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“-Where should I go?  

-That depends on where you want to end up.” 

Lewis Carroll, Alice Adventures in Wonderland 
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Abstract 

The implementation of smart technologies and physical collaboration with robots in manufacturing 

can provide competitive advantages in production, performance and quality, as well as improve 

working conditions for operators. Due to the rapid advancement of smart technologies and robot 

capabilities, operators face complex task processes, decline in competences due to robots 

overtaking tasks, and reduced learning opportunities, as the range of tasks that they are asked to 

perform is narrower. The Industry 5.0 framework introduced, among others, the human-centric 

workplace, promoting operators wellbeing and use of smart technologies and robots to support 

them. This new human centric framework enables operators to learn new skills and improve their 

competencies. However, the need to understand the effects of the workplace changes remain, 

especially in the case of human robot collaboration, due to the dynamic nature of human robot 

interaction. 

A literature review was performed, initially, to map the effects of workplace changes on operators 

and their capabilities. Operators need to perform tasks in a complex environment in collaboration 

with robots, receive information from sensors or other means (e.g. through augmented reality 

glasses) and decide whether to act upon them. Meanwhile, operators need to maintain their 

productivity and performance. This affects cognitive load and fatigue, which increases safety risks 

and probability of human-system error. A model for error probability was formulated and tested 

in collaborative scenarios, which regards the operators as natural systems in the workplace 

environment, taking into account their condition based on four macro states; behavioural, mental, 

physical and psychosocial. A scoping review was then performed to investigate the robot design 

features effects on operators in the human robot interaction system. Here, the outcomes of robot 

design features effects on operators were mapped and potential guidelines for design purposes 

were identified. The results of the scoping review showed that, apart from cognitive load, operators 

perception on robots reliability and their safety, along with comfort can influence team cohesion 

and quality in the human robot interaction system. 

From the findings of the reviews, an experimental study was designed with the support of the 

industrial partner. The main hypothesis was that cognitive load, due to collaboration, is correlated 

with quality of product, process and human work. In this experimental study, participants had to 

perform two tasks; a collaborative assembly and a secondary manual assembly. Perceived task 
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complexity and cognitive load were measured through questionnaires, and quality was measured 

through errors participants made during the experiment. Evaluation results showed that while 

collaboration had positive influence in performing the tasks, cognitive load increased and the 

temporal factor was the main reason behind the issues participants faced, as it slowed task 

management and decision making of participants. Potential solutions were identified that can be 

applied to industrial settings, such as involving participants/operators in the task and workplace 

design phase, sufficient training with their robot co-worker to learn the task procedures and 

implement direct communication methods between operator and robot for efficient collaboration. 
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1. INTRODUCTION 

1.1 Defining the operators issue 

The Fourth Industrial Revolution, or Industry 4.0 (I4.0), encompasses smart technologies and 

promotes rapid technology advancements, fast paced systems and processes with increased 

interconnectivity, and rapid automation and digitalization (Bai et al., 2020). Artificial Intelligence 

(AI), Augmented and Virtual reality (AR/VR) along with collaborative robots (cobots) and cyber 

systems (such as cloud computing), are some of the smart technologies and tools deployed in the 

workplace of I4.0 (Frank et al., 2019). Physical barriers between human and robots are removed, 

allowing for more close human-robot and human-machine interaction (De Santis et al., 2008). 

With the breakthroughs in machine learning and data analysis, big data analytics can provide (near-

) real time data processing, which in turns presents numerous opportunities for management, 

including better informed decision making and faster reactions to events (Gokalp et al., 2016).  

In that evolving, dynamic and complex environment, humans need to be able to work alongside 

robots, interact with smart technologies in their tasks (e.g. AR tools in maintenance or assembly), 

and act as safeguard entities (Reason, 2000). Moreover, operators need to be able to receive real-

time information from their robotic co-workers and other “tools”, such as cyber physical systems 

(CPS) or AR glasses. As such, operators need to decide whether to act upon the information on 

not, in order to fulfil the goals set by management and logistics (Panagou et al., 2021b). With the 

capabilities offered in the I4.0 framework and the new HRI, customers are able to choose from a 

wide range of industries and their products, and are also able to follow along the production and 

delivery due to the interconnection provided by Internet of Things (IoT). To stay competitive in 

this fast-paced and changing market, companies are pushed to develop mass-customizable 

products by altering assembly lines, in order to be able to provide, through market demand or 

forecasting, their customers the product they need (Brettel et al., 2014). This adds complexity to 

an already complex environment while adding more pressure to human workers; in addition to 

working with robots and new advanced tools, they need to be able to learn and get accustomed to 

new product requirements, which could be in short periods of time (Panagou et al., 2021a). 

An additional change in the workplace is also the gradual eclipse of distinct roles of operators and 

robots in the workplace (Scholtz, 2003). With the advancement of AI, programming of robots 

allows them to perform task and roles autonomously without the need for human supervision. In 
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cases, robots take the supervisory roles in HRI situations (Gonzalez et al., 2017). As technology 

advances, and robots get upgraded functionalities and capabilities, they can replace human workers 

in certain tasks. Automation technology and robots replacing manual human work, creates new 

challenges for the workforce. Forbes in a published study, predict over 73 million jobs lost to 

automation by 2030 in USA, 17 million in Germany, and over 200 million jobs lost in China alone.  

While I4.0 smart technologies introduction to the workplace environment create a highly dynamic 

and complex workplace with increased uncertainty, they can support human workers and improve 

the workplace conditions as can be seen by the Operators 4.0 (Romero et al. 2020) concept. 

Existing human operators can become highly skilled in their assigned tasks, while automation and 

new technologies create new opportunities; World Economic Forum, in a published report (2020), 

states that while automation and digitalization will result in the loss of 85 million jobs by 2025, it 

will create 97 new million jobs; although creation of new jobs may slow down due to the COVID-

19 pandemic. However, despite the expected support and positive effects, and although human 

operators are considered an integral part in engineering projects and workplaces, they are not 

considered in research and engineering projects (Neumann et al., 2021).  

Human Factors and Ergonomics (HFE) can provide directions and tools for human consideration, 

as its focus is the interactions of humans with entities in a system, however HFE and human 

workers are systematically left out of research concerning human robot interaction and Industry 

4.0 (Neumann et al. 2021). This absence of consideration, comes in contrast with the Socio-

Technical System Theory (STS), which pushes towards joint optimization for technical and social 

parts of a system in order to increase effectiveness. An added factor to the issue, is the ageing 

population and ageing workforce, a trend widely recognized by governments. The European Union 

in a report published in 2019, shows that worker aged 55 and more will rise from 21% in 2014 to 

26% in 2019, to an estimated 55% of the overall labour force in 2030. New guidelines, training, 

support tools and safety guidelines should be introduced to accommodate the ageing workforce, 

due to the change in human capabilities as they age (Di Pasquale et al. 2020; Panagou et al. 2021). 

Towards the goal of providing human support in the era of smart manufacturing and advanced 

robots, Industry 5.0 (I5.0) was introduced by the European Union. I5.0 concept aims in the use of 

the I4.0 framework and smart technologies towards a human-centric workplace (Xu et al. 2021). 

However, despite this new development, research into how to support humans and the move 
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towards human-centric workplace requires several issues to be addressed for successful 

implementation. 

1.2 Industrial Revolutions and Human operators 

Before moving forward to the research purpose and research questions, briefly describing the 

changes brought to human workers by the industrial revolutions (figure 1) can provide information 

and indications on the context of those changes, which in turn can assist in forming the hypothesis 

and research questions. The term industrial revolution usually refers to a time period where there 

is discovery or advancement of manufacturing techniques or methodologies, and/or significant 

changes in production methods. Those changes affect the design of manufacturing plants, which 

in turn increases productivity, performance and also allows for manufacturing of new products or 

services. However, each time a new industrial revolution happened, the changes also affected other 

sectors of society and its surroundings. From positive or negative changes to the human workers, 

to a single household way of life, to large society changes and effects on the environment and land.  

 

Figure 1. Industrial Revolutions Timeline, changes and impact to workers. 

1.2.1 First Industrial Revolution 

The first industrial revolution started sometime in 1760 and lasted until sometime between 1840 

and 1860 (Council of Europe, 2021). The main factor that propelled this era was the development 

of steam engines; hand operated methods gave way to steam and water operated machines, which 

also introduced chemical methodologies in manufacturing and iron production. The rise of 
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machine-led factory systems paved the way for the introduction of structured organizations, from 

owner to manager to worker to customer, which replaced the “cottage” style industry. While the 

new machines had a positive influence on human workers and led to population increase the 

transition to full mechanized factories was finished after a large period of time, while having to 

overcome numerous issues regarding time shifts and healthy and safe working conditions in the 

factories (Bain, 2020). 

1.2.2 Second Industrial Revolution 

The second industrial revolution was prompted by the stagnation of new innovations during the 

latter part of the first industrial revolution. From a historical point of view, the time period of this 

revolution is between 1870 and 1917, which signalled the beginning of the first World War (Mokyr 

and Strotz, 1998). This revolution was propelled by the use of coal, steel and iron and the use of 

electricity. With electricity, new machines and the telegraph were invented that speed up 

production and communication. One of the most significant advancements in manufacturing was 

the introduction of fully powered assembly lines in 1913 by Ford. In this era, each worker 

specialized in one manual operation, instead of multiple ones, which further sped up production. 

These led to a specialized  and professional workforce that could produce mass quantities in short 

time (Hounsell, 1984). Furthermore, it led to development of inter- and across- continent 

transportation through air, sea and land; leading to the fast and rapid expansion of railroad, which 

culminated in a new rise of globalization. Although this revolution led to the development of a 

professional workforce and the advancement of the middle class, the first and second world war 

and the period in between, did not allow much consideration on the human factors and issues that 

workers faced in their tasks. 

1.2.3 Third Industrial Revolution 

The third industrial revolution, also known as Digital Revolution, starting point is the second half 

of the 20th century (Dreyer et al., 2006). In this era, digital electronics and electrical engineering 

replaced the mechanical and analogue electronic technology. Digital communication and 

computing technologies brought rapid changes in industrial manufacturing. Computers, 

microprocessors, smartphones and the internet are some of the most influential technologies that 

helped transformed business techniques and industries. Fully automated machines supplemented 

workers or in cases replaced them, while being surrounded by physical barriers for safety reasons. 
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Enterprise resources planning tools influenced logistics and supply chain planning. The mentality 

of mass production from the previous revolution, was updated through the addition of low-cost 

mentality; manufacturing plants were moved to low-cost countries and through the use of software 

planning systems, supply chain management in a global scale flourished. Although, automated 

machines supported human workers in difficult tasks, and further supported specialization, it raised 

concerns on information overload and privacy issues (Hodson, 2018). Moreover, this era is 

considered as one of the least sustainable as the transformations required mass amount of 

electronics and the processes used create a lot of waste. Lean management, focusing on 

sustainability and reduce of waste, was an answering transformation, however it focuses only on 

the business side of the equation and not the environmental one. In this revolution as in the previous 

one, further specialization in human work was required in many cases and led to the creation of 

new professions. Human manufacturing jobs, requiring little skill and prior knowledge, declined 

in the period between 1970 to 2000 by 3%, and steadily declined after 2000, while production 

grew by almost 20% (Business Insider).  

Mass digitalization and the shift to a digital age at the late 1990’s to early 2000’s, led to increased 

connectivity and technological use in all aspects of society. This change in society, the advances 

in technology and robot development, and the need for better productive and mass-customization 

created the need to introduce those new tools and robots in manufacturing, which led to new forms 

of interactions between humans and robots without physical barriers, as the robots were flexible; 

in contrast to the machines introduced in the third industrial revolution, which were bulky and 

posed serious safety concerns towards the humans workers in the same workplace. 

1.2.4 Fourth Industrial Revolution 

Although a more detailed analysis of Industry 4.0 will be shown in Chapter 3, a brief description 

is given here. Industry 4.0 represents the shift to an era of interconnectivity and increased 

technological use of society. It conceptualises rapid change of technology, industry, processes and 

society for increased efficiency and economic growth. Especially in industries, it pushes for joining 

of technologies, artificial intelligence, gene editing, advanced robotics and virtual reality. As such, 

it results in automation of traditional manufacturing and practices, physical collaboration between 

human and robots, and the internet of things. The interconnectivity and advanced machine-to-

machine communication, along automation, improved communication and self-monitoring, allows 
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for smart machines to analyse information and data received to diagnose issues without direct 

human intervention. However, it creates issues that need to be investigated and solved for smooth 

integration, such as privacy concerns, safety issues at work, loss of jobs and the need for operators 

to re-skill or up-skill. And although automation can increase production and effectiveness, it raises 

issues of quality and reliability, as the value of self-made and human-made products increase 

(Norton et al., 2011). 

1.3 Human Robot Interaction 

Human and robot interaction is a topic that gathers interest and focus in both scientific and fictional 

world. Mentions of robots can be found in the ancient Greek literature, which performed tasks that 

could bring them in contact with humans. The robot Talos, for example, was created to guard the 

island of Crete against intruders. Hephaestus the god of metallurgy, had numerous robots that 

helped him in his work and creations. Ancient Chinese texts (4th century BC), discuss the 

implications of automatons with human features. There are also texts describing automata that 

could be powered by hydraulics or steam, from the Alexandrian engineers (285-222 BC). Mentions 

of constructed automata can be found in Byzantine and Arabian literature. Leonardo da Vinci drew 

the first verifiable automated humanoid in 1495 (Moran, 2006). In the 1770s, Pierre Jaquet-Droz 

created automata with human-like features that could move. Hisashige Tanaka, a Japanese 

craftsman, created complex mechanical automata that could perform from simple to complex tasks 

(Hornyak, 2006). Nicola Tesla in 1898, presented a remote controlled submarine, that could act by 

itself as if possessing human reason (Nocks, 2007). One of the most prominent works is the 

fictional novel I, Robot, by Isaac Asimov an academic and writer, in 1941. In his work, human 

robot interaction was first stated as a discrete issue, and moreover, the Three Laws of Robotics 

were stated, which provide a foundation for the safety aspect of HRI: 

1. A robot may not injure a human being or, through inaction, allow a human being to come 

to harm. 

2. A robot must obey the orders given it by human beings except where such orders would 

conflict with the First Law. 

3. A robot must protect its own existence as long as such protection does not conflict with the 

First or Second Laws. 
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Human and robot, or machine, task and roles allocation changed as a result of the programming 

capabilities and design opportunities that smart technologies and I4.0 framework brought (Frank 

et al., 2019). As the older machines were large in bulk and presented serious danger for human 

workers, physical proximity or direct interaction was not possible, and so physical barriers were 

designed between them. As such the safest form of interaction that could be achieved was 

coexistence; both present in the workspace but with no contact or any form of assistance during a 

task. New design of robots and machines makes them smaller while also being more flexible and 

with wider move capabilities. Moreover, with the assistance of AI programming strengthening 

their functions and capabilities, and with the aid of sensors, they can work in close proximity to 

their human co-workers and also provide assistance at the same tasks. This is aided by use of 

computer vision, giving them sensing capabilities. As such, cooperation and collaboration now are 

possible. Humans and robots can work on the same task with no direct interaction (cooperation) 

or work closely with direct and physical contact (collaboration). 

With those interactions becoming the prevalent form of workplace design, robots and their design 

features are becoming more advanced and more elaborate. Some of the features that are being 

actively researched and worked on are motion planning, cognitive modelling and communication 

capabilities. Motion planning to avoid collisions allowing also a wider range of tasks to be 

performed by the robots. Cognitive modelling for robots, as a form to lower the distrust of humans, 

by mimicking human movement and gestures. Moreover, communication capabilities for human 

support and coordination during tasks. However, interaction and new capabilities are not only used 

in manufacturing. Robots are being used in (i) healthcare services, from surgery to rehabilitation 

to elder care, (ii) social robots, from home companions to museum guides and hike trail guides, 

(iii) automatic driving, (iv) search and rescue missions, especially in dangerous areas or difficult 

to reach areas, (v) space exploration, as consideration for crewed missions to Mars or elsewhere, 

and many more potential areas.  

However, despite all the advances, benefits and support that robot can offer, due to the rapid 

advancement and integration of robots in the workplace, it can negatively affect humans. The 

International Federation of Robotics (IFR) showed that the number of industrial robots increases 

by close to 14% every year; in 2020 the number of industrial robots globally were 2.7 million. 

While increased automation boost revenues, estimated $12.6 billion in medical robot market, 
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increase by close to 10% in annual revenue for businesses, and an estimated GDP growth of 26% 

and 14% in North America by 2030 (PwC), it is also predicted that close to 30% of the job market 

will be covered by robots, with over 20 million manufacturing jobs lost (Oxford Economics). Low-

level education workers will suffer more than high-level ones; 40% will be displaced compared to 

10% of high level (PwC). While 70% of the workers believe that robots will provide opportunities 

for better employment (IFR), education and training programs are needed in preparation of 

supporting and aiding those who will be replaced by automation for upskilling and reskilling 

purposes.  

The push for automation and robot integration in the workplace creates feelings of distrust in 

operators towards robots and discomfort working with them. Moreover, as robots replaces 

operators in tasks, operators feel threatened by robots (Ford, 2016). The negative values of trust 

and feelings against robots can create issues in safety and productivity, in part also due to the non 

consideration of human workers in smart manufacturing research and projects (Neumann et al. 

2021). As such, it is crucial for research to understand the issues that can be created from 

integrating robots into workplaces on operators. From their perception and knowledge on robots, 

to mental effects, and from physical to psychosocial effect. In that way, design guidelines and 

advice along with training and information can provide operators the necessary tools and 

knowledge for them to become accustomed to the needs and demands created by I4.0 and I5.0 

frameworks. 

The focus of this research work is to investigate (i) the issues brought upon human operators by 

the integration of robots and smart technologies inside the workplace, and (ii) the difficulties 

operators face in collaboration leading to errors or other issues. Those can lead to potential design 

guidelines and solutions for HRC, aiming towards a human-centric workplace where the 

implemented changes support operators. Thus, optimizing collaboration and task management, 

and improving reliability, safety and performance.   

This work is structured as following. In chapter 2 the research rationale and the research questions 

are presented. In chapter 3 a background of Industry 4.0 and Industry 5.0 frameworks, along with 

the human robot collaboration basic framework and parameters, and the HFE are presented. 

Chapters 4 through 6 include the research activities that were developed and performed based on 
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the research questions. The final chapter (chapter 7) include the final discussion, conclusions and 

possible future research directions. 
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2. Research Rationale and Activities 

2.1 Problem statement and Research Questions 

With the introduction of Industry 4.0 framework and the use of smart technologies and cobots in 

the workplace, some of the expectations on the benefits it provides were in terms of productivity, 

performance and minimizing error in the system. However, although I4.0 was a subject of research 

interests its focus was more on the technological side. The lack of consideration for operators, 

along with the continuous advancement in technology, robot capabilities and the increased 

complexity and dynamic interactions, creates further issues to operators, which places more 

demands not only on their physical safety but also their mental and psychosocial status. Those 

issues are especially important in scenarios where human robot collaboration is required. Due to 

the new capabilities and less bulkier sides, robots can now work into the same tasks with humans, 

and in cases physical contact between them during a procedure is required, which brings into 

attention the requirement for research to investigate humans in those scenarios as to improve safety 

aspect and also create new design guidelines to support humans. The need for human-centric 

workplaces, was underlined in the Industry 5.0 framework introduced in 2021. 

The importance for human-centric functionality in the workplace is highlighted by the roles that 

human operators need to perform in collaborative scenarios. Humans are now expected to be able 

to work alongside and in close physical distance with robots, handle new technologies and 

equipment, receive information from analysed data and decide whether to react or not, maintain 

performance and quality at high levels, while also act as a safeguard entity in the workplace. Those 

responsibilities become more difficult due to the added complexity involved and the dynamic 

interactions needed in their everyday tasks. All those responsibilities and expectations place 

increased demands in their capabilities; physical, mental and psychosocial. With increased 

demand, fatigue is an issue both physical and mental, with the latter being important in the 

decision-making process as it can lead to mistakes and errors. Although those errors or mistakes 

should be treated as a human-system error and and investigated as such, in most cases human 

operators are blamed as being the root cause, which in turn affect the investigation process and 

cost in both money and time. This treatment creates a discrepancy in how the human resources are 

managed and viewed in an organization.  
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The lack of human consideration creates feelings of distrust towards robots, discomfort working 

with them and also a negative bias towards robots, technology and management. Moreover, by not 

involving operators in the implementation of smart technologies and robots in their workstations, 

it can further influence the belief of operators that they are not valued enough which further 

impacts the negative perception towards change.  

Based on the above, the main aim for this study was to assess the effects on operators from robots 

in human robot collaboration and smart manufacturing context and to assist in identifying possible 

design guidelines and solutions for a human-centric workplace. The aim of this study was further 

strengthened by the Industry 5.0 framework introduced by the European Union, proposed during 

the project, which promotes, among others, human-centric workplaces using the Industry 4.0 

pillars and technologies. A logical sequence of research questions was formed and activities were 

designed to answer those questions and achieve the main aim of this study as seen in figure 2. 

 

Figure 2. Research activities performed during this work and their results. 

To investigate the human-robot interaction from a systems perspective, first there is a need to 

understand the changes in the workplace environment and how operators are affected. This can 

help in investigating the HRI as a system and also to design and perform the experimental study 

in order to focus on the factors influencing operators. 
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Research Activity 1. The goals of the initial activity were to understand the changes in the 

workplace and effects on operators, by investigating the new workplace environment. During this 

activity, a literature review was performed on workplace changes and workforce management 

which resulted in the proposal of a (i) human sustainability management model, and (ii) human-

system probability of error decision-support tool. The research questions developed during this 

activity were the following: 

• What are the changes in the workplace due to smart manufacturing and robot 

integration? 

• How can a human-centric model be designed? 

• How do the humans react to robots in their workstation? During this activity, an 

addition was made to the research question, due to the research literature analysis: 

What are the changes to capabilities of ageing human workers? 

• What are the variables for human sustainability?  

Research Activity 2. The results of the first activity were used to develop the focus of the second 

activity. The goals of this activity were to study the HRC as a system and, investigate the effects 

of robots on humans and study a collaborative assembly scenario, with the purpose of identifying 

possible design guidelines and solutions for a human-centric workplace. During this activity a 

scoping review on scientific literature with empirical studies on HRI was performed focusing on 

robot design features effects on humans. The research questions developed during this activity 

were the following: 

• Which robot design features can be used to control and improve the human-robot 

interactions? 

• How are HF capabilities affected by robot design features? 

• What is the outcome on human operator? 

Research Activity 3. An experimental study was developed with the assistance of the industrial 

partner and the results of the first and second activities. The experiment was designed to study the 

effects of HRC and correlation of cognitive load with quality of product, process and human work 

and the causes of errors with the aim to propose and design solutions. The main hypothesis of the 

experimental study is as follows; The cognitive load resulting from the changes and physical 
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collaboration affects the quality of assembled product, assembly process and human work. The 

research questions formed for this experimental study were the following: 

• What are the issues that operators face in HRC? 

• What is the root cause of those issues? 

• What are possible solutions for those issues? 

2.2 Research Roadmap 

 

Figure 3. Research output from each research activity. This figure serves as an outlook of the research performed and presented 

in this work. 

In this section a brief presentation of the research performed and presented in this work (chapters 

4 through 6) is given. The research methodology that was followed can be seen in figure 2 and a 

brief outline of the result of each research activity in figure 3. A literature analysis was performed 

at the start of the activities to gain knowledge on I4.0 framework, pillars and technologies involved 

(Research activity 1). From this analysis, a simulation model was designed to emulate the changes 

in the workplace and the change in model, from a “physical” model to “cyber” model. Following 

the simulations, a literature review was performed to understand the human management in this 

new environment and changes when workers age, due to the ageing workforce trend. This work 
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resulted in the proposal of two approaches; one aimed at sustainability management for operators 

and the other focused on probability of human-system error. Both of the methodologies were based 

on the concept of entropy derived from non-extensive statistical mechanics. While the 

sustainability concept is not a new concept, the novelty of the proposal was the addition of the 

behavioural category, complimenting the existing mental, physical and psychosocial ones. The 

probability of human-system error can be used as a management support tool as it can provide 

insights on HRC and the areas that need to be improved; either through training and/or re-

skilling/up-skilling for human operators, or tasks and areas of work where they need to be 

supported. 

From the output of the first activity new research questions emerged and the proposed human-

centric workplace of I5.0 framework, the second research activity aimed in understanding how 

robots affect humans in HRC. A scoping review was performed to investigate the literature about 

robot design features effects on humans and potential research gaps. In this work, the HRI and 

HRC was investigated as a system and not as individual parts, following the SocioTechnical 

Systems Theory (STS).  From the results, possible design guidelines aiming at improving 

collaboration and human support were identified. With the knowledge from the first activity and 

the scoping review, the next step was to investigate HRC and the issues that human operators face 

in collaborative assembly. An experimental case study was designed with an actual assembly line 

as guidance, with the help of the industrial partner, aiming at investigating the correlation between 

cognitive load and quality. Non-invasive methodologies were selected, to emulate a real assembly 

workstation, and qualitative and quantitative tools were used for data collection. The experimental 

case study results provided insights on the aspects affecting and increasing cognitive load, and also 

the human-system error causes affecting decision making and work processes. Furthermore, it 

allowed to investigate potential solutions, and a smaller in size validation case study was designed 

and executed in how controlling assembly by humans through communication can improve 

performance and quality, and also perceived reliability and safety in the workplace. 
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3. Background 

In this chapter the terms used in this work are introduced. As this work investigates HRC the 

frameworks of Industry 4.0 and 5.0 are introduced. Their implementation brought changes into the 

workplace, introducing smart technologies and allowed for physical collaboration between human 

and robot. In this work Human Factors and Ergonomics (HF) were utilised during the research 

activities as to investigate HRC. As such a brief description of HF and their domains (cognitive, 

physical, organisational) is presented.  Lastly, as the focus of this work and of the experimental 

study is HRC, an introduction to HRI, HRC and cobots is also presented. 

3.1 General Introduction 

With the introduction of I4.0, smart technologies and robots, that are less bulkier than previous 

machines and lighter in weight, were implemented in the workplace and shopfloor of assembly 

lines. Those implementations enables human robot interaction to be the normal working scenario 

for young and old workers. This partnership, free of the physical barriers of pre-I4.0 era between 

humans and machines/robots, enables close physical interaction, which apart from the safety 

concerns it also raises issues on what other effects it brings to the human side of the interaction. 

Furthermore, I4.0 pushes for increased automation and link of all productive units through an 

information-based network. This creates a highly complex and dynamic environment, where 

humans should be able to receive information relevant to their task and position, while also interact 

with their robot/cobot co-workers. From a design perspective, several considerations need to be 

taken into account, such as quality, technical, economic and ergonomic factors (Gualtieri et al., 

2021). However, HF are not given serious consideration into research and design as shown in 

literature (Neumann and Dul, 2010, Grosse et al., 2017, and Neumann et al. 2021), which with the 

advancement of technology and robot capabilities, it creates an uneven workplace for human 

operators. STS theory can be used to even the interaction and improve human quality of work 

issues, as it aims is joint optimization of social and technical side in a system. Moving towards a 

more human-centric solution can improve safety and reliability of the human robot collaboration 

and quality, which is the agenda brought forward also by I5.0. As such a description of those terms 

is given below. 

