
1 

 

 

UNIVERSIY OF BASILICATA 

MATERA 

 

 

 

 

Doctor of Philosophy (Ph.D.) 

In 

 

“Cities and Landscapes: Architecture, Archeology, Cultural Heritage, History and 

Resources” 

 

 

 
Cycle XXXV 

 

 

 

 

THESIS TITLE 

 

“Novel Satellite-Based Methodologies for Multi-Sensor and Multi-Scale 

Environmental Monitoring to Preserve Natural Capital” 

 

 
Disciplinary Scientific Sector: ICAR/03 

 

 

 
Ph.D. Coordinator      Doctorate 

Prof. Antonella Guida     Dr. Farid Faridani Bardaskan 

 

Supervisor 

Prof. Rosa Lasaponara 

 

 

 

Academic Year 2022/2023  
 

 



2 

 

Contents 
 

Preface …………………………………………………………………………...5 

Chapter (1): Flood monitoring ............................................................................................... 6 

Part 1. Estimating flood characteristics using satellite digital elevation models ................... 7 

1.1.1. Introduction .................................................................................................................. 7 

1.1.2. Methodology ................................................................................................................ 8 

1.1.2.1. CADDIES-2D hydraulic model ................................................................................ 9 

1.1.2.2. Geomorphic Flood Index (GFI) ................................................................................ 9 

1.1.2.3. Modification of the water depth (𝒉𝒓) ..................................................................... 10 

1.1.2.4. Intensity-Duration-Frequency-Area (IDFA) curves ............................................... 11 

1.1.3. Study area ………………………………………………………………………….11 

1.1.4. Input data ………………………………………………………………………….12 

1.1.4.1. Digital Elevation Model (DEM) ............................................................................. 12 

1.1.4.2. Hydrometric data ..................................................................................................... 13 

1.1.5. Results ………………………………………………………………………….13 

1.1.6. Conclusion ………………………………………………………………………….18 

1.1.7. References ………………………………………………………………………….18 

Part 2. Flood mapping and monitoring using Google Earth Engine .................................... 20 

1.2.1. Introduction ................................................................................................................ 20 

1.2.2. Methodology .............................................................................................................. 21 

1.2.2.1. Flood mapping ........................................................................................................ 21 

1.2.2.2. Flood monitoring..................................................................................................... 21 

1.2.2.3. Flood Map Validation and Quality Statistics .......................................................... 21 

1.2.3. Site and event descriptions ......................................................................................... 22 

1.2.3.1. Metaponto ............................................................................................................... 23 

1.2.3.2. Shushtar, Khuzestan, Iran ....................................................................................... 24 

1.2.3.3. Farigliano, Piedmont, Italy...................................................................................... 25 

1.2.4. Data ………………………………………………………………………….25 

1.2.5. Results ………………………………………………………………………….26 

1.2.5.1. Visual inspection ..................................................................................................... 26 

1.2.5.2. Spectral Index analysis............................................................................................ 28 

1.2.5.3. SAR backscattering change detection ..................................................................... 31 

1.2.5.5. Flood monitoring..................................................................................................... 33 

1.2.6. Discussions ………………………………………………………………………….36 

1.2.7. Conclusion ………………………………………………………………………….36 

1.2.8. References ………………………………………………………………………….36 



3 

 

Chapter (2): Soil water balance modeling ............................................................................ 39 

Part 1. Soil Moisture Estimation Using Physical Models and Downscaled RS Data .......... 40 

2.1.1. Introduction ................................................................................................................ 40 

2.1.2. Methodology .............................................................................................................. 42 

2.1.2.1. AMSR2 SSM Downscaling .................................................................................... 42 

2.1.2.2. SMAR Model .......................................................................................................... 43 

2.1.3. Study Area ………………………………………………………………………….44 

2.1.4. Data ………………………………………………………………………….45 

2.1.4.1. AMSR2 Satellite-Based SSM Data......................................................................... 45 

2.1.4.2. Ground-Based SM Data .......................................................................................... 45 

2.1.4.3. Remotely Sensed MODIS Parameters .................................................................... 46 

2.1.5. Results ………………………………………………………………………….46 

2.1.5.1. AMSR2 Downscaling Using MODIS Albedo, LST and NDVI ............................. 46 

2.1.5.2. RZSM Estimation Based on the SMAR Model ...................................................... 50 

2.1.6. Discussion ………………………………………………………………………….51 

2.1.7. Conclusions ................................................................................................................ 52 

2.1.8. References ………………………………………………………………………….52 

Part 2. Estimating soil water balance components from surface soil moisture measurements using a 

physically-based approach ................................................................................................... 55 

2.2.1. Introduction ................................................................................................................ 55 

2.2.2. Methodology .............................................................................................................. 56 

2.2.2.1. HYDRUS-1D Numerical Model ............................................................................. 56 

2.2.2.2. Modified Soil Moisture Analytical Relationship (MSMAR) ................................. 57 

2.2.3. Study area ………………………………………………………………………….59 

2.2.4. Data ………………………………………………………………………….60 

2.2.5. Results ………………………………………………………………………….60 

2.2.5.1. Soil moisture content .............................................................................................. 61 

2.2.5.2. Evapotranspiration .................................................................................................. 64 

2.2.5.3. Deep percolation ..................................................................................................... 65 

2.2.6. Discussion ………………………………………………………………………….67 

2.2.7. Conclusions ................................................................................................................ 68 

2.2.8. References ………………………………………………………………………….68 

Part 3. Estimation of soil moisture from UAS platforms ..................................................... 71 

2.3.1. Introduction ................................................................................................................ 71 

2.3.2. Methodology .............................................................................................................. 72 

2.3.2.1. Thermal Inertia and Soil Moisture .......................................................................... 72 

2.3.3. Study Area ………………………………………………………………………….73 

2.3.3.1. Thermal data ........................................................................................................... 74 



4 

 

2.3.3.2. In-situ data............................................................................................................... 74 

2.3.4. RESULTS AND DISCUSSION ................................................................................ 75 

2.3.4.1. Temperature and ATI Maps .................................................................................... 75 

2.3.4.2. Soil Moisture Map .................................................................................................. 75 

2.3.5. Conclusions ................................................................................................................ 77 

2.3.6. References ………………………………………………………………………….77 

Chapter (3): Vegetation monitoring ..................................................................................... 79 

3.1. Introduction ………………………………………………………………………….80 

3.2. Methodology ………………………………………………………………………….80 

3.2.1. The Singular Spectrum Analysis................................................................................ 80 

3.2.2. The Fisher-Shannon method ...................................................................................... 81 

3.3. Study Areas ………………………………………………………………………….82 

3.3.1.  Castel Volturno ......................................................................................................... 82 

3.3.2.  Castel Porziano ......................................................................................................... 84 

3.3.3. The Appia Antica Regional Park ............................................................................... 84 

3.4. Data ………………………………………………………………………….85 

3.5. Results ………………………………………………………………………….87 

3.6. Discussion ………………………………………………………………………….92 

3.7. Conclusion ………………………………………………………………………….94 

3.8. References ………………………………………………………………………….95 

List of publications .............................................................................................................. 97 

Abstract ………………………………………………………………………….98 

 



5 

 

Preface 

Natural capital (NC) through ecosystem process provides ecosystem services that are vital and critical to the 

functioning of the Earth's life-support system, as (but not only) air and water, fertile soil, pollination, hazard 

protection. The concept of NC and associated ecosystem services reflects a recognition that environmental 

systems play a fundamental role not only for providing resources and services but also contributing to 

economic outputs and social well-being. The biophysical evaluation of the ecosystem then leads directly to the 

ecological and monetary evaluation since it depends on its state of conservation. Nevertheless, if from one 

hand, any form of vegetation cover (cropland, grassland, forest, etc.) provides numerous ecosystem services, 

on the other hand, the estimation of the status and trends of natural capital poses critical challenges due to the 

diversity of environmental assets, stocks and flows. Moreover, it is widely recognized that today climate 

change and anthropogenic pressures do alter major geophysical conditions and adversely affect NC and 

ecosystem services accelerating their depletion. NC assets are limited and vulnerable and irreversibility 

environmental changes may make it impossible to replace the natural capital assets that must be preserved, 

and this requires its constant assessment and systematic monitoring.   

A recent report by the European Environmental Agency (EEA) underlined the importance of Earth Observation 

(EO) data for the monitoring and accounting of the natural capital to support political decisions especially for 

the most critical environment conditions. In this field, the potential of Remote Sensing (RS) and EO 

technologies, and the advancement of satellite data acquisition and processing systems, has been understood 

and used by researchers to create research and/or public benefit work. 

The use of EO-based indicators is particularly relevant for environmental monitoring because RS-derived data 

have been shown to be useful across many fields, at different temporal and spatial scales from global down to 

a local level using open data and tools from NASA and ESA acquired systematically and available a for the 

whole globe. Moreover, the fast increasing developments of the Earth Observation (EO) and Information and 

Communication Technologies (ICT), including cloud-based resources, strongly facilitate and support the 

massive increase of the use of satellite data for change detection and vegetation monitoring including risk 

analyses. Cloud-based computing system provides ready-to-use and up-to-date datasets along with impressive 

computing power without having the need to download and locally store large amounts of data.  

Google Earth Engine (GEE) represents a useful tool for the scientific community in applications aimed at 

prevention and registration of risk, and at damage and impact assessment, through the Remote Sensing 

techniques. GEE is an open source tool made available by Google through registration. It is a portal that allows 

to consult and work simultaneously with dozens and dozens of different datasets for a collection of over forty 

years of data on a global scale. GEE is a powerful high-performance computing tool, it is accessed and 

controlled through a web-based accessible application programming interface (API) and there is an associated 

web-based interactive development environment (IDE) that allows quick prototyping and visualization of 

results. Available datasets include satellite data acquired by several missions, such as: i. MODIS (Moderate 

Resolution Imaging Spectrometer); ii. ALOS (Advanced Land Observing Satellite); iii. Landsat series; iv. 

Sentinels etc. These are complemented by other useful/ancillary data, such as: i. DTMs (Digital Terrain 

Models); ii. shapefiles; iii. meteorological data; iv. Land Cover etc. GEE, in addition to making operations 

with several types of sensors extremely easy, allows the same way and time to work with petabytes of data and 

has changed the concept of work and analysis in the field of Remote Sensing, and to the big-data approach to 

the issues. GEE in recent years (2011 to date) has been widely and successfully used in many of the disciplines 

involving Remote Sensing (RS) and Earth Observation (EO) techniques due to its potential.  

The number of papers about GEE in recent years has increased exponentially on several fields, such as: i. 

Forest and Vegetation; ii. Land use and Land Cover; iii. Hydrology; iv. Ecosystems and Sustainability; v. 

Agriculture; vi. Geoscience; vii. Cloud Computing; viii. Climate; ix. Urban Sprawl; x. Disease; xi. Hazards; 

xii. Cultural Heritage. The use of GEE has allowed multiple tools to be created and shared for free. Some 

examples can be found on the GEE website.  

The following study was conducted aiming at to gather state-of-the-art remote sensing and/or earth observation 

techniques and to further the knowledge concerned with any aspect of the use of remote sensing and/or big 

data in the field of geospatial analysis. Google Earth Engine alongside different physical and statistical 

methods have been herein used to monitor several environmental parameters in several study areas located in 

Italy and Iran where there were different types of NC assets affected in recent years by natural and 

anthropogenic events such as fires and floods etc. 
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Part 1. Estimating flood characteristics using satellite digital elevation models 

 

1.1.1. Introduction 

Floods are among the most disastrous events in the world and problems associated with them have increased 

greatly [1]. As a consequence, there is a need for effective modeling of extremely large spatial scale problems 

(i.e. large extent, fine grid resolution, or a large number of simulations) to understand the problem and reduce 

the catastrophic damages [2]. In order to obtain the floodplain maps, the Shallow Water Equations (SWEs) are 

generally solved via physically based two-dimensional flood models. 2D models with better performance have 

been developed by reducing the complexity through approximating or neglecting less significant terms of the 

SWEs (e.g. [3,4]). Even in their reduced complexity, Solving the SWEs is still computationally intensive due 

to the complex mathematical formulae [5]. 

Some studies in recent years focused on developing simple 2D flood models using the Cellular Automata (CA), 

which offers a method for modelling complicated physical systems using simple operations. In comparison 

with a physically based models, the simplification of a CA model can decrease the computational load [6]. To 

simulate a flood event by a CA model, it is necessary to divide the studied space into a set of cells with a 

specific geometric shape, as well as to determine the initial state of water height in each cell. By knowing the 

previous state of each cell and the state of the cells in its local neighborhood, the water level in that cell at each 

time step can be determined with a number of transition rules based on simple operators [7].  

Dottori and Todini [8,9] developed a CA model based on storage cell models that uses the Manning formula 

to calculate interfacial discharges. Instead of solving the Manning’s equation, Gimire et al. [10] developed the 

Cellular Automata Dual-DraInagE Simulation (CADDIES) 2D model that estimates the volume transferred 

between cells using a ranking system. In the next step, Guidolin et al. [5] presented the WCA2D model, which 

includes a weight-based system to simplify the transition rules of the CADDIES-2D model. Complex 

computations in the WCA2D model are minimized and this feature makes the WCA2D model suitable for 

real-time and/or largescale studies.  Their results showed that the CADDIES-2D model can simulate flow 

depth and velocity eight times faster with reasonably good agreement with the standard floodplain maps. The 

standard flood map refers to the extents of a flood event with a certain return period which has been obtained 

based on common hydraulic models and field surveys for a small portion of the study area, and helps to 

calibrate the flood models [11]. Different studies [12-14] have used the CADDIES-2D model and reported 

good results in improving the 2D simulation of urban and coastal flooding, rapid flood routing, and flood risk 

assessment. 

In less developed countries where sufficient computational power and observational data (hydrologic, 

hydraulic, topographic etc.) are not available, flood modeling requires even more simplified and less data-

demanding methods. Recently, methods which rely on basin morphologic features have received a significant 

interest due to increased availability of new Digital Elevation Models (DEMs). Fluvial geomorphology is 

basically shaped by floods and in return the characteristics of the floods are affected by the morphological 

feature of the rivers [11,15]. Manfreda et al. [16] used this assumption and suggested a modified version of the 

Topographic Index (TI) developed by Beven and Kirkby [17] to detect flood hazard exposure using a TIm 

higher than a given threshold (τ). According to Manfreda et al. [18], running the linear binary classification on 

the morphologic descriptors can effectively detect floodplain areas with simple requirements including a 

standard flood map over a small section of the basin area. 

