely degraded samples,
being present in high copy numbers within a cell. Moreover, there is a higher chance that
some mtDNA and cpDNA fragments are long enough for amplification, even when nuclear
DNA is highly fragmented [72]. Another relevant aspect is the instability of nucleic acids
during long-term preservation, which can lead to the formation of various postmortem
damages, affecting the quantity and quality of template aDNA for the amplification; such
damages can also introduce potential errors that make the reconstruction of the aDNA
sequence challenging. An example of postmortem damage is depurination, which can
result in the formation of single- or double-strand breaks in the DNA molecule. Addi-
tionally, crosslinking reactions can occur, limiting or even preventing DNA amplification
altogether [73]. Thus, it is crucial to identify the best methodologies and strategies to take
into account the occurrence of postmortem damage when working with herbarium samples
in order to mitigate their effects on quality and amplification efficiency. Indeed, oxidative
and hydrolytic modifications of bases can lead to the formation of miscoding lesions, such
as the deamination of cytosine to uracil. Thus, these lesions can lead to the incorporation of
incorrect bases during the amplification process [37]. Certain oxidative damage can also
create lesions that block the polymerase enzyme and promote the generation of chimeric
sequences through ‘jumping PCR’ [41,74].To address the PCR artifact caused by misincor-
poration, Uracil-N-glycosylase (UNG) can be employed prior to amplification to remove
deaminated cytosines [41,75]. UNG creates an abasic site that is subsequently hydrolyzed
through β-elimination, resulting in a strand break [41,76]. However, it is important to
carefully consider the use of UNG treatments since it inevitably leads to a reduction in the
aDNA sequence length, which is often highly fragmented [77]. In addition to the sensitivity
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of PCR amplification, the low template aDNA concentration, and the fragmented nature of
potential target loci in the aDNA, the presence of exogenous DNA contamination is also
a common challenge in aDNA manipulation. Indeed, exogenous DNA might have been
introduced during the collection and conservation of the plant material, by the presence
of microorganisms or pathogens [39], or by handling samples during molecular processes.
Kistler et al., 2020 [40] emphasized the importance of manipulating herbarium specimens in
a physically isolated laboratory during all the steps. Nevertheless, DNA contaminants can
still be introduced into the experimental workflow through various means, as summarized
in Figure 3, including the use of contaminated reagents or samples as well as the presence
of residual DNA and PCR amplification products from previous experiments [78].
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To minimize the risk of contamination, Knapp et al. (2011) [79] developed a set of
guidelines for establishing a molecular laboratory exclusively dedicated to studies on
ancient specimens. The guidelines recommend conducting the different steps of aDNA
extraction and amplification in dedicated rooms and/or hoods, expanding the concept
of spatial isolation within the same laboratory. Furthermore, the authors highlight the
importance of implementing a limited access policy, granting facility access only to qualified
personnel who are aware of the risks of contamination.

4. Next-Generation Sequencing (NGS) and Genotyping on Herbarium Specimens to
Disentangle Relevant Aspects of the Evolutionary History of a Species