3.2 Industry 4.0 and 5.0 

3.2.1 Industry 4.0 
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Industry 4.0 aims in digitalization, interconnectivity and smart automation in industries, systems 

and processes and is a by-product of diminishing production in the early 2000s and the increased 

technological use by humans, changing the culture and the rapid sharing of knowledge and 

information through the world wide web (Lee, M. et al., 2018). The term is widely used in the 

literature (Colombo et al., 2014) and promotes the use and combination of advanced technologies 

such as artificial intelligence, advanced robotic capabilities, IoT and CPS amongst others, to 

promote automation and interconnectivity in the workplace. Interconnection between the agents 

and entities of an organization, transparency of practices and processes, use of information to assist 

and support in decision making, and decentralization through use of CPS to enable autonomous 

decision-making are four of the principles used as part of I4.0 to increase operational efficiency 

(Hermann et al., 2016).  

The I4.0 promotes the use of certain principles to achieve efficiency (Hermann et al., 2016). 

Interoperability, which refers to the interconnection between operators, humans and robots, CPS 

and smart devices through use of IoT. Decentralization of an organization, enabling work-cells 

and smaller systems to decide autonomously on matters of day-to-day matters, while delegating 

conflicting matters and exceptions to the higher levels of the organization. Real-time capability of 

the organization, referring to data and information collection and analysis to be communicated to 

all agents of the organization for insights and probable needed action to be taken through use of 

IoT and other technological tools. Modularity, referring to the ability to adapt to circumstances 

and information and change the modules requirements. Virtualization, referring to the use of 

sensors, collected real-time data and simulation models to create a virtual copy of the physical 

workplace to run simulations and collect data for potential issues, e.g. used for predictive 

maintenance to avoid extended downtime of production. Last one is service orientation, through 

use of IoT and Internet of people to connect with the market and allow the organization and its 

productive assets to offer their services in direct communication with other industries or customers.  

Smart manufacturing, or smart automation, relies on advanced technologies and system designs 

forming the pillars for successful implementation in the workplace/organization. Internet of Things 

(IoT) enables the digitization and interconnectivity of productive units, systems, sensors and 

higher levels of organization. It allows communication and information/data transfer to all levels 

and agents, and with the market, enabling real time capabilities of an organization. Big data 
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analytics, is used to collect and make sense of the data and information gathered. It uses pattern 

recognition and forecasting methodologies for feedback on related processes and systems, which 

can increase effectiveness and competitiveness of the organization. Cloud computing and storage 

to support decision making and information gathering and sharing. It is used in data analytics, 

supply chain and logistics operational management, allowing employers and employees to access 

information and perform the required actions such as data analytics and information update. It also 

allows use from customers to obtain information in real time on product and/or their order status 

update. Augmented and virtual reality (AR/VR) tools can support processes and tasks by providing 

information on maintenance or through providing assistance during tasks. Schedule on 

maintenance and processes, virtual assistance to perform a task or assist in training, or support in 

performing tasks in non-safe areas through the use of virtual interface to connect with robotics or 

sensors, increasing safety.  

Along with AR/VR, IoT and cloud computing providing real-world data, simulation 

methodologies can be used to create digital twins; those represents a virtual copy of the physical 

world where running multiple simulations can provide safe conclusion and information by 

recreating procedures, investigate improved or new processes or tasks, and testing for maintenance 

purposes. Additive manufacturing or 3D printing allows for the creation of products from a digital 

3D model under computer control, by depositing the chosen material layer by layer. Although the 

procedure was first introduced in literature in the 1940s and refined through research, with the 

introduction of I4.0 the procedure matured and can contribute to sustainable development by 

reducing waste in production. Moreover, it simplified product design process, reduce warehousing 

costs, and supported the mass customization business strategy. Through technology advancement, 

advanced robots were researched and developed, smaller in size and more flexible, while with the 

programming capabilities of today, they can be programmed to perform advanced procedures and 

processes. Furthermore, with those capabilities, close physical interactions with humans are 

available, providing more flexibility and support to their human co-workers. The link between top 

to bottom and vice versa of the organization layers is achieved through horizontal and vertical 

integration, providing the necessary transparency and use of the principles needed for smooth I4.0 

implementation. Vertical communication in the organization providing the necessary input and 

information on the strategy or what is needed to achieve the goals, and horizontal communication 

inside each aspect of operations management. However, despite the benefits that those principles 
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and methodologies bring to an organisation, they increase complexity in the workplace and the 

dynamic nature of interactions between the agents, thus, impacting operators. 

Despite the promises for effectiveness and increased production, implementation of I4.0 was not 

smooth as it requires a lot of financial investment, business adaptation and acceptance for increased 

automation and digitization. Introduction of robots in the workplace, resulted in confusion and in 

many cases replacement of human operators by robots/cobots, increasing social isolation and 

feelings of distrusts towards them (Birkel and Hartmann, 2019). Moreover, lack of regulations for 

human robot interactions in terms of safety and human involvement, as well as lack of training and 

instructions for humans, can result in distrust towards robots and technology, increased safety 

concerns and lack of stability for human workers (Longo et al., 2020). Adding the lack of 

consideration for human factors and the human resource in this highly complex and dynamic 

collaborative environment, and the need for clear directions and workplace design guidelines led 

to the introduction of the Industry 5.0 concept by the European Union, Research and Innovation 

Commission in 2020 and 2021. This new concept aims at a human-centric workplace, where the 

I4.0 smart technologies and principles support the human operators. 

3.2.2 Industry 5.0 

Industry 5.0 (I5.0) paradigm was introduced by Research and Innovation Committee of the 

European Union in 2020 and finalized the paradigm in 2021. It is not regarded as a replacement 

for I4.0, but it is considered “… an evolution and logical continuation of the existing Industry 4.0 

paradigm.”, as stated in the Enabling Technologies for Industry 5.0 report of the same committed 

in 2020. I5.0 aims in merging human and technological skills and capabilities to benefit both the 

industries and SME’s but also human workers. Moreover, its aim is not in replacing human 

workers with technologies, but using those technologies to empower and complement human 

workers; enhance existing skill and assist in learning new skills, support their flexibility and 

creativity for problem-solving and decision-making and improving working environments. I5.0 

enhances the human-centric goal through its turn to sustainable development and circular 

economy, by including the social and environmental aspects of sustainability.  

I5.0 uses several smart technologies to support its goals. Human centric mentality in business 

solutions for SME’s and human robot/machine interactions. It maintains interconnectivity as a key 

concept, while combining the strengths and capabilities of both humans and machines, and 
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maintains the need for real time capabilities in its designed systems. Recyclable and/or 

remanufactured smart materials for sensors in order to improve their features and capabilities. 

Artificial Intelligence is a key concept in the drive of I5.0 for human centric purposes. With the 

use of AI, robots and machines can be programmed to detect abnormalities in their environment 

and support humans navigate and perform in their highly complex and dynamic collaborative 

workplaces and assignments. Interoperability in the system is enhanced with cybersecurity to 

protect transmission through IoT and cloud systems, to enable data gathering and analysis. 

Renewable technologies to improve energy efficiency and reduce ecological footprint required 

from smart technologies, strengthening connection with human resources and society.  

For human robot collaboration I5.0 aims in combining the capabilities of robots with the flexibility 

and creativity of humans. Artificial intelligence can provide solutions and methods to improve 

human robot teamwork. Gesture and speech recognition for efficient communication or input 

through natural language processing. Moreover, it can provide support and solutions in decision 

making and work tasks through its processing speed capabilities. Research can focus on 

programming sensors to sense human fatigue, both physical and mental, as a way to improve injury 

avoidance and human-system errors. AR/VR tools can be utilized in training and during tasks by 

providing information to the user, while also improving inclusiveness. Digital Twins can also aid 

in improving working environments and safety, through extensive testing and simulation of 

production and processes.  

3.3 Human Factors and Ergonomics 

Human Factors and Ergonomics (HF) is a discipline that concentrates on humans at work. As per 

the International Ergonomics Association (IEA), HF is “… concerned with the understanding of 

interactions among humans and other elements of a system, and the profession that applies theory, 

principles, data, and methods to design in order to optimize human well-being and overall system 

performance”. HF draws from multiple scientific disciplines, such as psychology, sociology, and 

engineering among others, different methodologies and tools to assess human capabilities and 

weaknesses to ensure the suitability and usability of the tasks and the workplace environment for 

the human.  

HF has three main domains of research: physical, cognitive and organizational. Physical 

ergonomics is concerned with the physical wellbeing of the human, and relies on anthropometric, 
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physiological and bio mechanical characteristics. Cognitive ergonomics is concerned with the 

mental aspects and processes of humans at work. Cognitive load and mental fatigue are important 

for humans at work, as they are important for cognitive processes and decision making, and affect 

work stress and performance. Organizational ergonomics are concerned with the socio-technical 

system and their organization and optimization. It aims in improving the processes, structure and 

policies to improve both social and technical sides of the system it is applied to.  

Below that, information on the domains of HF and its applications on HRI are provided, along 

with detailed information on specific topics. Moreover, a brief description on fatigue and stress is 

given after the domains. Fatigue and stress are factors that were investigated in this work and are 

related to HF due to the risks and safety concerns when operators are fatigued or stressed; 

especially in the investigated HRC scenario.  

3.3.1 Physical HF 

Physical HF concerns itself with the safety and physical wellbeing of the human body (IEA). It 

considers the anthropometric, biomechanical and physiological human characteristics to provide 

guidelines for workplace and task designs, while taking into account the movements needed, the 

amount of repetitions and the required body posture. The DIN 33402-2, 2020 standard provides 

average body characteristics that can be used as physical HF considerations for workplace, system, 

processes and task design to prevent or treat work-related disorders. In general the advantages of 

using physical HF are: improved physical safety, reduced injuries related to non ideal physical 

activity, improved productivity and performance leading to improved product and work life quality 

and competitiveness in market.  

With the introduction of robots in the workplace, physical HF are important to protect humans and 

prevent safety concerns in physical collaboration. In this complex workplace, general HF 

measurements can be considered for a supportive and human-centric environment, such as body 

posture, physical workplace layout, collaboration procedures, repetition and health and safety 

amongst others (Rücker et al., 2019). However, it is important to take into account the robot design 

features and capabilities when implementing HF in HRI. Although smaller in size, robots can pose 

a physical threat to humans with their dynamic capabilities such as their speed, acceleration and 

force of contact they can impose. Moreover, there are several other factors that should be 
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considered in the interaction, such as functions, reliability, behaviour and appearance amongst 

others, as they can affect human workers during work.  

To evaluate if a workplace, or system, design is supporting the physical wellbeing of the operators, 

methods, such as anthropometric measurements and simulating body posture and movements, are 

used to assess the workplace convenience, comfortability and usability for the user which also 

allows for better productivity. Anthropometric measurements are essential in workstations design 

and assigning tasks, as to not place workers in workstations that are not fitting avoiding accidents 

and chronic injuries. Body posture and movements needed to perform a task or a process is 

important to be part of the design; adhering to conventional designs and not taking into account 

the anthropometric characteristics of workers, leads to lack of flexibility and body issues (e.g. 

musculoskeletal issues).  

3.3.2 Mental and Cognitive HF 

Mental and cognitive ergonomics is a scientific discipline concerned with “… mental processes, 

such as perception, memory reasoning and motor response, as they affect interactions among 

humans and other elements of a system”, as defined by the International Ergonomics Association. 

It studies how mental processes are done during tasks, jobs, environments and systems to assess 

the quality of work depending on the individual and the goals and constraints imposed. It aims to 

understand the effects of mental workload in decision making, performance, human interaction 

with other elements in the system (e.g. robots, machines), stress and human reliability, as related 

to human-system design. By studying those effects, the goal of mental ergonomics is to improve 

performance in several areas, such as human-centered interaction design, training programs and 

accessible systems by everyone.  

Mental ergonomics are important due to the effects of mental workload to the mental health of 

humans. Stress, physical and mental, due to excess workload impacts the cognitive processes and 

cognitive load. Cognitive load indicates the amount of working memory used, or manipulations 

needed during a task. It is divided into three types:  

i. Intrinsic load, which is a function of task complexity and depends on the difficulty of the 

task or process and affects mental fatigue, 
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ii. Extraneous load, which is depended on the amount of information that the operator need 

to process or is present during a task; the more irrelevant information present, the more the 

load. Information on task processes, safety guidelines and during interactions that the 

operator need to process can affect his performance and lead to redundancy and overload, 

iii. Germane load, which is generated by the creation of mental schemas in the mind of an 

operator, creating knowledge on interactions, processes, tasks and system design. 

Evaluation of cognitive load is complex as it is depended on the individual and their personal bias, 

thus making it harder to create a unified approach. Questionnaires have been developed to observe 

effects and trends. The NASA Task Load Index (Hart, 2006), NASA-TLX, questionnaire is 

commonly used to measure cognitive load during a task by assessing the mental, physical and 

temporal demand needed and frustration, effort and performance (Fridman et al., 2018, Paas et al., 

2003). Cognitive load can also be measured by using key performance indicators (KPI), such as 

overall task performance, error-rate and response time, however they are dependent on the task. 

Physiological trends and effects can also be used. Some of the physiological indicators are: 

i. Heart rate, can indicate physical and mental workload, neurochemical effects,  

ii. Brain activity, through electroencephalogram (EEG) measurements showing theta waves 

activity increase during mental tasks (Gevins et al., 1998), 

iii. Eye movement and blinking, e.g. in case of increased load blinking rate decreases (Reilly 

et al., 2018), 

iv. Skin conductance, galvanic skin conductance increases as cognitive load increase (Shu et 

al., 2007). 

3.3.3 Organizational HF 

Organizational ergonomics, or macro-ergonomics, as per the definition of International 

Ergonomics Association, “… concerns the optimization of socio-technological systems, including 

organizational structures rules and processes”. The focus is in the subjective aspects of institutions 

and workplaces, such as communication, crew and quality management, teamwork and new work 

paradigms. It aims in optimized and harmonized systems, as to ensure satisfactory work quality 

for operators, utilizing study of consequences of technological advancements on processes, 

systems, institutions and human interactions. It aims at (i) participatory ergonomics, where 

workers are included in identifying issues and provide feedback for solutions, (ii) improve 
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managerial processes and value streams, and (iii) promoting safety guidelines and solutions in 

organizational culture. 

Organization ergonomics aims towards balance and joint optimization; if an aspect of a system 

changes then it impacts the other aspects and thus needs to be changed. If there is no joint 

optimization and the agents and elements of the system are not designed to work fluently together, 

then the safety, productivity, performance and quality will suffer. Moreover, through joint 

optimization organizations can balance finances as it saves costs and avoids losses that can incur 

if they do not balance the system from the beginning. Factors that alter the balance can be 

individual based or organization-wide: (i) Environmental issues, (ii) workplace issues from outside 

factors, (iii) need of operator retraining to improve or acquire skill to improve their efficiency, and 

(iv) disharmony between management and workforce. Organizational ergonomics are useful in the 

introduction and integration of new technologies and systems into the workplace, such as 

collaborative robotics and the I4.0 and I5.0 frameworks. For smooth and successful 

implementation, it takes into account the following factors of a workplace or organization: (i) 

functions, (ii) capabilities, operators and organization, (iii) user-friendliness of the implemented 

technology, (iv) integrated workplaces, and (v) capacity for improvement. The most commonly 

used tool for organizational ergonomics is the Work Design Questionnaire by Morgeson and 

Humphrey (2006). It assesses the design of tasks, knowledge, social factors and work factors, in 

order to evaluate job satisfaction as a means to improve work design. 

In this work, the STS theory was used in the second research activity to investigate the HRI as a 

system. The STS refers to the interrelatedness of social and technical aspects of a system and joint 

optimisation of those aspects, aiming at successful system performance and smooth working 

interaction between them (Cooper and Foster, 1971). STS aims at sustainable system development 

and innovations and proper investigation on the changes brought by new technology before 

implementation (Bednar and Welch, 2020). Moreover, it aims in joint optimisation in process 

improvement, task analysis and job design to ensure successful system performance. One 

methodology used for creating better work systems and equitable workplaces is ETHICs, 

developed by Mumford (1987), which includes consultative participation. This enables employees 

to get involved in design process and in resolving conflicts, which while not a straightforward 

approach for changes, it promotes ethical and supportive system design (Bednar and Welch, 2016) 
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3.3.4 Fatigue and Stress 

Generally, fatigue describes the decline in physical and mental capabilities due to prolonged 

activities, loss of sleep and/or other disruptions. It is synonymous to exhaustion or tiredness and 

can be a symptom of muscle fatigue, due to working tasks and physical load, or from prolonged 

cognitive activity resulting in cognitive load and mental fatigue. In industrial settings, there are 

multiple causes that accumulate fatigue in a human worker; intensity and duration of activities 

(mental and physical), mental causes (responsibilities, conflicts, stress), disease and pain from 

injuries, environmental causes (noise and light levels, temperature), circadian rhythm and nutrition 

(Grandjean, 1979). Physical fatigue, or muscle fatigue, due to working conditions, or tasks that 

requires the worker to deal with heavy physical activity and load, can lead to musculoskeletal 

injuries or chronic neuromuscular disease. This leads to chronic pains and inability of workers to 

perform and lowers both their quality of work and of life. Mental fatigue is a result of extended 

periods of cognitive activity or overload from new information and unexpected activities. It is 

mostly subjective and depends on the cognitive abilities of the individual human worker.  

Fatigue leads to psychophysiological responses from the human. Heart-rate variations and 

disruption of eye-hand coordination, some of the physical responses to the body, affects 

performance and response to events, either normal or unexpected to the flow of work. Fatigue 

affects the psychological side of the human as well. It leads to stress which in turn has several 

effects. High fatigue and stress, leads humans to lower attention levels and to narrow their 

concentration towards immediate tasks or actions needed to be taken while ignoring their 

surroundings. This leads them to respond quickly with lower precision, just to be able to reach 

their goal, lowering performance and quality. Furthermore, increased fatigue and cognitive load 

leads to working memory overload, and humans relying on their long-term memory to continue 

their work; in the event of an unexpected issue or of an event needed immediate action, humans 

will be slow to react and act increasing safety risks and potential injuries.  

The effects of fatigue, mental and physical, can be objective or subjective depending on the 

individuals’ capabilities: stress, weariness and distaste for work, slow and sluggish thinking, 

reduced perception capabilities, decline in physical and mental capabilities and reduced state of 

alertness. In the collaborative workplace of I4.0 and I5.0 paradigms and with the new robot and 

machine capabilities, heavy physical tasks are assigned to robots, alleviating humans from this 
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tasks in an effort to reduce injuries and accidents. Although, physical activity, and in consequence 

fatigue, is not entirely eliminated, this thesis concentrates mostly in mental fatigue as it affects the 

cognitive capabilities of humans and in turn decision making capabilities and reactions, which can 

lead to accidents in the workplace and human-system errors.  

3.4 Human Robot Interaction 

Human Robot Interaction, as stated by Goodrich and Schultz (2007), is a scientific field dedicated 

to design, understand and evaluate robotic systems and technologies for use by or with humans. 

Interaction can be divided into two general categories, depending on physical proximity: 

1. Remote interaction, human and robot are separated and not in the same location either 

spatially or temporally; e.g. Unmanned Aerial Vehicles, space missions, search and rescue 

robots, 

2. Near-proximity interaction, human and robot are working on the same location or on the 

same task; e.g. social robots, industrial robots, cobots. 

In the case of near-proximity, HRI can be further classified depending on task allocation, need of 

contact during the task, team structure and process reliability (De Luca and Flacco, 2012, Bauer et 

al., 2016): 

a. Coexistence; human and robot share the workplace but without task assistance or need to 

perform the same task, 

b. Cooperation; human and robot work on the same task or process, although with no direct 

interaction or contact between them, 

c. Collaboration; human and cobot work together on the same task in a shared space with 

direct and/or physical interaction (Flacco et al., 2015, Fast-Berglund and Romero, 2019), 

d. Synchronization; humans and robots/cobots operate on the same task sequentially 

(Orlandini et al., 2020). 

3.4.1 Human Robot Collaboration & Cobots 

With the I4.0 framework, system design and advanced robotics allow for a closer physical and 

safer collaboration between human and robots. In HRC, human and robot communicate in order 

to perform their shared plans, norms and tasks. For efficient collaboration, robots need to 

understand human intention and communication in a similar level as in the human-human 
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interaction and thus, they need to perceive and understand their environment and have the ability 

of autonomous decision-making and cognition. As AI and machine learning are advancing, robots 

are able to fulfil those conditions at a large extent.  

Due to the complex nature of HRC and the dynamic interactions during the tasks the uncertainty 

of the collaboration increases, which can lead to human-system error due to the physical and 

mental challenges that humans need to overcome. For that reason, one potential solution could be 

for human and robot to communicate their intention. Communication between human and robot 

can be achieved through several means: (i) Gesture, (ii) Speech, (iii) Haptic signals, (iv) Action, 

and (v) Physiological signals (Bauer et al., 2008). In that regard, methodologies are developed to 

assist in that direction through the use of simple forms of communication, e.g. use of predetermined 

gestures from the operator (Panagou et al., 2022). 

For HRC, collaborative robots were developed with lower speed and force than robots to fulfill 

the safety requirements set by DIN ISO/TS 15066 (2016). Cobots are flexible in their potential use 

and can be easily reconfigured (Makris, 2021). Cobots’ programming adds sensitivity to forces 

and unexpected contact, which allows them to stop immediately for collision avoidance or use of 

excessive force on humans. Although cobots are mostly stationary, research and industry are 

looking for ways to provide them with more mobility and flexibility in their actions, such as by 

mounting them on mobile platforms. Apart from their industrial use, cobots are being used in social 

events or in healthcare, equipped with human-like features or a screen with a face to increase user 

experience, likeability and the acceptability of humans towards cobots and robotics in general.  

With the research rationale (chapter 2) explained and research activities planned, and the I4.0 and 

I5.0 frameworks and terms explained, the next chapter starts with the investigation on the changes 

brought in the workplaces by I4.0 and smart technologies. This is the initial step on understanding 

this new complex and dynamic workplace environments before investigating the HRI and HRC, 

due to limited representation of operators in research (as stated in previous chapters). This lack of 

consideration is against the STS theory of joint optimisation resulting and can result in issues. 

Thus, the rest of this work contains the research activities performed aiming in understanding the 

issues operators face and following a system approach try to identify potential design guidelines 

and solutions for successful HRC. 
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4. Research Activity I: Workplace changes and operators 

In this chapter, the first research activity performed during the thesis is presented (figure 4). The 

goal was to understand the changes in the workplace brought by I4.0 and its enabling technologies 

and how it affects the operators. A literature review was performed on how changes in the 

workplace affect operators and their capabilities; especially in the case of older operators. The 

findings of the literature review were used to understand how to support operators, through the 

lens of sustainability. Moreover, it aided in developing a model for human-system error probability 

that can provide decision-making support for management based on the concept of entropy.  

 

Figure 4. Research questions formed for the 1st research activity and research output.. 

4.1 Introduction 

I4.0 and its enabling technologies heavily focuses on workplace digitisation, HRC and an 

information based network linking all productive units. While the automation of systems and 

processes can benefit operation and production it creates a complex environment with dynamic 

interactions. Consequently, this creates new working conditions and requirements which the 

human workforce need to adapt. The World Bank published their report The Changing Nature of 

Work in 2019 stating the following changes and arrangements: 

• Organisational structure, 

• New market and work positions, 

• Data protection issues, 

• Transformation of sectors and activities affecting employment, 

• Flexible work conditions, and 

• Change in the working relationship between human and robots. 

However, integration of robots and smart technologies in the workplace, apart from the benefits, 

increase the complexity and dynamic nature of interactions. As such, for those changes to be 

beneficial, an almost flawless human-robot interaction (HRI) is necessary.  
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Operators need to adapt and be able to develop in the new environment, through learning, new 

skills and trust in their robotic co-workers. Although training can be useful for operators to get 

acquainted with their robot co-workers, it is necessary to consider that each individual operator 

react differently based on their characteristics. An additional factor affecting operators’ perception 

is age, which raises an issue due to the growing concern for the ageing workforce due to the overall 

trend of population ageing, globally recognized by governments, economists and institutions alike 

(EU-OSHA, 2019) and is predicted that by 2060 the workforce population average age will rise 

significantly if the situation remains as it is (EU-OSHA, 2017, The Economist, 2017). 

There are two effects of ageing on operators. The experience gained and the accumulated skills of 

older operators is considered a valuable asset, in terms of performing tasks, transferring knowledge 

to their younger counterparts and acting as safeguards in the smooth operation of their workplace 

(Guvernator et al., 2020, Massingham and Massingham, 2014). However, part of the operators’ 

abilities and skillset deteriorate in terms of physical abilities (e.g. dexterity, muscle strength), 

mental skills (e.g. fatigue) and cognitive abilities (Van Loo et al., 2001). The change in operator’s 

capabilities and the smart workplace environment is an issue requiring further research, due to the 

concern for sustainability of human workforce implications coupled with the ageing trend and the 

new technological advancements being integrated in production lines. 

Thus, a literature review was performed to investigate the capability deterioration of ageing 

operators and workforce management. The research questions guiding this review were the 

following: 

• How industrial engineering research view operators due to their skills in the new 

workplace, and 

• What are the changes of operator capabilities as they age.  

4.1.1 Literature search strategy  

The methodology to perform the literature review consisted of identifying the most relevant 

keywords to perform the search query and produce relevant results. Different combinations of 

those keywords were used in online databases, such as the Scopus and Web of Science databases, 

while the results were filtered based on their relevance on the research questions. The starting date 

for the search was set on 2005 until 2021. 
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The keywords that were identified as most relevant for the literature search were: “ageing/older”, 

“Human factor/workforce/Operator” and “Industry/Manufacturing/Assembly”. Several 

combinations of these keywords were used coupled with Boolean operators (e.g. Ageing AND 

Human Factor AND Industry, Older AND Human Operators AND Manufacturing) on the online 

databases resulting in a starting total number of 239 papers. Apart from relevance to the research 

questions, further inclusion criteria were set: articles should be written in English and should be 

peer-reviewed journal articles. The first screening step consisted of title, abstract and keywords 

reading, which resulted in 75 articles. Finally, full-text reading followed which resulted in a final 

number of 46 identified articles (figure 5). 

 

Figure 5. Search keywords and inclusion criteria used for the literature review. On the right, screening procedure and final number 

of identified articles. 

4.1.2 Literature review results 

The selected papers were fully read again and examined for information relevant to the research 

questions. The results focusing on workforce management were then divided into three main 

categories (table 1): (i) the operators’ capabilities change; referring to physical, mental, 

psychosocial and behavioural changes, (ii) Knowledge management and how knowledge and 

experienced operators are valued and positively exploited inside the industry and (iii) Ageing 

operators management from the hierarchy of industrial management and modelling point of view.  
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Table 1. Identified categories based on literature analysis for managing operators. Categories defined as capability based 

management, knowledge based, and managing ageing operators. 