Depending on the hydro-climatic conditions, river hydraulic regime, topography and in-situ measurements in 

a basin, several geomorphic indices have been introduced by researchers for the delineation of flood plains 

around the world [1,18-21]. Considering this extensive research, the classifications done by the Geomorphic 

Flood Index (GFI) outperforms other geomorphic indices in terms of higher accuracy and lower sensitivity to 

the input data; specially the return period, the type of DEM and standard flood maps, and the size of sub-basin 

envisaged for the calibration [21,22]. 

 Samela et al. [22] developed the Geomorphologic Flood Assessment (GFA) tool in QGIS software which 

delineates the river extents based on the GFI method, DEM and the standard flood risk map of a basin.  

This paper presents an innovative procedure for delineating flood maps in places which may lack detailed data 

and financially cannot support costly methodologies based on geomorphic methods and remote sensing data. 

The performance of GFI model in estimating flood extent and depth has been calibrated and evaluated with 
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CADDIES-2D hydraulic model in three basins in Iran with a 100-year return period. Moreover, the GFI model 

has been improved by introducing a constraint for the maximum hydrologically contributing area of a basin 

using the novel concept of Intensity-Duration-Frequency-Area (IDFA) curves. 

 

1.1.2. Methodology 

In order to calibrate and validate the performance of GFI model in estimating flood plain extent and depth, 

first the CADDIES-2D hydraulic model should generate the standard flood maps with a 100-year return period. 

Calibration of GFI model with CADDIES-2D provided a threshold to classify the whole basin into flooded 

and non-flooded areas. In addition, the novel concept of Intensity-Duration-Frequency-Area (IDFA) curves is 

introduced to confine the maximum hydrologically contributing area of a basin and improve the performance 

of GFI model. The flowchart of the presented methodology is illustrated in Figure 1 and different aspects of it 

are explained in more details, in the following sections. 

 

 
Figure 1. The flowchart of proposed method to simultaneously generate flood extent and depth using geomorphologic 

indices 
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1.1.2.1. CADDIES-2D hydraulic model 

The Weighted Cellular Automata 2D (WCA2D) version of CADDIES-2D model is utilized to produce the 

standard flood maps. The WCA2D is a diffusive-like model that neglects inertia and momentum conservation 

terms which has the following major features [5]: 

1. The ratios of water conveyed from central to the downstream neighboring cells (intercellular-volume) are 

computed using a fast weight-based method; 

2. The water volume moved between the central cell and the neighbors is confined by the Manning's and the 

critical flow equations. 

3. The adaptive time step and velocity, both are assessed within a larger updated time step to increase 

simulation speed and performance.  

The WCA2D model is capable of working on grids with different neighborhood types and cells and it can 

perform parallel computations on a multi-core CPU and graphics card GPU which makes it very fast and 

suitable for near real time applications. The corresponding application of WCA2D model called CADDIES-

caflood is publicly available on the webpage of the Centre for Water Systems at: http://cws.exeter.ac.uk.  

 

1.1.2.2. Geomorphic Flood Index (GFI) 

According to Samela et al. [21], the amount of GFI at each study point (green dot in Figure 2-a) is the natural 

logarithm of water depth (hr) in the hydrologically nearest waterway point (yellow dot in Figure 2-a) to the 

elevation difference (H) of those points (green and yellow dots in Figure 2-b) 

 

GFI = Ln (
hr
H
) (1) 

 

Where hr is calculated as a function of the hydrologically participating area upstream of the point under 

investigation (𝐴𝑟) using a power relation developed by Nardi et al. (2006): 

 

hr = aAr
n (2) 

 

Where a and n are the parameters of power function and can be calibrated with the data of hydrometric stations 

in a region. According to Eq. 1, the locations with GFI values ≥0 are located in the flood prone areas [28].  

 

 
Figure 2. A schematic description of the parameters used to derive the 𝐺𝐹𝐼: A) dotted blue line shows the 

hydrologically contributing area (𝐴𝑟) of the study location (green circle) B) the water depth (WD) estimated in a 

hypothetical cross-section (Manfreda et al., 2019); and C) the concept of maximum precipitable area (𝐴𝑅𝑇) delineated 

by red dotted line which can be smaller than 𝐴𝑟. 

 

Manfreda et al. [28] suggested that GFI can also estimate the maximum inundation depth, assuming that 

parameter “a” in Eq. 2 does not affect the calibration results of flood prone areas and that can be neglected: 
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GFI′ = GFI − ln(a) = ln(
𝐴𝑟
𝑛

H
) = ln (

h𝑟
𝑎𝐻
) (3) 

 

Where GFI’ acts as a surrogate GFI when ℎ𝑟 and H are equal [28]. Given this definition, the linear binary 

classification is used to divide the range of GFI’ values in a basin into flooded and non-flooded classes using 

a threshold value (τ). The normalized GFI’ boundaries (i.e. -1≤τ≤1) should be used and iteratively revised the 

portion of the basin employed for calibration. For every threshold there is a potential flood-prone area binary 

map, which is collated to a standard floodplain map (Figure 3). The detailed information about the linear binary 

classification has been presented in the work of Samela et al. [1], but for computing the optimal normalized 

threshold, it should be minimizing the sum of the false positive and the false negative values (RFP + RFN), 

imputing equal weights to the two amounts.  

 

 
Figure 3. Linear binary classification. 

 

Therefore, the estimated optimal threshold, 𝜏, can be used to derive the parameter 𝑎 of the scaling function 

[28]: 

 

𝑎 =
1

exp(τ)
 (4) 

 

Thereby, the values of river stage depth ℎ𝑟 in Figure 2-b can be estimated from Eq. (2). Once the water level 

in the river network is estimated, the next task is to determine the Water Depth (𝑊𝐷) in the adjacent areas. 

For each point of the basin, the difference between the elevation (𝐻) and the river bed is determined (see Figure 

2-b). At this point, the ℎ𝑟 values can be used to estimate the water depth (𝑊𝐷) on a cell by cell basis of the 

flood-prone areas, as in Eq. 5 [28]: 

 

𝑊𝐷 = ℎ𝑟 −𝐻 (5) 

 

In order to implement the GFI, Samela et al. [22] provided Geomorphologic Flood Assessment (GFA) plug-

in on QGIS software that can map the basin floodplain from a combination of geomorphological data extracted 

from the DEM layer, along with floodplain information usually available for part of the basin.  

 

1.1.2.3. Modification of the water depth (ℎ𝑟)  

According to Eq. (2), the contributing area (𝐴𝑟) of a study point (blue dotted border in Figure 2-a) can get 

accumulatively larger by moving downstream of a basin resulting in corresponding deeper river depths values 
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(ℎ𝑟). However, it should be considered that storms in a region with a certain return period have certain 

characteristics such as intensity and area of precipitation [29]. This fact is in contradiction with the assumption 

of GFI and parameter 𝐴𝑟, especially in large basins in arid and semi-arid regions. Therefore, it is suggested to 

put a limit on 𝐴𝑟 and change Eq. 2 as below: 

 

ℎ𝑟 ≈ {
𝑎𝐴𝑟

𝑛 𝑖𝑓𝐴𝑟 < 𝐴𝑅𝑇
  𝑎𝐴𝑅𝑇

𝑛 𝑖𝑓𝐴𝑟 ≥ 𝐴𝑅𝑇
 (6) 

 

Where, ART is the maximum precipitable area of a storm with a certain return period in the study area. In order 

to determine ART, it is suggested here to use the novel concept of Intensity-Duration-Frequency-Area (IDFA) 

curves of the storms in a study region. 

 

1.1.2.4. Intensity-Duration-Frequency-Area (IDFA) curves 

Historical records of rain gauges are necessary to determine rainfall characteristics of a basin. These 

characteristics are usually studied by developing Intensity-Duration-Frequency (IDF) curves [30] and Depth-

Area-Duration (DAD) curves [31]. The IDFs are obtained by fitting a theoretical extreme value distribution 

(e.g., Gumbel Type I) to the rainfall records to estimate the rainfall events associated with given exceedance 

probabilities [32]. However, the development of DADs requires isohyet maps obtained from different methods 

such as: rainfall gradient, simple classic statistical methods, and/or complicated geostatistical methods. 

Hershfield and Wilson [33] suggested that the spatial pattern of a specific storm (i.e. DAD) follows: 

 

𝑃̅ = 𝑃𝑚𝑎𝑥𝑒
−𝑘𝐴𝑚 (7) 

 

Where, 𝑃̅ (mm) is the average rainfall depth over a specific area 𝐴 (km2); 𝑃𝑚𝑎𝑥 is the rainfall depth at the 

center of storm; 𝑘 and 𝑚 are constant parameters that can be calibrated from the isohyet maps. While, IDFs 

provide temporal information about rainfall in a specific location, they do not give any information about 

rainfall spatial distribution, whereas DADs provide spatial information of a single storm. Therefore, it is 

suggested here to use a novel concept in hydrometeorology as Intensity-Duration-Frequency-Area (IDFA) 

curves introduced by Ghahreman [34] which represent all four necessary characteristics of precipitations in a 

basin. Rain gauge data within and around a basin can reveal rain centers; and regional IDFs (IDFRegional) can 

be driven by interpolation techniques [35]. The average probable precipitation of the design storm with a 

certain return period (𝑃̅) can be calculated by multiplying corresponding duration and intensity values within 

the IDFRegional curves. 𝑃𝑚𝑎𝑥 can then be infused into the DAD of the most intense storm recorded ever in that 

period. By calculating (𝑃̅/𝑃𝑚𝑎𝑥) ratios for any desired area and applying it to all points on the IDFRegional curves, 

the area dimension can be added to these curves. Thus, IDFAs can be used to determine the ART in Eq. (6). 

2.1.  

 

1.1.3. Study area 

This study focuses on the Frizi, Sarbaz, and Shapour basins in northeast, southeast and south of Iran, 

respectively (Figure 4). Table 1 provides the meteorological and physiographical characteristics of the study 

basins. Shapour basin is located in the Fars province with a semi-arid climate, Frizi basin is located on the 

northern slopes of the Binaloud Mountains in Khorasan Province with a semi-arid cold climate; and Sarbaz 

basin is located in the southern part of the Sistan and Baluchestan province with hot and dry climate. The areas 

delineated with dashed lines in figure 4 represent designated areas for the calibration of models which in 

Shapour basin is a normal fluvial watershed with mountains and plains, and in Frizi and Sarbas basins is an 

alluvial fan. Alluvial fans are triangular-shaped deposits of water-transported material where there is a rapid 

change in river slope and tend to be larger and more prominent in arid to semi-arid regions [23]. 
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1.1.4. Input data 

1.1.4.1. Digital Elevation Model (DEM) 

The Digital Elevation Model (DEM) is a digital map that contains the elevation of all points in a region. The 

DEM is usually produced and used as a raster structure in GIS software, where the value of each cell is the 

average height of a small piece of land. The DEM is widely used in physiographic studies and hydrology 

models, including the production of slope maps, the distribution of elevation changes, and sub-basin extraction 

[18]. DEM 30m derived from SRTM satellite data is considered as one of the most accurate DEMs among 

freely available DEMs [20]. Therefore, the DEMs of Frizi, Sarbaz, and Shapour basins were extracted from 

the USGS EarthExplorer website [24] and used in this part of the study (Figure 4). 

 

 
Figure 4. The locations, DEM SRTM 30 m, and alluvial fans of the studied basins: a) Shapour, b) Frizi, and c) Sarbaz, 

Iran. 

 

 
Table 1. The characteristics of Shapour basin and two alluvial fans of Frizi and Sarbaz. 

 Annual 

rainfall 

(mm) 

Average 

temperature 

(°C) 

Relative 

humidity 

(%) 

Latitude longitude Mean 

elevation 

(m) 

Watershed 

area (km2) 

Average 

slope 

(%) 

Sarbaz 

Basin 

90 35 21 N 29° 25’ E 38° 11’ 267 628 1.03 

The upstream watershed of calibration area: 505 58.57 12 

Frizi 

alluvial 

fan 

372 15 42 N 20° 36’ E 58° 48’ 1193 505 1.04 

The upstream watershed of calibration area: 2060 342.08 21 

Shapour 

alluvial 

fan 

510 23 49 N 29° 25’ E 51° 11’ 1311 2031 13.88 

The upstream watershed of calibration area: 1695 718.6 16.8 
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1.1.4.2. Hydrometric data 

The discharge records from hydrometric stations are necessary for generating the design flood hydrographs, 

which in turn are necessary for delineating the standard flood maps. For the purpose of this part of the study, 

a design flood with 100-year return period is selected. The maximum discharge of the design flood for the 

study basins is estimated using the data from hydrometric stations in the basins (Figure 4) and Gumbel 

probability distribution function. Finally, the design flood hydrographs of the study basins (Figure 5) are 

derived following the SCS runoff curve number method. The runoff curve number is an empirical parameter 

used in hydrology for predicting direct runoff or infiltration from rainfall excess developed by the USDA 

Natural Resources Conservation Service a.k.a. the Soil Conservation Service or SCS [25]. This efficient 

method is widely used in determining the approximate amount of direct runoff from a rainfall event in a 

particular area [26,27].  

 

 
Figure 5. The Hydrographs with 100-years return period for Ferizi, Shapour and Sarbaz basins. 

 

Figure 5 depicts that for a 100-year return period flood, the Shapour basin has a hydrograph with a very high 

peak discharge whereas Frizi and Sarbaz fans have lower peak discharges due to the lower steepness in the 

alluvial fans. Figure 5 also shows that Sarbaz basin has the longest concentration time. 

 

1.1.5. Results  

The Results and Discussion section should debate the strong points and flaws of the presented figures - for 

example, composite figures (such as Figures 7, 9, 10) should be commented as internal comparison. Moreover, 

it is necessary to compare your findings with those of the other authors that used similar analysis methods. 

This is the discussion needed to highlight the usefulness of your study. 