Several studies investigated the genetic diversity preserved in herbarium collections,
providing insights into relevant aspects of plant species’ evolutionary histories, includ-
ing adaptation processes and the effects of environmental changes over time. Several
approaches have been employed to genotype herbarium specimens [80–82]. Malenica et al.
(2011) [83] successfully genotyped a 90-year-old Tribidrag grapevine herbarium specimen
by utilizing a set of nine microsatellite markers (SSRs) and a whole-genome amplification
(WGA) procedure. Other amplification-based genotyping approaches have proven to be
suitable for molecular analysis of herbarium samples despite the limitations in the aDNA
amplification from such materials, as described above [46,72]. As an example, while AFLP
fingerprinting can be utilized to analyze herbarium material, the fragmented nature of
the purified aDNA can introduce a bias when utilizing such an approach since AFLP is
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based on the presence and distribution of restriction sites. In such cases, Lambertini et al.
(2008) [84] suggested using only those markers that can also be detected in fresh tissue
and, in parallel, increasing the number of primer combinations to ensure the amplification
of an adequate number of polymorphic fragments. By studying chloroplast and nuclear
microsatellite diversity in 57 historical herbarium specimens, Roullier et al. (2013) [85]
were able to trace relevant events in the evolutionary history of the sweet potato over time,
such as the effect of the domestication process, migration patterns, and genetic interactions.
By comparing the genetic data from historical herbarium collections with that of modern
samples, researchers can assess changes in the level of genetic diversity and identify poten-
tial genetic bottlenecks or shifts that occurred during domestication and cultivation. The
emergence of next-generation sequencing (NGS) led to a revolutionary change in our ability
to obtain multi-locus genetic data from natural historical collections [72]. An approach
that has significantly impacted this field of research is the Sequencing by Synthesis (SBS)
strategy, which has been developed to enable cost-effective shotgun sequencing of whole
genomes [86]. High-throughput SBS technologies involve the preparation of sequencing
libraries, which entails attaching artificial DNA segments known as adapters to both ends of
those template fragments characterized by a specific range of fragments [81]. This strategy
allows for efficient and accurate sequencing of the aDNA fragments. When working with
aDNA, differently from the SBS procedure for library preparation in modern samples, the
fragmentation step that comes before adapter ligation can be skipped [81]. The adapters
used in sequencing library preparation can serve multiple purposes. Indeed, they enable
the priming of both whole-genome shotgun sequencing or the enrichment of specific ge-
nomic regions of interest through hybridization capture techniques [81]. These approaches
allow for the characterization of various types of DNA, such as organellar DNA or nuclear
loci, as well as the detection of a vast number of single-nucleotide polymorphisms (SNPs)
distributed throughout the nuclear genome. Generally, library preparation protocols for
herbarium DNA templates do not require significant modifications compared to standard
ones. Most of these protocols were originally developed for Illumina sequencing-based
platforms and can be broadly categorized into two main types: the single-stranded library
(ss-library) and the double-stranded library (ds-library) construction methods. Briefly,
ss-library preparation starts with heat denaturation of DNA followed by the attachment of
a biotinylated adapter oligonucleotide to the 3′ ends. A second adapter is then blunt end-
ligated to complete the library preparation, which is further amplified through PCR [87].
Whereas, ds-library preparation can be further categorized into Blunt-End and Y-adapter
methods, both involving the end-repairing of the DNA fragments and ligation of double-
strand adapters but differing in the type of adapter used. Bennett et al. (2014) [88] tested
all the different methodologies for library preparation, starting from aDNA faunal and
human remains, finding that the Y-adapter method led to the formation of adapter–dimer
artifacts, while the ss-library approach allowed for an increased proportion of shorter
endogenous molecules incorporated into the libraries. Their outcome has been further
confirmed in recent research, suggesting that the ss-library preparation approach is better
suited to the aDNA features compared to double-stranded library protocols [41], exhibiting
greater sensitivity to degraded and poorly preserved ancient samples, such as herbarium
specimens [89]. In protocols that require the amplification of libraries by PCR, the presence
of artifacts caused by misincorporation can impact sequencing accuracy and efficiency. To
mitigate the effects of postmortem damage, UDG enzyme-based protocols (see previous
section) can be employed during library preparation [90]. One of the key advantages of
using UDG is that it helps eliminate misincorporations (C to T and G to A) in the recovered
sequences, improving the mapping efficiency. This is particularly useful when the reference
sequence belongs to a species that is distantly related to the query sequence, which reduces
the number of possible gaps and mismatches in the alignment [89]. However, the presence
of uracil and other types of postmortem damage can also serve as an indicator to assess the
presence of modern contamination in aDNA samples [91]. Damage profiles can be inferred
using computational methods such as mapDamage 2.0, which allows for distinguishing
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ancient molecules from modern contaminants [92,93]. Indeed, the aDNA damage pattern
is a crucial factor that can significantly impact aDNA analysis and the authentication of an-
cient sequences obtained from herbarium samples. Another strategy for addressing errors in
sequence reconstruction resulting from misincorporations in aDNA is to focus downstream
analysis on transversions rather than transitions since the latter are more susceptible to
postmortem damage. Trucchi et al. (2021) [94] applied this strategy in their paleontological
study of ancient bean seeds from different archaeological sites in Argentina. They analyzed
the temporal dynamics of genetic variation and selection during the domestication process
of the common bean (Phaseolus vulgaris L.) in the southern Andes by comparing WGS data
from a panel of 15 ancient beans dating between 2500 and 600 years ago and modern wild
and domesticated common bean accessions (from both Mesoamerican and Andean gene
pools). The work of Trucchi et al. (2021) [94] clearly demonstrated how, by considering
transversions, researchers can significantly reduce the impact of postmortem damage on
sequence analysis and improve the accuracy of genetic variation inference in aDNA studies.

5. Conclusions

The employment of herbaria in paleogenomics can offer an opportunity for investi-
gating the genetic and phenotypic diversities of ancient samples compared to modern
ones, being available plant genetic resources that are largely unexplored. This requires
optimized strategies for herbaria handling and for the analysis of the aDNA, including
the employment of advanced next-generation sequencing approaches and computational
methods to authenticate and analyze aDNA data and access an unexplored source of ge-
netic information. However, the quality of attainable genetic data can be strongly affected
by the protocols used for aDNA extraction, amplification, and sequencing due to several
factors, such as the preservation state of the specimens and the aDNA. Consequently, an
in-depth understanding of the strengths and limitations of available protocols for aDNA
exploitation becomes crucial. Here, we reviewed the most recommended strategies and ap-
proaches for handling herbaria specimens and aDNA. Moreover, we discussed the relevance
of integrating available high-quality ancient sequence data from herbarium specimens with
modern sequences to perform population genetics and genomics studies and inferences on
the evolution of a species.
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