 

4.1.2.1 Operators capability change through age 

The level of productivity of operators inside an industrial or manufacturing workplace is closely 

related to their capabilities, be it physical, mental and psychosocial, and is also affected by their 

behaviour. As the operators age, functional characteristics start to diminish as shown in several 

articles (Di Pasquale et al., 2020, Strasser, 2018). However, the experience and knowledge gained 

can minimize the effects created (Binoosh et al., 2017, Xu et al., 2014). In the transition to the new 

industrial era, operators need to evolve into smart operators (Operator 4.0 concept, Romero et al., 

2020), which raises the question if older operators will have the ability to adapt to what is 

demanded of them (Becker et al., 2012). However, those aspects need to be examined when 

considering implementation of technologies, robots or other changes in the workplace (Neumann 

et al., 2021). 
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Qin et al., (2014), demonstrated by using electromyography sensors (EMG), that older operators 

tend to develop muscle fatigue faster, when assigned to heavy tasks that are needed to be repeated 

several times throughout the working day. The psychological profile of older operators in contrast 

to younger ones when there is a limit set on their maximum weightlifting was studied by Chen et 

al., (2017), and Kowalski et al., (2005). Neuman et al., (2018), studied musculoskeletal disorders 

and injuries of manufacturing operators due to physical demanding working tasks; which has 

lasting effects on operators as they age. Landau et al. (2008, 2011), researched the long-term effect 

of musculoskeletal disorders of operators, and showed that older operators continue to suffer from 

previous trauma in their neck, spine, shoulder and upper limbs. Verma et al., (2008), observed that 

while older operators have low frequency in getting injured, however the severity of those injuries 

increases with age. 

Workplace changes and environmental conditions inside the workplace have been showcased to 

have an impact on human workforce. The effect on fatigue level operators due to ongoing noise 

exposures was researched by Saremi et al., (2008) and Arezes et al., (2013). Back pains can be 

developed due to ongoing exposure in cold workplace environment as can be seen in the report of 

Thetkathuek et al., (2015); which can be sever in older operators. Nardolillo et al., (2017) studied 

the effects that different workplace environmental conditions have in operators of varied age, 

concluding that age-classification (varying from young to old) should be of serious consideration 

in task and workspace scheduling. 

Furthermore, older operator tend to need more training time or more practice trials to learn a new 

task or a new skill, when it is required for their work than their younger counterparts (Schwerha et 

al., 2007, Wiker et al., 2009). Fritzsche et al., (2014), and Gilles et al., (2017) reported lower 

movement performance and slow decision process in older operators. Shift work and its effects 

have been studied as well (Blok et al., 2011). Rouch et al., (2005), studied the possible difficulties 

workers may face with shift work as they age; although their work reported no clear indication of 

any connection between age and shift work. Van de Ven et al., (2016), reported sleep issues, such 

as short sleep duration, disturbed sleep and possibility of negative mood depending on the quality 

of sleep of older operators engaged in shift work assignments. Sorensen et al., (2008), studied the 

relationship between work ability and quality with the age group of workers in shift assignments. 



32 
 

Neupane et al., (2014), in his work reported how different age groups and work satisfaction is 

related to work environments and work characteristics.  

4.1.2.2 Managing knowledge 

Older workers and the experience they possess is considered an invaluable asset despite other 

diminishing abilities (e.g. physical and cognitive). Srilakshmi et al., (2018), reported that 

experience and knowledge gained from years of practicing at the same working environment and 

in the same work-tasks, can compensate for the diminishing energy levels and physical capabilities 

of older workers. Adding to the same point Abubakar et al., (2019) reported that experience and 

knowledge is considered in many aspects a more valuable aspect in the operators’ skillset than 

younger age, higher cognitive functions or individual performances. Volberg et al., (2017), 

showcased a decrease in certain type of injuries related to experienced operators due to the 

knowledge of their workplace and assignment-related tasks. Moreover, older operators are more 

conscious of using their work-related protective gear and adherence to safety regulations (Arezes 

et al., 2013, Battini et al., 2018, Lombardi et al., 2009). Strasser (2018), showcased that 

experienced workers plan their working tasks ahead of time and in a quick manner, they are highly 

autonomous inside their workplace and can identify when situations may become critical. 

Massingham (2014, 2018) demonstrated that knowledge management is an effective tool in 

knowledge transfer between older workers and their younger counterparts. 

4.1.2.3 Ageing operators  

Industrial engineering and decision-making can benefit by managing and supporting the 

workforce, by considering individuals’ operators capabilities (physical, mental, psychosocial, 

behaviour) and the relevance of experience and strategic knowledge. Scheduling alteration of job 

rotation by age groups and by high- or low- physically demanding the work task is, was exhibited 

in several research articles (Boenzi et al., 2015, Botti et al., 2017, Jeon et al., 2016, Weichel et al., 

2010). Olstein, (2005), suggested that management should consider retirement policies and the use 

of new ICT technologies. Kawakami et al., (2006), and Kawakami and Yamanaka (2009), 

demonstrated that use of automation can be beneficial to older workers in their tasks and the 

manufacturing/assembly lines. Kumashiro (2014), studied how enabling and designing ergonomic 

support systems can benefit long-term system designs and the human workforce. Sokas et al., 

(2019), proposed career training for management position and mentoring younger workers for 
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older workers. Calzavara et al., (2020), proposed new ergonomics ideas and management research 

paths for human factor in the wake of I4.0 era. 

Experience and task specific knowledge can be considered a more valuable asset than younger age 

and capabilities. However, with the implementation of smart technologies and physical 

collaboration with robots, the operators’ reaction and effects on them from the changes needs to 

be investigated. 

The results of the literature review revealed the need to understand how to support operators in the 

new workplace environment. As I5.0 promotes sustainability and human-centric workplaces, 

workforce sustainability concept provided the context to integrate the review results. As such using 

the results of the review, workforce and sustainability was investigated from another perspective, 

merging HF and the knowledge gained. 

4.2 Workforce and sustainability 

Due to the introduction of I4.0 enabling technologies and robots in the workplace, operators need 

to adapt to complex tasks and dynamic interactions. Although those changes can benefit 

organizations and workplaces with the advantages they offer; e.g. task and process flexibility, 

modularity and real-time data exchange, operators need to be able to perform their tasks, receive 

data and information and make decision, adhering to guidelines set by management and also tend 

to their safety. Those actions and tasks can be taxing to operators and their capabilities which raises 

the issue of how to support them; especially in the context of I5.0 human-centric framework and 

sustainable development. This call for research was also highlighted by the research gap of lack of 

consideration of human factors in engineering research in the I4.0 context, consistent with previous 

literature (Grosse et al., 2017, Neumann et al., 2021). As such, a proposal was made (Panagou et 

al., 2021) in how to support and sustain the workforce.  In this proposal the operators’ states are 

categorised as follows (figure 6):  

I. Behavioral State: behavioural state is mainly related to procedural based actions and decision 

making, as well as safety. Operators need to be trained in matters of safety and handling equipment 

as well as introducing measures to avoid critical situations. In the new collaborative environment 

operators need to be able to trust their robotics co-workers and the information they receive from 

CPS and other entities, such as logistics, performance and quality assurance. They must also feel 
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safe inside the workplace, as to avoid making decisions that may lead to loss of productivity and 

accidents. “Skills-Rules- Knowledge” (SRK) acts on the controllability of this situations and 

processes. Operators must have “motivation” to interact and work with new technologies in their 

workplace environment. Standards for human-robot interactions and human-system interfaces are 

required and should be differentiated according to individual operators’ skills and attitude. 

Knowledge of the new systems and technologies inside the workplace are required for the safety 

sustainability of human operators.  

II. Mental State: mental state is related and affected by stress and “fatigue”. As the level of fatigue 

increases, operators tend to lose focus or are unable to handle physical demanding tasks, thus 

increasing safety risks in their work-tasks. “Cognition” and cognitive based abilities of the human 

factor affect the fatigue and stress of operators is also dependent on the age group of operators; 

younger operators tend to have more cognitive load capacity than older operators and are more 

capable in learning new work-related skills faster.  

III. Physical State: physical state is related to the physical capabilities of operators and is largely 

affected by the age group they belong to. “Motor resilience”, related to optimise or recover motor 

faction, of older operators is far lower than their younger counterparts and as such, they must be 

protected from heavily demanding physical task as to avoid injuries. “Training Experience” on 

handling new equipment, such as CPS, sensors and VR/AR tools, as well as learning to cooperate 

with their robotic counterparts is necessary in learning the required knowledge to avoid safety risks 

and potential accidents while maintaining the productivity and quality of products as well as 

learning to trust their new co-workers and their workplace environment; thus, reducing their 

physical stress. New “ergonomic” designs are essential for operators in their tasks, assisting them 

in heavy workloads while preserving their motor resilience both short-term (work-shift time 

period) and long-term (help in avoiding physical load will result in less amounts of chronic pains). 

IV. Psychosocial State: psychosocial state is dependent both on an individual operator and the 

workplace environment. With the integration of advanced robotics and technologies in the 

production of products and services, “perception” has a significant role on how human operators 

react to those changes. As cobots and AR/VR tools replace human workers inside the workplace, 

loss of social interaction will affect the human workforce. The “interaction” factor, which is 

dependent on the interaction of human with machine and robots rather than other human workers, 
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reports product and process quality outcomes through the IoT based use of CPS rather on personal 

interactions. Perception and interaction can affect a workers’ “emotion”. Depending on the 

personality of an individual operator, it may lead to increased mental fatigue.  

 

Figure 6. Proposed macro states of operators and their defining factors based on the concept of sustainability. 

This categorization is focused on the sustainability concept of operators inside the new industrial 

and service-oriented framework designs. Moreover, it is closely aligned with the Industry 5.0 

concept, which is shifting the focus of smart technologies to support operators inside industry 

(Breque et al., 2021). With the categorisation of the operator states, the step forward was to 

integrate them in a way that can be used to support and manage operators in the workplace. The 

entropy concept was selected, as it provides a means to measure the selected system and its 

uncertainty. As such, the entropy concept was studied and a method for human-system error 

probability based on human capabilities and age factor was proposed. 

4.3 Entropy and human-system error probability  

Due to the new dynamics of the workplace and physical collaboration, the complexity of work 

tasks increases. In this complex working system, production and services will need to maintain 

balance between a regular working motion and chaotic interactions. The disorder of those motions, 

depending on how dynamic and complex their level is, will need rules to be implemented as to 

maintain the required order for the operators. Those dynamic and complex interactions, raise the 

question of how efficiently operators will learn to collaborate with robotics and smart technologies 
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in order to keep their productivity and safety. This raises the need to measure uncertainty at work 

based on operators’ capabilities.  

In this work, the concept of entropy was used as a framework to identify the dynamics of the 

human as a natural system in order to quantify the uncertainty and lack of stability of an outcome 

or process, due to the operators states condition. Identifying the rules and parameters of our micro-

states, such as emotion, perception, level of interactions and fatigue, is necessary in understanding 

the connections and consequences when the status of those states change. Those connections will 

assist in computing the probability of error of human operators at work. By computing the 

probability of error, the areas where human operators struggle can be identified and the information 

can be transferred to management, so strategies in helping the human operators can be designed. 

4.3.1 Entropy concept 

Statistical mechanics are used as a mean to explore how a natural macro-world or system works 

by investigating and identifying the microscopic laws that govern the micro-states of the system. 

Probability theory is then used to link the microscopic laws of the different micro-states together 

and ultimately identify the macro-system laws and relations. The most fundamental concept that 

can connect micro- and macro- worlds is entropy. Entropy can be used as a measurement of a 

system’s disorder or uncertainty. This ability gives the entropy concept the flexibility to be used 

in different fields. Ludwig Boltzmann proposed the classical form of entropy (Sb) to be given by: 

𝑆𝐵 = 𝑘 ln(𝛺)  (1) 

where k is the Boltzmann’s constant and Ω is the number of the system’s microstates. The 

generalized entropy equation, named Boltzmann-Gibbs, is given by the following equation: 

𝑆𝐵𝐺 = −𝑘 ∑ 𝑝𝑖 ln(𝑝𝑖)
𝛺
𝑖=1  (2) 

Equations (1) and (2) are used when the microstates are equiprobable. Thus, when using 

normalization for i (state) and p (probability) we have:  

∑ 𝑝𝑖
𝛺
𝑖=1 = 1 (3) 

This form of entropy is ideal when working with systems that are strongly dependent on all the 

initial conditions. However, most systems behave quite independently from those conditions. 
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Thus, Tsallis (1988) proposed a generalized theory for entropy, that describes both extensive and 

non-extensive systems and can be defined by: 

𝑆𝑞 =
𝑘

𝑞−1
(1 − ∑ 𝑝𝑖

𝑞𝛺
𝑖=1 )    (4) 

 

4.3.2 Human-system error probability 

In the new workplace, operators need to interact with robots to complete their tasks, while also 

having to deal with an abundance amount of information and data, where some of them may be 

redundant. Overload of information, lack of social interaction and different workplace 

environment conditions are some of the issues that can lead operators to deal with decreased 

productivity or quality and probable critical situations, due to stressful conditions. For that reason, 

there is a need to understand and measure the uncertainty created by the new conditions and how 

it affects operators. As a starting consensus, we define the human operator as a natural system 

described by four categorical states, Behavioral, Mental, Physical and Psychosocial. Each state has 

its own variables and parameters that defines them.  

The foundation of the workplace system is now defined. The interactions taking place inside the 

workplace are considered the microscopic dynamics, which can be seen as similar to the N-body 

elements microscopic dynamics. Operator and cobots starting conditions are the initial condition 

of the system (good condition, operational, in need of maintenance etc.). As time progress 

(considering long time evolution) the system will reach a stationary or a quasi-stationary state. In 

that time frame, the initial conditions of the operator can be considered as non-consequential for 

the measurement. Since the probability of error can be measured, then the overall uncertainty 

(range of probability) can be defined.  

From the workforce management literature review, the major contributing parameters of the 

operators’ states were derived. Perception is considered as the major parameter affecting the states 

as the operators first perceive the workplace environment and then react. Motivation is hindered 

by what is perceived and the individual’s preferences, thus affecting the mental, physical and 

psychosocial states. Due to those effects, errors may occur. Personal development is affected, 

which may lead in increased time on learning new working skills or trust in the robotic co-workers. 

Workers belonging to different age groups react differently as well. Younger workers, for example, 
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may react more in favour of new integrated technology than older workers. On the other hand, 

older workers due to their experience tend to be more controlled than the younger workers. Thus, 

the probability of error is a way to measure those effects and understand the areas where the human 

operators need to be assisted on. 

Assuming same complex working conditions, information received and dynamic interaction for 

all working age groups, the probability of error can be defined as a complex equation, dependent 

by age groups. It is comprised by Behavioral (B), Mental (M), Physical (PH) and Psychosocial 

(PS) states as:  

𝑃𝐸 = 𝑓(𝑀, 𝑃𝐻, 𝐵, 𝑃𝑆)𝑎 (5) 

The PE notation stands for probability of error and a stand as an index for age group, which for 

the initial formulation is set as a=1 for young workers and a=-1 for older workers. 

To calculate the uncertainty in the system, the non-extensive statistical form of entropy was 

considered along the exponential entropy given by Pal N. R and Pal S. K. (1992): 

           𝐻 = 𝑙𝑛𝑞 (
1

𝑝𝑖
)                 (6) 

and,  

           𝐻 = ∑ 𝑝𝑖
𝑞𝑒1−𝑝𝑖

𝑞
𝑛
𝑖=1                 (7) 

Given a certain moment in time (work duration or other), the state of the operator is defined by 

their physical and mental condition, along with the psychosocial state and the behaviour they 

exhibit at that moment. The condition of the states is further defined by the age group the operators 

belong to: 

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → (
𝑃𝐻×𝑀

𝑃𝑆×𝐵
)

𝑎

 (8) 

Each state and parameter have its own weight, determined by individual operators’ parameters and 

variables (analytic description of what each symbol means in table 2):  

𝑃𝑆 = 𝑤𝑃𝑆 × 𝑓(𝐼, 𝐸𝑀, 𝑃) (9) 

𝑀 = 𝑤𝑀 × 𝑓(𝐹, 𝐶) (10) 
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𝑃𝐻 = 𝑤𝑃𝐻 × 𝑓(𝐸𝑟𝑔, 𝑀𝑅, 𝑇𝐸) (11) 

𝐵 = 𝑤𝐵 × 𝑓(𝑆𝑅𝐾, 𝑀) (12) 

Table 2. Description of the parameters and variables used in the states' formulas. Each state has its own traits that affect its 

condition during work. 

 

4.3.3 Probability of error experimental test 

The PE formulation was tested in an automotive cobot workplace scenario (physical and virtual 

environment) performed over common weekly arrangements, using both young and old workers. 

The measured variables were heartbeat frequency, blood pressure, pupil dilation and eye 

movement (Figures 7, 8 and 9). Heartbeat frequency and blood pressure were measured by 

smartwatch usage, while pupil dilation and eye movement were captured by video recording. 

Those measurements can provide information on fatigue (linked with mental and physical states), 

stress (linked with mental and psychosocial states), and the operators reactions and concentration 

(psychosocial and behavioural states) during the test. 

The virtual scenarios were created by ergonomic indexes and fatigue was recreated by standard 

equations obtained from literature (Di Pasquale et al., 2017, Fruggiero et al., 2018). SHERPA 

simulator was used as a measurement for breaks and work-shift load. Usage of questionnaires and 

AHP decision-based approach, assisted in determining the psychosocial factors and work attitude 

(Fruggiero et al., 2020). Smartwatch recording from the physical experiment were filtered through 

a discrete time-based control to measure the correlation of data over week tasks.  
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For the physical scenario, the participants were selected based on age (young and old, 2 

categories) and biological sex group. The work-task experiment was performed in different 

environmental conditions; experiments were performed in different light conditions (300-500 lux) 

with low ambient noise. The workspace was arranged with minimal complexity and with regard 

to the operators safety and comfort. The tasks were designed in three complexity (task, guidelines, 

time for completion) levels; the scheduling over level differentiation was randomized over 

arrangements to observe the measurement alteration depending on different operator conditions 

(e.g. well rested, fatigued) in different complexity scenarios.  Early morning tests were used for 

not fatigue condition. Late evening - after working days and without resting- were used for fatigued 

collection.  

 

Figure 7. Upper left and right show eye movement and pupil dilation capture by the video recording during the task. The 

movement and dilation were then used with the PERCLOS method. On the bottom, pupil dilation measurement over time 

(seconds )for referenced task (eyelid closure/opening in asymptote dilation measurement). 

The test was complimented by a set of queries (self-evaluation), to collect well rested and high 

fatigue conditions. Starting from the recorded video ( we are including now information about  

subject involved in the experimental test -  table 3) of the workers’ eye, the program evaluated the 

eyelid using a pixel based quantification for eye movement and closure measurements (figure 7).  
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Table 3. Information on participants that performed the test and measurements. 

 

 

 

 

 

To measure the mental fatigue, the PERCLOS method was used in combination with eye position 

controlled by movement probability (figure 8). In this context, the longer the movement the larger 

the fatigue as correlated with percentage of closure. Major Y movement denotes a head lowering. 

Variability in X movement reports lack of concentration effect. 

 

Figure 8. On the left, the probability distribution of eye movement along X direction is depicted. On the right, probability 

distribution of eye movement along Y direction. X and Y are fixed on absolute references and counted over task time. 

PERCLOS (Percentage of eyelid closure) has been found, as shown in the study by Abe et al. 

(2020), to be an indicator and a valid measuring tool of a persons’ drowsiness and alertness. 

Although, at the current state, the PERCLOS methodology is difficult in its implementation, it is 

ideal in this approach since it provides flexibility due to not giving an absolute mean value for all 

workers but enables our methodology since it takes into account the individuals’ characteristics. 

The PERCLOS method is calculated by: 

𝑃𝐸𝑅𝐶𝐿𝑂𝑆 =
𝑁𝑚−𝑁𝑎

𝑁𝑚
× 100 (13) 

  
 

 MORNING EVENING 

Number of participants 20 (5 + 15) 16 (6 + 10) 

Age range of participants 21- 52 21 -52 

Male 13 10 

Female 7 6 
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where Nm represents the total number of record frames and Na represents the total number of 

frames where the worker is “awake”.  

 

Figure 9. Heartbeat frequency (bpm) over time. 

From the experimental results analysis, increased heartbeat frequency (figure 9) and pupil dilation 

over time and a correlation between both measurements were found. Increased task-complexity 

showed faster increase of heartbeat frequency and pupil dilation. As heartbeat frequency and pupil 

dilation rise over time, so does the fatigue levels. While fatigue levels increase, workers tend to 

react and work slower.  Furthermore, as the complexity of working tasks increased, participants 

had even more slower reactions and slow decision making when performing their usual tasks or 

when an unexpected event occurred. Moreover, due to increased task complexity, signs of 

increased mental fatigue show faster than in low complexity tasks. It is worth noting, that although 

there is correlation between task-complexity and mental fatigue levels, the experimental results 

report differences between different age groups (Figure 10). 

The PE analysis showed that older operators report higher error probability in different work task 

complexity and changes in working and environment conditions; however, the PE remains stable 

in a narrow probability area (Figure 10). The analysis for young operators showed lower 

probability rate (maximum of 0.6), although there is a large variability depending on state 

conditions. Older operators show increased PE when Physical state condition is low or in critical 

condition (close to 0.1), which is expected as their physical capabilities decline through age. For 

the younger operators, behavioural state is a key factor in keeping the PE at low levels, even when 

the other states are low in condition and stability.  
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Figure 10. PE analysis for old (on the left) and young (on the right) participants over different state (B,M,PH,PS) conditions (0 to 

1). 

4.4 Discussion 

In this chapter, the research questions aim was to investigate how operators are affected by the 

workplace changes through the implementation of smart technologies and robots (references can 

be found in figure 11). In terms of how operators are affected, operators are affected and react 

based on their perception, personal preferences and capabilities. Capabilities change over 

operators’ due to skill knowledge and experience, but also due to age. A literature review was 

performed to investigate how those capabilities affect managing operators. The literature review 

analysis show how operators are affected by workplace changes and environmental conditions due 

to diminishing capabilities as they age. Moreover, it showed how experience and knowledge are 

considered valuable as they allow operators to be more cognizant of their workplace. In terms of 

how to support them; smart technologies can be used to support them as not to lose their experience 

or knowledge from the workplace environment. However, another solution can be to move 

experienced older operators from the shop-floor to mentoring younger operators or over to 

managing positions.  

With the results of the literature review, a model was proposed, based on sustainability and HF 

concept, on how to categorise the operators’ condition through the behavioural, mental, physical 

and psychosocial states. Those states can be described as the macro states of the operator, in the 

scope of a nature system. As such, using the entropy concept, the human-system probability of 

error was formulated based on those macro-states and their traits and parameters (micro-states). 
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The formulation was then tested in an experimental test, to investigate its validity. The task was 

designed in different task complexity scenarios. Participants were of different age (from 21 to 52 

years old). During the test, heartbeat frequency, blood pressure, pupil dilation and eye movement 

were gathered as to measure the conditions of the macro-states. The results show that although old 

operators have a more narrow probability range over states’ condition, it is higher than that of the 

younger operators, which however show higher variability due to behavioural state condition. 

Although the results confirm what was expected in terms of shape and provide validity in the PE 

formula, it must be noted that the experiment was also performed to validate the differences in 

operators’ reactions and subsequently the probability of error occurrence. Thus, the next step was 

to investigate how operators are affected by their robot/cobot co-workers. As such, a research 

activity was designed, aiming in understanding the effects and outcomes of robot design features 

on operators.  

 

Figure 11. Publication output of 1st Research Activity. 
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5. Research activity II: Scoping review on robot design features effect on 

operators 

In this section, the scoping review on robot design features effect on operators is presented (figure 

12). The main aim was to investigate how robot design features affect operators and the outcomes. 

Here, the human robot interaction is investigated as a system and not as individual parts, following 

the sociotechnical systems approach, as it promotes the joint optimization of the system in 

question.  

This section is structured as follows: first, the scoping review methodology is explained followed 

by the search strategy. Then, the results are presented starting from general robot features (e.g. 

appearance) to more specialised (e.g. artificial intelligence & machine learning) ones. Finally, the 

discussion along with the identified research gaps are presented.  

 

Figure 12. Research questions formed for 2nd research activity and research output. 

5.1 Scoping review methods  

In the initial stages of the scoping review, a literature search was conducted on the SCOPUS and 

Web of Science databases. This resulted in more than 170,000 papers present in the literature pool 

with a mention of HRI. As the body of literature is wide and complex, the scoping review approach 

was selected as a means to scope the literature, clarify and map the concepts, and identify 

knowledge gaps (Munn et al., 2018).  This allows the assessment of the size and scope of available 

scientific literature for the area of interest and identify the extent of evidence that are of use (Grant 

and Booth, 2009). Moreover, the scoping review will allow to identify the concepts and gaps of 

the topic in question (Peters et al., 2015). Another advantage of the scoping approach is that the 

research questions do not need to be well-defined or based on a hypothesis, allowing for broader 

and topic focused questions. However, due to the nature of this approach, it requires more time 

than a systematic review as the number of citations needed to be screened is larger and require a 

thorough and more comprehensive analysis; although, the scoping approach can provide more 

structured and defined results.  
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This work followed the framework defined by Arksey and Malley’s (2005), which requires the 

following steps: (i) Identify the research questions, (ii) Identify relevant articles through review 

strategy and keyword selection, (iii) Analyse the selected articles obtained, (iv) Chart the data, and 

(v) Summarise and report the results. The aim of this review is to investigate the effects of robot 

design features on operators. As such, the research questions formed are as follows: 

1. What does the available peer reviewed research reveal about the effects of robot design 

features in the human-robot interactions? 

2. What are the demands placed on the operator's capabilities by the robot design features? 

3. What is the outcome of the demands and effects placed on the operator by robot design 

features? 

 

The main objective was to find keywords that are relevant to the scope of the study in order to 

maximise the number of scientific articles. A professional librarian helped in selecting the 

keywords (table 4) and search strategy. Three main categories were identified for the keywords 

and the search strings to be used: (i) Human-Robot relevant terms, (ii) interaction relevant terms, 

and (iii) terms relevant to ‘work’ and ‘human operators/workers’. Keywords from the same 

category were connected by the Boolean operator ‘OR’, and from different categories with ‘AND’ 

(e.g. ‘Human Robot’ OR ‘Human Cobot’ AND ‘interaction’ OR ‘collaboration’ AND ‘work*’ OR 

‘occupation’). 

Table 4. Strings and keywords used for the scoping review database search. Columns are connected by the AND Boolean operators 

and rows of same column with an OR operator. 

 

Category A Category B Category C 

Human-Robot related 

terms (separated by OR) 

Interaction related terms 

(separated by OR) 

Work and human 

worker related terms 

(separated by OR) 

i. “Human Robot” i. Interaction i. Work* 

ii. “Human Cobot” ii. System ii. Workforce 

iii. “Human Machine” iii. Collaboration iii. Employ* 

iv. “Human in the loop” iv. Coexistence iv. Occupation 

 v. Cooperation v. Work-related 

 vi. Communication vi. Job 

  vii. Operat* 
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The databases, relevant to the search, selected were the SCOPUS database and Web of Science 

database. The search was performed for articles written between January 2001 and September 

2021; January 2001 was selected as the lower limit as it was the year where the implementation of 

human robot collaboration started (Hoffman and Breazeal, 2004), which was one of the main 

focuses of this thesis. Moreover, as the case study is related to the manufacturing sector, the search 

targeted the scientific areas that can bring value in that regard. The major criteria for inclusion to 

the final list of selected articles were the following: 

• Articles must be written in English, 

• Articles must address on of the research questions, and 

• Articles should be peer-reviewed and published in scientific journals. 