 

The methodology presented in this paper is implemented following the steps of Figure 3. In order to implement 

the GFA plug-in which is the corresponding application of GFI model, the required “DEM”, “Filled DEM”, 

“Flow direction”, and “Flow accumulation” maps of the study area, are obtained from DEM of SRTM (30m) 

using the “Fill”, “Flow direction” and “Flow accumulation” tools of the Hydrology toolbox in the ArcMap 

software. In order to achieve to the standard flood maps of the study areas, CADDIES-caflood which is the 

corresponding application of WCA2D model was utilized. The inputs of the CADDIES-caflood are DEM map 

(Figure 4) and hydrograph (Figure 5) of the basin; and the outputs are flood depth (m) and velocity (m/s) of 

the study areas with spatial resolution of 30 m. Figure 6 illustrates the 100-year flood-prone areas (a-c) and 

water depth results (d-f) of CADDIES-2D model for (1) Sarbaz, (2) Frizi, and (3) Shapour basins, respectively. 

According to Figure 6- a & b, the avulsion phenomenon in the stream path has been modeled suitably by 

CADDIES-2D in the Sarbaz and Frizi alluvial fans. Avulsion is the sudden change in the river path during 

large floods which carry the necessary power to rapidly change the landscape and usually occurs in Alluvial 

fans [36].  
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Figure 6. The 100-year standard flood maps (a-c) and flood depth maps (d-f) resulted from CADDIES-2D model for 

the (1) Sarbaz fan; (2) Frizi fan; and (3) Shapour basin, Iran. 

 
In the next step, the ART constraint are imposed on hr (Eq. 6) to prevent the GFA model from producing 

accumulatively bigger river depth values. In order to calculate ART, the IDFAs of study areas are plotted in 

Figure 7 following the section (2.3.4) and information acquired from the most severe storm from rain gauges. 

Based on Figure 7, the 𝐴𝑅𝑇  values for a 6-hour design storm with the return period of 100 years are 677, 168, 

and 210 km2 for Shapour, Frizi and Sarbaz basins, respectively. Then, the standard flood maps (fig 6 a-c) are 

used to calibrate the GFI’ threshold (τ) in Eq. 3 following the linear binary algorithm. Having all the required 

inputs, the GFA outputs are the 100-year floodplain of study areas presented in Figure (8), and the performance 

metrics including the calibrated threshold (τ), type 1 error (𝑅𝐹𝑃), sensitivity (𝑅𝑇𝑃), sum of errors (𝑅𝐹𝑃+ (1-

𝑅𝑇𝑃)), and model precision (AUC) which are presented in table 2. AUC equal to 1 represents 100% success in 

detecting flood prone areas with respect to the standard flood map [1]. It should be noted that modifying 

ℎ𝑟values in the GFI model produced different results which are presented under the name of “Modified GFI” 

in Figure 8 (c,f,i) and table 2. 
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Figure 7. IDFA curves for a) Shapour, b) Frizi, and c) Sarbaz basins. 

 
Table 2. The performance of linear binary classification of GFA model based on the GFI and modified GFI 

Basin name  τa RFP
* RTP

** RFP+(1- RTP)*** AUCb Ratio of calibration area (%) 

Sarbaz 
Modified GFI -0.25 0.11 0.17 0.94 0.42 

2.45 
GFI -0.24 0.12 0.16 0.95 0.40 

Frizi 
Modified GFI -0.23 0.45 0.58 0.87 0.53 

2.12 
GFI -0.25 0.47 0.55 0.89 0.51 

Shapour 
Modified GFI -0.28 0.10 0.98 0.12 0.96 

2.83 
GFI -0.30 0.11 0.95 0.14 0.93 

a optimal threshold value 𝜏,* false positive rate 𝑅𝐹𝑃, **true positive rate 𝑅𝑇𝑃, ***sum of errors 𝑅𝐹𝑃 + (1 − 𝑅𝑇𝑃 ), and b 

area under the curve AUC for basin. 

 
Based on table 2, locations with GFI’ values bigger than τ are inside the flood zone. Comparing AUC and 

RFP+(1- RTP) values also reveals that modified GFI has a better performance than GFI in all study basins, and 

that GFA model generally performs better in identifying flood prone areas in fluvial rivers (Shapour basin) 

than in alluvial fans (Sarbaz and Frizi). The visual inspection of flood maps in Figure 8 also proves the 

abovementioned findings. 
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Figure 8. The floodplain limits from CADDIES-2D model (Col. 1), GFI (Col. 2), and modified GFI (Col. 3) for the (1) 

Sarbaz fan, (2) Frizi fan, and (3) Shapour basin. 

 
In order to achieve the GFI flood depth of each study basin from Eq. 2, the parameter a is calculated from Eq. 

4 and 𝜏 values in table 2. Once the water level in the river network is estimated, the water depth (WD) in the 

adjacent areas are estimated from the difference in the elevation (H) between them and the river bed following 

Eq. 5. The flood depth maps of CADDIES-2D, GFI and modified GFI models for the study areas are presented 

in Figure 9.  
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Figure 9. Flow depth results of CADDIES-2D model (Col. 1), GFI (Col. 2), and modified GFI (Col. 3) for (1) Sarbaz 

fan; (2) Frizi fan; and (3) Shapour basin, Iran. 

 

Figure 9 illustrates that in comparison with the CADDIES-2D flood map, the GFI model is able to capture the 

general trend in WD variations, though it overestimates the WD in the Frizi and Shapour basins. This problem 

is mitigated in the results of modified GFI. Finally, the GFI calibrated thresholds (τ) are used in the rest of 

study areas to achieve complete 100-year floodplain maps (Figure 10). As can be seen in fig 10, the flood 

prone areas even in the most remote regions of the study basins have been delineated using only DEM maps. 

 
 

 
Figure 10. The modified GFI model output of flood prone areas for whole basin in (a) Sarbaz, (b) Frizi, and (C) the 

Shapour 
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1.1.6. Conclusion 

Conventional hydraulic methods of flood mapping require high computational capacities and multiple data 

sets, which despite their high accuracy, make them not applicable in the large scale ungauged regions. 

However, the results of these methods are available at smaller scales which can be generalized to large scales 

using geomorphological indices. Based on the literature, the GFI morphological flood index and its application 

GFA tool have the best performance in producing flood extents and also capable of giving a rough estimate of 

flood depth using only DEM maps and a standard flood map of a small portion of the study area. The work in 

this paper implements the GFI model and enhances its performance through imposing the constraint of 

maximum precipitable area (ART) which is estimated through generating Intensity-Duration-Frequency-Area 

curves. The IDFAs are a novel concept in hydrometeorology which represent all four necessary characteristics 

of precipitation in a basin. The performance of developed method was demonstrated by application to the Frizi, 

Sarbaz and Shapour basins in different parts of Iran. The inputs of this method are the DEM-SRTM-30m and 

the 100-year standard floodplain derived from CADDIES-2D model, which is used to find the optimum 

threshold (τ) of the binary classification of the GFI values. The results show that the GFA model has a high 

ability to delineate flood extents in the fluvial and mountainous basins (Shapour basin) while it cannot model 

the avulsion phenomenon in the alluvial fans (Sarbaz and Frizi basins). In terms of flood depth, despite 

overestimation, the GFI model is able to capture the general trend in the water depth variations. This problem 

is reduced by the modified GFI and it produces better flood depth results. Finally, the calibrated thresholds (τ) 

are used to generalize the GFI results to the whole study areas to achieve complete 100-year floodplain maps. 

It can be concluded that the GFI model is capable of estimating flood extents and depth in the large-scale 

ungauged basins with its best performance in the regions with steep slopes (e.g. mountains areas and fluvial 

rivers), and with more precaution in the flatter regions (e.g. plains and alluvial fans). 
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Part 2. Flood mapping and monitoring using Google Earth Engine 

 

1.2.1. Introduction 

Among the natural disasters, floods cause wide-scale damages to the properties, infrastructures and lives of 

millions of people around the world. By increasing the risk of floods as a result of climate change, the need 

for flood monitoring methods based on satellite-based Earth Observation (EO) data is becoming more 

important [1]. While the commonly used flood risk models have been shown to significantly under-estimate 

flood risk, the EO based methods provide synoptic, repeated views of potentially flooded regions [2]. 

Increasing the number of EO satellites has increased the spatio-temporal resolution of available data for 

studying water surfaces for different purposes such as agriculture, disaster management, and hydrology. 

Several studies have utilized Visible and Near-Infrared (NIR) images to detect and monitor surface water 

bodies (e.g. [3-6]) by considering positive values of Normalized Difference Water Index (NDWI) and/or 

Modification of Normalized Difference Water Index (MNDWI); values higher than an optimum threshold of 

NIR reflectances; and combining NIR data and the Normalized Difference Vegetation Index (NDVI). 

However, cloud presence, dense vegetation and turbid surface water are among the limiting factors for applying 

such methods by making visual barriers or changing the NIR/Red band reflectance ratio [7].  

The data acquired from Synthetic Aperture Radar (SAR) sensors can effectively detect smooth water surfaces 

based on their low backscatter values in comparison with non-water areas [8], regardless of the cloud cover, 

day and night, with spatial resolution comparable to visible and near-infrared satellite images [7]. Many studies 

tried to classify water pixels by applying a threshold on backscattered SAR values [6,9-11]. Others tried to 

identify flooded pixels based on change detection approaches using before, during and after flood SAR 

imagery [6,12-16]. However, backscattering from flooded vegetation or wind-affected open water surfaces is 

more complex due to the multiple-bounce scattering, which can be dealt with using both the amplitude 

(intensity) and phase components of the received microwave energy [17]. 

While the EO satellites can provide reasonably reliable estimates of large extent floods, their assimilation into 

hydraulic models or other types of data has been shown to improve flood extent estimates on a near real-time 

basis [18,19]. For example, digital elevation models (DEMs) can be used to constrain EO-based flood estimates 

to areas likely to experience flooding [20,21]. SAR data can be combined with the optical EO data and priori 

surface water datasets to allow for multi-scale flood assessment, an increase in observation density during 

flooding events, or automated training data selection [8]. 

The open access policy from operational EO satellites has enabled researchers to monitor land changes in the 

large scales [22]. The Sentinel-1A and -1B satellites are among such satellites providing global synthetic 

aperture radar (SAR) data with the nominal 6-day repeat imagery over Europe and nominal 12-day repeat 

imagery over the rest of the world, which is suitable for regular monitoring of change processes [23]. 

Considering the limitations of optical data for flood monitoring due to the cloud contamination or revisit time, 

having access to operational SAR EO data is an important development for disaster monitoring. The pre-

processing steps of SAR images still requires expertise and high computational power, even by using the free, 

open-source pre-processing software distributed by ESA [8].  

Cloud computing architectures allow users and developers to access entire EO data archives and reduce the 

need to download and store huge volumes of data [8,24]. The Google Earth Engine (GEE) is one of those cloud 

computing platforms which enables the development of global-scale data products using satellite image 

archives [25]. The GEE has been used at different EO monitoring applications such as: surface water [26-28], 

forest cover [29,30], cropland and soils [31,32]. One of the geospatial datasets that the GEE houses is a 

complete and continually updated archive of Sentinel-1 Ground Range Detected (GRD) data. Considering the 

complexity of SAR preprocessing steps, the provision of such data on the GEE represents a big step forward 

in applied SAR remote sensing. Additionally, the presence of other data sources, such as the entire global 

Landsat, Sentinel-2 or DEM SRTM archives, allow for relatively easy integration of diverse EO data sources. 

For example, the SAR surface water classification could be trained with the Sentinel-2 observations under 

clear sky conditions and the classification could then be extended to the cloudy areas using the SAR data [8]. 

The purpose of this part of the study would be to employ the GEE for monitoring two recent flood events in 

Iran and Italy using Sentinel-1 SAR and Sentinel-2 optical data. In this paper, we investigate the influence of 
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flooding on Sentinel-1 VV and VH SAR backscatter; Sentinel-2 multispectral water indices; and evaluate the 

accuracy of flood maps with standard flood maps. 

 

1.2.2. Methodology 

1.2.2.1. Flood mapping 

Flooded areas can be identified by applying supervised and unsupervised approaches on the Sentinel-1 and 

Sentinel-2 archives using built-in functions in the GEE [6,36]. For the supervised classification, a standard 

flood map from an authenticated data source can be used to train the Random Forest classification which exists 

in the GEE platform [37]. For the unsupervised classification, an optimum threshold can classify Sentinel-1 

backscattering difference and Sentinel-2 water spectral index into flooded and non-flooded areas. At the end, 

results can be improved by excluding areas with higher than 5% slope, less than 4 pixel neighbors, and 

permanent water bodies [38]. Figure 1 shows the methods and the procedures used for the flood mapping. 

In the following, different parts of the methodology have been explained in more details: 

 Backscattering variation: Two SAR images (one post-/co-flood and one pre-flood) can be used for change 

detection analyses [38]. SAR GRD data are radiometrically calibrated which can be averaged through a 

reducer command in the GEE. Surface changes due to flooding can be detected by calculating the ratio 

between the post- and the pre-flood images. An empirical threshold can be applied for the classification of 

flooded areas. 

 Multispectral Image Processing: The NDVI, NDWI, and MNDWI indices can be calculated based on 

normalized differences of NIR-RED, GREEN-SWIR, and RED-SWIR bands of a single Sentinel-2 image 

[38]. Flooded and non-flooded pixels can be discriminated by an empirical threshold based on a visual 

approach; we set the threshold that best fits with the EMS maps. 

 Supervised classification: this technique can be applied to classify both Sentinel-1 and Sentinel-2 data. 

The floodplains provided by EMS can be used in training areas selected over a composite band image. 

Then, a supervised classification of the images can be performed using Random Forest function in the 

GEE. A random-forest model is an ensemble-learning technique for which a multitude of decision trees is 

constructed to explain the spatial relationships between the occurrence of floods and the related factors for 

classification and regression [39]. 

 

1.2.2.2. Flood monitoring 

A simple and fast flood monitoring system can also be presented within Google Earth Engine platform based 

on time-series analysis of the water indices obtain from Sentinel-1 and sentinel-2 satellites. Surpassing the 

studied water index from a threshold can raise the flood alarm in the study area indicating that the study point 

in the area has been inundated. Figure 2 shows the methods and the procedures used for the flood monitoring. 