The ‘snowball’ approach, forward and backward, was also used to identify additional articles 

(Goodman et al., 1961), that may have not been found due to the selected strategy. The backward 

approach meant using the reference list of the identified articles to track and identify articles not 

found through the database search strategy. The forward approach refers to identifying new articles 

based on those articles citing the papers being examined. 

A total of 2830 articles were identified and imported to a reference management software. The 

initial screening procedure, consisting of reading title, abstract and keywords, resulted in the 

inclusion of 156 articles. The final step of the screening procedure was to fully read the articles; 

the final number of articles that matched the inclusion criteria was 32 (figure 13) 

 

Figure 13. On the left, a flow chart is used to depict the basic steps of the screening progress. On the right, the number of scientific 
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articles per year is presented. 

The selected articles were then fully read again (summary in table 5). Information relevant to the 

scope, aim and research questions were extracted. In addition, additional information deemed 

useful to the scope of this thesis, were also extracted based on the following: (i) the focus of each 

study, (ii) robot design features investigated/used, (iii) operators information relevant to age and 

sex group, and (iv) operators variables used or investigated in each study. The focus on age here 

is relevant to the ageing workforce issue recognized by governmental agencies (EU-OSHA, 2019), 

and as such it is useful to see if and how research approach the issue. The sex term is used in this 

work inclusively without distinction between the biological or social (gender) aspects. This will 

allow to collect more information and identify potential issues for better analysis and results 

(Johnson et al., 2009).  

Table 5. Scientific articles included in the scoping review (ID for analysis purposes, Authors, Article title, Journal and year). 

ID# Authors Title Journal Year 

1 

Hinds P.J., Roberts T.L., 

Jones H. 

Whose job is it anyway? A study of human-robot 

interaction in a collaborative task Human-Computer Interaction 

2004 

2 Besnard D., Cacitti L. 

Interface changes causing accidents. An 

empirical study of negative transfer 

International Journal of 

Human Computer Studies 

2005 

3 

Rani P., Sarkar N., 

Adams J. 

Anxiety-based affective communication for 

implicit human-machine interaction 

Advanced Engineering 

Informatics 

2007 

4 Ogorodnikova O. 

Human Weaknesses and strengths in 

collaboration with robots 

Periodica Polytechnica 

Mechanical Engineering 

2008 

5 

Walters M.L., Syrdal 

D.S., Dautenhahn K., 

te Boekhorst R., Koay 

K.L. 

Avoiding the uncanny valley: Robot appearance, 

personality and consistency of behavior in an 

attention-seeking home scenario for a robot 

companion Autonomous Robots 

2008 

6 

Mitsunaga N., Smith C., 

Kanda T., Ishiguro H., 

Hagita N. 

Adapting robot behavior for human-robot 

interaction 

IEEE Transactions on 

Robotics 

2008 

7 

Reed K.B., Peshkin 

M.A. 

Physical collaboration of human-human and 

human-robot teams IEEE Transactions on Haptics 

2008 

8 

Green S.A., Chase J.G., 

Chen X.Q., Billinghurst 

M. 

Evaluating the augmented reality human-robot 

collaboration system 

International Journal of 

Intelligent Systems 

Technologies and 

Applications 

2010 
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9 

Tan J.T.C., Duan F., 

Kato R., Arai T. 

Safety strategy for human-robot collaboration: 

Design and development in cellular 

manufacturing Advanced Robotics 

2010 

10 

Arai T., Kato R., Fujita 

M. 

Assessment of operator stress induced by robot 

collaboration in assembly 

CIRP Annals – Manufacturing 

Technology 

2010 

11 

Lee S.-L., Lau I.Y.-M., 

Hong Y.-Y. 

Effects of Appearance and Functions on 

Likability and Perceived Occupational 

Suitability of Robots 

Journal of Cognitive 

Engineering and Decision 

Making 

2011 

12 

Novak D., Mihelj M., 

Munih M. 

Psychophysiological responses to different 

levels of cognitive and physical workload in 

haptic interaction Robotica 

2011 

13 

Duan F., Tan J.T.C., 

Tong J.G., Kato R., Arai 

T. 

Application of the assembly skill transfer system 

in an actual cellular manufacturing system 

IEEE Transactions on 

Automation Science and 

Engineering 

2012 

14 

Cunningham S., Chellali 

A., Jaffre I., Classe J., 

Cao C.G.L. 

Effects of Experience and Workplace Culture in 

Human-Robot Team Interaction in Robotic 

Surgery: A Case Study 

International Journal of Social 

Robotics 

2013 

15 

Zanchettin A.M., 

Bascetta L., Rocco P. 

Acceptability of robotic manipulators in shared 

working environments through human-like 

redundancy resolution Applied Ergonomics 

2013 

16 

Pedrocchi N., Vicentini 

F., Malosio M., Tosatti 

L.M. 

Safe human-robot cooperation in an industrial 

environment 

International Journal of 

Advanced Robotic Systems 

2013 

17 Lasota P.A., Shah J.A. 

Analyzing the effects of human-aware motion 

planning on close-proximity human-robot 

collaboration Human Factors 

2015 

18 

Marvel J.A., Falco J., 

Marstio I. 

Characterizing task-based human-robot 

collaboration safety in manufacturing 

IEEE Transactions on 

Systems, Man, and 

Cybernetics: Systems  

2015 

19 

Charalambous G., 

Fletcher S., Webb P. 

Identifying the key organizational human factors 

for introducing human-robot collaboration in 

industry: an exploratory study 

International Journal of 

Advanced Manufacturing 

Technology 

2015 

20 

Charalambous G., 

Fletcher S., Webb P. 

The Development of a Scale to Evaluate Trust in 

Industrial Human-robot Collaboration 

International Journal of Social 

Robotics 

2016 

21 

Maurtua I., Ibarguren 

A., Kildal J., Susperregi 

L., Sierra B. 

Human-robot collaboration in industrial 

applications: Safety, interaction and trust 

International Journal of 

Advanced Robotic Systems 

2017 

22 

Peruzzini M., Pellicciari 

M. 

A framework to design a human-centered 

adaptive manufacturing system for aging 

workers 

Advanced Engineering 

Informatics 

2017 
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23 

Matsas E., Vosniakos 

G.-C., Batras D. 

Prototyping proactive and adaptive techniques 

for human-robot collaboration in manufacturing 

using virtual reality 

Robotics and Computer-

Integrated Manufacturing 

2018 

24 

Oyekan J.O., Hutabarat 

W., Tiwari A., Grech R., 

Aung M.H., Mariani 

M.P., López-Dávalos L., 

Ricaud T., Singh S., 

Dupuis C. 

The effectiveness of virtual environments in 

developing collaborative strategies between 

industrial robots and humans 

Robotics and Computer-

Integrated Manufacturing 

2019 

25 

Nikolakis N., Maratos 

V., Makris S. 

A cyber physical system (CPS) approach for safe 

human-robot collaboration in a shared 

workplace 

Robotics and Computer-

Integrated Manufacturing 

2019 

26 

Wang W., Li R., Chen 

Y., Diekel Z.M., Jia Y. 

Facilitating Human-Robot Collaborative Tasks 

by Teaching-Learning-Collaboration from 

Human Demonstrations 

IEEE Transactions on 

Automation Science and 

Engineering  

2019 

27 

Meissner A., 

Trübswetter A., Conti-

Kufner A.S., Schmidtler 

J. 

Friend or Foe Understanding Assembly 

Workers' Acceptance of Human-robot 

Collaboration 

ACM Transactions on 

Human-Robot Interaction 

2020 

28 

Peruzzini M., Grandi F., 

Pellicciari M. 

Exploring the potential of Operator 4.0 interface 

and monitoring 

Computers and Industrial 

Engineering 

2020 

29 

Pérez L., Rodríguez-

Jiménez S., Rodríguez 

N., Usamentiaga R., 

García D.F., Wang L. 

Symbiotic human–robot collaborative approach 

for increased productivity and enhanced safety 

in the aerospace manufacturing industry 

International Journal of 

Advanced Manufacturing 

Technology 

2020 

30 

Gervasi R., 

Mastrogiacomo L., 

Franceschini F. 

A conceptual framework to evaluate human-

robot collaboration 

International Journal of 

Advanced Manufacturing 

Technology 

2020 

31 

Wright J.L., Chen 

J.Y.C., Lakhmani S.G. 

Agent Transparency and Reliability in Human-

Robot Interaction: The Influence on User 

Confidence and Perceived Reliability 

IEEE Transactions on 

Human-Machine Systems 

2020 

32 

Prati E., Peruzzini M., 

Pellicciari M., Raffaeli 

R. 

How to include User eXperience in the design of 

Human-Robot Interaction 

Robotics and Computer-

Integrated Manufacturing 

2021 

 

The operators’ capabilities were categorised based on the HF domains. As such, this work utilizes 

the categories formed and used in previous research (Grosse et al., 2015, Neumann et al., 2016 and 

Sgarbossa et al., 2020) to categorise the terms found in the included articles (table 6): (i) 

Perceptual, containing terms for awareness (spatial), perception and reaction, (ii) Mental, 
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containing mental fatigue, cognitive load and decision-making, (iii) Physical, containing terms for 

motor skills and training, and (iv) Psychosocial, containing terms for comfort/discomfort and 

stress. In this logical set of categories for operators’ capabilities we add safety. Safety is crucial 

for HRI and more importantly for collaboration, as there is no physical barrier between operators 

and robots and as such, during tasks there are high risks of physical contacts that can lead to 

accidents if regulations and rules are not set accordingly to protect the operator.  

Table 6. Operator capabilities categories based on the inductive approach. Beside each category, the terms used in the articles 

relevant to each category, are listed. 

 

For the robot design features an inductive approach (Thomas, 2006) was used by identifying 

relevant terms. Those terms were then grouped in categories by using deductive reasoning and 

comparison with relevant terms in the literature. Those categories are the following (table 7): i) 

Appearance, referring to human-like or machine-like appearance or morphology, (ii) Behaviour, 

referring to behaviour, features, pervasive technology and consistency, (iii) Communication, via 

action or through interface, (iv) Reliability, referring to reliability, usability, effectiveness and 

repeatability, (v) Machine Learning, referring to the methods used such as machine learning, 

vision, natural language processing or reinforcement learning, and (v) Dynamic capabilities, 

referring to movement (trajectory and speed) and force of contact. 

Table 7. Robot design features categories and the terms used in the identified scientific articles. 

 

Categories

Mental Mental fatigue Cognitive load Decision-Making

Physical Ergonomics Motor skills Training

Perceptual Awareness Perception Reaction

Psychosocial Comfort Trust

Safety Safety

Human Operator Capabilities

Categories

Appearance Appearance Morphology

Behaviour Behaviour Feature

Pervasive 

technology Consistency

Communication Communication Information Interface

Reliability Reliabity Usability Effectiveness Safety Repeatability

Machine Learning Machine Learning

Natural Language 

Processing

Reinforcement 

Learning

Sensing 

posture/motion Machine vision

Physical Movement Trajectory Speed Force of contact

Robot Design Features
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5.2 Scoping review results 

A full text analysis of the 32 peer-reviewed articles was performed and the effects of robot design 

features to operators was investigated. Age and sex group information was also extracted from the 

articles that discussed case studies or experiments and disclosed that information (figure 14). 19 

out of 32 articles reported participants age group. From those, 15 of them focused on young 

operators (mean average age between 25 to 30), 3 used a mixed approach between old and young 

(19-61 years of age), and only 1 has its focus on older operators (age older than 50). For the sex 

group, only 22 mentioned the use of both male and female participants, and only 14 provided exact 

information. From those 14, 9 articles (37%) had more male participation, 2 (8%) had a balanced 

approach, and 3 articles (13%) had more female participants. 

 

Figure 14. Figure depicts information drawn from the scientific articles on age and sex group of participants in the experimenta 

studies. 

Figure 15 shows the connections between robot design features and their effects on operators as 

found in the articles. The majority were focused on the dynamic robot features (speed and force) 

that places demands on the mental and psychosocial status of operators and their safety. Machine 

learning, a technique with wide research interest due to its versatility and potential for use, was 

studied mostly in relation to operators’ perception of the robots and stress. Communication 
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between operators and robots in the workplace was studied by measuring operators’ trust towards 

the robot and operators’ perceived reactions to robot’s communication methods and techniques. 

Varying robot appearances were used to investigate the effects on HF (perception and ergonomics 

effects). Robot behaviour was investigated through the operator’s trust and perception during 

tasks. Reliability of a robot in the workplace was studied in accordance with operator’s perceived 

safety, ergonomics, and trust. 

 

Figure 15. The relations between robot design features and operators’ capabilities can be seen in the top figure. Grey cells 

represent the absence of research in those specific relations or the absence of relation between them. Bar charts present the number 

of articles that studied the specific category. 

The connections found in the literature between robot design features and their effects on 

operators’ capabilities can be seen summarised in figure 15 and are the focus of the analysis as 

presented below. The subsections are organised based on robot design features, starting from the 

more general characteristics (appearance, functions) to more specialised ones (AI machine 

learning and dynamic features). 

5.2.1 Robot appearance  

A total of 6 articles discussed appearance and suitable characteristics for robot integration in the 

workplace, based on perceived capabilities and response to appearance by the operators. The 

morphology and appearance of a robot, being human-like or machine-like, should be considered 

depending on the workplace and work task. In demanding tasks, either physical or mental, 
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operators are more likely to react positively to a human-like robot than a machine-like one (Hinds 

et al., 2004). Moreover, the operators may have pre-developed mental models on a robot’s 

appearance for specific tasks, which can influence their perception of the robot’s capabilities; 

human-like features are associated with tasks where robots are expected to have frequent social-

like interactions with humans, while robots with machine-like features are expected in situations 

that are more task-focused, such as lab/workplace assistant and military robots (Lee et al., 2011). 

Certain physical characteristics can influence the operator’s comfort, especially in occupations 

related to healthcare. The human-like motion of a robot can be considered more acceptable by 

patients or nurses, which in turn can lower the operator’s perceived stress (Zanchettin et al., 2013). 

Due to perceived capabilities and operators’ mental models of how a robot should look, operators 

should be involved in the implementation of robots in the workplace (Charalambous et al., 2015). 

Involvement of operators during robot implementation can be crucial, as operators can indicate 

preferences in robot characteristics. This can result in wider acceptance of a robot due to human 

input which in turn influences trust (Gervasi et al., 2020). The occurrence of negative events (e.g., 

misleading information), can also decrease trust and perceived reliability towards robots (Wright 

et al., 2020). 

5.2.2 Adaptable robot behaviour  

Three articles discussed robot task behaviour. Robot behaviour is defined as any action the robot 

can perform and can be categorised based on type (purpose) and level. In the articles found in the 

literature, robot behaviour is discussed based on robot features, task consistency, pervasive 

technology, and its ability to adapt depending on the situation in a collaborative environment. For 

a human-centric and adaptable workplace, human-like behaviour of a robot should stay the same 

to avoid loss of trust in set tasks and situations (Walters et al., 2008). In adaptable collaborative 

workplaces, a network of cyber-physical systems can provide information and vision to robots for 

automatic adjustment for the needs of older operators, improving their perceived safety depending 

on the work-task (Peruzzini and Pellicciari, 2017). Collaboration with a robot can be beneficial in 

aiding operators, especially in stressful situations, as the robot can detect changes in human 

behaviour and adapt its functions and behaviour to support and protect the operator. 

5.2.3 Human – Robot Communication 
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A total of 7 articles discussed the role of communication in HRI. Generally, human-robot 

communication can be achieved through verbal speech, gesture signalling, haptic communication 

and through screen-based interfaces. Operators establish their own workplace routines of 

communication which, when a robot is introduced to the workplace, need to be adjusted. Robots 

can offer physical support in physically demanding tasks, while operators need to process 

information and make decisions which in turn puts a load on their mental capabilities. Robots can 

provide support in that area due to their processing capabilities and can offer information to 

alleviate the humans’ cognitive and physical loads. In that regard, robot additions to the workplace 

can be beneficial if there is time for operators to train with their new co-workers and understand 

the information exchange capabilities of the robots (Ogorodnikova, 2008). The addition of robots 

to the workplace may raise the complexity of the work and task procedures, and sufficient time 

should be spent in training to avoid errors due to miscommunication (Cunningham et al., 2013). 

Workplace culture also plays a significant role in the human acceptance of a robot inside the 

workplace; clear communication protocols, especially for safety issues, are a design feature that 

can positively affect human’s perceived trust in robots (Meissner et al., 2020). 

Communication is important in dyads, including both human-human or human-robot, in which 

case operators should be aware of the team composition. In non-verbal communication HRI 

scenarios, operators may subconsciously perceive their robotic partner as if they were human. 

Although it may be useful in terms of efficiency, it may lead to human-system error due to false 

information, which can lead to loss of trust (Reed and Peshkin, 2008). When a new operator is 

added to the team, their robot co-workers can provide task information and training information 

(Duan et al., 2012). Robust communication protocols for augmented reality or teleoperation 

scenarios can improve spatial awareness, decision making and overall, the team effectiveness 

(Green et al., 2010). Moreover, in shared tasks, user experience should be considered (Prati et al., 

2021) for operators to positively perceive their robot co-worker’s usability and effectiveness. In 

general, results suggest that robot communication ability can play a key role in HRI and human 

support and can improve workplace reliability, safety, and team cohesion by supporting the HF’s 

perceptual and mental capabilities.  

5.2.4 Robot reliability  
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A total of 5 articles discussed perceived and actual robot reliability and their effects on operators. 

When changes to robots’ functionality or capabilities are introduced to a collaborative workplace, 

operators should be informed and get trained to avoid potential errors and fatal accidents, thus 

improving their safety (Besnard and Cacitti, 2005, and Ogorodnikova, 2008). Safety measures 

should be implemented in collaborative environments for collision avoidance; for example, robot 

capabilities can be enhanced by receiving information from sensors in the workplace to enhance 

human safety and the perceived robot reliability (Maurtua et al., 2017, and Peruzzini et al., 2020). 

Awareness of human location in situations where the robot is operating autonomously, is essential 

for operators’ safety and trust development in robots and perceived robot reliability (Wright et al., 

2020). Robot reliability and perceived reliability are directly linked with other robot design 

features, such as communication and artificial intelligence, as an indicator of positive or negative 

effects on operators. However, communication and artificial intelligence should be considered 

independently due to the direct demand or support they place on operators. 

5.2.5 Machine Learning & AI 

A total of 4 articles present research results on how machine learning and Artificial Intelligence 

(AI) can play a significant role in the collaborative environment. Their features (e.g., supervised, 

and unsupervised learning) allow them to handle large amounts of data (historical and real-time) 

and make decisions based on models programmed by human specialists. Machine learning can be 

utilised to analyse human behavioural changes, due to fatigue for example, so a robot can adapt to 

the situation and provide support, especially in cognitive based tasks (Rani et al., 2007). Machine 

learning and vision capabilities can be used to adjust the robot behaviour to the operators’ 

preferences (Mitsunaga et al., 2008). Moreover, in the same context, machine vision can be useful 

for a robot to adapt their motion levels to match the operator’s preference which can improve 

human satisfaction and human-robot team cohesion (Lasota and Shah, 2015). Natural Language 

Processing (NLP) machine learning models can be utilised to improve the effectiveness of human-

robot communication, which in turn can increase the operator’s perceived safety and performance 

(Wang et al., 2019). Machine learning and AI can support humans in collaborative environments 

through models that can be programmed with that capability. Machine learning and AI models can 

be used to design robots that can adjust their dynamic characteristics depending on the situation 

and for human support.  
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5.2.6 Dynamic Robot characteristics 

A total of 11 articles discussed dynamic robot characteristics including the robot movement area, 

velocity and physical force and pressure and how they can influence the HRI. Due to the close 

proximity between humans and robots in “smart” workplaces, those characteristics can directly 

affect the safety of operators. Moreover, due to their operational area and speed of movement, 

operators’ perceived safety can be negatively influenced. In that regard, the area of movement and 

trajectory along with movement velocity should be optimised (Tan et al., 2010) to improve 

operators’ perceptions of safety. Close physical collaboration can induce stress to the operator and 

should be considered in the workplace design process to enhance the human’s perceived safety 

(Arai et al, 2010). Moreover, in close physical collaboration, such as in picking and placing orders 

in the shopfloor, the area of movement should be designed with safety measures to avoid collision 

with operators (Charalambous et al., 2016). In haptic human-robot teams, where the work task 

includes handling physical load, the support of robots can reduce physical and mental load of 

operators (Novak et al., 2011). Furthermore, the robot’s ability of repeating tasks with no fatigue 

issues and their physical strength can be utilised to support operators in physically demanding 

tasks (Perez et al., 2020), which can minimise the risk of physical injuries. Although, human safety 

should be considered during physical tasks due to the force and pressure that robots will use or 

exert (Marvel et al., 2015). A network of sensors (Pedrocchi et al., 2013), or cyber physical systems 

(CPS) (Zanchettin et al., 2013, and Nikolakis et al., 2019) in connection with robots teamed up 

with operators, can be used as a safety mechanism and collision avoidance in close physical 

collaborative tasks. Virtual reality tools (Matsas et al., 2018) can be used in the design process to 

test for human safety during collaborative tasks where robots have movement tasks. Furthermore, 

the use of virtual representations of the physical workplace (digital twin) should be considered, for 

simulations on safety testing for multiple scenarios regarding robot movement speed and trajectory 

during close physical human robot collaboration (Oyekan et al., 2019). Safety is a crucial aspect 

for operators in the workplace and minimising risks should be a priority. The dynamic features of 

a robot, movement and force of contact, can negatively influence the perceived safety and actual 

safety of an operator and thus, they should be considered and tested in relation to HF and operators’ 

preferences. 

5.2.7 Robot Design effects on operators 
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Shifting attention from the design effects on operators’ capabilities, a deductive approach was 

followed to identify the outcomes the effects of robot design features have on operators (figure 

13). The approach identified 5 outcomes for operators that have been studied in the literature.  

These concern safety (perceived and actual), reliability (perceived and actual), human and robot 

team cohesion, comfort and quality of work. Comfort is an overlooked outcome, discussed in a 

single study, of robot design, only investigated through robot appearance and communication. 

Interconnection of different features and the HF capabilities affecting outcome can be seen through 

figure 16. In figure 16, safety under HF capabilities signifies the actual safety of the human, while 

under human outcome it signifies the perceived safety of the operator. Actual safety is related to 

robot reliability, dynamic characteristics, and machine learning/AI, while perceived safety is 

affected by all the HF capabilities, and by extension, the robot design features. Perceived reliability 

is affected through perception, psychosocial and mental capabilities by 4 robot design features. 13 

articles show how robot features can affect team cohesion through the HF perceptual and mental 

capabilities. 8 articles show the effects on quality of work, through all the HF capabilities by robot 

features.  

 

Figure 16. Figure depicts the connections of robot design features effects (RQ1) on operators’ capabilities (RQ2) and the outcomes 

(RQ3). 
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In figure 17, human outcome is directly linked to the robot design features, based on the literature 

articles analysis. The links indicate how robot design choices influence the HRI, although the 

connections are complex due to the interconnections between design features and each human 

outcome. Moreover, the links between robot design features and outcomes on operators, reveal 

gaps that could be investigated further to understand if there is connection between them. The 

connections between robot design features and human outcome can be seen in figure 17, as well 

the gaps (grey blocks). Those gaps, such as robot behaviour with perceived reliability and safety, 

dynamic capabilities with perceived reliability and team cohesions, or the outcomes on operators’ 

comfort from behaviour, communication, robot reliability, indicated no research done (and as such 

present a research gap) on their probable connection in the identified scientific articles. 

 

Figure 17. This figure shows the connections between robot design features and human outcomes. Grey blocks show that no 

identified scientific article covered them and as such can be considered a research gap for the purposes of this work. Numbers 

indicate the ID# if articles shown in table 5. 

 

5.3 Implications and discussion points  

This sub-section provides the key points of discussion and research gaps found, relevant to the 

research questions and aim of the thesis. As the study was targeted to the industrial and 

manufacturing sector, the lack of scientific papers (32 identified articles) focussed on human 

aspects in robot design is consistent with previous research that shows the systematic absence of 

attention to human aspects, observed here in cobot design research. This lack of attention severely 

limits the guidance available to real world cobotic system designers, raising the potential for 

negative outcomes for operators, as shown by Neumann and Dul (2010), Grosse et al. (2017), and 

Neumann et al. (2021). The absence of attention to human aspects in research consideration comes 

into contrast with humans being an integral part in engineering projects from the design, to the 

implementation and execution. This also comes in contrast with the sociotechnical systems (STS) 
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theory requiring joint optimisation for both technical and social subsystems in design (Van der 

Zwaan, 1975) and the human centric direction of I5.0 framework.  

Many-to-many relationships of robots and human outcomes - Following the analysis, six key 

features of robot design present in the literature were identified; appearance, behaviour, 

communication, reliability, machine learning and Dynamic capabilities. Figure 16 shows both the 

connections and effects between robot design features and demands placed on operators, and in 

turn the eventual human outcomes or effects. This figure also demonstrates the many-to-many 

relationships between robot design features and operators’ capabilities and outcomes in the HRI. 

Based on the analysis, those complex relationships and consequences of actions and demands, 

have not been investigated in their entirety but only in isolation. Furthermore, these 

interconnections and many-to-many relationships show the complexity of HRI, which is expected 

following the STS perspective. Thus, it brings into attention the need to investigate those 

relationships, e.g. investigation on the effects of a design feature should focus on the outcomes on 

both humans and the system. There is a need to understand and include those aspects, from human 

perception to psychosocial effects, and through physical and mental traits, as they can be 

considered as leading indicators of performance. Moreover, there is a need to understand how 

these HRI dimensions affect different outcomes, such as safety, team cohesion and quality of work, 

for employees in those situations. In practice, those interactions and relationships should be 

considered when designing human-robot collaborative workplaces.  

Involving human operators in robot implementation – Operators develop mental models on 

how they perceive the capabilities and suitability of a robot based on its appearance (Lee S-L. et 

al., 2011). Those mental models can alter the level of trust operators show towards their robot co-

workers, depending on how much the robot matches the expectations the human has (Matthews et 

al., 2020). Current research does not provide much guidance to designers on the form-response 

patterns of operators. Thus, use of qualitative methodologies could provide insight on the 

operators’ perspective on HRI (Grosse et al., 2016), which then can be tested through quantitative 

methodologies. Moreover, through human involvement either in the design phase (participatory 

design, Muller and Kuhn, 1997, Rogers et al., 2022) or control and planning phase (through 

participatory ergonomics, Burgess-Limerick, 2018) and implementation, the perception of a 

robot’s reliability can be influenced (Lotz et al., 2019, Charalambous et al., 2015), which in turn 
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can improve team cohesion. It may also influence their view on the use of robots, an aspect studied 

in other engineering design domains (Melkas et al., 2016). Thus, researchers and system designers 

should investigate the effects of involving operators during the design phase and the eventual 

implementation of robots in the workplace. Beyond involvement, actual training with robots in 

workplace scenarios should be considered as a priority as it can improve and benefit the HRI.  