 

1.2.2.3. Flood Map Validation and Quality Statistics 

The final step of the work is the validation and quality assessment of all the produced flood area maps (semi-

automatic and manual). To do this task, we used the flood maps made by official authorities and published 

online as a benchmark (i.e. Copernicus EMS - Mapping). The theory behind the validation procedure in the 

GEE is described in the following [38]: 

a. Both the produced flooded area maps and the official reference maps are converted into a Boolean raster 

format (1—flooded or 0—not flooded) 

b. The two raster are crossed, and a raster map with four possible values is generated: False negative (FN), 

false positive (FP), true positive (TP), and true negative (TN). TP represents the areas correctly classified 

as flooded, TN are the areas correctly classified as not flooded, FN indicates the undetected flooded areas, 

and FP are the not-flooded areas erroneously classified as inundated.  

c. The accuracy of the classification is evaluated by computing the flood-mapping ratio (Equation (1)) and 

the non-flood ratio (Equation (2)): 

 

FR (%) = TP/ (TP + FN) (1) 

NFR (%) = TN/ (TN + FP) (2) 
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Figure 1. Flood mapping methodology used in this part of the study. 

 

1.2.3. Site and event descriptions 

In this part of the study, we focused our evaluation of the method over three events: (1) floods in December 

2013 over Metaponto, Italy; (3) floods in March 2019, over Khuzestan, Iran; and (2) floods in October 2020 

over Piedmont, Italy. Each of these sites and events are briefly described below.  
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Figure 2. Flood monitoring methodology used for this work 

 

 
 

1.2.3.1. Metaponto 

The study area is located in southern Italy, in Basilicata, in the Gulf of Taranto, on the Ionian Sea. It is enclosed 

between the Cavone (south-west) and Bradano (north-east) rivers, up to the Appulo-Lucano Apennines in the 

north-west and the Ionian Sea in the south-west. The choice was made for the importance of the archaeological 

remains in the territory of the city of Metaponto, in recent years several times at risk due to natural and 

anthropogenic events (fires, floods, change of the shoreline). The area covers about 132 km2 and this extension 

has been considered for the flood analysis (Figure 3). According to Lacava et al. [43], a major flood happened 

on 1-2 Dec 2013 which involved all of the rivers. Since the flood in 2013 happened before launching the 

Sentinel 1 and 2, this event was studied by the first cloud free Landsat 8 Operational Land Imager (OLI) and 

Thermal Infrared (TIRS) Collection 2 Level-2 Science Products 30-meter multispectral data (on 6 December 

2013).  
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Figure 3. The general view and location of Metaponto Plain, Italy. 

 

1.2.3.2. Shushtar, Khuzestan, Iran 

According to the Iranian Water Resource Management Co. (WRM), two major storms happened within one 

week on 25 Mar 2019 and 1 Apr 2019 (Fig. 4a) over the Grand Karoun Basin located in Khuzestan Porvince, 

southwest Iran (Fig. 4b). As a consequence, a major flood occurred in this province causing devastative 

damages to urban and agriculture sectors. Moreover, there are many historical sites in the region dating back 

to 500 B.C. and most of them located near water resources including the UNESCO heritage site Shushtar 

Historical Hydraulic System (Fig. 4c). 
 

 
(a) (b) (c) 

Figure 4. The general view and location of (a) Khuzestan Province in southwest Iran, (b) Grand Karoun Basin and 

upstream Karkheh, Dez and Gotvand dams, (c) the study area around the Shushtar City as well as the location of 

Historical sites and study points. 
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1.2.3.3. Farigliano, Piedmont, Italy 

On the 3rd of October 2020 a storm affected the North of Italy, with heavy rain and strong winds causing great 

damages in the northern and western part of Piedmont region (Figure 5a) where the amount the heavy rainfall 

caused the overflow of several rivers and flooding of many areas. Especially, the overflow of the Sesia river 

caused interruption of roads, the collapse of a bridge and the flooding of several areas [33]. For the purpose of 

this research, flooding at Farigliano area was investigated (Figure 5b) 
 

 
(a) (b) 

Figure 5. The general view and location of (a) Piedmont Region in Northwest Italy, (b) Sessia River and the town of 

Farigliano. 

 

1.2.4. Data 

Sentinel-1A and Sentinel-1B launched by the ESA Copernicus program in April 2014 and 2016, respectively. 

Sentinel-1 satellites acquire data in four imaging modes: interferometric wide-swath (IW), strip map (SM) 

extra wideswath (EW) and wave (WV) mode [23]. SAR sensors illuminate the land surface with a range of 

view and incidence angles, which makes the radiometric correction necessary for the acquired imaged [34]. 

The GEE hosts Sentinel-1 Ground Range Detected (GRD) data acquired in EW, IW and SM modes, from 

which we used the IW acquisition mode for our study. Operational IW imagery are acquired at nominal 6-day 

intervals over Europe and nominal 12-day intervals over the rest of the Earth's surface, with higher repeat 

frequencies at higher latitudes and areas where targeted acquisitions are planned [8]. 

Sentinel-2 constellation with two satellites, S-2A and S-2B, launched in June 2015 and on March 2017, 

respectively, characterized by a revisit time of 5 days in Europe and 5 to 10 days in the rest of the world. Data 

are acquired in 12 bands with spatial resolution ranging from 10 to 60 m [35]. For our study, we focused on 

the RGB, NIR and SWIR bands (10 to 20 m spatial resolution). 

The Copernicus Emergency Management Service (EMS) provides free of charge mapping service in cases of 

natural disasters throughout the world using satellite imagery and other geospatial data [33]. Copernicus EMS 

- Mapping service produces maps during all phases of the emergency management cycle in two temporal 

modes: (1) Rapid Mapping consists of the provision of geospatial information within hours or days from the 

activation; (2) Standardized mapping products are provided: e.g. to ascertain the situation before the event 

(reference product), to roughly identify and assess the most affected locations (first estimate product), assess 

the geographical extent of the event (delineation product) or to evaluate the intensity and scope of the damage 

resulting from the event (grading product) [33].  
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1.2.5. Results 

1.2.5.1. Visual inspection  

The RGB Natural Color (Red = Band 4; Green = Band 3; Blue = Band 2) (Fig. 6a), and the RGB Vegetation 

Analysis (Red = Band 6 SWIR 1; Green = Band 5 NIR; Blue = Band 4 Red) (Figure 5b) of the acquired image 

were generated to give the overall situation of Metaponto at the date of flood in December 2013. The visual 

inspection of Fig. 6 shows that great amount of sediment has entered the Gulf of Taranto. 
 

 
Figure 6. Localization of the Region of Interest. In background the RGB (a) Natural Color (Red = Band 4 Red; Green = 

Band 3 Green; Blue = Band 2 Blue) and (b) Vegetation Analysis (Red = Band 6 SWIR 1; Green = Band 5 NIR; Blue = 

Band 4 Red) of Landsat 8 C2 L2 Imagery data acquired on 6 December 2013. Archaeological Sites: 1. Metaponto 

excavation; 2. Castrum; 3. Ancient remains; 4. Castello Torremare. 

 

For other study areas, Sentinet-2 natural-look RGB images (Band 4,3,2) of the study areas, with reasonable 

cloud coverage, were utilized to produce the time-lapse of flood evolution to identify the different stages of 

events (Fig. 7 and 8 for Shushtar and Farigliano, respectively). The visual inspection of Fig. 7 and 8 indicates 

that the maximum inundation happened on 2019-Apr-08 and 2010-Oct-03 for flood events in Shustar and 

Farigliano, respectively.  
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(c) 2019-03-29 
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(a) 2020-09-26 (b) 2020-10-03 

 
(c) 2020-10-08 (d) 2020-10-13 

Figure 8. The time-lapse of the natural look images from Sentinel-2 for the study area Farigliano, Piedmont (Italy). 

 

 

1.2.5.2. Spectral Index analysis 

Figure 9 represents the raster maps of the Landsat 8 NDVI, MNDWI and NDWI indices for Metaponto study 

area relating to the December 2013 flood as generated by GEE code. Since the nearest image to the flood event 

from sentinel-2 were contaminated by clouds, the Landsat image was replaced for the purpose of this part of 

the study. According to Figure 9, MNDWI had the best performance to identify flooded areas in comparison 

with the Fig. 8. Thus, the flood map of the study area was generated by thresholding the raster histogram of 

Figure 9a into flooded and non-flooded categories (Figure 10). Also the results of Lavaca et al. [42] from the 

same flood were added to Figure 10 to evaluate the results. As can be seen in Figure 10, not only the flood 

map obtained from Landsat-8 MNDWI has a good consistency with those of Landsat-7 NDVI (Figure 10a) 

and MODIS and VIIRS RST-FLOOD algorithm (Figure 10b), but also it outperforms them considering the 

layout of the stream network and the spatial resolution of the maps (Figure 10c).  
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Figure 9. The raster maps of the (a) Landsat 8 NDVI, (b) NDWI and (c) MNDWI indices for the study area relating to 

the 1-3 December 2013 flood. Archaeological Sites: 1. Metaponto excavation; 2. Castrum; 3. Ancient remains; 4. 

Castello Torremare. 

 

 
Figure 10. The flood map of the study area based on (a) thresholding the Landsat 7 NDVI raster on 5 December 2013; 

(b) anomalous pixels detected by RST-FLOOD algorithm on 5 December 2013 for MODIS (pink) and for VIIRS 

(violet); and (c) thresholding the Landsat 8 MNDWI raster on 6 December 2013. Figures 3a&b have been adopted from 

Lavaca et al. [42]. Archaeological Sites: 1. Metaponto excavation; 2. Castrum; 3. Ancient remains; 4. Castello 

Torremare. 

 

For other study areas including Shushtar and Farigliano, the same multispectral indices but from Sentinel-2 

data were generated using the “normalized.Difference” command in the GEE. Figure 11 depicts that these 

indices have a relatively good with the EMS reference flood maps in identifying water surfaces and inundated 

areas. Comparing NDWI maps in figure 11 with the natural looks in Fig. 7 and 8 reveals that despite having a 

higher spatial resolution, NDWI is more sensitive to urban smooth surfaces such as rooftops and bare soil 

surface being mistaken with the flooded areas.

NDVI NDWI

2 

MNDWI 
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(a) (b) (c) 

 
(e) (f) (g) 

Figure 11. Sentinel-2 images of Shushtar, Iran (top) and Farigliano, Italy (bottom) were processed by different available water body indices using GEE. (a) and (e) NDVI, (b) and 

(f) NDWI, and (c) and (g) MNDWI. The normal river body and the observed  event by the Copernicus EMS were also delineated by green and black polygons, respectively.
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1.2.5.3. SAR backscattering change detection 

Another method for detecting flooded areas with the Sentinel-1 SAR imagery is the classification of 

backscattering ratio between two images before and after the flood event using 

“(after_image.divide(before_image)).lt(threshold)” command in the GEE. Bentivenga et al. [41] studied a 

recent flood in Metaponto on 11 November 2019 with the Sentinel 1 SAR images that was not due to the 

overflow of the main streams, but rather to the failure of the reclamation channels. In this case, the flood event 

was investigated by both Sentinel 1 and 2 images to provide a better vision of the event. The NDWI map of 

the study area was generated by Sentinel-2 image on 11 November and pixels with the negative values were 

classified as flooded areas. Moreover, the difference in the VH band between the first Sentinel-1 image before 

and after the flood was calculated and pixels with the difference greater than 1.15 were identified as flooded 

areas (Figure 12). 

 

 
Figure 12. Sentinel-2 NDWI classification on 11/11/2019 (light blue) and Sentinel-1 before-and-after difference 

classification (dark blue). The image finds a useful comparison in [41, Figure 8]. 

 

For other study areas including Shushtar and Farigliano, the same procedure was applied for the Sentinel-1 

SAR data and Figure 13 illustrates the results of SAR backscattering change detection for these study areas. 

Blue areas represent the flooded zones. Comparing the EMS standard flood maps (area delineated with the red 

line in Fig. 13) with the resulted SAR maps reveals that SAR data underestimate the flood extents specially in 

highly vegetated areas such as Piedmont, while the results in less vegetated areas such as Khuzestan is more 

consistent with the optical results and EMS maps.  
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(a) (b) 

Figure 13. Sentinel-1 SAR VH backscattering change detection results for (A) Shushtar, Iran; and (B) Farigliano, Italy. 
Blue areas represent the flooded zones 

 

1.2.5.4. Supervised classification 
In order to perform the supervised classification on the Sentinel-1 and Sentinel-2 imagery in the GEE platform, 

the Random Forest algorithm was employed using “ee.Classifier.smileRandomForest()” function and the 

classifications were trained based on the EMS maps. Sentinel-1 VV and VH bands, and all of the Sentinel-2 

bands were introduced to GEE as the prediction bands. This selection of bands was in line with other studies 

(e.g. 7 and 38). Figures 14 represents the results of classification in Shustar and Farigliano study areas on the 

closest available Sentinel-1 image to the flood events regardless of the weather condition as opposed to closest 

cloud-free Sentinel-2 imagery. The overall accuracy based on a Confusion Matrix between the training points 

and validation points were also reported by “ee.Classifier.smileRandomForest()” function of GEE (table 3). 

Table 3 demonstrates that while Sentinel-2 provides flood maps with high accuracy in the cloud free 

conditions, Sentinel-1 is capable of producing acceptable results even in the cloudy conditions. 
 

Table 3. Agreement statistics between GEE flood prediction maps and Copernicus EMS vector data layers for 

Shushtar (Iran) and Farigliano (Italy). 

    Shustar, Khuzestan Farigliano, Piedmont 

Sentinel-1 Sentinel-2 Sentinel-1 Sentinel-2 

Validation overall accuracy 0.813 0.980 0.718 0.846 
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(a) (b) 

 
(c) (d) 

Figure 14. Results of Random Forest classification based on sentinel-1 (VV and VH bands) and Sentinel-2 (all bands) 

composite images for (a) and (b) Piedmont (Farigliano); and (c) and (d) Khuzestan (Shushtar), respectively. 

 

1.2.5.5. Flood monitoring 

After delineating the most apparent flooded areas in Metaponto according to Figures 10 and 12, the GEE was 

utilized to extract the variations of the Landsat-8 MNDWI values at five study points inside the flooded areas 

(Fig 10c) from 2013 to the present to investigate any apparent pattern in this parameter (Figure 15). The reason 
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behind using Landsat-8 imagery instead of Sentinel-2 in Metoponto was that it provided cloud free images 

around the period of our study flood.  

 
Figure 15. Time Series of the MNDWI in five study points which are prone to flooding using Landsat 8 images in the 

GEE. 