Training of human operators with robot co-workers - Several scientific articles noted that by 

introducing a robot to a workplace, the operators should be trained in the interaction and the new 

environment (Cunningham et al., 2013, Charalambous et al., 2015, Gervasi et al., 2020). This is 

beneficial for team cohesion and safety, as operators understand their robot’s co-workers’ 

capabilities and functions. Furthermore, when there is an update on a robot’s feature or capability, 

information should be given to the operators and also be allowed to train as to adapt to those 

changes. Otherwise, there is a high risk of a human-system error that could potentially lead to 

accidents and possible loss of life, as seen in Besnard and Cacitti (2005) and the recent Boeing 737 

MAX crash cases (Herkert et al., 2020). Training and transparency can improve quality of work 

and perceived safety while reducing the possibility of error. HRI could benefit from further 

research on how training and transparency is linked with the human’s perspective on safety and 

comfort. Training operators in collaborative contexts can also benefit practitioners, as they can 

then provide configuration and design information for adjustments. This could improve trust, 

quality of work and perceived reliability in robot collaborative systems, whereas lack of 

knowledge and preparedness is a negative influence. This negative influence is evident in the case 

of acceptance levels of self-driving cars from human drivers (Lee and Kolodge, 2018). 

Robot design features for human support - The analysis (figure 17) reinforces the notion that 

the robot’s dynamic characteristics (such as strength and speed) pose a safety concern for operators 

(i.e. Tan et al., 2010, Charalambous et al., 2016), while also showing that they affect comfort 

(Zanchettin et al., 2013) and quality (Novak et al., 2011). In the complex HRI environments, 

human safety protocols should be in place to protect the operator (Lasota & Shah, 2015). Due to 

the robot’s speed and potential force of contact, a collision could induce injuries to an operator 

(OSHA 2018), which requires safety measures to be taken in order to protect the operators, 

considering as well the robot’s potential speed and area of movement. Fear of collision with robots 

generates mental strain and distrust due to their dynamic capabilities (Arai et al., 2010). In their 
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literature review on safe HRI, Robla-Gomez et al., (2017), summarise classifications of safety in 

collaborative environments, including collision avoidance strategies. Use of sensor networks is 

already used as a deterrent of collisions, with the robot halting operations and movement to avoid 

injuring an operator. However, there is an issue on how the robot will respond in case the operator 

moves towards it; in such case a collision leading to an injury may occur, an inaction which would 

contradict the first law of robotics introduced by Asimov in his work; a robot may not injure a 

human being, or, through inaction, allow a human being to come to harm. Robot situational 

awareness (Endsley et al., 2003) could be developed further by giving them the autonomy to pro- 

and re- actively perform collision avoidance manoeuvres. This could be achieved by allowing them 

to (i) understand the situation, (ii) forecast the future state of the situation and (iii) selection of 

appropriate action to avoid potential problems (e.g. move out of the way or provide support). Cyber 

physical systems can be utilised for enhancing robots’ sensing capabilities (Nikolakis et al., 2019) 

along with the implementation of computer vision through machine learning/AI (Mitsunaga et al., 

2008). Virtual reality tools can provide a safe environment to test critical situations (Oyekan et al., 

2019) and optimise human robot collaboration. Safety should be a priority for practitioners and 

workplace designers for smart manufacturing, as pointed out in the COMEST report on Robotics 

ethics (UNESCO, 2017).  

Research gaps. Analysis of the literature articles identified several research gaps. The blank cells 

in the matrix analyses in figures 15 and 17 reveal areas in research that could be investigated in 

order to explore potential issues and solutions. For example, robot behaviour and connection with 

operators’ comfort need to be examined. Robots’ behavioural characteristics demands on an 

operator’s psychosocial state and safety, or outcomes on perceived safety and reliability could be 

of use for workplace design and management. Robot communication functions and the effects on 

psychosocial state and human comfort in the workplace could be of potential interest to 

practitioners for quality and process optimization. Moreover, human comfort was investigated as 

an effect of robot features in only one of the identified articles. As comfort relates to a state free 

from distress, physical and mental discomfort recognized in medical research (Kolcaba and 

Kolcaba, 1991), and also psychological stress (related to discomfort), it is an important 

psychological factor of humans that needs evaluation (Taniguchi et al., 2009) as it directly affects 

work safety and human work quality (Zanchettin et al., 2013). This conforms with the I5.0 

framework call for human-centred systems. Although safety, actual and perceptual, is discussed in 
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the identified articles, it is still an open issue for workplace design. This is for collaboration, as 

humans and robots operate in close physical proximity and dependability of the interaction should 

be guaranteed for successful implementation (De Santis et al, 2008). In the articles containing 

experimental studies, common metrics are used as indicators for humans or robots (e.g. NASA 

TLX, EMG, task performance, effectiveness, reaction time), however there is a lack of metrics to 

evaluate the performance of the interaction as a system and/or process and team performance (e.g. 

Annet et al., 2010). Introducing metrics by either developing new ones or using metrics developed 

for other purposes could be beneficial for HRI as it could provide indicators on areas that need 

improvements. For example, the works of Steinfeld et al. (2006), and Murphy and Schreckenghost 

(2013) provide metrics for operators and robots; those metrics can be investigated in how they fit 

the purposes of HRI as a system. Our analysis also showed that there is no representation of ageing 

workers. This highlights the need to research those aspects due to the ageing workforce trend, as 

seen in the EU-OSHA report (2019). It is estimated that workers aged between 55 to 64 will 

constitute 25% of the workforce population by 2030. Research including experienced and older 

operators can improve collaborative conditions (Di Pasquale et al., 2020) and acceptance for robots 

in HRI (Rogers et al., 2022). Another gap shown in the analysis, is the discrepancy between female 

and male representation in HRI (figure 14) and is consistent with the findings of Perez (2019). Sex 

and gender analysis is important, especially in the case of collaboration, as it could provide more 

insights and improve design as is shown in the work of Tannenbaum et al. (2019) and could support 

advancement of theory and practice as reported by Sperber et al (2022).   

The research output during this activity can be seen in figure 18. The next step of this research 

project was to investigate a collaborative assembly scenario. As cobots are taking over physical 

tasks, it allows operators to have less physical strain in their workload. As such it was decided that 

the focus of the experimental study should be on HRC effects on cognitive load (and mental 

fatigue) and quality (product, process and human work); with human work quality being one of 

the findings of the scoping review. The next chapter presents the review performed on cognitive 

load and task complexity, the development of the experimental study framework, and finally the 

experiment itself on human robot collaborative assembly. 
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Figure 18. Publication output of 2nd Research Activity. 
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6. Research Activity III: Experimental study on human robot collaborative 

assembly 

Up to this point, this works presents the research activities that focused firstly, on workplace 

changes, due to I4.0 framework and its enabling technologies, and the effects on operators and 

their capabilities and secondly on the effects of robot design features on operators. As HRI, and 

HRC in particular, is becoming the norm in the workplace, the effects of robot design features on 

operators were investigated through a scoping review. The results of the scoping review showed 

that the outcomes are related to operators perceived safety and perceived reliability, comfort 

(mental and physical) issues, team cohesion and operators’ work quality.  

The next step of the thesis was to perform an experimental study to investigate those outcomes in 

a collaborative scenario. The main focus was to investigate the effects of collaborative assembly 

on cognitive load and in turn the quality of product, process and human work (figure 19). The 

participants’ perception of the robots before and after the experiment were investigated through 

questionnaires, as well as team cohesion and the level of comfort working with the robot and new 

technologies. As the experiment was performed during the COVID-19 pandemic, some restrictions 

were placed in terms of participation and execution of the experiment. This chapter starts with an 

introduction to HRC, followed by a state of the art review in cognitive load measurements and task 

complexity. Next, the experimental framework, data gathering and setup are shown. Finally, the 

results of the experiment are presented. 

 

Figure 19. Research questions formed for 3rd research activity and research output. 

6.1 Introduction 

Human robot collaboration is a complex and dynamic system and is a critical part in assembly 

lines. It can benefit production and quality and allow for flexibility in roles and processes; e.g. 

robots can now perform heavy physical tasks allowing operators to concentrate on other tasks. In 

that regard, HF is critical in both production and quality as operators are an integral part of the 
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system due to their capabilities. As the operators need to collaborate closely with robots, receive 

information and updates on the work process and be aware of potential issues, HF can provide 

insights and possible solutions in this dynamic environment.  

In the collaborative industrial assembly scenario, mental fatigue and cognitive load of an operator 

can negatively influence the outcome of production. The operator is being overloaded with new 

information and rules set by the management, be it task or process related, while performing tasks 

with their robot co-worker (figure 20). Those information impact the mental effort needed, and 

consequently the cognitive load as the operator spends working memory resources (Sweller et al., 

1988). As the HRC is complex and dynamic, investigating the factors that affect cognitive load 

during collaboration is needed. This will allow for better understanding of what is needed to 

support operators and provide insights for task and process related design purposes. 

 

Figure 20. Schematic representation of human robot collaboration and inputs based on management, guidelines and demands. 

 

6.2 Cognitive load and task complexity 

Apart from the benefits they can bring to an industry in terms of productivity and quality, robots 

can benefit operators in the workplace. In collaboration with operators, robots can assist in tasks 

requiring moving physical objects, lowering the physical demands of operators. They are fitted 

with sensory capabilities, and can provide information related to the task, system and processes, 

or warn operators of potential risks or errors. Moreover, robots should be programmed with 

collision avoidance manoeuvres and fitted with force sensitive parts to lower their impact in case 
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of contact with an operator or parts they need to interact with. However, apart from the benefits, 

robots add another layer of complexity and create a more dynamic environment that operators have 

to work in. 

Robots’ presence in the workplace affect operators both in an objective and subjective manner. 

From a subjective point, operators have their own preferences and their perception of robots and 

their capabilities vary. In a more objective manner, robots affect other aspects in their interaction 

with operators such as team cohesion and work quality. Apart from the issues created by the 

presence of robots, the collaboration and the work tasks they need to perform operators have to 

also deal with: 

i. information and data sent to them by sensors and robots, which impact the mental demands 

and cognition, 

ii. guidelines and rules set by management, which they have to conform with and follow, and  

iii. most important of all their safety; impacting their capabilities, such as their perception (e.g. 

keep track of developing issues and position of robot). 

Meanwhile, operators need to perform their tasks, that now have an added layer of complexity, 

keeping productivity and quality at same or higher levels than before, as well as make decisions 

during tasks and act as safeguards. As such, it places a burden on their mental capabilities and 

increasing mental fatigue, which leads to cognitive load impacting their decision-making 

capabilities and can lead to human-system error. 

With collaboration becoming the norm in manufacturing industries and assembly lines, and with 

the focus of manufacturing moving towards adaptable assembly lines that can change their 

production target and product depending on market, this creates a scenario where operators need 

to adapt to and be able to stay productive. Moving towards the human centric workplace of the 

I5.0 framework, it is important to understand how collaboration affects operators in order to 

support them. With the help of the industrial partner, the experimental study focused on the effects 

of collaboration and subsequent cognitive load during assembly tasks in quality (product, process, 

human work). Complexity is often highlighted in this thesis due to workplace integration of robots 

and effects of collaboration. As such, quantifying task complexity can be of use to identify issues 
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and effects of complexity (Calinescu et al., 1988), and improve shop-floor quality and productivity 

(Hu and Stecke, 2009). The research questions for this part of the thesis are:  

(i) how can cognitive load of an operator during a collaborative task be measured?  

(ii) how to measure task complexity?  

6.2.1 Cognitive Load 

In this work, the dimension of cognitive load (CL) examined is the amount of working memory 

used during a task. In the literature, CL is classified into three distinct types, (i) intrinsic load, (ii) 

extraneous load and (iii) germane load (Paas et al., 2003). Intrinsic CL is a function of task 

complexity and is dependent on the inherent difficulty of said task. Extraneous CL is generated by 

presentation of the task to the user, the more irrelevant information presented, the more the CL. 

Germane CL is load generated by the need of a human operator to create new mental schemas due 

to interactions with a task, system design or another entity in the workplace. The three CL types 

and the factors influencing them can be seen in summary  in figure 21. 

 

Figure 21. Cognitive load distinct types. In the figure connections between them are drawn along with the factors influencing 

them. 

CL measurement is a complex issue, as it is dependent on the human operator and thus, while a 

unified approach is hard to develop, general effects and trends can be observed. In that regard, 
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questionnaires have been developed for individual filling and rating of CL, although it should be 

noted that this is a subjective method and prone to personal bias. The most commonly used 

questionnaire is the NASA Task Load Index (NASA-TLX), which consists of rating six parts: 

mental demand, physical demand, temporal demand, frustration, effort and performance (Hart, 

2006). Another known questionnaire is the Cognitive Load Component which aims in rating the 

three types of CL (Lepping et al, 2013). However, use of questionnaires should not be the only 

measure of CL, as it is subjective and changes are momentary, and thus, should be used along with 

other methods. Additional methods for CL measurements are through task performance (Fridman 

et al., 2018) and through response time, error-rate and accuracy are highly sensitive to changes 

(Paas et al., 2003). However, those two methods they are task-dependent and may not provide 

useful results in case of human-robot collaboration.  

Physiological behavioural changes during a task are most commonly used for CL measurement. 

Specifically, changes in the activity of four physiological human organs are used: (i) heart, through 

heart rate (HR) and heart rate variability (HRV) that can indicate fatigue (physical and mental), 

(ii) brain, through neurological activity by using an electroencephalogram (EEG), (iii) eyes, 

through eye movement (e.g. PERCLOS method for measurements), blinking rate or mean pupil 

diameter change, and (iv) skin, through galvanic skin conductance measurements. Research has 

shown that reduction in HRV indicates higher CL (Mukherjee et al., 2011), while higher HR 

activity indicates higher task difficulty, which indicates higher CL (Cranford et al., 2014). Blinking 

rate decreases in case of increasing mental load (Reilly et al., 2018), while in the same context 

mean pupil diameter increases (Holland and Tarlow, 1972). EEG theta wave activity increases 

when CL increases (Gevins et al., 1998); the same activity was reported for galvanic skin 

conductance measurements (Shu et al., 2007).  

With the advancement of technology and machine learning (ML), researchers investigated 

potential use of ML for CL measurements. Zhang et al., (2007), proposed a support vector machine 

based method for mental workload classification by using EEG, electrocardiogram and 

electrooculography signals. Heard et al., (2018), investigated the use of workload assessment 

algorithms to predict workload levels. Apart from the above techniques, Kumar and Kumar (2019) 

proposed a methodology of measuring CL by taking into account demographics and the amount 

of information that the operator processes during a task.  
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6.2.2 Task Complexity 

Complexity can be defined as the interrelation between product variants, task content, workstation 

layout, tools and support tools, and work instructions. With smart manufacturing and the 

introduction of robots and I4.0 enabling technologies in the workplace, the complexity and 

dynamic nature of the processes involved in production increases. To mitigate the effects of task 

complexity it is necessary to understand the factors involved. Task complexity assessment can 

increase awareness of the issues, causes and effects (Calinescu et al., 1998). Increased complexity 

in tasks and production affect quality (Falck et al., 2012), reliability (Grote, 2004), performance 

(Perona and Miragliotta, 2004) and production time (Urbanic and ElMaraghy, 2006). Moreover, 

increased task complexity affects the human operator, in both actual task complexity and perceived 

complexity, which is subjective and is dependent on the individual (Gullander et al., 2011). 

However, managing complexity can help increase productivity, quality and competitiveness 

(Samy and ElMaraghy, 2012). 

In assembly systems, complexity is further increased due to product designs and processes along 

with mass customization, which affects the tasks needed to be performed by the operators. Task 

complexity affects physical and cognitive factors and affect performance and condition of an 

operator, which may lead to mistakes and human-system error (Kolus et al., 2018). Increased time 

of completion due to complexity is related to the amount of information the operator needs to 

process; the more the amount of information, the higher the probability of an error (Panagou et al., 

2021). Task complexity variant categories can be defined as:  

i. Management induced, related to time perspective, regulations and role,  

ii. Subjective, related to task allocation, roles of the human-robot team, processes and 

functions, and 

iii. Objective defined, divided into static and dynamic complexity.  

Complexity can be further defined by: (i) task variants, number of variants needed for task 

processes, (ii) work related content and amount of instructions on how to perform assembly, (iii) 

workplace layout, concerning stations, handling equipment and ergonomics, (iv) tools and support 

tools, (v) work instructions, concerning details and usefulness (e.g. daily usage or general 

information), and (vi) human perspective, concerning general view on task and station and 
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personal preferences. A summary of task complexity variants with effects on operators and final 

outcomes for the system can be seen in figure 22. 

 

Figure 22. Task complexity variants based on static or dynamic nature and their link with human operator and effect on the system 

and task. 

To measure complexity, the existing methodologies can be divided into two general approaches: 

through information flow and through computation. Sivadasan et al. (2006) proposed a method 

focusing on monitoring information flow based on dynamic complexity factors: flow variation, 

product, reasons and variation states. Urbanic and ElMaraghy (2006) propose a model to measure 

complexity based on information flow, regarding quantity, diversity and content of information. 

Meyer and Curley (1993), proposed a computational approach, using knowledge and technology 

complexity by studying the subjective factors of complexity. Frizelle and Suhov (2001, 2008), 

proposed a method for complexity calculation through the use of entropy concept. As entropy 

allows for uncertainty and randomness measurement of a system, Frizelle and Suhov applied it in 

the production system, regarding the tasks and choices of a station or in the assembly line and 

system. Zhu et al. (2008) presented their operator choice complexity, which utilizes entropy to 

measure the uncertainty in stations to calculate the complexity of the system. Falck and Rosenqvist 

(2012) proposed a complexity tool focused in measuring how high or low is the complexity in 
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method stations of automotive industries as a means to increase productivity and decrease costs. 

Zeltzer et al. (2013) proposed an objective-based method, CXC, aimed at characterizing the 

complexity of manual operator workstations. Mattsson et al. (2012, 2014), proposed a complexity 

measurement method, CXI, based on operators’ experience within the system. In this method, a 

questionnaire is used separated into different sections based on a study by Fässberg et al. (2011).  

The smart technologies concept (implementation of advanced technologies, robots and 

collaboration) benefits manufacturing by offering flexibility, adaptability and productivity. Robots 

can (i) take over tasks that are physically demanding, and (ii) process data and provide information 

during tasks due to their programming. However, workplaces are more dynamic in nature, raising 

complexity which affects operators and their capabilities. In this new workplace environment, 

operators need to perform their tasks, make decisions on received information and ongoing 

processes, work with or collaborate with robots and be a safeguard entity in the workplace. 

Depending on the task complexity, it can result in high mental fatigue and cognitive load, affecting 

their ability to perform their tasks, which can result in human-system error and impact their safety. 

An investigation on measurement methodologies for cognitive load and task complexity was 

performed in order to select the appropriate method for use in the experimental study. 

6.3 Experimental study set up and methodologies 

6.3.1 Hypothesis and main variables 

The investigated scenario of the experimental study was designed along with the industrial partner 

(automotive industry). The main hypothesis of this study is the following: due to the complex and 

dynamic nature of HRC, cognitive load is affected which in turn affects the quality of product, 

task process and human work; cognitive load is correlated with quality. It is important to clarify 

here that below only the terminologies and main variables are presented and not how they are 

quantified or measured; those are given later some. The terminologies used in the hypothesis are:  

(i) Adaptable assembly lines and product design, refers to manufacturers adapting to 

market and customers’ demands and needs by changing production; this means that 

product design can change in short-term (e.g. yearly), leading to changes in the 

assembly line (adaptable), which consequently affects operators as they will need to 

adapt to the changes fast in order to maintain same or higher productivity level, and 
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(ii) Quality; the investigated quality, is not targeted only on the final product, but also on 

the process quality during assembly and operators’ work quality. 

Quality is not an easy quantity to be measured as it is dependent on the sector (e.g. manufacturing 

or healthcare) and the organization. In healthcare for example, quality is linked with the care 

provided to the patient, the outcome and the perspective of the patient. For manufacturing, it is 

linked with the processes, the product and the customers respond to the product. As such, each 

organization sets quality standards catered to their own needs. However, there are some metrics 

that can be used to measure quality: reliability, efficiency, security and maintainability. Another 

way to set up quality measurement are the following steps: i) decide the relevant factors, and ii) 

determine the measuring method. As the purpose of this experiment was to measure quality of 

product, process and human work the following metrics were decided: 

i. Product quality: For the main product (collaborative assembly), quality was linked with 

inspecting the final result and (i) is the product finished, and (ii) were the assembly steps 

followed correctly. For the secondary products (manual assembly) the factors related to 

quality were the number of scraps and errors made in the finished products. 

ii. Process quality: for process quality the important factors that were considered were 

mishandling of components, collaboration issues, robot downtime due to participants not 

picking up the delivered component and safety issues (participants moving into the robot 

moving area or breaking down the robot sequence). 

iii. Human work quality, the factors considered were the (i) participant’s posture during the 

experiment, as the guidelines stated a certain procedure to pick up items, and (ii) if 

participants were having issues performing what was expected of them. The issues 

mentioned here refers to how they performed the experiment; were they relaxed or were 

they moving in a fast way indicating they were behind the schedule. 

The errors participants made during the experiment, related to process and work quality, were 

categorized in the following categories:  

a) Mishandling components (process related); in this category errors related to components 

are included, such as not correct handling of components (e.g. during pick up or transfer), 
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b) Collaboration issues (process related); in this category errors related to working with the 

robots are included. For example, not following the guidelines correctly which constitute 

safety concerns, or not comfortable with the cobot, resulting in the component being 

delivered to fall due to the participant not placed correctly for the delivery, 

c) Cobot downtime (process related); this category relates to participants not tending to the 

cobot when it delivers a component, resulting in the cobot standing in place for more than 

5 seconds, and 

d) Work related; this category includes errors related to the participant. This includes 

guideline errors and posture errors from the participants (related to not following 

instructions on how to perform tasks, pick up components). 

(iii)  

The main variables that were used for the study are task complexity and cognitive load, while 

participants’ experience and perception on safety and trust on robots were taken into consideration. 

For task complexity the static and dynamic categorisation was utilised and measurements were 

taken for the operator’s perceived task complexity. The measured task complexity should be high 

enough to warrant mental fatigue and cognitive load. Moreover, task complexity of subsequent 

runs should be, almost, the same; this will allow for better investigation of cognitive load and 

quality issues without altering static complexity variables. The classified factors of static 

complexity in this study are the following: (i) workplace layout, (ii) task context (product 

assembly), (iii) Instructions on task and guidelines, (iv) tools and components, (v) agents involved 

(operator – robot), and (vi) ergonomics. The classified dynamic factors of this study are the 

following: (i) time (e.g. to complete the process), (ii) agents present in the area, (iii) perceived 

safety and robot reliability, (iv) decision making, as it is dependent on the operator, and (v) 

unpredictable events, such as technical issues and errors.  

Participants’ experience is also classified into the following dimensions: 

a) Experience, regarding work related tasks (knowledge and learning process) and familiarity 

with the task, and 

b) Expertise, which is further differentiated into i) technical expertise, familiarity with the 

task (e.g. working with robots or assembly), ii) maintenance, familiarity with task-related 
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issues, and iii) collaboration, regarding actual working experience with robots and smart 

technology. 

Participants with different experience and/or expertise, can provide information regarding the task 

and collaboration from the perspective of an operator. With knowledge gained by performing the 

experimental tasks, the participants can also provide insight for task design purposes, collaboration 

and the system in general.  

6.3.2 Task complexity and cognitive load experimental framework 

Here, the framework developed for the experimental study is presented. It should be noted for 

clarity, that the methodologies, set up and data gathering methods of the experiment itself will be 

shown after the framework presentation.  

The experimental study was developed with the assistance of the industrial partner and its based 

on an industrial collaborative assembly process. During an assembly apart from collaboration, 

operators need to perform secondary tasks. Those secondary tasks can vary from picking another 

(support) tool necessary to complete a task, pick up components needed for the product (e.g. bolts 

and screws), log finished processes, or move over to a different area of the workbench for task 

purposes. Initially the experiment was to be performed in one of the industrial partner’s production 

line with a group of their operators, but due to the COVID-19 situation and the restrictions 

imposed, it was not feasible. As such, the experiment was performed in the university lab with 

students as participants. To avoid potential issues due to COVID the university’s regulations were 

strictly followed (e.g. mask and glove use, tests, and thorough cleaning of the workplace area).  

The main task of the experiment required from the participants to assemble a product through 

collaboration with a cobot. In this process, the cobot picks the components (one-by-one) from a 

designated area (robot pick-up Area), and delivers the components to the operator in the designated 

collaborative area. The operator then performs the assembly in the designated assembly area. To 

emulate a real industrial collaborative assembly process, the operators had to perform secondary 

tasks as well. The secondary tasks involved picking up secondary components from two separate 

areas; one of these areas was located behind the operator. As such the operator had to turn around 

to pick the component and then return back to the starting place to finish the secondary task 
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(designated assembly area). The general schematic for the experiment, locations of cobot and 

participant, and designated areas can be seen in figure 23. 

 

Figure 23. Schematic representation of the experiment along with the designated areas for human, robot and collaboration. 

Both main and secondary tasks involve assembly. In both tasks the components consist of different 

colours and the assembly had to be performed with a specific sequence; the participants were given 

a detailed description beforehand and were reminded of it before their turn. The differentiation of 

colours increases task complexity as it requires from the participants to remember the steps and 

patterns provided to them. The task process can be seen as steps in figure 24. 

 

Figure 24. Experimental process over time. The sequence of events between collaboration and human manual and robot process 

is shown. 

The main task involves collaborative product assembly as discussed before. Between the time it 

takes for the robot to pick a new component and deliver it, the operator performs the secondary 

task. The operator needs to pick up components from either the area on the left of them or behind 

them (see figure 23) and perform a manual assembly in the designated assembly area, from shop-

orders given to them. Apart from different colours, the components are smaller in size than the 

Process
Human Manual

Robot Process
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components of the main task, requiring precision and careful assembly; further increasing task and 

complexity. It should be noted that the participants had to attend to the robot and pick up the 

delivered to them component without delay (no downtime for the robot rule).  

6.3.3 Equipment and data collection 

The cobot used in this experiment was the Franka Emika Panda (FEP) robot arm. FEP has a 

powerful and intuitive interface and is adaptable to any task design, as it can be easily programmed 

through a web interface that comes with it. Moreover, it provides flexibility for grasping objects 

of various shapes and size, and stable delivery of said objects through a predefined path to its target 

(Sileo et al., 2021), by using a gripper characterized by parallel fingers, that can exert a maximum 

force of 100 N. FEP has 7 degrees of freedom in its joints and is equipped with torque sensors in 

all 7 axes, allowing for more sensitivity in manipulation. In addition, it comes with an external 

activation device that can be used to stop its movement, at any time, during the execution adding 

another safety layer in collaboration. For the purposes of the experimental study, the robot motion 

was programmed by setting the grasping pose for each component of the main task product, placed 

in the robot pick-up area in a fixed position, and the pose for delivering the component in the 

collaborative area.  

As the purpose of the experimental study was to emulate a real industrial collaborative assembly, 

it was decided, along with the industrial partner, that the tools and methodologies used to gather 

data should be non-intrusive to the operator and in accordance with personal data protection laws 

and regulations of Italy and European Union. Only a camera was used for video purposes that 

served two purposes: first, video recordings could be of use to recognize errors and quality issues 

(the approach is explained below) and to monitor the experiment for safety purposes. To gather 

data related to participants and the experiment they performed, three sets of questionnaires were 

used along with an interview (provided in the Appendix at the end) at the end of each experimental 

run (details below).  