 

Table 2 lists six major floods and their antecedent rainfalls in the Metaponto Plain since 2013. Comparing 

Figures 15 with the information in table 2 reveals that the dramatic drop in the MNDWI matches with the 

occurrence of the three floods with the highest 30-day antecedent rainfall (i.e. October 2013, November 2013, 

and November 2018). Other floods could have been detected, but they might have been omitted due to the lack 

of cloud free images, or their antecedent rainfalls were not big enough to inundate study points. 
 

Table 2. Flood records in the Metaponto region along with their antecedent rainfalls that caused them. Adopted from 

[41]. 

Date River Basin Antecedent rainfall 

  1 day 30 days 

6-8/10/2013 Bradano, Basento 122 139.8 

30/11/2013 to 02/12/2013 Bradano, Basento, Cavone, Agri, 

Sinni 
142 325 

4-5/10/2014 Bradano, Basento, Cavone, Sinni 96.2 121.2 

16-18/03/2016 Bradano, Basento, Cavone, Agri, 

Sinni 
12.4 101.8 

22-23/10/2018 Cavone, Agri, Sinni 20.8 239.2 

11-12/11/2019 Bradano, Basento, Cavone, Agri, 

Sinni 
37 51.8 

 

According to Fig. 15, it can be assumed that values below -0.8 in the time-series of MNDWI can raise the 

alarm for detecting a flood event. Based on this assumption, it is also visible in Figure 15 that there might be 

another major flood in November 2020. Thus, the Landsat-8 RGB image on 30 Nov 2020 was investigated for 

the possible flood event and as can be seen in Figure 16a, signs of flooding are evident in the study area. Figure 

16b also reveals flooded areas as identified by thresholding the Landsat-8 MNDWI on 30 Nov 2020 as well as 

Sentinel-1 before-and-after difference classification. Sentinel-2 cloud coverage during the flood did not permit 

to extract flooded areas. 
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Figure 16. (a) Bands 6,5,4 RGB image of Landsat-8 image on 30 November 2020; and (b) flooded regions based on 

Landsat-8 MNDWI classification on 30 November 2020 (dark blue) and Sentinel-1 before-and-after difference 

classification (light blue). Archaeological Sites: 1. Metaponto excavation; 2. Castrum; 3. Ancient remains; 4. Castello 

Torremare. 

 

For other study areas including Shushtar and Farigliano, a number of study points were also determined within 

the flood prone areas and the averaged time-series of Sentinel-1 VV and/or VH backscattering values as well 

as Sentinel-2 water spectral indices for that points were extracted in the GEE platform using 

“ui.Chart.image.seriesByRegion({imageCollection.select('water_index'),regions,reducer:ee.Reducer.mean()}

);” (Fig. 17). As mention before, the maximum inundation in Shustar and Farigliano happened on 2019-Apr-

08 and 2010-Oct-03, respectively. Inspecting Fig.17 also reveals that the timeseries of Sentinel-1 VV and VH 

bands as well as MNDWI index calculated from Sentinel-2 RED and SWIR bands also recorded such events. 

By the beginning of floods, VV, VH and MNDWI started to decline until they reached to a Trough (or valley) 

at the day of maximum inundation. By receding water from the study points in the flooded areas, the above-

mentioned parameters returned to their normal states. In general, it can be said that in the inundated areas there 

was a detectable signal which can be detected to set off potential flood alerts. 
 

  
(a) (b) 

Figure 17. time series of Sentinel-1 VV band, VH band, and Sentinel-2 MNDWI index during the floods. 
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1.2.6. Discussions 

In this part of the study, we assessed the capabilities of the GEE for rapid flood mapping and monitoring in 

the near real-time applying supervised and unsupervised methods on the Sentinel-1 and Sentinel-2 data for the 

two recent flood events in Iran and Italy. This study highlights the benefits of cloud computing platforms like 

the GEE to allow for rapid analysis of satellite data in near real-time, in support of disaster monitoring and 

management activities. Using our algorithm on the GEE, we were able to produce flood maps shown to be 

highly similar to existing authenticated Copernicus EMS flood maps (84% overall accuracy), suggesting that 

this approach is highly suitable to operational and disaster management purposes. The flood maps were later 

manually refined with the help of ancillary data such as digital elevation models (DEMs), and constant water 

bodies.  

The study points out some drawbacks of flood mapping based on the use of SAR and multispectral satellite 

data. In the latter case, the main limitation is represented by cloud cover affecting co-flood multispectral 

acquisitions. The presence of dense urban areas and forests affects both SAR and multispectral based flood 

mapping. High spatial resolution is also a key factor when mapping floods in dense urban areas, and it is one 

of the limitations of the free of charge satellite data approach. However, despite such drawbacks the use of 

freely available satellite data allowed us to map inundated areas with high accuracy for all study areas. 

For future works, it is suggested to develop a Decision Support System (DSS) that integrates with the GEE 

cloud platform and other models and data sources for a user-friendly flood observing system. Such a system 

can provide relevant maps, alerts and statistics for flood emergencies. 
 

1.2.7. Conclusion 

The set of tools offered by Google Earth Engine is extremely useful and performing in the context of Remote 

Sensing analysis applied to the monitoring and management of risk in areas of natural and archaeological 

interest. The possibility of being able to integrate several data sets in a rather simple way, without having to 

employ hardware resources for storage, and hardware and software for computation, is definitely the greatest 

strength of this tool. In addition, this tool has proven to be versatile in many ways, as many as the possible 

fields of use, in multi-sensor/platform and multi-temporal analysis, adapting itself through simple JavaScript 

programming to several contexts and needs. Using combined data, as herein proposed, is possible to overcome 

the limits related to a single type of sensor (optical), in favor of a combined use with other sensors such as 

Synthetic Aperture Radar (SAR) [40, 44], whose data are implemented in the Google Earth Engine datasets. 

The utilization of GEE cloud platform also facilitated the implementation of different algorithms and analyses 

while removing the need for the prolonged steps of downloading and preprocessing the data. Moreover, as 

already tested in previous studies and herein proven, the methodology, once structured into a robust script, can 

be re-applied and scaled in different contexts and domains, making Google Earth Engine great for cross-

platform analysis. 
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Chapter (2): Soil water balance modeling 
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Part 1. Soil Moisture Estimation Using Physical Models and Downscaled RS 

Data 

 

2.1.1. Introduction 

Spatiotemporal distribution of root zone soil moisture (RZSM) across massive areas of land significantly 

contributes to lots of meteorological, hydrological, and agricultural applications [1,2]. Moreover, RZSM 

estimation at different spatiotemporal scales has a substantial role in strategic water resources management 

[3]. RZSM is a key storage parameter governing mass and energy partitioning associated with runoff and 

evapotranspiration (ET) [4]. The temporal evolution and spatial distribution of RZSM are affected by land-

use, precipitation, soil texture, topography, and various meteorological variables [3]. 

Having gathered in the field, soil moisture (SM) measurements—typically known as in situ measurements—

can be generally retrieved from low- or high-density networks of point measurements. To determine network 

density, the amount and assembly of tools, project budget, and study area should be taken into account [5]. 

Pointwise-scale SM measurements are conducted using ground-based SM methods. These measurements fail 

to demonstrate SM values for adjacent areas due to the large SM spatial heterogeneity on a vast array of scales 

(e.g., [6–8]). Likewise, large-scale ground-based SSM extraction through geostatistical methods is not suitable 

due to the large spatial heterogeneity. On the other hand, there are yet no dense SM-monitoring networks in 

many large areas. Therefore, SM measurement on different scales with ground-based instruments is still 

challenging. 

Recent technological and theoretical advancements have paved the way for using remote sensing techniques 

in measuring SM content. Active and passive microwave observations have been widely used to estimate SM 

(e.g., [9–11]) and the SSM products are freely available for many applications. Table 1 summarizes the 

specifications of some of the sensors providing remotely sensed SM products [12,13]. 

 
Table 1. Active and passive soil moisture products. 

Website 

Spatial 

Resolution 

(km-) 

Temporal 

Resolution 

(Day) 

Product 

Level/Version 
Space Agency Platform Type Sensor 

https://smap.jpl.nasa.gov/ 

(accessed on 11-Apr-2018). 

3 (Active), 

36 (Passive) 
1 L3 NASA SMAP Passive SMAP 

http://www.esa.int/Our_Activitie

s/ accessed on 11-Apr-2018) 
40 1 L2/V6 ESA SMOS Passive MIRAS 

https://nsidc.org/data/amsre 

accessed on 11-Apr-2018) 
25 1 L3/V2 NASA, JAXA AQUA Passive AMSR-E 

https://hydro1.gesdisc.eosdis.nas

a.gov/ accessed on 11-Apr-2018) 
25 1 L3/V1 NASA, JAXA GCOM-W1 Passive AMSR2 

https://trmm.gsfc.nasa.gov/ 

accessed on 11-Apr-2018) 
25 1 L2/V1 NASA, JAXA TRMM Passive TMI 

https://www.ipf.tuwien.ac.at/ 

accessed on 11-Apr-2018) 
25.5 1 L2 EUMETSAT, ESA METOP Active ASCAT 

https://podaac.jpl.nasa.gov/SSMI 

accessed on 11-Apr-2018) 
25 1 - NASA DMSP Passive SSM/I 

 

Satellite-derived remotely sensed SSM products have their own advantages, including the accessibility of 

global-scale measurements at a continuous spatiotemporal resolution (STRs). Nevertheless, satellite-based 

products are currently accessible at low spatial resolutions, rendering them useless for small-scale agricultural 

applications and hydrologic models [14,15]. The satellite-derived product validation process is severely 

restricted in the presence of ground-based networks. Recently, research has focused on improving the 

estimated SSM of satellite-derived products by applying various algorithms connecting SSM with variables 

like brightness temperature, precipitation, vegetation, and so on [2,15–18]. The majority of techniques applied 

to derive high-resolution SM from synergies between microwave and optical observations rest upon triangular 

and trapezoidal approaches. [18,19] proposed an empirical polynomial fitting downscaling approach based on 

the frequently used triangular feature space formed by surface temperature (Ts) and vegetation index (VI). 

Here, high spatial resolutions are expressed as a polynomial function of land-surface temperature (LST), 

http://www.esa.int/Our_Activities/
http://www.esa.int/Our_Activities/
https://nsidc.org/data/amsre
https://hydro1.gesdisc.eosdis.nasa.gov/
https://hydro1.gesdisc.eosdis.nasa.gov/
https://trmm.gsfc.nasa.gov/
https://www.ipf.tuwien.ac.at/
https://podaac.jpl.nasa.gov/SSMI
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Normalized Difference of Vegetation Index (NDVI), and opticothermal data-derived surface albedo as a 

region/climate conditions-specific regression formula. The polynomial fitting downscaling approach was 

employed to downscale SM and ocean salinity (SMOS), AMSR-E SM with high-resolution surface variables 

from Meteosat second-generation spinning enhanced visible and infrared imager (MSG-SEVIRI) or moderate 

resolution imaging spectroradiometer (MODIS) observations (see, for example, [20–24]). 

Microwave sensor-derived SM data are immediately associated with the surface soil layer (0.2 cm to 5 cm) 

[25,26]. However, the largest part of the energy and water budgets of an ecosystem depends heavily on the 

spatial distribution of RZSM. Examining the correlation between SSM and RZSM in various studies reveal 

that RZSM is a function of SSM [27–29]. It has been particularly challenging to delineate the analytical 

relationships between SM and SSM in lower soil layers (see, for example, [30–33]), requiring further 

investigation. Studies have been conducted on how RZSM is estimated from SSM [34–37]. The presented 

methods involve simple statistical relationships with physically based methods. They require a series of 

experimental parameters alterable with soil type and vegetation. Here, soil profile moisture is estimated by 

assuming the conditions of a hydraulic balance between momentary SSM and soil profile moisture [37,38]. 

By solving a simple water balance equation for arid and semi-arid zones, [37] developed a soil moisture 

analytical relationship (SMAR) model to express the relationship between RZSM and SSM. The results of 

implementing the SMAR model on measuring SM at different depths indicated that this model could predict 

RZSM on both local and regional scales [29,37,39]. SSM is one of the main parameters in the SMAR model, 

which can use satellite-based SSM data to estimate RZSM [29,39]. By applying remotely sensed SSM TRMM-

TMI products (with coarse resolution 25 km), ref. [39] evaluated the estimated RZSM using the SMAR model 

at several stations in North America. Although satellite-based SSM products represent large-area spatial mean 

and assign the data to a specific point therein, it could not be effective despite being successful in some cases. 

They proposed in their study to increase the resolution using downscaling techniques [39]. 

The spatiotemporal accessibility and accuracy of SSM and RZSM measurements are significant components 

to obtain optimal results in a variety of applications. There are also extremely restricted resources accessible 

to reclaim accurate SM measurements in the Rafsanjan plain (RP). Thus, this part of the study will assess 

AMSR2 data quality using REC-P55 SM sensors manufactured by Ansari and Hassanpour [43] and apply a 

downscaling approach to better characterize satellite-derived SSM when traveling above the study area 

(Rafsanjan Plain). The performance of this method will be evaluated based on the differences between ground-

based and satellite-derived SSM measurements. The downscaling method used consists of a simple linear 

equation that correlates AMSR2 SM with three parameters retrieved from MODIS: Albedo, LST, and 

normalized difference vegetation index (NDVI). Afterwards, to estimate RZSM, the downscaled SSM values 

will be utilized in the SMAR model and the results will be compared with the measured data. At the end, it 

can be said that the purpose of this part of the study was to provide a methodology to implement the downscaled 

SSM values to prepare soil profile maps at 1-km resolution in a study area. 

At the end, a summary of the established and emerging soil moisture retrieval methods as well as the scientific 

challenges seem necessary to understand the milestones in this field of study. According to a latest review, the 

state-of-the-art topics can be summarized into five items [2]: 

1. VIS/NIR, TIR, and microwave are currently the three main data sources for global SSM monitoring. The 

VIS/NIR and TIR data have higher spatial resolution and can easily be affected by clouds, while 

microwave data have lower spatial resolution and can provide all-weather data coverage. To overcome 

the gaps between these sources of data, the synergic multi-band SSM retrievals should be considered. 