A Stereo LabsTM ZED-2 stereo camera was used to record the experiment. The video recordings 

were then used to identify errors and assess quality issues during the process; errors and quality 

issues were logged in separate fields correlated to the participant. Moreover, each video was 

analysed in order to estimate and track, in real-time, the 3D human body motion using the 

MocapNET2 method based on the monocular 2D color (RGB) images of the input video (Qammaz 
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and Argyros, 2021). To estimate the skeletal based pose the following procedure is utilised: a video 

is a sequence of N images showing the process, and thus, firstly the OpenPose method (Cao et al., 

2019) is employed to obtain a set of 2D image coordinates (x,y), that is the locations of 25 skeletal 

body joints according to the BODY25 pose output model. This procedure is required as the 

MocapNet2 approach relies on the estimations of the 2D body motion to drive ensembles of Deep 

Neural Networks that are able to efficiently regress a view-invariant skeleton-based body pose in 

3D space. Moreover, the hierarchy of the 3D skeletal body model is split into the upper and the 

lower body parts that are estimated independently, in order to tackle cases where the presence of 

severe and possibly long-term occlusions of the human body deteriorates the quality of estimation 

and tracking of the human poses. The output of the MocapNet2 method is a Biovision Hierarchy 

(BVH) character animation file format (Meredith and Maddock, 2001) representing the estimated 

3D human motion observed in the input image sequence. For each input image, the estimated 3D 

human pose comprises the 3D location and orientation of 25 main body joints (including the 

base/middle/upper of spine, neck, head and both left and right shoulder, elbow, wrist, hand, tip of 

hand, thumb, hip, knee, ankle and foot). This rich information can then be used to estimate the 

human body orientation through skeletal tracking, to perform physical (posture-based) ergonomics 

analysis, estimate reactions and analyse further considerations related to human motion and 

physical condition. The information drawn from this procedure in relation to the experimental 

study were body posture, issues occurred during the experimental process and errors participants 

made. 

The questionnaires covered three areas: general information related to the participant, perceived 

task complexity and cognitive load. In the general information questionnaire, the participants had 

to fill information on their study subject, prior experience with robots, comfort and trust level on 

robots and technology and questions on their view on robots. The task complexity questionnaire 

was based on the CXI index by Mattsson et al. (2012). This questionnaire allowed investigation of 

perceived complexity by dividing the experiment into six separate categories for investigation: 

product complexity, work related complexity, station and layout related complexity, complexity 

of HRC, complexity added by the instructions and general complexity (two questions). For this 

questionnaire the participants had to answer questions (22 in total) based on those complexity 

categories using a Likert scale (1-10). For cognitive load, the participants had to complete the 

NASA-TLX questionnaire (Hart, 2006), which utilizes Likert scale (1-10 for this experiment) and 
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divides cognitive load into the following areas: mental demand, physical demand, frustration, 

temporal demand and performance.  

6.3.4 Experimental methods 

The experimental framework and processes involved are presented here; from participant selection 

up to the final task. As the experiment was performed in the university of Basilicata, students from 

the schools of Engineering and Computer Science were asked to volunteer. Students were shown 

a presentation of the study and were then asked at the end to read a form of interest that included 

details of the study, data gathered from them and what is expected. Students that wanted to partake 

in the experiment had to express their consent and agreement.  

A total of 28 participants volunteered for the experiment from the schools of engineering and 

computer science of University of Basilicata. While all participants performed the first task run, 

only 23 of them performed the second run due to COVID-19 reasons. As such, and it was decided 

to use only the data for those 23 participants for the final results, 17 male and 6 female students. 

The level of education of participants ranged from bachelor level to PhD; 3 in bachelor, 14 in their 

master studies, 3 in between PhD study, and 3 researchers. Next step included sending to the 

participants a guideline and general information file, that included a description of the study, 

questionnaires (purpose and how to fill them) and collaboration. Along with this file, the 

participants were sent the general questionnaire to complete. 

The participants had to perform the procedure two separate times (run 1 and run 2). Each run was 

identical in purpose, context, workplace (layout and environment) and tasks. The main task 

involved collaboration with a robot to assemble a product (figure 25) using LEGO pieces. To pick 

up the object delivered by the cobot, the participants needed to use the button on the upper part of 

the cobot arm, so that the gripper would release the component and the task can continue. The 

release actions must be performed when the robot is out of its “executing task” mode. The 

participants were aware of the robot’s mode by checking the lights on its base that indicate its 

status. Interaction must happen under blue light status and there must not be any interaction when 

the status is green (“executing task”). The participant could only assembly in the dedicated 

assembly area and interact with the robot in the dedicated collaborative area. Movements towards 

the main robot parts was designated as a red zone, for collision avoidance and safety reasons; to 
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ensure safety in case a participant moved into the red zone two measures were put in place: (i) the 

researchers could stop the cobot manually in case of safety risk and red zone overlap, and (ii) a 

programmed collision avoidance system.  

 

Figure 25. Participants had to assembly this ‘product’ through collaboration with the robot. 

During the waiting period between cobot picking a component and delivering it, the participants 

had to assemble secondary products, with instructions given to them in the form of shop-orders, 

(figure 26); the purpose was to emulate an operator performing secondary tasks (e.g. moving to 

pick a tool, or sub-variant components like bolts and screws). The participants were given a 

number of shop-orders that they had to complete before the final component of the main product 

was delivered to them by the cobot. The shop-orders were available and in front of the participants 

during both runs.  

 

Figure 26. One of the shop orders given to the participants to perform. In total participants had to complete manually six different 

shop orders. 
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When each participant finished their run they were asked to fill the task complexity questionnaire 

and NASA-TLX for cognitive load. After the questionnaires, the participants had to answer four 

questions in a small interview regarding the following:  

i. What they believe is the main cause of any errors they made during the task, 

ii. What is their thought on collaboration with a cobot, 

iii. How did they perceive the tasks in terms of difficulty or demands, and 

iv. Did they believe they had enough time to perform the tasks and why. 

In this section the experimental tasks and data gathering processes were discussed. In the next 

section the results from the experiment are presented. 

6.4 Experimental study results 

At the start of the experimental study the participants completed the general questionnaire. Only 4 

participants had prior experience with robots, but not related to collaboration. All participants 

answered that they trust technology and robots, with only 4 of them expressing mild concerns 

depending on the context; 2 of them were concerned with robots assisting in a surgery, and 2 were 

concerned with collaboration. In the matter of comfort, 4 of them expressed some discomfort in 

working with a robot, while the rest answered that they will be comfortable. In the question if they 

perceive robots as a threat or an opportunity for humans, 19 participants view them as opportunity, 

3 either way depending on the scenario they are used, while 1 answered that robots are both a 

threat and opportunity. 

With the general questionnaire done, the next step was to perform the experiment. The experiment 

was performed in the AREA (Automation, Robotics and Applied Electromagnetism) laboratory in 

the university of Basilicata. The participants had to perform two runs of the experimental task and 

in accordance with the regulations, the participants had to wear a mask at all times and were given 

gloves to perform the task. The participants were divided into two groups and performed the 

experimental runs on different days. This space between the groups and experimental runs, was 

used to thoroughly clean the components and areas used during the experiment. Before each 

participant performed their task, they were given a presentation on how to perform the task and 

guidelines. Moreover, they were shown how to collaborate with the robot and were able to train 

with it. The total amount of time allotted for this activity was 10 minutes.  
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Participants had to assemble the main product (collaborative assembly) following the procedure 

given to them in form of instructions when they volunteered (figure 27), and also explained to 

them right before performing the experiment. In addition they had to assemble manually secondary 

products from shop-orders, given to them before the experiment. The participants were given 

enough time to understand how to assemble them before performing the experiment. 

 

Figure 27. Collaborative product assembly divided into three separate levels as given to the participants in the instructions. 

After a participant finished performing the experiment, a visual inspection on both main and 

secondary products was performed to check for errors in assembly or other issues. In addition, a 

further inspection was performed on the recordings taken during the experiment, to observe errors 

and other issues for each participant. After each run, the participants had to complete the task 

complexity and NASA-TLX questionnaires and take part in an interview on their thoughts and 

perception on the experiment, collaboration/teamwork and issues they faced.  

6.4.1 Task complexity 

The hypothesis for task complexity was that it will be the same or almost the same in both runs. 

This was in accordance with emulating an industrial assembly line, as operators perform the same 

tasks and processes without changes in between days. For this experimental study the CXI index 

was selected for perceived task complexity measurements as it divided task complexity into six 

major categories and as such, it allows for in depth investigation in case there were large 

differences between the first and second run. Figure 28 shows the results of the task complexity 

questionnaire the participants had to complete after each run. For the first run, the overall CXI 

index was 5.08, while for the second run was 4.82. 

Although the difference between the two runs is not that large (0.27), the results showed there are 

also three subcategories of task complexity (collaboration, instructions and general) that increased 

in the second run, and also a larger, than the other categories, difference in work complexity 

category (0.78). As such, statistical analysis was performed to investigate the possibility of 
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significant difference between the two runs in those categories. The t-test analysis showed no 

significant difference (lower than 0.05) and as such the hypothesis for task complexity can be 

accepted.  

 

Figure 28. Average value for CXI indices for runs 1 and 2.  

6.4.2 Cognitive Load 

In order to investigate the main hypothesis (H0) that cognitive load affects quality, a secondary 

hypothesis was made for cognitive load. Due to knowledge gained and experience (learning effect) 

from the first run, cognitive load of the second run should be lower than the first one (H1). As 

stated before, the participants had to complete the NASA-TLX questionnaire after each run. 

NASA-TLX utilizes Likert scale (here the 1-10 scale was used) and divides the factors influencing 

cognitive load into six categories: mental demand, physical demand, frustration, temporal demand, 

performance and effort. Apart from the Likert scale, the participants were asked to answer 15 

questions. In each question the participants had to choose one of the two categories; those answers 

were then used to assign weights to the categories. With the questionnaire and the weights filled, 

the cognitive load can then be calculated. 

Table 8 shows the calculated cognitive load for each participant, and the mean average cognitive 

load, for both runs. Although it was expected that cognitive load will be lower in the second run 
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due to the learning effect (H1), results show an increase in the second run. This is shown both in 

the individual scores and the mean average cognitive load. As such, a look into individual cognitive 

load categories is needed to see if this is a general issue in all of them or there are individual 

categories that showcase the issue. 

Table 8. Cognitive Load scores for each individual participant for both experimental runs, along with the average score of each 

run. 

 

In figure 29 the categories average score for both runs is shown along with the standard deviation 

and the weights average score. From the mean average it can be seen that physical demand, 

frustration and temporal demand show an increase on the second run. However, as the physical 

demand weight score is lower than 1 (from a maximum of 5 points), it can be considered as not 

significant in the final score. As such, an analysis on frustration and temporal demand is needed 

ID Run_1 Run_2

1 45 65

4 40 55

5 42 64

6 42 63

9 66 55

10 56 57

12 49 55

13 67 65

14 40 73

15 42 29

16 37 26

17 85 91

18 58 69

19 52 23

20 23 39

21 68 68

22 55 23

23 64 60

24 61 53

25 49 53

26 56 53

27 71 73

28 49 46

M.Avg 53 55

Cognitive Load
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to investigate if there is any statistical significance for those categories and the impact on cognitive 

load between the experimental runs. 

 

Figure 29. Standard deviation, mean average and weights score for each NASA-TLX category. 

Frustration category had an average weight score of 2, with a calculated mean average of 9 for 

run_1 and 10.78 for run_2, and standard deviation of 8.72 for run_1 and 9.79 for run_2. The normal 

distribution and boxplot graphs were plotted (figure 30) and statistical tests (ANOVA and paired 

samples t-test) were performed with the hypothesis that there is significant difference between the 

two runs. The results of the ANOVA test show a p-value of 0.54, and for the paired samples t-test 

show a p-value of 0.38.  As the p-value is larger than the alpha value of 0.05 the hypothesis that 

there is significant difference can be rejected. 

 

Figure 30. Left: Distribution of Frustration category over both runs. Right: Box plots for frustration after statistical analysis. 

Temporal category had the highest average weight score of 4.13. This score provides an indication 

that the temporal demand of the robot was an issue for the participants. The mean average of run_1 

was 24.56 and for run_2 was 29.48. Standard deviation for run_1 was 11.67 and 13.26 for run_2. 

Standard Deviation Mean Average Weights

Category Run_1 Run_2 Run_1 Run_2 Average

Mental 11.92 10.91 10.04 17.13 3.21

Physical 2.36 2.94 1.39 1.56 0.56

Frustration 8.72 9.79 9 10.78 2

Temporal 11.67 13.26 24.56 29.48 4.13

Performance 11.32 10.652432 20.48 19.26 3.91

Effort 3.4 2.5 4.3 3.65 1.21
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Normal distribution and boxplot graphs were plotted (figure 31) and again statistical tests were 

performed, same as in frustration category, with the hypothesis that there is significant difference 

between the two runs. The p-value for ANOVA test is 0.08, while for the paired samples t-test the 

p-value is 0.007. As the values do not ‘agree’ (one above alpha value and the other below), another 

statistical test was used. Firstly, the f-statistic value was calculated as a means to assess the 

variability between the two runs. F-statistic value is 3.04 and confirms the variability between the 

two runs, as it is larger than 1. The Wilcoxon paired samples test (Wilcoxon, 1945), a 

nonparametric statistical test, was then selected to further test the hypothesis. Wilcoxon test 

advantage is that it makes use of the magnitude of differences rather than just the value. Results 

of the test show a p-value of 0.01, and as such the hypothesis is accepted, which shows significant 

difference between run_1 and run_2 for temporal value.   

 

Figure 31. Left: Distribution of temporal category over both runs. Right: Box plots for temporal value after statistical analysis. 

As a final remark, the H1 hypothesis that cognitive load will be lower in the second run due to the 

learning effect was rejected, as cognitive load was increased (53 in run_1 and 55 in run_2) and 

there was significant different in the temporal value. This prompted an in-depth analysis on the 

categories used in the NASA-TLX questionnaire. The analysis showed that temporal demand was 

the significant factor of the issues faced by the participants which affected the overall cognitive 

load. 

6.4.3 Quality 
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Table 9. Participants information related to collaborative and secondary task. 1 shows that participants made an error, while 0 

shows that participants performed the respective task correctly. Green colour show that the participant performed better in the 

second run, while grey show that participant performed worse in the second run. 

 

The hypothesis related to quality is that in the second run, all or most of participants will complete 

the experiment with fewer or with no errors/mistakes and thus the overall quality will be improved. 

In the context of product quality, in the first run 4 of the participants did not finish the collaborative 

product. The participants triggered the collision avoidance mechanisms of the cobot due to them 

either not waiting for the cobot to get into position or not using the mechanism to release the 

component correctly. In both cases, if this issue happened only once, the participant was allowed 

to redo the task, otherwise they had to stop and move on to the next stage of the experiment 

(questionnaires and interview). Table 9 shows the results for both collaborative and secondary task 

(product assembly) in respect to which of the participants made a mistake/error. In the first run of 

ID Run_1 Run_2 Run_1 Run_2

1 0 1 0 1

4 x 1 1 1

5 0 0 1 1

6 0 0 1 1

9 x 1 0 1

10 0 0 1 1

12 0 0 1 1

13 x 0 1 1

14 x 0 1 1

15 0 0 1 1

16 0 0 1 0

17 0 0 1 1

18 0 0 1 1

19 0 0 1 0

20 0 0 1 0

21 0 0 1 1

22 0 0 1 1

23 0 0 1 1

24 0 0 1 1

25 0 1 1 0

26 1 0 1 1

27 1 1 1 1

28 1 0 1 1

Total 7 5 21 19

Secondary TaskCollaborative Task
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the collaborative task, apart from the four that did not finish, only 3 participants made an error (for 

a total of 7 participants), while in the second run, 5 participants made an error. For the secondary 

task, 2 and 4 participants did not make a mistake in the first and second run respectively.  

Video recordings were used to investigate the process and human work related issues and errors. 

Table 10 summarises the results of the investigation. Most common issues for the participants were 

mishandling the components, either from dropping them or from misuse (handling both main and 

secondary components at the same time), and work related issues (e.g. bad posture during 

assembly). Although in the second run, the number of mishandling and collaboration issues were 

almost the same, cobot downtime and work related issues were fewer than the first run. This result 

can indicate that participants became more familiar with the task and what was expected from 

them.  

Based on the results of the error investigation, quality can be considered not optimal as what was 

expected from the hypothesis that in the second run the overall errors will be close to none. In the 

context of product quality, 18 out of 23 (78%) participants finished the collaborative assembly, 

however only 4 (17%) finished the secondary tasks (manual assembly). For process quality only 

one category was improved in the second run and is related with the cobot downtime issue. 

Although in the other two categories, mishandling and collaboration issues, the number of 

participants that made mistakes were low in both runs (8 and 7 for mishandling, 4 and 5 for 

collaboration issue), there was no improvement. For work related issues, in the second run only 11 

(47%) of the participants performed the experiment with no issues.  

The lack of improvement in all three category related issues, results in rejecting the hypothesis 

related to quality and indicates the need to investigate the root cause. From the cognitive load 

results, temporal demand seems to be a reason for the participants errors during the experiment. 

The next step was to analyse the participants’ answers during the interview, that were centered on 

finding the participants’ perception on the experiment, collaboration/teamwork and the issues they 

faced. 

Table 10. Table shows if and in which error category participants made an error for both experimental runs. At the end the total 
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number of participants is calculated. A legend is provided to link symbols with the error category. 

 

6.4.4 Interview results 

The interview was the final task of the experiment and the questions were formulated using the 

results of the scoping review on robot design features effects on operators. The participants had to 

answer five questions related to their perception on the collaboration, their level of comfort during 

the experiment, issues they faced on the experiment and if their view on robots changed after 

collaborating with one of them.  

For the view on robotics, in the general questionnaire that participants had to fill at the start of the 

experiment, all of the participants answered that they trust robots and will not have an issue 

collaborating with one. The results of the interview show that no participant changed their 

perception on robots after the experiment. On the same topic, all participant stated that they viewed 

M Mishandling

ID M C.I C.D W.R M C.I C.D W.R C.I Collaboration Issues

1 x x x x C.D Cobot Downtime

4 x x x x W.R Work Related

5 x x

6 x x x x

9 x x x x x

10 x x

12 x x x x x

13

14 x x

15

16 x x x x

17 x x x x

18 x x

19 x x x

20 x x x x x

21

22 x x x x

23 x x x

24

25 x

26 x x

27 x x

28

Total 8 4 5 16 7 5 1 12

Run_1 Run_2



90 
 

the collaboration as beneficial, in general, for completing the task and they were comfortable with 

robots as the experiment progressed.  

However, participants stated that the main issue they faced and resulted in errors and mistakes (per 

their perception) was lack of time to complete their tasks. Firstly, they were not sure if they have 

time to perform the secondary assembly. The reason for that issue was that they were unsure of 

when the cobot would arrive at the collaboration zone. This resulted in confusion and slow decision 

making, which further resulted in mishandling components, assembly mistakes and task 

management issues. Although the assembly steps were not complex, they felt they had to rush to 

complete the products, resulting in task management issues.  

During the interview, the participants were also asked what would they change in the collaboration 

and task design to improve it, in relation to their experience with the experiment and collaboration. 

The participants were positive with collaboration, however indicated that more training with robots 

and time to perform the tasks will be beneficial for better experience and performance. 

6.4.5 Experimental hypothesis (H0) result 

As stated the main hypothesis of the experimental study was that cognitive load affects quality of 

product, process and human work. The cognitive load results section shows that while cognitive 

load was almost the same in both runs (average of 53 in run_1, 55 in run_2), the temporal demand 

factor of cognitive load was increased in the second run and statistical tests showed significant 

difference from the first run. For quality, the error analysis in both experimental runs showed errors 

in all aspects of investigated quality (product, process and human work) and also showed no 

improvement in the second run; participants made the same amount mistakes as they did in the 

first run. During the interviews, participants stated that temporal demand of the task was high and 

it impacted their performance and decision making; this created issues in performing the secondary 

tasks as they were unsure how much time they had before the cobot was in place for component 

delivery. The results show that temporal demand impacted cognitive load and decision making 

which in turn impacted performance and resulted in errors/issues, thus impacting quality. This 

result also provides an indication that cognitive load affects quality and that there is a correlation 

between them. Thus, the hypothesis H0 is accepted and in conclusion it validates the experimental 
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framework developed. As such, future expanded experimental tests can be performed in a real 

industrial scenario with larger participation. 

6.5 Experimental study discussion 

An experimental study was designed, with the support of the industrial partner, as a means to 

investigate the outcomes of robot design features on operators in collaborative scenarios. In both 

previous research activities, the mental fatigue and cognitive load were of interest due to the 

consequences in task performing, decision making, errors and safety risks. As such, the main 

hypothesis for the study was that there is a correlation between cognitive load and quality of 

product, process and human work. A review was performed on cognitive load and task complexity 

measurements as to choose the methodologies that are in line with the aims of this experiment. 

 The study targeted the collaborative assembly scenario and the tasks designed were in accordance 

with an industrial scenario. The main task involved a collaborative assembly while the secondary 

tasks involved manual assembly as a way to emulate the secondary tasks performed by operators 

in industrial assembly lines. For data gathering purposes, participants had to fill three 

questionnaires related to general topics (e.g. experience with robots, trust in robots, comfort), task 

complexity and cognitive load (NASA-TLX questionnaire). Moreover, they had to answer five 

more questions in an interview after each experimental run. Apart from the questionnaires, a stereo 

video camera was used to record the experiment, and the recordings were then inspected for issues 

and errors for each participant. After each experimental run, a visual inspection on the finished 

(and/or unfinished) products was performed to collect information for quality purposes.  

The results show that task complexity remained almost the same between the two experimental 

runs, which was the purpose. Cognitive load was increased in the second run. An investigation on 

the questionnaire answers showed that temporal demand and frustration were higher on the second 

run. From the statistical analysis, temporal demand showed significant difference while frustration 

did not. For quality purposes, it was expected that there would be fewer issues and errors in the 

second run as the participants had some experience and understanding of the tasks they had to 

perform (learning effect). However, the error analysis shows almost no difference between the two 

experimental runs. In the interview participants stated that although the cobot had a positive 

influence in the collaboration, the time they had to perform their tasks was not enough. This lack 
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of time resulted in them not knowing in what order to perform their tasks (task management), 

resulting in confusion at times (seen also from the video recordings), and slow decision making.  

The results shown an indication of the correlation between cognitive load and quality and as such, 

the hypothesis is accepted. Potential solutions were identified, such as involving operators in the 

task design phase as to give their opinion based on their expertise, more training with their robot 

co-worker as to learn the task procedures, and implement direct communication methods between 

operator and robot to increase efficiency. The next step of the experimental study is to perform in 

an industrial assembly line with participants with different set of skills, expertise and experience 

working with robots.  

The experimental study concludes the work performed and presented here (figure 32). As such, 

the next chapter includes the final discussion along with conclusions and possible future directions 

of this work. 

 

Figure 32. Publication output of 3rd Research Activity. 

 

 

 

 

 

 

 



93 
 

7. Conclusion & Future Directions 

This section includes the conclusion of the presented work. The following subsection discusses 

and concludes the steps that were taken and research activities performed, to fulfil the research 

aim. In the end an outlook on possible future research directions is given. 

7.1 Discussion 

The initial aim of this work initial was to investigate the effects on operators in the smart 

manufacturing era introduced by I4.0 and I5.0 and human robot collaboration. Moreover, it aimed 

in identifying guidelines for possible solution both in workplace context and design (table 11). As 

such, the initial search on the status of operators in the new environment, showed that there is a 

disconnection between industrial and robotics engineering and human factors. Thus, the first 

review was targeted on operators’ cognitive load in collaboration scenarios and the mapping of 

said scenarios (Fruggiero et al., 2020). The results of this review assisted in proceeding with the 

research activities based on the main aim. It also focused the thesis on mental fatigue and cognitive 

load of operators in collaborative scenarios. 

Table 11. Potential design guidelines/advice identified through research activity, and the linked HRI system factors. 

Design guideline/advice for human-centric HRI 

Research activity I 

Smart technologies for human 

support   

  

Accommodate operators in 

workplace relevant to their skills, 

knowledge and experience   

Research activity II 

Involve operators in 

implementation and layout for 

HRI/C task & workplace design Reliability, safety, comfort, work quality 

  

Improve training for HRI task 

processes Team cohesion, safety 

  

Improve knowledge of operators 

regarding capabilities and 

functions of their robot co-

worker Safety, reliability, trust 

Research activity III 

Involve operators to improve 

task processes in collaboration Quality, decision making 

  

More training for collaborative 

tasks Reduce errors, quality 
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A literature review was then performed to investigate the effects of workplace changes, due to the 

introduction of smart technologies and robots, on operators’ capabilities. Although smart 

technologies can benefit organizations and operators alike, by improving performance and 

productivity, or through alleviating operators from physical demanding tasks, it also creates a 

complex and dynamic environment. The analysis on the identified scientific articles for this 

literature search showed that operators need to improve their skills in preparation for the challenges 

created, which can be taxing to older operators since their capabilities diminish as they age. As 

such, a model was proposed to measure the probability of human-system error (Panagou et al., 

2021). This model is based on the view that operators are a natural system with four macro states. 

The macro states used are behavioural, mental, physical and psychosocial states, with each one 

having its own parameters and traits. With the help of those states the model can be used for 

collaborative scenarios to identify in which areas an operator has issues or will have issues and 

thus, supportive actions can be introduced for them, such as assist with more training, improve 

skills or introduce tools or systems (e.g. sensors or supportive robot tools). The validation of the 

probabilistic model was then explored through an experimental test in collaborative scenarios 

(Panagou et al., 2021).  

The results of the review on workplace changes and their effects on operators along with the 

probabilistic model, showed the need to explore the human robot interaction and collaboration. As 

such, a scoping review was performed to investigate the effects and outcomes of robot design 

features on operators. The analysis on the identified scientific literature showed the many-to-many 

relationships between robot design features and effects on operators. A further analysis showed 

the outcomes of those effects, namely (i) the perceived safety in collaborative scenarios, (ii) 

perceived reliability of robots, (iii) team cohesion, (ii) comfort and discomfort of operators 

working with robots, and (iii) human quality of work. The analysis allowed to identify directions 

on how to approach HRC from a design perspective. Example of those directions are the following: 

(i) operators’ involvement in the design phase or control and planning phase for perceived safety 

and reliability, and team cohesion, (ii) training with robots for HRI or HRC scenarios for team 

cohesion, quality and safety and also when changes are implemented either in the workplace or in 

the robots’ capabilities. Moreover, in line with the call for human centric workplace of I5.0 

framework, robots’ features should be designed with the operators in mind. For example, robots’ 

vision through sensors can be enhanced to monitor operators and react in case of critical situations.  
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The results of both literature reviews were then used to develop an experimental study along with 

the help of the industrial partner. The formulated hypothesis of this experimental study, was that 

due to the changes in the workplace and human robot collaboration, the cognitive load of operators 

affects quality of product, process and human work. In the experimental study, participants had to 

work with a cobot to assemble a product (collaborative assemble), while also performing other 

tasks (secondary tasks, manual assembly). The participants had to fill a general questionnaire 

before the experimental tasks, which revolved around their perception of robots, trust and comfort 

working with robots. As the participants had to perform the experimental tasks in two separate 

runs, after each run they had to fill two more questionnaires, one regarding perceived task 

complexity and the other perceived cognitive load. Finally they had to participate in an interview, 

where they answered questions revolved around collaboration, the task and the issues they faced. 

The results of this experimental task showed that although the participants felt that the 

collaboration was beneficial, the temporal demand factor of the cognitive load was the main issue. 

From both the NASA-TLX questionnaire for cognitive load and interview, the temporal value was 

identified as the main reason for the issues created in task management and decision making which 

in turn was the root cause of the errors made during the experiment. Thus, the hypothesis that there 

is a correlation between cognitive load and quality was accepted. 

7.2 Conclusion 

The research planned during this work was performed in order to fulfil the requirements of this 

work. As discussed, the main aim was to investigate the effects of smart manufacturing and 

collaboration on operators and investigate guidelines and possible solutions. The first and second 

activity fulfilled the requirement of investigating the effects, while the third activity was focused 

on the issues operators face in HRC to investigate the root cause which can then be used to identify 

possible solutions. The main outputs of this work are the following. From the investigation of 

workplace changes effects on operators, a probabilistic model was developed and tested in order 

to measure the error probability based on operator’s condition in smart manufacturing (Panagou 

et al., 2021). This model can be used to identify the areas where operators need to be supported 

(e.g. training or skill improvement). The scoping review (second research activity) on robot design 

features effects on operators in HRI resulted in identifying probable design guidelines based on 

human and robot capabilities and characteristics. Through the results of the scoping review, there 

were two additional outputs. In the first one, the communication between human and robot during 
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collaboration was investigated; a simple hand gesture model was developed and tested in a 

collaborative scenario (Panagou et al., 2022a). The second one involved the use of Digital Twins 

and machine learning to investigate how the use of those methods can improve decision-making 

of operators and management for predictive maintenance purposes (Panagou et al., 2022b). The 

results of the experimental study (third research activity) identified an issue that operators face 

with collaboration. The temporal demand of collaboration creates issues in task management and 

decision making processes, which in turn results in mistakes and thus lowers the quality. Here, 

probable solutions can be to improve task design with input from operators, and also task training 

as a means to minimize human-system error. It needs to be stated that an expanded experiment in 

real industrial collaborative assembly scenarios with operators could provide more insights into 

further issues and solutions. However, the experiment achieved in identifying a root cause of the 

issues that operators face and allowed for a better understanding on what operators face when they 

are asked to perform collaborative tasks.  

As a final note, the results of this work are in line with the main aim. The changes of the workplace 

in relation to operators were mapped. Human robot collaboration was identified to have effects on 

operators due to the close proximity between human and robot, and the changes it brings to the 

task procedures. As such, the effects of robot design features on operators were investigated. From 

this investigation the outcomes on operators for task purposes were identified. An experimental 

study was developed to investigate those outcomes in a collaborative assembly scenario. The 

results of the study show that the changes in task complexity and management due to HRC impact 

cognitive load and in turn the quality in the workplace. Moreover, the experimental results showed 

that temporal demand in collaboration is the one most affecting operators and as such solutions 

were identified from the interview with the participants stating that more training and better time 

allocation is needed for successful collaboration. However, the limitations of this study should be 

noted as well to help in further investigation. In the scoping review, the investigation was limited 

to peer-reviewed articles that discusses HRI system for manufacturing and industrial settings and 

excluded most of medical, social and other sectors. An investigation including them could 

potentially reveal useful information. The experimental study was performed in the laboratory, 

due to the recent COVID-19 pandemic, with university students as participants, which helped 

understand the issues inexperienced participants face with collaboration. However, this limited the 

results on inexperienced operators and an investigation with experienced operators that have 
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knowledge on industrial tasks and processes can potentially reveal separate and more detailed 

information on issues for experienced operators. 

As such, the aim of this work was reached and this work is concluded with possible future 

directions. 

7.3 Future Direction 

This section provides an outlook for future direction of this work. The directions are focused on 

the results of all three research activities focused not only in assembly but also in other sectors, 

such as remanufacturing with disassembly scenarios, predictive maintenance and logistics and 

warehouse management. 

1. Dynamic learning between human and robot  

One aspect that can increase team cohesion, quality and safety is for both humans and robots to 

actively learn during work tasks. Although the concept of reciprocal learning exists (Nixdorf et al., 

2022), it is not used for active learning during tasks. As such, dynamic learning can be beneficial 

as operators and robots can both learn from each other in order to adjust their approach and work 

techniques during work. It can also be applied for safety reasons in parallel with collision 

avoidance, as it will allow the robot and human to be able not to only to react to situations but also 

be more proactive to avoid critical situations. 

2. Experimental studies on industrial collaborative settings 

Being able to observe and collect data during work-shifts in multiple arrangements and scenarios, 

could better help in understanding issues and identifying their root causes. This activity can support 

developing guidelines and solutions from involving experience operators to provide their insights 

by including them in the procedures. 

3. Evaluation of human robot collaboration in different scenarios 

This work was focused on collaborative assembly scenarios and as such, it creates the need to 

investigate HRC in different context. For example, healthcare and robots, warehouse logistics, and 

social settings. This could improve knowledge in general, allowing for a better understanding of 

the effects of robots on human, and for insights on design guidelines. 
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4. Research activity in human-multi robot collaboration 

The effects of working with multiple robots should be explored as it can be beneficial in many 

scenarios, such as in warehouse logistics where multiple robots are already used and interact with 

operators. As such, the concept of physical collaboration of multiple robots with operators to 

perform tasks should be explored, as it can benefit both performance and the operators. 

5. Remanufacturing and HRC 

This is in accordance with the circular economy model of I5.0. Here, investigation on optimizing 

the HRC on disassembly and returned product condition can benefit the overall process minimizing 

time, waste and lost material.  

6. Long-term study on adaptable assembly lines and effects 

As manufacturers look towards adaptable assembly line and product design, operators will have 

to also adapt to the changes in shorter time frames (e.g. changes every year). This will affect 

operators as they will have to learn each time a new procedure and adapt to the changes. This can 

probably affect the learning rate, as they will need to continuously change the learning target. As 

such, an investigation in this case could provide information on those effects and issues created by 

this strategy. 

 

 



xiii 
 

References 

Abe, T., Mishima, K., Kitamura, S., Hida, A., Inoue, Y., Mizuno, K., Kaida, K., Nakazaki, K., 

Motomura, Y., Maruo, K., Ohta T., Furukawa S., Dinges D. F. and Ogata K., 2020. Tracking intermediate 

performance of vigilant attention using multiple eye metrics. Sleep, 43 (3), zsz219. 

Abubakar, M. I. and Wang, Q. 2019. “Key Human Factors and Their Effects on Human Centered 

Assembly Performance.” International Journal of Industrial Ergonomics, 69, pp.48–57. 

Annett, J., Cunningham, D. and Mathias-Jones, P.. 2000. A method for measuring team skills. 

Ergonomics, 43(8), pp.1076-1094. 

Arai, T., Kato, R. and Fujita, M. 2010. Assessment of operator stress induced by robot collaboration 

in assembly. CIRP Annals - Manufacturing Technology 59(1), pp.5-8. 

Arezes, P. M., and Miguel, A. S. 2013. Assessing the use of Hearing Protection in Industrial 

Settings: A Comparison Between Methods. International Journal of Industrial Ergonomics, 43(6), pp.518–

525. 

Arksey, H. and O’Malley, L. 2005. Scoping Studies: Towards a Methodological Framework. 

International journal of social methodology, 8(1), pp.19–32. 

Bai, C., Dallasega, P., Orzes, G. and Sarkis, J. 2020. Industry 4.0 Technologies Assessment: A 

Sustainability Perspective. International Journal of Production Economics, 229, 107776.  

Bain, R.B. 2000. Children and industry revolution: Changes in policy. OAH Magazine of History, 

15(1), pp.48-56. 

Battini, D., Calzavara, M., Persona, A., Sgarbossa, F., Visentin, V. and Zennaro, I. 2018. 

Ergonomics and Human Factors in Waste Collection: Analysis and Suggestions for the Door-to-Door 

Method. IFAC-PapersOnLine, 51(11), pp.838–843. 

Bauer, W.H., Bender, M., Braun, M., Rally, P. and Scholtz, O. 2016. Lightweight robots in manual 

assembly – best to start simply! Examining companies’ initial experiences with lightweight robots.  

Fraunhofer IAO, pp.1–63. 

Bauer, A., Wollherr, D. and Buss, M., 2008. Human–robot collaboration: a survey. International 

Journal of Humanoid Robotics, 5(01), pp.47-66. 

Becker K., Fleming J., Keijsers W., 2012. E-learning: Ageing workforce versus technology-savvy 

generation. Education and Training, 54(5), pp.385-400. 

Bednar, P. and Welch, C. 2016. Enid Mumford: The ETICS methodology and its legacy. Co-

creating humane and innovative organizations: Evolutions in the practice of socio-technical system design, 

pp. 274-288. 



xiv 
 

Bednar, P.M. and Welch, C. 2020. Socio-technical perspectives on smart working: Creating 

meaningful and sustainable systems. Information Systems Frontiers, 22(2), pp.281-298. 

Besnard, D. and Cacitti, L. 2005. Interface changes causing accidents. An empirical study of 

negative transfer. International Journal of Human Computer Studies, 62(1), pp.105-125. 

Binoosh, S. A., Mohan, G. M. and Bijulal, D. 2017. Assessment and Prediction of Industrial 

Workers’ Fatigue in an Overhead Assembly job. South African Journal of Industrial Engineering, 28(1), 

pp.164–175. 

Birkel, H.S. and Hartmann, E. 2019. Impact of IoT challenges and risks for SCM. Supply Chain 

Management: An International Journal. 

Blok, M. M., and de Looze, M. P. 2011. What is the Evidence for Less Shift Work Tolerance in 

Older Workers?. Ergonomics, 54(3), pp.221–232. 

Boenzi, F., Digiesi, S., Mossa, G., Mummolo, G. and Romano, V.A. 2015. Modelling Workforce 

Aging in job Rotation Problems. IFAC-PapersOnLine, 48(3), pp.604–609. 

Botti, L., Mora, C. and Calzavara, M.. 2017. Design of job Rotation Schedules Managing the 

Exposure to age-Related Risk Factors. IFAC-PapersOnLine, 50(1), pp.13993–13997. 

Breque, M., De Nul, L. and Petridis, A,. 2021. Industry 5.0. Towards a sustainable, human-centric 

and resilient European Industry. Publications Office of the European Union, Luxembourg. 

Burgess-Limerick, R. 2018. Participatory ergonomics: evidence and implementation lessons. 

Applied Ergonomics, 68, pp.289-293. 

Brettel, M., Friederichsen, N., Keller, M. and Rosenberg, M. 2014. How virtualization, 

decentralization and network building change the manufacturing landscape: An Industry 4.0 Perspective. 

International Journal of Information and Communication Engineering, 8(1), pp.37-44. 

Calinescu, A., Efstathiou, J., Schirn, J. and Bermejo, J. 1998. Applying and assessing two methods 

for measuring complexity in manufacturing. Journal of the Operational Research Society, 49(7), pp.723-

733. 

Calzavara, M., Battini, D., Bogataj, D., Sgarbossa, F. and Zennaro, I., 2020. Ageing workforce 

management in manufacturing systems: state of the art and future research agenda. International Journal 

of Production Research, 58(3), pp.729-747. 

Cao, Z., Hidalgo, G., Simon, T., Wei, S.E. and Sheikh, Y. 2019. OpenPose: realtime multi-person 

2D pose estimation using Part Affiinity Fields. IEEE Transactions on Pattern Analysis and Machine 

Intelligene, 43, pp.172-186. 

Chandrasekaran, B., Conrad, J.M. 2015. Human-robot collaboration: A survey. In Southeast Con 

2015, IEEE, pp.1–8.  



xv 
 

Charalambous, G., Fletcher, S. and Webb, P. 2015. Identifying the key organisational human 

factors for introducing human-robot collaboration in industry: an exploratory study. International Journal 

of Advanced Manufacturing Technology, 81, pp.2143-2155. 

Charalambous, G., Fletcher S. and Webb P. 2016. The Development of a Scale to Evaluate Trust 

in Industrial Human-robot Collaboration. International Journal of Social Robotics, 8, pp.193-209. 

Chen, J. A., Dickerson, C. R., Wells, R. P. and Laing, A. C. 2017. Older Females in the Workforce–

the Effects of age on Psychophysical Estimates of Maximum Acceptable Lifting Loads. Ergonomics, 

60(12), pp.1708–1717. 

Cooper, R. and Foster, M. 1971. Sociotechnical systems. American Psychologist, 26(5), p.467. 

Council of Europe. 2021. Industrial History of European Countries, Retrieved 2 June 2021. 

Cranford, K.N., Tiettmeyer, J.M., Chuprinko, B.C., Jordan, S. and Grove, N.P. 2014. Measuring 

load on working memory: the use of heart rate as a means of measuring chemistry students’ cognitive load. 

Journal of Chemical Education, 91(5), pp.641-647. 

Cunningham, S., Chellali, A., Jaffre, I., Classe, J. and Cao, C.G.L. 2013. Effects of Experience and 

Workplace Culture in Human-Robot Team Interaction in Robotic Surgery: A Case Study. International 

Journal of Social Robotics, 5, pp.75-88. 

De Luca, A. and Flacco, F. 2012. Integrated control for PHRI: collision avoidance, detection, 

reaction and collaboration. In 4th IEEE RAS & EMBS International Conference on Biomedical Robotics 

and Biomechatronics (BioRob), IEEE, pp.288–295. 

De Santis, A., Siciliano, B., De Luca, A. and Bicchi, A. 2008. An atlas of physical human-robot 

interaction. Mechanism and Machine Theory, 43(3), pp.253-270. 

DIN ISO/TS 15066. 2016. Robots and robotic devices - Collaborative robots. 

Di Pasquale, V., Fruggiero, F., Iannone, R. and Miranda, S. 2017. A model for break scheduling 

assessment in manufacturing systems. Computers and Industrial Engineering, 111, pp.563-580. 

Di Pasquale, V., Miranda, S. and Neumann, W.P. 2020. Ageing and human-system errors in 

manufacturing, a scoping review. International Journal of Production Research, 58(15), pp.4716-4740. 

Dreyer, K.J., Hirschhorn, D.S., Thrall, J.H. and PACS, M. 2006. A guide to the digital revolution, 

Springer, New York. 

Duan, F., Tan, J.T.C., Tong, J.G., Kato, R. and Arai, T. 2012. Application of the assembly skill 

transfer system in an actual cellular manufacturing system. IEEE Transactions on Automation Science and 

Engineering, 9(1), pp.31-41. 

Endsley, M.R., Bolté, B. and Jones, D.G. 2003. Designing for situational awareness: An approach 

to user-centered design. CRC Press. 



xvi 
 

EU-OSHA. 2017. Joint Report on Towards Age-friendly Work in Europe: A life-course 

Perspective on Work and Ageing from EU Agencies. Publications office of the European Union, 

Luxembourg. 

EU-OSHA. 2019. Third European Survey of Enterprises on New and Emerging Risks. Publications 

office of the European Union, Luxembourg.  

Müller, J. 2020. Enabling Technologies for Industry 5.0 - results of a workshop with Europe’s 

technology leaders. Directorate-General for Research and Innovation. 

Breque, M., De Nul, L. and Petridis, A. 2020. Industry 5.0 : towards a sustainable, human-centric 

and resilient European industry. Directorate-General for Research and Innovation. 

Falck, A.C. and Rosenqvist, M. 2012. Relationship between complexity in manual assembly work, 

ergonomics and assembly quality. Ergonomics for Sustainability and Growth, NES 2012, Stockholm, 

Sweden. 

Fässberg, T., Harlin, U., Garmer, K., Gullander, P., Fasth, Å., Mattsson, S., Dencker, K., 

Davidsson, A. and Stahre, J. 2011. An empirical study towards a definition of production complexity. In 

21st International Conference on Production Research (ICPR), 31 July – 4 August, Stuttgart, Germany.  

Fast-Berglund, Å. and Romero, D. (2019) ‘Strategies for Implementing Collaborative Robot 

Applications for the Operator 4.0’, in Ameri, F., Stecke, K. E., Cieminski, G. von and Kiritsis, D. (eds) 

Advances in Production Management Systems. Production Management for the Factory of the Future, 

Cham, Springer International Publishing, pp. 682–689. 

Flacco, F, Kroeger, T., De Luca, A. and Khatib O. 2015. A depth space approach for evaluating 

distance to objects. Journal of Intelligent & Robot Systems, 80, pp.7-22. 

Ford, M. 2016. Rise of the robots: technology and the threat of a jobless future. New York: Basic 

Books. 

Frank, A.G., Dalenogare, L.S. and Ayala, N.F. 2019. Industry 4.0 technologies: Implementation 

patterns in manufacturing companies. International Journal of Production Economics, 210, pp.15-26. 

Fridman, L., Reimer, B., Mehler, B. and Freeman, W.T. 2018. Cognitive load estimation in the 

wild. In Proceedings of the 2018 CHI conference on human factors in computing Systems, ACM, 652.  

Fritzsche, L., Wegge, J., Schmauder, M., Kliegel, M. and Schmidt, K.-H. 2014. Good Ergonomics 

and Team Diversity Reduce Absenteeism and Errors in car Manufacturing. Ergonomics, 57(2), pp.148–

161. 

Fruggiero, F., Fera, M., Iannone, R. and Lambiase, A. 2018. Revealing a frame to incorporate safe 

human behaviour in assembly processes. IFAC-PapersOnLine, 51(11), pp.661-668. 

Fruggiero, F., Lambiase, A., Panagou, S. and Sabattini, L. 2020. Cognitive human modeling in 

collaborative robotics. Procedia Manufacturing, 51, pp.584-591. 



xvii 
 

Gervasi, R., Mastrogiacomo, L. and Franceschini, F. 2020. A conceptual framework to evaluate 

human-robot collaboration. International Journal of Advanced Manufacturing Technology, 108, pp.841-

865. 

Gevins, A., Smith, M.E., Leon, H., McEvoy, L., Whitfield, S., Du, R. and Rush, G. 1998. 

Monitoring working memory load during computer-based tasks with eeg pattern recognition methods. 

Human Factors, 40(1), pp.79-91. 

Gokalp, M.O., Kayabay, K., Akyol, M.A., Eren, P.E. and Koçyiğit, A. 2016. Big data for industry 

4.0: A conceptual framework. In International Conference on Computational Science and Computational 

Intelligence (CSCI), IEEE, pp.431-434. 

Gonzalez, A.G., Alves, M.V., Viana, G.S., Carvalho, L.K. and Basilio, J.C. 2017. Supervisory-

based navigation architecture: a new framework for autonomous robots in industry 4.0 environments. IEEE 

Transactions on Industrial Informatics, 14(4), pp.1732-1743. 

Goodrich, M. A., and Schultz, A.C. 2007. Human-Robot Interaction: A Survey. Foundations and 

Trends in Human-Computer Interaction, 1(3), pp.273-275.  

Goodman, L.A. 1961. Snowball Sampling. Annals of Mathematical Statistics, 32, pp.148–170. 

Gilles, M. A., Guélin, J.-C., Desbrosses, K. and Wild, P. 2017. Motor Adaptation Capacity as a 

Function of age in Carrying out a Repetitive Assembly Task at Imposed Work Paces. Applied Ergonomics, 

64, pp.47–55. 

Grandjean, E. 1979. Fatigue in industry. Occupational and Environmental Medicine, 36(3), pp.175-

186. 

Grant, M.J. and Booth, A. 2009. A typology of reviews: an analysis of 14 review types and 

associated methodologies. Health information & libraries journal, 26(2), pp.91-108. 

Green, S.A., Chase, J.G., Chen, X.Q. and Billinghurst, M. 2010. Evaluating the augmented reality 

human-robot collaboration system. International Journal of Intelligent Systems Technologies and 

Applications, 8(1/2/3/4), pp.130-143. 

Grosse, E.H., Glock, C.H., Jaber, M.Y. and Neumann, W.P. 2015. Incorporating human factors in 

order picking planning models: Framework and research opportunities. International Journal of Production 

Research, 53(3), pp,695-717. 

Grosse, E.H., Dixon, S.M., Neumann, W.P. and Glock, C.H. 2016. Using qualitative interviewing 

to examine human factors in warehouse order picking. International Journal of Logistics Systems and 

Management, 23(4), pp.499-518.  

Grote, G. 2004. Uncertainty management at the core of system design. Annual Reviews in Control, 

28(2), pp.267-274. 



xviii 
 

Gullander, P., Davidsson, A., Dencker, K., Fasth, A., Fassberg, T., Harlin, U. and Stahre, J. 

2011.Towards a Production Complexity Model that Supports Operation Re-balancing and Man-hour 

Planning. In: Proceedings of the 4th Swedish Production Symposium (SPS).  

Guvernator IV, G.C. and Landaeta, R.E., 2020. Knowledge Transfer in Municipal Water and 

Wastewater Organizations. EMJ – Engineering Management Journal, 32(4), and 272-282. 

Hart, S.G. 2006. Nasa-task load index (nasa-tlx); 20 years later. In Proceedings of the human 

factors and ergonomics society annual meeting, Sage Publications, Sage CA, Los Angeles, 50(9), pp.904-

908. 

Heard, J., Harriot, C.E. and Adams, J.A.2018. A survey of workload assessment algorithms. IEEE 

Transactions on Human-Machine Systems, 48(5), pp.434-451. 

Herkert, J., Borenstein, J. and Miller, K. 2020. The Boeing 737 MAX: Lessons for engineering 

ethics. Science and engineering ethics, 26(4), pp.2957-2974. 

Hermann, M., Pentek, T. and Otto, B. 2016. Design principles for industrie 4.0 scenarios. In 2016 

49th Hawaii international conference on system sciences (HICSS), IEEE, pp. 3928-3937. 

Hinds, P.J., Roberts, T.L. and Jones, H. 2004. Whose job is it anyway? A study of human-robot 

interaction in a collaborative task. Human-Computer Interaction, 19(1-2), pp.151–181. 

Hodson, R. 2018. Digital Revolution. Nature, 563(7733), p.S131. 

Hoffman, G. and Breazeal, C. 2004. Collaboration in human-robot teams. In AIAA 1st intelligent 

systems technical conference, 6434. 

Holland, M.K. and Tarlow, G. 1972. Blinking and mental load” Psychological Reports, 31(1), 

pp.119-127. 

Hornyak, T.N. 2006. Loving the machine: The art and science of Japanese robots (pp. 58-59), 

Tokyo: Kodansha International. 

Hounsell, D. 1984. From the American system to mass production, 1800-1932: The development 

of manufacturing technology in the United States (No. 4), JHU Press. 

Hu, J.S. and Stecke, E.K. 2009. Analysis of automotive body assembly system configurations for 

quality and productivity. International Journal of Manufacturing Research, 4(3), pp.281-305. 

Jeon, I. S., Jeong, B. Y. and Jeong, J. H. 2016. Preferred 11 Different job Rotation Types in 

Automotive Company and Their Effects on Productivity, Quality and Musculoskeletal Disorders: 

Comparison Between Subjective and Actual Scores by Workers’ age. Ergonomics, 59(10), pp.1318–1326. 

Johnson, J.L., Greaves, L. and Repta, R. 2009. Better science with sex and gender: facilitating the 

use of a sex and gender-based analysis in health research. International Journal for equity in health, 8(1), 

1-11. 



xix 
 

Kawakami, M., Kajihara, Y., Ukai, T., Izumi, H. and Sanbayashi, Y. 2006. IT-based Job 

Enlargement System for Aging Workers. Journal of Japan Industrial Management Association, 56(6), 

pp.460–470. 

Kawakami, M. and Yamanaka, K. 2009. A Study on Energy-Efficient Temperature Control. World 

Academy of Science: Engineering and Technology, 58, pp.1098–1101. 

Kolcaba, K.Y. and Kolcaba, R.J. 1991. An analysis of the concept of comfort. Journal of advanced 

nursing, 16(11), pp.1301-1310. 

Kolus, A., Wells, R. and Neumann, P. 2018. Production Quality and Human Factors Engineering: 

A Systematic Review and Theoretical Framework. Applied Ergonomics, 73, pp. 55-89. 

Kowalski-Trakofler, K.M., Steiner, L.J. and Schwerha D.J., 2005. Safety considerations for the 

aging workforce. Safety Science, 43(10), pp.779-793. 

Kumar, N. and Kumar, J. 2019. Efficiency 4.0 for Industry 4.0. Human Technology, 15(1), pp.55-

78. 

Kumashiro, M. 2014. An Approach of Ergonomics and Management in Occupational Health for a 

Society of Aging Workers. Journal of Japan Industrial Management Association, 65(2), pp.124–130. 

Landau, K., Rademacher, H., Meschke, Winter, H. G., Schaub, K., Grasmueck, M., Moelbert, I., 

Sommer, M. and Schulze, J. 2008. Musculoskeletal Disorders in Assembly Jobs in the Automotive Industry 

with Special Reference to age Management Aspects. International Journal of Industrial Ergonomics, 38, 

pp.561–576. 

Landau, K., Brauchler, R., Diaz-Meyer, M., Kiesel, J., Lenz, A., Meschke, H. and Presl, A. 2011. 

Occupational Stress Factors and Musculo-Skeletal Disease in Patients at a Rehabilitation Center. 

Occupational Ergonomics, 10(4), pp.139–153. 

Lasota, P.A. and Shah, J.A. 2015. Analyzing the effects of human-aware motion planning on close-

proximity human-robot collaboration. Human Factors, 57(1), pp.21-33. 

Lee, S.-L., Lau, I.Y.M. and Hong, Y.Y. 2011. Effects of Appearance and Functions on Likability 

and Perceived Occupational Suitability of Robots. Journal of Cognitive Engineering and Decision Making, 

5, pp.232-250. 

Lee, J.D. and Kolodge K. 2018. Understanding attitudes towards self-driving vehicles: Quantitative 

analysis of qualitative data. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 

62(1), pp.1399-1403. 

Lee, M., Yun, J.J., Pyka, A., Won, D., Kodama, F., Schiuma, G., Park, H., Jeon, J., Park, K., Jung, 

K. and Yan, M.R. 2018. How to respond to the fourth industrial revolution, or the second information 



xx 
 

technology revolution? Dynamic new combinations between technology, market, and society through open 

innovation. Journal of Open Innovation: Technology, Market and Complexity, 4(3), p.21. 

Lepping, J., Paas, F., Van der Vleueten, C.P., Van Gog, T. and Van Merrienboer, J.J. 2013, 

Development of an instrument for measuring different types of cognitive load. Behavioral Research 

Methods, 45(4), pp.1058-1072. 

Lombardi, D.A., Verma, S.K., Brennan, M.J. and Perry, M.J. 2009. Factors Influencing Worker 

use of Personal Protective Eyewear. Accident Analysis and Prevention, 41(4), pp.755–762. 

Longo, F., Padovano, A. and Umbrello, S. 2020. Value-oriented and ethical technology engineering 

in industry 5.0: A human-centric perspective for the design of the factory of the future. Applied Sciences, 

10(2), p.4182. 

Lotz, V., Himmel, S. and Ziefle, M. 2019. You’re my mate-acceptance factors for human-robot 

collaboration in industry. International Conference on Competitive Manufacturing, 31, pp.405-411. 

Makris, S. 2021. Cooperating Robots for Flexible Manufacturing. Springer. 