2. Considerable efforts have been made in the retrieval of two Land Surface Temperature (LST) and SSM 

using passive microwave observations and auxiliary data. However, SSM and LST are codependent 

making the retrieval process difficult. Moreover, obtaining accurate auxiliary information such as 

meteorological parameters and soil texture is difficult due to clear-sky dependency and low spatial 

resolution, respectively. To solve this problem, it is essential to simultaneously retrieve LST and SSM 

from only passive microwave data to reduce the number of unknown parameters and make the retrieval 

independent of auxiliary information. 

3. The target accuracy of RMSE of 0.04 m3/m3 between the satellite and measured SSM data has been the 

criterion for validating the SSM products, however, scientists suggested that distinguished target 

accuracies should be determined for different combination of surface moisture status, soil texture, and 

vegetation coverage. 

4. In order to validate remotely sensed SSM data, in situ SSM measurements with a fixed depth of 5 cm are 

frequently used. However, VIS/NIR and microwave data can reflect SSM with only a few millimeters and 

centimeters, respectively, mostly depending on SSM content within the soil column and frequencies used 
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for detecting SSM. Therefore, it seems that currently there is no good way to solve the contradiction of 

sensing depth, however, post-processing steps (e.g., assimilation technology and the entropy theory) can 

mitigate this problem. 

5. The estimation of RZSM from satellite SSM has been increasingly proposed by a number of 

investigations. The possible approaches for obtaining such data are (a) assimilating microwave SSM data 

into land surface models; (b) exponential filter and the analytical relationship between RZSM and SSM; 

and (c) using the P-band SAR with much deeper penetration depth due to its longer wavelength. However, 

satellite SSM accuracy and soil texture distribution are among the great challenges to obtain RZSM at 

present. 

 

2.1.2. Methodology 

2.1.2.1. AMSR2 SSM Downscaling 

The SSM data are one of the most important input parameters to be used in the RZSM estimation model, 

though it is affected by several factors, such as daily rainfall, impermeable areas, land-use, soil temperature 

and type, and vegetation density, introducing high variability even in small scales. Thus, any coarse resolution 

SSM data (>1 km) is not expected to represent variability of this parameter in small-scale application. 

Downscaling generally aims to set up either a physically based model or a statistical correlation between fine-

scale auxiliary variables and coarse-scale SM [44]. Previous studies proved that there is a correlation between 

the SSM, topographic/vegetation characteristics, and soil properties [45,46]. This information is applicable 

during downscaling because the assessment of the relationships between SSM and for example, soil texture 

and topography, typically demands comprehensive observations. The approach below was adopted to enhance 

satellite-derived continuous spatiotemporal SSM measurements over the Rafsanjan Plain. The downscaling 

method used here was initially released by [19] and has been implemented formerly by [47]. Based on this 

method, remotely sensed SSM retrieved from AMSR2 at a 25 km spatial resolution could be downscaled to a 

1 km spatial resolution by utilizing a simple linear equation in accordance with parameters estimated using a 

regression model founded on three physical properties (i.e., albedo, LST, and NDVI) at a MODIS-retrieved 1 

km spatial resolution. The downscaling technique with respect to the above-mentioned triple parameters is 

expressed by Equation (1) [19]: 

𝜃𝑠 =∑∑∑𝑎𝑖𝑗𝑘𝑉
𝑖

𝑘=𝑛

𝑘=0

𝑗=𝑛

𝑗=0

𝑖=𝑛

𝑖=0

𝑇𝑗𝐴𝑘 (1) 

 

Setting the number of explanatory variables to 1 in Equation (1) yield: 

 

𝜃𝑠 = 𝑎000 + 𝑎100𝑉 + 𝑎010𝑇 + 𝑎001A + 𝑎110𝑉𝑇 + 𝑎101𝑉𝐴 + 𝑎011𝑇𝐴  (2) 

 

where aijk parameters represent the correlation between satellite-derived coarse-resolution SSM product and 

fine-resolution downscaled SSM product. They can be measured using the multiple linear regression (MLR) 

model, comparing coarse-resolution SSM estimates and aggregate values of physical properties. A, T, and V 

represent albedo, LST, and NDVI, respectively. Each of the parameters was up-scaled to correspond toAMSR2 

at a 25 km spatial resolution as follows [19]: 

 

𝑉25𝑘𝑚 =
∑ ∑ 𝑉𝑖,𝑗

𝑚
𝑗=1

𝑛
𝑖=1

𝑚𝑛
 ; 𝑇25𝑘𝑚 =

∑ ∑ 𝑇𝑖,𝑗
𝑚
𝑗=1

𝑛
𝑖=1

𝑚𝑛
 ; 𝐴25𝑘𝑚 =

∑ ∑ 𝐴𝑖,𝑗
𝑚
𝑗=1

𝑛
𝑖=1

𝑚𝑛
  (3) 

 

where 25 km denotes the resolution at which upscaling of physical parameters is performed, m denotes the 

value for the ith column of the grid with a 1 km spatial resolution within the 25 km spatial resolution and n 

denotes the value for the jth row of the grid with a 1 km spatial resolution within the 25 km spatial resolution. 
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2.1.2.2. SMAR Model 

Based on soil physical properties, the soil moisture analytical relationship (SMAR) model correlates between 

SSM and RZSM. SMAR assumes two layers for the soil: (1) a surface layer (a few centimeters deep, seen as 

equivalent to retrieval depth of satellite-based SSM product), and (2) a layer below the surface layer extending 

to the vegetation rooting depth [37]. The only water mass exchange between the aforesaid layers is infiltration, 

with other processes, including the capillary rise and lateral flow, assumed insignificant. Equation (4) was 

proposed by [37], describing the instantaneous infiltration flux from the upper to the bottom layer. 

 

n1Lr1I(t) = n1Lr1I[s1(t), t] = n1Lr1 {
(s1(t) − sc1), s1 (t) ≥ sc1

 0 , s1 (t) ≥ sc1
 (4) 

 

In the above equation, I (t) [–] represents the amount of saturated soil penetrating the lower layer, n1 [–] 

represents top soil porosity, Lr1 (L) represents top soil depth, s1 (
θtop

n1
) [−] represents relative saturation of 

soil in the first layer, and sc1 represents relative saturation at topsoil field capacity. SSM needs to be taken as 

referred to the first 5 to 10 cm of soil. Even though the majority of satellite sensors fail to see deeper than a 

few centimeters, it can be reasonably assumed that these measures can represent the dynamics of a ≈ 5–10 cm 

surface layer [37]. The depth of surface layer in the SMAR model should not be less than 5 cm, otherwise the 

model might underestimate the infiltration and face numerical problems. While most satellite sensors provide 

information about soil water content no deeper than 0–5 cm of the top soil, a number of studies proved that 

satellite products can capture the required SSM dynamics for the surface layer of SMAR model [29,39,48–

50]. 

By defining 𝑥2 = (𝑠2 − 𝑠𝑤2)/(1 − 𝑠𝑤2) as the effective relative saturation at second layer of soil and 𝜔 0 =
 (1 − 𝑠𝑤2)𝑛2𝑍𝑟2 as the soil water storage, the SMAR soil water balance is described as: 

 

(1 − 𝑠𝑤2)𝑛2𝑍𝑟2  
𝑑𝑥2(𝑡)

𝑑𝑡
= 𝑛1𝑍𝑟1𝑦(𝑡) − 𝑉2𝑥2(𝑡) (5) 

 

where 𝑠2 [–] is current relative saturation, 𝑠𝑤2 [–] relative saturation at wilting point, n2 [–] soil porosity, 𝑍𝑟2 

[L] second layer depth, 𝑉2 [L T−1] soil water loss coefficient (both evapotranspiration and percolation losses), 

and 𝑥2 [–] effective relative soil saturation of the second soil layer. The second term of the right side of the 

Equation (5) represents a linear soil water loss function where soil water loss would be linearly reduced from 

a maximum value at the saturation point to zero at the wilting point. We can simplify Equation (5) by 

standardized coefficients: 

 

a =
V2

(1 − sw2)n2Lr2
 , b =

n1Lr1
(1 − sw2)n2Lr2

 (6) (6) 

 

where sw2[−] denotes relative saturation of soil in the second layer at wilting point (WP), n2[−] denotes 

porosity of the soil in the second layer, Lr2[−] denotes the depth of soil in the second layer and V2[LT
−1] 

denotes SM loss coefficient justifying percolation as well as ET losses. Finally, s2(θsub/n2)[−] represents 

relative saturation of the second soil layer, which can be measured using the following equation [37]: 

 

s2(tj) = sw2 + (s2(tj−1) − sw2)e
−a(tj−tj−1)

+ (1 − sw2)bI(tj)(tj − tj−1) (7) 
(7) 

 

The SMAR parameters for different soil textures are shown in Table 2 [37,51]. In this part of the study, the 

daily RZSM (10–100 cm depth) was equivalent to the weighted average measured SM by measurement sensors 

at depths of 10, 40, and 100 cm at selected stations of the study area. SSM (0–10 cm depth) was also measured 

by the measurement sensor in the surface layer. The depth of surface layer in the SMAR model should not be 

less than 5 cm, otherwise the model might under-estimate the infiltration and face numerical problems [39]. 

While most satellite sensors provide information about soil water content no deeper than 0–5 cm of the top 
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soil, a number of studies demonstrated that satellite products can capture the SSM dynamics required for the 

SMAR model surface layer [29,39,44–46]. 

 
Table 2. the SMAR parameters for different soil texture [37,51]. 

Soil Type N [-] SW [-] SC [-] 

sand 0.44 0.06 0.14 

loamy sand 0.44 0.11 0.24 

sandy loam 0.45 0.19 0.42 

silty loam 0.50 0.27 0.57 

loam 0.46 0.25 0.50 

sandy clay loam 0.40 0.34 0.62 

silty clay loam 0.47 0.45 0.73 

clay loam 0.46 0.40 0.67 

sandy clay 0.43 0.51 0.75 

clay 0.48 0.56 0.80 

 

Three input sources were envisaged for the SMAR model (three schemes) in order to investigate the effect of 

spatial resolution of the results: (1) the SMAR model based on ground-based measured SSM, which estimates 

RZSM values at selected stations, (2) the SMAR model based on AMSR2 25 km SSM, and finally (3) the 

SMAR model based on downscaled 1 km SSM data using MODIS products. 

 

2.1.3. Study Area 

In this part of the study, the Rafsanjan Plain was taken as the area of study, situated in southeast Iran, Kerman 

Province (Figure 1), Iran’s center of pistachio cultivation, comprising a total area of 5622 km2. The study area 

is located between 55°1′ to 56°28′ longitude and 30°3′ to 31°11′ latitude, where the elevation ranges from 1296 

to 2131 m above sea level (ASL). The average annual rainfall and average annual potential evapotranspiration 

(PET) here are below 100 mm and above 3000 mm, respectively. There is a thermic soil temperature regime 

and an aridic SM regime here. 

 
Figure 1. Geographical location of Rafsanjan Plain within Iran and Kerman Province. 
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2.1.4. Data 

2.1.4.1. AMSR2 Satellite-Based SSM Data 

The Global Change Observation Mission–Water 1 (GCOM-W1) satellite system was launched on 17 May 

2012, to gather geophysical parameters, such as precipitation, sea surface temperature (SST), and SM, and 

witness variation in water circulation [40]. It carries the AMSR2 sensor aimed at retrieving earth-emitted 

radiometric waves and data utilized to estimate global-scale low-resolution SSM with a medial temporal 

resolution of a couple of days [40,41]. The land parameter retrieval model (LPRM) is extensively used to 

estimate SSM based on a radiative transfer forward (RTF) model responsible for the retrieval of vegetation 

optical depth (VOD) and SM. One can refer to the Japan aerospace exploration agency (JAXA) website (data 

downloadable in HDF5) or the NASA website (data downloadable in netCDF4), scenes (all measurements 

taken halfway between Earth’s North and South Poles relative to observation point) or a global map (10 km 

and 25 km resolution), daily or monthly, to retrieve AMSR2 SSM products from Earth observation research 

center (EORC) for day/night readings. 

This study retrieved and analyzed the data of daily global AMSR2 SSM estimates at 25 km spatial resolution 

from 19 July 2017 to 30 August 2018 for ascending (Asc.) overpasses. AMSR2 SSM data at 25 km spatial 

resolution were only available for Rafsanjan area by employing its geographic coordinates 

(https://hydro1.gesdisc.eosdis.nasa.gov/). (accessed on 18-Apr-2018). The complete ID of the product is: 

AMSR2/GCOM-W1 surface soil moisture (LPRM) L3 1 day 25 km × 25 km ascending V001 

(LPRM_AMSR2_A_SOILM3) [42]. 

 

2.1.4.2. Ground-Based SM Data 

To obtain ground-based measured SSM and RZSM data in the Rafsanjan Plain, REC-P55 SM sensors 

(presented by [43]) were installed in ten locations (Figure 2a) at three different depths of 10, 40, and 100 cm 

(Figure 2b). The daily soil temperature and moisture voltage were measured and recorded at 01:30pm 

(approximate ascending satellite overpass time) by a data logger. Sensors were pre-calibrated, and the moisture 

equations of each soil type were obtained for sensors by utilizing the weighing technique in the laboratory. 

This study primarily analyzed SSM in each location during satellite crossing, followed by the analysis of soil 

profile moisture data. Two layers of surface and deep (root zone) soil with 10 and 90 cm depths were 

considered in the SMAR model, respectively (Figure 2c). RZSM (10–100 cm depth) was equivalent to the 

weighted average measured SM by measuring sensors at depths of 10, 40, and 100 cm at selected stations of 

the study area. SSM (0–10 cm depth) was also measured by the measurement sensor in the surface layer. 

 

 
(a) (b) (c) 

Figure 2. (a) Location of stations in Rafsanjan plain, (b) REC-P55 SM sensors manufactured by Ansari and 

Hassanpour [43] installed in study wells at three different depths of 10, 40, and 100 cm, and (c) two layers of surface 

and deep (root zone) soil considered in the SMAR model. 