Marvel, J.A., Falco, J. and Marstio, I. 2015. Characterizing task-based human-robot collaboration 

safety in manufacturing. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(2). 

Massingham, P. 2014. An evaluation of knowledge management tools: Part 1 – managing 

knowledge resources. Journal of Knowledge Management, 18(6), pp.1075-1100. 

Massingham, P. 2014. An evaluation of knowledge management tools: Part 2 – managing 

knowledge resources. Journal of Knowledge Management, 18(6), pp.1101-1126. 

Massingham, P. 2018. Measuring the impact of knowledge loss: a longitudinal study. Journal of 

Knowledge Management, 22(4), pp.721-758. 

Massingham P.R. and Massingham R.K. 2014. Does knowledge management produce practical 

outcomes? Journal of Knowledge Management, 18(2), pp.221-254. 

Matsas, E., Vosniakos, G.C. and Batras, D. 2018. Prototyping proactive and adaptive techniques 

for human-robot collaboration in manufacturing using virtual reality. Robotics and Computer-Integrated 

Manufacturing, 50, pp.168-180. 

Matthews, J., Lin, J., Panganiban, A.R. and Long, M.D. 2020, Individual Differences in Trust in 

Autonomous Robots: Implications for Transparency. IEEE Transactions on Human-Machine Systems, 

50(3), pp.234-244. 

Mattsson, S., Gullander, P., Harlin, U., Bäckstrand, G., Fasth, Å. and Davidsson, A. 2012. Testing 

complexity index – a method for measuring perceived complexity. In Proceedings of the 45th Conference 

on Manufacturing Systems (CMS45), 16-18 May, Athens, Greece, Elsevier, pp.349-399. 



xxi 
 

Mattsson, S., Karlsson, M., Gullander, P., Van Landeghem, H., Zeltzer, L., Limère, V., Aghezzaf, 

E-H., Fasth, Å. and Stahre, J. 2014. Comparing quantifiable methods to measure complexity in assembly. 

International Journal of Manufacturing Research, 9(1), pp.112-130. 

Maurtua, I., Ibarguren, A., Kildal, J., Susperregi, L. and Sierra, B. 2017. Human-robot collaboration 

in industrial applications: Safety, interaction and trust. International Journal of Advanced Robotic Systems, 

14(4), pp.1-10. 

Meissner, A., Trübswetter, A., Conti-Kufner, A.S. and Schmidtler, J. 2020. Friend or Foe 

Understanding Assembly Workers' Acceptance of Human-robot Collaboration. ACM Transactions on 

Human-Robot Interaction, 10(1), pp.1-30. 

Melkas, H., Hennala, L., Pekkarinen, S. and Kyrki, V. 2016. Human impact assessment of robot 

implementation in Finnish elderly care. International conference on serviceology, pp.202-206.  

Meredith, M. and Maddock, S. 2001. Motion capture file formats explained. Department of Computer 

Science, University of Sheffield, 211, pp.241-244. 

Mitsunaga, N., Smith, C., Kanda, T., Ishiguro, H. and Hagita, N. 2008. Adapting robot behavior 

for human-robot interaction. IEEE Transactions on Robotics, 24(4), pp.911-916. 

Mokyr, J. and Strotz, R.H. 1998. The second industrial revolution, 1870-1914. Storia 

dell’economia Mondiale, 21945(1).  

Moran, M.E. 2006. The da Vinci robot. Journal of endourology, 20(12), pp. 986-990. 

Morgeson, F.P. and Humphrey, S.E. 2006. The Work Design Questionnaire (WDQ): developing 

and validating a comprehensive measure for assessing job design and the nature of work. Journal of applied 

psychology, 91(6), pp.1321. 

Mukherjee, S., Yadav, R., Yung, I., Zaidel, D.P. and Oken, B.S. 2011. Sensitivity to mental effort 

and test-retest reliability of heart rate variability measures in healthy seniors. Clinical Neurophysiology, 

122(10), pp.2059-2066. 

Muller. M.J. and Kuhn, S. 1993. Participatory design. Communications of the ACM, 36(6), pp.24-

28. 

Mumfort, E. 1987. Sociotechnical systems design: Evolving theory and practice. Computers and 

democracy. 

Munn, Z., Peters, M.D.J, Stern, C., Tufuranu, C., McArthur, A. and Aromataris, E. 2018. 

Systematic Review or Scoping Review? Guidance for authors when choosing between a systematic or 

scoping review approach. BMC Medical Research Methodology, 18(143).  

Murphy, R.R. and Schreckenghost, D. 2013. Survey of metrics for human-robot interaction. In 

2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), IEEE, pp.197-198. 



xxii 
 

Nardolillo, A. M., Baghdadi, A. and Cavuoto, L.A. 2017. Heart Rate Variability during a Simulated 

Assembly Task: Influence of Age and Gender. Proceedings of the Human Factors and Ergonomics Society, 

2017-October, pp.1853–1857. 

Neumann, W. P. and Dul, J. 2010. Human factors: Spanning the gap between OM & HRM. 

International Journal of Operations & Production Management, 30(9), pp.923-950. 

Neumann, W.P., Kolus, A. and Wells, R.W. 2016. Human Factors in Production System Design 

and Quality Performance – A Systematic Review. IFAC-PapersOnLine, 49, pp.1721-1724. 

Neuman, W.P., Winkel, J., Palmerud, G. and Forsman, M. 2018. Innovation and Employee Injury 

Risk in Automotive Disassembly Operations. International Journal of Production Research, 56(9), 

pp.3188-3203. 

Neumann, W.P., Winkelhaus, S., Grosse, E.H. and Glock, C.H. 2021. Industry 4.0 and the human 

factor – A systems framework and analysis methodology for successful development. International Journal 

of Production Economics, 233. 

Neupane, S., Virtanen, P., Luukkaala, T., Siukola, A. and Nygård, C.-H. 2014. A Four-Year 

Follow-up Study of Physical Working Conditions and Perceived Mental and Physical Strain among Food 

Industry Workers. Applied Ergonomics, 45(3), pp.586–591. 

Nocks, L. 2007. The robot: the life story of technology. Greenwood Publishing Group. 

Norton, M.I., Mochon, D. and Ariely, D. 2012. The IKEA effect: When labor leads to love. Journal 

of consumer psychology, 22(3), pp. 453-460. 

Novak, D., Mihelj, M. and Munih, M. 2010. Psychophysiological responses to different levels of 

cognitive and physical workload in haptic interaction. Robotica, 29, pp.367-374. 

Nikolakis, N., Maratos, V. and Makris, S. 2019. A cyber physical system (CPS) approach for safe 

human-robot collaboration in a shared workplace. Robotics and Computer-Integrated Manufacturing, 56, 

pp.233-243.  

Nixdorf, S., Zhang, M., Ansari, F. and Grosse, E.H. 2022. Reciprocal Learning in Production and 

Logistics. IFAC-PapersOnLine, 55(10), pp.854-859. 

Ogorodnikova, O. 2008. Human Weaknesses and strengths in collaboration with robots. Periodica 

Polytechnica Mechanical Engineering, 52, pp.25-33. 

Olstein, M.A. 2005. Managing the Coming Brain Drain. Journal / American Water Works 

Association, 97(6), pp.60–67. 

Orlandini, A., Cialdea Mayer, M., Umbrico, A. and Cesta, A. 2020. Design of Timeline-Based 

Planning Systems for Safe Human-Robot Collaboration, in Vallati, M. and Kitchin, D. (eds) Knowledge 

Engineering Tools and Techniques for AI Planning, Springer, pp.231–248. 



xxiii 
 

Oyekan, J.O., Hutabarat, W., Tiwari, A., Grech, R., Aung, M.H., Mariani, M.P., López-Dávalos, 

L., Ricaud, T., Singh, S. and Dupuis, C. 2019. The effectiveness of virtual environments in developing 

collaborative strategies between industrial robots and humans. Robotics and Computer-Integrated 

Manufacturing, 55(A), pp.41-54. 

Paas, F., Tuovinen, J.E., Tabbers, H., and Van Gerven, P.W. 2003. “Cognitive load measurement 

as a means to advance cognitive load theory.” Educational Psychologist, 28(1), pp.63-71. 

Pal, N. R. and Pal, S. K. 1992. Some properties of the exponential entropy, Information Sciences, 

66, pp.119-137. 

Panagou, S., Fruggiero, F., Neumann, W.P. and Lambiase, A. 2021a. The entropic complexity of 

Human Factor in collaborative technologies. In: Congress of the International Ergonomics Asssociation, 

Springer, Cham., pp.503-510.  

Panagou, S., Fruggiero, F. and Lambiase, A., 2021b. Human factor and entropy evaluation in 

collaborative workplace environment. International Journal of Simulation and Process Modelling, 17(2-

3), pp.187-203. 

Panagou, S., Fruggiero, F. and Lambiase, A., 2022a. Human gesture system in Human Robot 

Interaction for reliability analysis. Procedia Computer Science, 200, pp.1788-1795. 

Panagou, S., Fruggiero F., Lerra, M., del Vecchio, C., Menchetti, F., Piedimonte, L., Natale, O.R. 

and Passariello, S. 2022b. Feature investigation with Digital Twin for predictive maintenance following a 

machine learning approach. IFAC-PapersOnLine, 55(2), pp.132-137. 

Pedrocchi, N., Vicentini, F., Malosio, M. and Tosatti, L.M. 2013. Safe human-robot cooperation in 

an industrial environment. International Journal of Advanced Robotic Systems, 10(27).  

Pérez, L., Rodríguez-Jiménez, S., Rodríguez, N., Usamentiaga, R., García, D.F. and Wang, L. 2020. 

Symbiotic human–robot collaborative approach for increased productivity and enhanced safety in the 

aerospace manufacturing industry. International Journal of Advanced Manufacturing Technology, 106, 

pp.851-863. 

Perez, C.C. 2019. Invisible women: Exposing data bias in a world designed for men. Random 

House. 

Perona, M. and Miragliotta, G. 2004. Complexity management and supply chain performance 

assessment: a field study and conceptual framework. International Journal of Production Economics, 

90(1), pp.103-115. 

Peruzzini, M. and Pellicciari, M. 2017. A framework to design a human-centered adaptive 

manufacturing system for aging workers. Advanced Engineering Informatics, 33, pp.330-349. 

Peruzzini, M., Grandi, F. and Pellicciari, M. 2020. Exploring the potential of Operator 4.0 interface 

and monitoring. Computers and Industrial Engineering, 139. 



xxiv 
 

Peters, M.D., Godfrey, C.M., Khalil, H., McInerney, P., Parker, D. and Soares, C.B. 2015. 

Guidance for conducting systematic scoping reviews. JBI Evidence Implementation, 13(3), pp.141-146. 

Prati, E., Peruzzini, M., Pellicciari, M. and Raffaeli, R. 2021. How to include User eXperience in 

the design of Human-Robot Interaction. Robotics and Computer-Integrated Manufacturing, 68, 102072. 

Qammaz A. and  Argyros A. 2021. Towards Holistic Real-Time Human 3D Pose Estimation using 

MocapNETs. In: British Machine Vision Conference (BMVC 2021), BMVA, Virtual, UK. 

Qin, J., Lin, J.-H., Buchholz, B. and Xu, X. 2014. Shoulder Muscle Fatigue Development in Young 

and Older Female Adults During a Repetitive Manual Task. Ergonomics, 57(8), pp.1201–1212. 

Rani, P., Sarkar, N. and Adams, J. 2007. Anxiety-based affective communication for implicit 

human-machine interaction. Advanced Engineering Informatics, 21(3), pp.323-334. 

Reason, J. 2000. Human error: models and management. Bmj, 320(7237), pp.768-770. 

Reed, K.B. and Peshkin, M.A. 2008. Physical collaboration of human-human and human-robot 

teams. IEEE Transactions on Haptics, 1(2), pp.108-120. 

Reilly, J., Kelly, A., Kim, S.H., Jett, S. and Zuckerman B. 2018. The human task-evoked pupillary 

response function is linear: implications for baseline response scaling in pupillometry. Behavior Research 

Methods, pp.1-14. 

Robla-Gòmez, S., Becerra, V.M., Llata, J.R., Gonzalez-Sarabia, E., Torre-Ferrero, C. and Perez-

Oria, J. 2017. Working together: A review on safe human-robot collaboration in industrial environments. 

IEEE Access, 5, pp.26754-26773. 

Rogers, W.A., Kadylak, T. and Bayles, M.A.. 2022. Maximizing the Benefits of Participatory 

Design for Human-Robot Interaction Research with Older Adults. Human Factors, 64(3), pp.441-450. 

Romero, D., Stahre, J. and Taisch, M., 2020. The Operator 4.0: Towards socially sustainable 

factories of the future. Computers & Industrial Engineering, 139, p.106128. 

Rouch, I., Wild, P., Ansiau, D. and Marquie, J.-C. 2005. Shiftwork Experience, age and Cognitive 

Performance. Ergonomics, 48(10), pp.1282–1293. 

Rücker, D., Hornfeck, R. and Paetzold, K. 2019. Investigating Ergonomics in the Context of 

Human-Robot Collaboration as a Sociotechnical System’ In Chen, J. (ed) Advances in Human Factors in 

Robots and Unmanned Systems, Springer, pp.127–135. 

Samy, S..N and ElMaraghy, H.A. 2012. Complexity mapping of the product and assembly system. 

Assembly Automation. 

Saremi, M., Rohmer, O., Bonnefond, A., Muzet, A., Tassi, P. and Burgmeier, A. 2008. Combined 

Effects of Noise and Shift Work on Fatigue as a Function of age. International Journal of Occupational 

Safety and Ergonomics, 14(4), pp.387–394. 



xxv 
 

Scholtz, J. 2003. Theory and evaluation of human robot interactions. In 36th Annual Hawaii 

International Conference on System Sciences, IEEE, pp. 10. 

Schwerha, D. J., F.Wiker, S. and Jaraiedi, M. 2007. Effect of distractors, age, and level of education 

upon psuchomotor task learning. International Journal of Industrial Ergonomics, 37(9-10), pp.801–809.  

Sgarbossa, F., Grosse, E.H., Neumann, W.P., Battini, D. and Glock, C.H. 2020. Human factors in 

production and logistics systems of the future. Annual Reviews in Control, 49, pp.295-305. 

Shu, Y., Ruiz, N., Taib, R., Choi, E. and Chen, F. 2007. Galvanic skin response (gsr) as an index 

of cognitive load. In CHI ’07 extended abstracts on human factors in computing systems, CHI EA ’07, 

ACM, New York, pp.2651-2656. 

Sileo, M., Bloisi, D.D. and Pierri F. 2021. Real-time object Detection and Grasping Using 

Background Subtraction in an Industrial Scenario. In: 2021 IEEE 6th International Forum on Research and 

Technology for Society and Industry (RTSI), IEEE, pp.283-288. 

Sörensen, L.E., Pekkonen, M.M., Männikkö, K.H., Louhevaara, V.A., Smolander, J. and Alén, M.J. 

2008. Associations Between Work Ability, Health-Related Quality of Life, Physical Activity and Fitness 

among Middle-Aged men. Applied Ergonomics, 39(6), pp.786–791. 

Sokas, R.K., Dong, X.S. and Cain, C.T. 2019. Building a sustainable construction workforce. 

International Journal of Environmental Research and Public Health, 16(21), 4202. 

Sperber, S., Post, C., Täuber, S. and Barzantny, C.. 2022. Advancing Theory by Addressing the 

Gender Data Gap. European Management Journal, 40, pp.307-309. 

Srilakshmi, K., and Kulkarni, R. 2018. Productivity of Senior Employees - A Case Study with 

Reference to Selected Pharmaceutical Industries. International Journal of Mechanical Engineering and 

Technology, 9(1), pp.680–686. 

Steinfeld, A., Fong, T., Kaber, D., Lewis, M., Scholtz, J., Schultz, A. and Goodrich, M. 2006. 

Common metrics for human-robot interaction. In Proceedings of the 1st ACM SIGCHI/SIGART conference 

on Human-robot interaction, pp.33-40. 

Strasser, H. 2018. The “art of Aging” From an Ergonomics Viewpoint - Wisdoms on age. 

Occupational Ergonomics, 13(S1), pp.1–24. 

Sweller, J. 1988. Cognitive load during problem solving: Effects on learning. Cognitive Science, 

12(2), pp.257-285. 

Tan, J.T.C., Duan, F., Kato, R. and Arai, T. 2010. Safety strategy for human-robot collaboration: 

Design and development in cellular manufacturing. Advanced Robotics, 24(5-6), pp.839-860. 



xxvi 
 

Taniguchi, K., Nishikawa, A., Sugino, T., Aoyagi, S., Sekimoto, M., Takiguchi, S., Okada, K., 

Monden, M. and Fumio, M. 2009. Method for objectively evaluating psychological stress resulting when 

humans interact with robots. Advances in Human-Robot Interaction, pp.141-164. 

Tannenbaum, C., Ellis, R.P., Friederike, E., Zou, J. and Schiebinger, L. 2019. Sex and gender 

analysis improves science and engineering. Nature, 575(7781), pp.137-146. 

Theberge, N. and. Neumann, W.P. 2013. The relative role of safety and productivity in Canadian 

ergonomists. Relations Industrielles/Industrial Relations, 3, pp.387-403. 

The Economist. 2017. As Japan Ages, so too does its Workforce. The Economist Group Limited. 

Thetkathuek, A., Yingratanasuk, T., Jaidee, W. and Ekburanawat, W. 2015. Cold Exposure and 

Health Effects among Frozen Food Processing Workers in Eastern Thailand. Safety and Health at Work, 

6(1), pp.56–61. 

Tsallis, C. 1988. Possible generalisation of Boltzmann-Gibbs statistics. Journal of Statistical 

Physics, 52(1-2), pp.479-487.  

Urbanic, R.J. and ElMaraghy W.H. 2006. Modeling of manufacturing process complexity. 

Advances in Design, pp.425-436. 

Van de Ven, H. A., van der Klink, J. J. L., Vetter, C., Roenneberg, T., Gordijn, M., Koolhaas, W., 

de Looze, M. P., Brouwer, S. and Bültmann, U.. 2016. Sleep and Need for Recovery in Shift Workers: Do 

Chronotype and age Matter?. Ergonomics, 59(2), pp.310–324. 

Van der Zwaan, A.H. 1975. The sociotechnical systems approach: A critical evaluation. The 

International Journal of Production Research, 13(2), pp. 149-163. 

Van Loo, J., De Grip, A. and De Steur, M. 2001. Skills obsolescence: causes and cures. 

International Journal of Manpower. 

Verma, S. K., Lombardi, D. A., Chang, W.-R., Courtney, T. K. and Brennan, M. J. 2008. A Matched 

Case-Control Study of Circumstances of Occupational Same-Level Falls and Risk of Wrist, Ankle and hip 

Fracture in Women Over 45 Years of age. Ergonomics, 51(12), pp.1960–1972. 

Volberg, V., Fordyce, T., Leonhard, M., Mezei, G., Vergara, X. and Krishen, L. 2017. Injuries 

among Electric Power Industry Workers, 1995–2013. Journal of Safety Research, 60, pp.9–16. 

Walters, M.L., Syrdal, D.S., Dautenhahn, K., Te Boekhorst, R. and Koay, K.L. 2008. Avoiding the 

uncanny valley: Robot appearance, personality and consistency of behavior in an attention-seeking home 

scenario for a robot companion. Autonomous Robots, 24, pp.159-178. 

Wang, W., Li, R., Chen, Y., Diekel, Z.M. and Jia, Y. 2019. Facilitating Human-Robot Collaborative 

Tasks by Teaching-Learning-Collaboration from Human Demonstrations. IEEE Transactions on 

Automation Science and Engineering, 16(2), pp.640-653. 



xxvii 
 

Whitefield, A., Wilson, F. and Dowell, J. 1991. A framework for human factors evaluation 

Behaviour & Information Technology, 10(1), pp.65-79. 

Wilcoxon, F. 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1, pp.80-

83. 

Weichel, J., Stanic, S., Enriquez Diaz, J.A. and Frieling, E. 2010. Job Rotation - Implications for 

old and Impaired Assembly Line Workers. Occupational Ergonomics, 9(2), pp.67–74. 

Wiker, S.F., Schwerha, D.J. and Jaraiedi, M. 2009. Auditory and Visual Distractor Decrement in 

Older Worker Manual Assembly Task Learning: Impact of Spatial Reasoning, Field Independence, and 

Level of Education. Human Factors and Ergonomics In Manufacturing, 19(4), pp.300–317. 

World Economic Forum, 2020. The future of jobs report 2020. Retrieved from Geneva. 

Wright, J.L., Chen, J.Y.C. and Lakhmani, S.G. 2020. Agent Transparency and Reliability in 

Human-Robot Interaction: The Influence on User Confidence and Perceived Reliability. IEEE Transactions 

on Human-Machine Systems, 50(3), pp.254-263. 

Xu, X., Qin, J., Zhang, T. and Lin, J.-H. 2014. The Effect of age on the Hand Movement Time 

During Machine Paced Assembly Tasks for Female Workers. International Journal of Industrial 

Ergonomics, 44(1), pp.148–152. 

Zanchettin, A.M., Bascetta, L. and Rocco, P. 2013. Acceptability of robotic manipulators in shared 

working environments through human-like redundancy resolution. Applied Ergonomics, 44(6), pp.982-989. 

Zeltzer, L.D.L.G., Limère, V., Van Landeghem, H., Aghezzaf, E-H., and Stahre, J. 2013. 

Measuring complexity in mixed-model assembly workstations. International Journal of Production 

Research, 51(15), pp.4630-4643. 

Zhang J., Yin Z. and Wang R. 2015. Recognition of mental workload levels under complex hu-

man-machine collaboration by using physiological features and adaptive support vector ma-chines. IEEE 

Transactions on Human-Machine Systems, 45(2), pp.200-214. 

 

 

 

 

 

 

 

 



xxviii 
 

Appendix 

1. TASK COMPLEXITY QUESTIONNAIRE 

TASK COMPLEXITY      ID: ____________ 

Questo questionario è progettato con lo scopo di valutare la complessità del compito.  La complessità in 

generale, caratterizza il comportamento di un sistema o di un'attività i cui componenti interagiscono in più 

modi e seguono regole locali che non sono definite da una regola o da un agente esterno.  La complessità 

del  compito coinvolge il prodotto, il lavoro necessario per eseguire l'assemblaggio, le domande relative 

all’ambiente  in cui è stata eseguita l'attività, gli strumenti, le istruzioni e le informazioni ricevute prima 

dell'attività, le domande generali relative all'attività e infine è possibile lasciare commenti e 

raccomandazioni sull'attività. I quesiti sono valutati tra Completamente in disaccordo (0) e Completamente 

d'accordo (10).  Grazie per la tua partecipazione! 

1. Complessità correlata al prodotto 

1. Ci sono vari component del prodotto nell’ambiente di lavoro (che sono o non sono necessari 

nell’assieme) 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

2. Ci sono componenti nell’ambiente di lavoro che sono simili e possono essere utilizzati allo stesso 

modo (che provocano confusione) 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

3. Ci sono componenti che non sono necessari per l’attività 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

4. Ci sono molti oggetti diversi nell’ambiente di lavoro (componenti di attività, strumenti, componenti, 

specifici del robot) 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

2. Lavoro correlato 

1. Ho familiarità con il processo di assemblaggio (esperienza precedente) 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 
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2. Ho abbastanza tempo per eseguire l’attività a un ritmo normale 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

3. Devo eseguire altre attività oltre al processo di assemblaggio (passaggi ed errori delle attività del 

documento, spostare componenti o altro) 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

4. Ci sono stati eventi non pianificati durante l’attività del documento, spostare componenti o altro) 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

3. Ambiente e layout 

1. L’ambiente è stato ben progettata per quanto riguarda la raggiungibilità (raggiungere facilmente le 

parti, lo spazio di assemblaggio era vicino, non ci si doveva girare per raggiungere le parti) 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

2. I passaggi necessari per eseguire l’attività sono stati 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

3. L’ergonomia in questo compito è stata ben implementata (nessun allungamento non c’è bisogno di 

piegarsi o girarsi per raggiungere una parte o un’altra) 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

4. Il posizionamento delle parti, la scelta di un semplice componente e i passaggi di assemblaggio sono 

stati ben progettati 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

4. Collaborazione 

1. Il movimento del robot è stato ben progettato 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 
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2. La gestione robotizzata delle parti è stata ben progettato 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

3. La collaborazione con il robot è stata positiva per il completamento delle attività 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

4. La collaborazione è sembrata più rilassante e utile 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

5. Istruzioni 

1. Le istruzioni erano dettagliate e utili 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

2. Le istruzioni erano facili da capire 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

3. Le istruzioni hanno semplificato il processo 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

4. Le istruzioni sono state utili per lavorare con il robot 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

5. Il tempo per capire e imparare il compito dalle’struzioni è stati lungo 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

6. Generale 

1. Per lavorare in questo compito, è necessaria esperienza 

1 2 3 4 5 6 7 8 9 10 
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Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

2. L’attività di assemblaggio è stata ben progettata e spiegata 

1 2 3 4 5 6 7 8 9 10 

Completamente 

d’accordo 

      Completamente 

non d’accordo 

 

Saresti disposto a prendere parte a un altro caso di studio con un compito diverso ma collaborando con un 

robot? Si prega di fornire una risposta e le proprie ragioni, se possibile, di seguito: 

_____________________________________________________________________________________

_____________________________________________________________________________________ 

Si prega di scrivere eventuali commenti e raccomandazioni che hai in base alla tua esperienza con l'attività 

di seguito: 

_____________________________________________________________________________________

_____________________________________________________________________________________

_____________________________________________________________________________________

_____________________________________________________________________________________

_____________________________________________________________________________________ 
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NASA-TLX QUESTIONNAIRE 

 

COGNITIVE LOAD ASSESSMENT QUESTIONNAIRE   ID:__________ 

Thank you for your participation! 

 

Scegli tra le due opzioni - Quale delle due credi ti abbia influenzato 

Temporale – richiesta temporale, mentale – richiesta mentale, fisico – richiesta fisica 

1. Sforzo ò Performance -……………………… 

2. Temporale o Frustrazione - …………………. 

3. Temporale ò Sforzo - …………….. 

4. Fisico o Frustrazione - …………… 

5. Performance ò Frustrazione - …………… 

6. Fisico ò Temporale - ………………. 

7. Fisico ò Performance - …………….. 

8. Temporale ò Mentale - ………………… 

9. Frustrazione ò Sforzo - ………………. 

10. Performance ò Mentale - ………………. 

11. Performance ò Temporale - ………………. 

12. Mentale o Sforzo - ……………………… 

13. Mentale o Fisico - ……………. 

14. Sforzo o Fisico - ……………… 

15. Frustrazione o Mentale - ………………… 

 

1. Mental Demand - Mentale 

 

1 2 3 4 5 6 7 8 9 10              

Low       High 

 

2. Physical Demand - Fisico 

 

1 2 3 4 5 6 7 8 9 10              

Low       High 
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3. Frustration - Frustrazione 

 

1 2 3 4 5 6 7 8 9 10              

Low       High 

 

4. Temporal Demand - Temporale 

 

1 2 3 4 5 6 7 8 9 10              

Low       High 

 

5. Performance - Performance 

 

1 2 3 4 5 6 7 8 9 10              

Low       High 

 

6. Effort - Sforzo 

 

1 2 3 4 5 6 7 8 9 10              

Low       High 
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