 



46 

 

2.1.4.3. Remotely Sensed MODIS Parameters 

The MODIS sensor was launched on board the Terra satellite in December 1999 and the Aqua satellite in May 

2002, both belonging to NASA’s international Earth Observing System (EOS), for data collection. They both 

revolve in a circular heliosynchronous orbit, enabling them to circle the earth every 99 min, i.e., 16 orbits each 

day, and gather information for the whole planet every one or two days. MODIS Albedo, LST, and NDVI 

products at a 1 km spatial resolution were retrieved in HDF4 format from EOS data and information system 

(EOSDIS) website (https://search.earthdata.nasa.gov/) (accessed on 13-Apr-2018) for the area of study. For 

this research, MODIS products, including MYD11A1 (Aqua Satellite), were used to estimate 1 km resolution 

LST (Figure 3a), and 16-day dataset MOD13A2 (Terra Satellite) and MYD13A2 (Aqua Satellite) were used 

to create 8-day NDVI layers (Figure 3b). Surface albedo(α) was also estimated from a combination of bands 1 

to 7 of the MODIS product (MOD09A1) (Figure 3c). 

 
   

 
(a) (b) (c) 

Figure 3. MODIS (a) land surface temperature, (b) NDVI, and (c) Albedo products of Rafsanjan Plain for random days 

during the study period. 

 

2.1.5. Results 

2.1.5.1. AMSR2 Downscaling Using MODIS Albedo, LST and NDVI 

The AMSR2 SSM product at a 25 km spatial resolution was downscaled to 1 km spatial resolution using a 

simple linear equation containing MODIS Albedo, LST, and NDVI products (Figure 4). The following 

equation shows how AMSR2 data are downscaled: 

 

θs = 0.893 − 0.931 A − 0.256 V − 0.0025 T + 0.0027 TV − 0.00226 TA − 2.133 VA  (8) 

 

In the above equation, θs represents downscaled SSM. A, T, and V represent albedo, LST, and NDVI, 

respectively. The remainder is A-T-V interactions (i.e., TA, VA, and VT). The regression model was obtained 

with R2 = 0.61 and the acceptable p-value (<0.05) and F-statistic test (=4.3 × 10−248). Table 3 shows that p-

values are below the significance level of 5%, meaning that the null hypothesis for each coefficient is rejected 

and all components are significant in the linear equation. The results indicated that the downscaling model 

offered an excellent fit with the AMSR2 estimates. 

 
Table 3. Results of linear regression modeling. 

Coefficient Value Squared Error T-Statistic P(%) 

a000 0.892618 0.0041 49.12 0.0015 

a100 −0.93067 2.45 × 10−5 2.98 0.1431 

a010 −0.00246 1.62 × 10−5 1.97 0.1275 

a001 0.255988 5.31 × 10−7 −1.66 0.1112 

a110 0.002259 1.02 × 10−7 −3.24 0.1255 

a101 −2.13287 1.78 × 10−9 −0.12 0.2928 

a011 0.0027 2.12 × 10−9 0.11 0.1159 
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(a) 

 
(b) 

 
(c) 

Figure 4. The conventional AMSRE (Left) and downscaled AMSRE (Right) SSM maps of the Rafsanjan plain on (a) 

19-09-2017, (b) 01-01-2018, (c) 08-07-2018, and (d) 8/29/2018. 

 

The AMSR2 25 km SSM and downscaled SSM values were examined by calculating MAE, RMSE, and R for 

every station. According to Table 4, comparing AMSR2 25 km SSM and measured values in every station 

revealed that the results obtained were not satisfactory for most of the stations. The highest MAE and RMSE 

values were obtained at Station 2. The R-value was also estimated as low at Stations 1, 2, 3, 6, and 7, which 

could be affected by the distance from the station to the centroid (distance) at each AMSR2 25 km/pixel, such 

that R values were found to be acceptable at Stations 4, 5, and 10. 
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Table 4. Basic statistics for each station for the comparison between the AMSR2 25 km SSM and downscaled SSM 

with ground-based SSM. 

  AMSR2 25 km SSM Downscaled AMSR2 1 km SSM 

Station Distance (km) MAE (m3/m3) RMSE (m3/m3) R (-) MAE (m3/m3) RMSE (m3/m3) R (-) 

1 5.84 0.028 0.030 0.473 0.012 0.015 0.742 

2 8.46 0.092 0.094 0.400 0.047 0.047 0.876 

3 9.73 0.043 0.044 0.350 0.011 0.013 0.715 

4 2.10 0.029 0.030 0.783 0.013 0.017 0.707 

5 1.97 0.027 0.029 0.707 0.025 0.029 0.782 

6 2.58 0.037 0.040 0.491 0.028 0.031 0.538 

7 14.27 0.050 0.051 0.232 0.026 0.032 0.793 

8 2.35 0.035 0.035 0.603 0.009 0.009 0.735 

9 3.46 0.004 0.004 0.666 0.002 0.004 0.802 

10 1.06 0.042 0.043 0.700 0.003 0.003 0.705 

Average 5.18 0.039 0.040 0.540 0.018 0.020 0.739 

 

Other factors such as changes in vegetation density, land cover, land use, etc., at AMSR2 25 km pixel could 

also affect the results of MAE, RMSE, and R. Evaluating the land cover map of the study area (Figure 5a) 

showed that vegetation was uniform at 25 km pixels containing Stations 4, 5, 8, 9, and 10 (dominant vegetation 

at 25 km × 25 km pixels containing Stations 4, 5, and 10 includes irrigated agriculture and pistachio orchards, 

and at pixels containing Stations 8 and 9, it includes rangeland). These stations were located at places similar 

to the dominant vegetation cover (VC) in the pixel in terms of vegetation, influencing the superiority of results 

obtained from there. However, VC at Station 2 was different from the dominant vegetation of the area located 

in the pixel (dominant cropping pattern in this pixel included low-density rangelands and non-vegetated lands). 

This led to increased MAE and RMSE values and decreased R-value, save for the distance. Thus, it can be 

stated that the AMSR2 25 km SSM values exhibit a large-area spatial mean (25 km). Assigning the data to all 

points in there was ineffective, despite being successful in some stations. Hence, the area must be reduced 

using downscaling methods. 

 

 
(a) (b) 

Figure 5. (a) Landuse/landcover map, and (b) soil texture map of the Rafsanjan Plain. 

 

According to Table 4, comparing downscaled SSM results with the measured values at each station indicated 

a decreased error rate, increased correlation coefficient, and improved SSM results for the stations far from the 

midpoint of the pixel (Figure 2a), all mediated by the downscaling technique used. Consequently, at Stations 

1, 2, 3, and 7, error values decreased, and correlation coefficients increased. Therefore, the downscaling 

method that uses MODIS parameters was arguably more correlated with measured SSM data. The time series 

of Measured, ordinary AMSR2, and downscaled ASMR2 SSM data at 10 study station has been depicted in 

Figure 6 as well. The increase in the consistency and accuracy of the downscaled AMSR2 data with respect to 

the measured SSM data in almost all stations is visible in Figure 6. 
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Figure 6. time series of Measured, ordinary AMSR2, and downscaled ASMR2 SSM data at ten study stations. Stations 

1-10 correspond to the numbered red dots in figure 1a 
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2.1.5.2. RZSM Estimation Based on the SMAR Model 

Three of the four SMAR parameters (i.e., n, sw, and sc) were determined based on soil texture map of the study 

area (Figure 5b), according to Table 2. Considering the SM loss coefficient justifying percolation and ET losses 

(V2) in the SMAR model, the V2 value was obtained 5.8 mm/day regarding optimization based on regional 

conditions using the genetic algorithm (GA) in MATLAB programing environment, with RMSE function 

between simulated RZSM and observational values. 

Figure 7 illustrates the results of statistical analyses for the comparison results of SMAR-estimated RZSM 

using three schemes at ten stations. Notably, the SMAR model based on downscaled SSM has estimated RZSM 

with relatively high precision in most stations. The MAE and RMSE values at Station 2 were found to be 

higher than other stations, which could be attributed to high error values of the SSM downscaling model of 

this station as compared to other stations. It can, therefore, be said that in every station where the downscaling 

model estimates SSM at a low error rate, the SMAR model could also estimate RZSM more accurately. 

 

 

   

(a) (b) (c) 
Figure 7. Basic statistics for the comparison results of SMAR-estimated RZSM using Schemes 1, 2, and 3 at ten 

stations. 

 

The results indicated an increased accuracy of the model in estimating RZSM using the downscaled SSM data 

obtained from the method proposed in this part of the study. In this method, mean R, RMSE, MAE values 

between all the stations were obtained equal to 0.71, 0.032, 0.032, respectively. Since SSM is considered as 

the most critical parameter of the SMAR model provided that it could be estimated with high accuracy, it will 

affect the more accurate estimation of RZSM by the SMAR model, verified by the results obtained. The 

downscaled SSM-based SMAR model can be utilized to develop a system for receiving downscaled SSM 

values to create RZSM maps. Hence, the AMSR2-downscaled SSM model was used in the SMAR model 

based on MODIS parameters, and the RZSM values were obtained at 1 km pixels for different days. Figure 8 

depicts the downscaled RZSM sample (θsub) based on the SMAR model in the Rafsanjan Plain for 29 August 

2018. 
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(a) (b) 

  
(c) (d) 

Figure 8. The downscaled RZSM (𝜃𝑠𝑢𝑏) values in Rafsanjan plain on (a) 9/19/2017, (b) 10/1/2017, (c) 5/31/2018, and 

(d) 8/29/2018. 

 

2.1.6. Discussion 

This study developed an RZSM estimation model, i.e., SMAR, at 1 km × 1 km pixels in the Rafsanjan Plain. 

Initially, the AMSR2 25 km SSM was compared with the ground-based SSM values in the Rafsanjan Plain. 

The overall validation results suggested a low correlation in most stations. In addition to the distance of the 

station from the midpoint of 25 km pixel, other factors such as changes in vegetation compaction, land-use, 

topography, rainfall, and soil properties of the study area could affect the correlation between large-scale data 

and measured field data. It is necessary to collect more SSM data from 25 km pixels to have stronger validation. 

The coarse-resolution satellite-based SSM data necessitates the downscaling of SSM data for many 

hydrological and agricultural plans in the study area, contributing to a precise RZSM estimation by the SMAR 

model on a finer scale. 

Since fine-resolution MODIS data are available globally and daily, this part of the study considered the 

downscaled AMSR2 SSM based on MODIS parameters. The results demonstrated a good consistency between 

the downscaling method that exploits these parameters and the measured data—which were consistent with 

those of the previous studies [20,52]—leading to reduced error rates and increased correlation coefficients at 

measurement stations. The downscaled SSM was estimated using a linear equation, which correlated MODIS 

Albedo, LST, and NDVI. After the downscaling, at Stations 1, 2, 3, and 7, the correlation coefficients increased 
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from 0.473, 0.400, 0.350, and 0.232 to 0.742, 0.876, 0.715, and 0.793, respectively, and the values of MAE 

and RMSE in the root zone decreased, indicating improved results by using the above-mentioned downscaling 

technique. 

To obtain RZSM at 1 km pixel in the Rafsanjan Plain, the downscaled SSM model was used based on MODIS 

parameters in the SMAR model. RZSM obtained from the SMAR model based on downscaled SSM was 

compared with measurement RZSM data. The results indicated that the model could initially manage to 

estimate RZSM values from SSM variations, and then increase the accuracy of the model to estimate RZSM 

using the downscaled data obtained from the proposed method in this part of the study. Mean R, RMSE, MAE 

values were obtained for all the stations equal to 0.71, 0.032, 0.032, respectively. As the most crucial parameter 

of the SMAR model, the accurate estimation of SSM will affect the more accurate estimation of RZSM by this 

model [39]. 

 

2.1.7. Conclusions 

It is essential to estimate RZSM for different biogeochemical, ecological, and hydrometeorological 

applications and modeling. This study developed the SMAR model for estimating RZSM at 1 km pixels of the 

Rafsanjan Plain and subsequently, evaluated its variations. Spatiotemporal continuity of estimated RZSM by 

this model is one of the advantages of this method. SSM is the most important input parameter in the SMAR 

model, which will lead to a more accurate estimation of RZSM if precisely determined. Methods based on 

microwave remote sensing are suitable for retrieving SSM. 

It is suggested to estimate other effective parameters of the model, e.g., soil moisture loss coefficient and soil 

texture parameters, more accurately for each pixel in the Rafsanjan Plain, optimize them with measured data, 

and use them in the SMAR model. It was generally concluded that the SMAR model, in which SSM was 

downscaled based on MODIS parameters, could accurately estimate and demonstrate the variations of the 

RZSM of the Rafsanjan Plain. 

It is also suggested to consider other affecting variables, including rainfall that improves downscaled SSM 

products. Consider the effect of other VIs, including soil-adjusted vegetation index (SAVI) or simple ratio 

vegetation index (SRVI) on improved quality of downscaled products, and utilize the best of these indices. 

Optimization of downscaling approaches using sensitivity analysis (SA) by a network of sensors within the 

coverage area of a single AMSR2 pixel is suggested to validate the AMSR2 products and downscaled SSM 

values in the future studies. 
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Part 2. Estimating soil water balance components from surface soil 

moisture measurements using a physically-based approach 

 

2.2.1. Introduction 

The quantification of hydrological components in the soil is crucial for different applications of water resources 

management such as irrigation, drinking water and industry [1]. The hydrological variability is predicted to 

increase with the climate change, making predictions for recharge and groundwater storage even more 

important to implement and to maintain sustainable water use [2]. Groundwater is usually the only source of 

water in arid and semiarid regions due to low amount of precipitation, and lack of surface water resources. The 

water balance estimation is one of the most sensitive steps in groundwater management which have a critical 

component in the commonly known “recharge rate estimation” [3,4].  

Most of the soil-water processes in agricultural fields occur while the soil is in unsaturated condition [5]. The 

unsaturated soil is well-known as a complicated porous media due to its temporally and spatially variable 

parameters. Consequently, the unsaturated water flow in such condition is hard to measure or simulate, 

especially when hysteresis (i.e. the dependence of soil water retention curve on whether soil is wetting or 

draining) and root water uptake are taken into account [5,6]. Recently, the unsaturated flow modeling has 

become one of the most active topics of research in hydrology and soil physics [7,8]. 

Many models of varying degree of complexity and dimensionality have been developed during the past several 

decades to quantify the basic physical and chemical processes affecting water flow and pollutant transport in 

the unsaturated zone [9,10]. These models are now being used increasingly for a wide range of applications in 

research and management of natural subsurface systems. Modeling approaches range from relatively simple 

analytical and semi-analytical models (e.g. SWI [11], SMAR [12]) to more complex numerical codes (e.g. 

HYDRUS [7], MODFLOW-SURFACT [13], STOMP [14], SWAP [15], and TOUGH2 [16]) that permit 

consideration of a large number of simultaneous nonlinear processes.  

The description of an analytical relationship between the soil moisture at the surface and in the lower soil 

layers has been emphasized as a significant challenge [17-21]. The Soil Moisture Analytical Relationship 

(SMAR) was derived from a simplified soil water balance equation for arid and semi-arid environments that 

provides a relationship between root-zone and surface soil moisture. Applications of the SMAR model in 

estimating root-zone soil moisture (RZSM) from a time series of in-situ and remotely sensed surface soil 

moisture (SSM), at both local and regional scales, proved the performance in providing a good description of 

RZSM (e.g., [12,22-26]). The advantage of the SMAR model is that there are clear physical interpretations for 

the SMAR parameters which can be directly determined knowing soil texture and climate of the target location. 

In the original model proposed by [12], the water loss function was assumed to be a linear function of current 

soil moisture content and maximum water loss in the soil which is in a way the sum of maximum 

evapotranspiration and deep percolation. [24] presented the Modified SMAR model (MSMAR) using a soil 

water loss function that could account for the non-linearity of the water loss process and estimate daily ET and 

DP separately. 

Among variety of proposed methodologies [27-29], numerical simulation of transient water flow in saturated-

unsaturated porous media using HYDRUS software has been widely used in many different branches such as 

drip and pitcher irrigation modeling [30-32], root zone and deep vadose zone modeling [33,34], groundwater 

modeling [2,35], and hydrology [36,37]. 

The objective of this paper is to introduce a physically based model that estimates Soil Moisture, 

Evapotranspiration and Deep Percolation using information about surface soil moisture and soil texture only. 

HYDRUS-1D as a well-known numerical method will be used to compare the performance of two different 

approaches (i.e. analytical and numerical) in modeling soil hydrological processes using field measurements 

in a sprinkler irrigated farm Northwest Iran. It is expected that the proposed methodology would provide the 
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possibility of estimating hydrological components in the large scales using also satellite surface soil moisture 

data which is available on the daily basis for the whole world. 

 

2.2.2. Methodology 

2.2.2.1. HYDRUS-1D Numerical Model 

HYDRUS-1D [10] is a physically-based model to solve and couple governing equations of water flow, solute 

and heat transport along with root water and nutrient uptake. Water flow in a variably-saturated soil in 

HYDRUS-1D is described by the mixed-form of a Richards’ equation [40]. 

 
𝜕𝜃

𝜕𝑡
=
𝜕

𝜕𝑧
[𝐾(𝜓)

𝜕𝜓

𝜕𝑧
+ 𝐾(𝜓)] − 𝑅𝑊𝑈 (1) 

 

where, θ is volumetric water content [L3L-3], ψ is soil water pressure head [L], K is saturated/unsaturated 

hydraulic conductivity [LT-1], t is time [T], z is vertical space coordinate [L], and RWU is root water uptake 

[L3L-3T-1]. Thanks to the constitutive relations of soil water retention curve θ(ψ) and saturated/unsaturated 

hydraulic conductivity, HYDRUS-1D employs a so-called Modified-Picard iteration scheme [41] to solve 

equation (1) iteratively. Among different options available in HYDRUS-1D the following constitutive 

relations of Van Genuchten [42] has been used. 
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𝜃𝑠 − 𝜃𝑟

 (4) 

 

where Se is effective saturation [L3L-3], θs and θr are saturated and residual water contents, respectively [L3L-

3], α is the inverse of air-entry value [L-1], ϕ and λ are pore size distribution indices and Ks is the saturated 

hydraulic conductivity [LT-1]. Root water uptake module of HYDRUS-1D [43] employs the following 

equation to obtain non-compensated actual root water uptake. 

 

𝑅𝑊𝑈(𝜓, 𝑧, 𝑡) = 𝛼𝑠(𝜓, 𝑧, 𝑡)  𝑏(𝑧, 𝑡) 𝑇𝑝(𝑡) (5) 

 

where, αs (ψ,z,t) is the stress response function, b is the 1D normalized water uptake distribution function [L-

1] and Tp is the potential transpiration rate [LT-1]. In this part of the study, normalized water uptake distribution 

function of Hoffman and van Genuchten [44] and stress response function of Feddes [45] have been employed 

which are demonstrated by equation (6) and (7). 
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where L is equal to the total depth of soil which is intended to be simulated [L], LR is maximum root depth [L] 

and h1, h2, h3, and h4 are pressure head threshold parameters [L]. Equation (1) is a partial differential equation 

requiring initial condition and two boundary conditions. Initial soil moisture was measured during the 

experiment by means of soil moisture sensors installed in the observation wells. The lower boundary condition 

was set as free drainage boundary and the upper boundary (at soil surface) was set as atmospheric boundary 

condition. This requires the variations of potential evaporation rate to be specified during the experiment. To 

this end, potential evapotranspiration rate (ETP [LT-1]) was calculated following the recommendations of Ref. 

[46]. 

During the iterative process of solving Richards’ equation, HYDRUS-1D calculates the distribution of pressure 

head in the soil profile at each time step. Therefore, water flux q [L3L-2T-1] can be computed at an arbitrary 

nodal point by discretizing Darcy-Buckingham equation. 

 

𝑞 = −𝐾(𝜓)
𝑑𝜓

𝑑𝑧
 (8) 

 

where, positive and negative fluxes at each node means upward and downward movement of water in the soil 

profile, representing ET and DP respectively. 

 

2.2.2.2. Modified Soil Moisture Analytical Relationship (MSMAR) 

Ref. [12] presented the novel Soil Moisture Analytical Relationship (SMAR) model to define a soil water 

balance relationship in a two-layered soil profile in which infiltration is the most important flux between the 

two layers and other processes, such as lateral flow and capillary rise are assumed negligible. The Infiltration 

is not expressed as a function of precipitation, but as a function of the percentage of soil moisture in the first 

layer which allows to obtain soil moisture in the second layer as a function of soil moisture in the top layer:  

 

𝑛1𝑍𝑟1𝑦(𝑡) = 𝑛1𝑍𝑟1𝑦[𝑠1(𝑡), 𝑡]    =  𝑛1𝑍𝑟1  {
(𝑠1(𝑡) − 𝑠𝑐1 ),     𝑠𝑐1 < 𝑠1(𝑡)

 0,     𝑠1(𝑡) ≤ 𝑠𝑐1    
 (9) 

 

where y(t) [–] is the fraction of soil saturation infiltrating in the lower layer, n1 [–] is the soil porosity, Zr1 [L] 

is the depth, s1 (θ1/n1) [–] is the relative saturation, and sc1 [–] is the value of relative saturation at field capacity 

of the first layer of soil. The flux from the top layer is only considered significant if the moisture content is 

higher than the field capacity and it occurs in less than one day following the Green-Ampt infiltration 

relationship [47]. By defining x2 = (s2-sw2)/ (1-sw2) as the effective relative saturation of the second layer of soil 

and ω0 = (1-sw2) n2 Zr2 as the soil water storage, the SMAR soil water balance is described as: 

 

(1 − 𝑠𝑤2)𝑛2𝑍𝑟2  
𝑑𝑥2(𝑡)

𝑑𝑡
= 𝑛1𝑍𝑟1𝑦(𝑡) − 𝑉2𝑥2(𝑡) (10) 

 

where s2 [–] is current relative saturation, sw2 [–] is relative saturation at the wilting point, n2 [–] is soil porosity, 

Zr2 [L] is soil depth, V2 [LT-1] is soil water loss coefficient accounting for both evapotranspiration and 

percolation losses, and x2 [–] is effective relative soil saturation of the second soil layer. The second term of 

the right side of the Eq. (11) represents a linear soil water loss function where soil water loss would be linearly 

reduced from a maximum value at the saturation point to zero at the wilting point (Fig. 1).  
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Figure 1. Typical water loss function (L(s)) of SMAR model (green), and MSMAR model (blue) for the typical climate, 

soil and vegetation conditions in arid and semi-arid regions. 

 

Ref. [24] presented the Modified SMAR (MSMAR) model by substituting the constant V2 with a variable 

coefficient L (s2) which estimates a different maximum soil water loss in each day as a function of potential 

ET and DP in that day: 

 

𝐿(𝑠2) = 𝐸𝑇(𝑠2) + 𝐷𝑃(𝑠2) (11) 

 

where at a certain soil saturation in the second layer (s2), L (s2) [LT-1] is the total soil water loss, ET(s2) [LT-1] 

is soil water loss due to evapotranspiration, and DP(s2) [LT-1] is soil water loss due to deep percolation. 

According to Liao et al. (2001), the maximum DP occurs under saturated conditions and decreases 

exponentially with decreasing soil hydraulic conductivity from Ks at saturation point to zero at field capacity: 

 

𝐷𝑃 (𝑠2) = {
𝐾𝑠𝑠2

𝑐 𝑠𝑐2 < 𝑠2 ≤ 1
0 𝑠𝑤2 < 𝑠2 ≤ 𝑠𝑐2

 (12) 

 

where Ks [LT-1] is hydraulic conductivity of soil saturation and c [-] is the empirical parameter of power 

function. The amount of loss due to evapotranspiration was also calculated from the following equation [48]: 

 

𝐸𝑇(𝑠2) = {

𝐸𝑇𝑚𝑎𝑥                                  𝑠2
∗ < 𝑠2 ≤ 1 

𝐸𝑇𝑤 + (𝐸𝑇𝑚𝑎𝑥 − 𝐸𝑇𝑤)
𝑠2 − 𝑠𝑤2
𝑠∗  − 𝑠𝑤2

       𝑠𝑤2 < 𝑠2 ≤ 𝑠2
∗ 

  

 (13) 

 

where sw [–] is the degree of saturation at the wilting point, s* [–] is the degree of saturation at the stomata 

closure, ETmax [LT-1] is the potential evapotranspiration and ETw [LT-1] is the evapotranspiration at the wilting 

point. The water loss function of the MSMAR can be compared with that of SMAR in Fig.1. In this regard, 

L(s2) can be replaced with V2 to account for non-linearity of the soil water loss and the Eq. 11 becomes: 

 

(1 − 𝑠𝑤2)𝑛2𝑍𝑟2  
𝑑𝑥2
𝑑𝑡

= 𝑛1𝑍𝑟1𝑦(𝑡1) − 𝐿(𝑠2)𝑥2(𝑡) (14) 

 

Equation (15) can be redefined using the coefficients a and b as follows: 

 

𝑎 =
𝐿(𝑠2)

(1 − 𝑠𝑊2)𝑛2𝑍𝑟2
  ,   𝑏 =

𝑛1𝑍𝑟1
(1 − 𝑠𝑊2)𝑛2𝑍𝑟2

 (15) 
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The value of these parameters can be directly related to the depth of the two layers and the soil water loss 

coefficient. As a result, the soil water balance relationship becomes: 

 
𝑑𝑥2(𝑡)

𝑑𝑡
= 𝑏𝑦(𝑡) − 𝑎𝑥2(𝑡) (16) 

 

Assuming an initial condition for relative saturation x2(t) equal to zero, the analytical solution for this linear 

differential equation is: 

 

𝑥2(𝑡) =  ∫ 𝑏 𝑒𝑎(𝑡’−𝑡)𝑦 (𝑡’)𝑑𝑡’
𝑡

0

 (17) 

 

For practical applications, the relationship can be represented discretely: 

 

𝑥2(𝑡𝑗) =  ∑𝑏 𝑒𝑎(𝑡𝑖−𝑡𝑗)𝑦 (𝑡𝑖)∆𝑡

𝑗

𝑖=0

 (18) 

 

Assuming ∆t = (t(j)-t(j-1)) and extending the Eq.18, the following equation is obtained for soil moisture in the 

second layer based on the time series of surface soil moisture: 

 

𝑥2(𝑡𝑗) =  𝑥2(𝑡𝑗−1)𝑒
−𝑎(𝑡𝑗−𝑡𝑗−1) + 𝑏𝑦(𝑡𝑗)(𝑡𝑗 − 𝑡𝑗−1) (19) 

 

And it can be rewritten as a function of s2 as follows: 

 

𝑠2(𝑡𝑗) = 𝑠𝑤2 + (𝑠2(𝑡𝑗−1) − 𝑠𝑤2)𝑒
−𝑎(𝑡𝑗 − 𝑡𝑗−1) + (1 − 𝑠𝑤2)𝑏𝑦(𝑡𝑗)(𝑡𝑗 − 𝑡𝑗−1) (20) 

 

The main parameters of MSMAR model includes Zr1, Zr2, n1, n2, sc1, sc2, s2
*, sw2, Ks, c, ETmax and ETw. Since 

there is a clear physical meaning to each of these parameters, they can be determined according to the soil 

texture using reference tables in the literature (e.g. [12,23,48]) or can be calibrated based on the field data.  

 

2.2.3. Study area 

For the purpose of this research, the information presented by Ref. [38] was exploited including the soil 

moisture measurements, meteorological data, soil physical properties, volume of applied irrigation water, and 

cultivation dates. The study area in this research is a 17 ha ‘Triticale’ farm, (F) under sprinkler irrigation near 

Neishabour (58° 39' 2'' E and 36° 11' 3'' N), Iran (Fig. 2 a&b). Triticale is a hybrid of wheat and rye with the 

maximum rooting depth of 100 cm and soil water depletion fraction of 0.55, which is the average fraction of 

Total Available Soil Water (TAW) that can be depleted from the root zone before moisture stress (reduction 

in ET) occurs (Allen et al., 1998). The annual average precipitation and potential evapotranspiration are 247 

and 2,335 mm, respectively. The highest and lowest monthly-averaged precipitations, fall in March and August 

whose values are 51 and 0.16 mm, respectively.  
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(a) (b) (c) 

Figure 2. (a) Location of study farm in Neishabour watershed and (b) layout of sprinkler and furrow irrigation systems 

along with the locations of two- and three-meter-deep monitoring wells (c) schematic diagram showing the installation 

of soil moisture sensors into the monitoring wells (adopted from Ref. [38]). 

 

2.2.4. Data 

The daily soil moisture profile in the study area was monitored via 5 observation wells (Fig. 2b) equipped with 

8 REC® TDR sensors [38] installed down to 3 m to achieve a high resolution dataset in the root zone (Fig. 2c). 

Several soil samples were obtained whilst drilling the observation wells, which were analyzed in the 

Laboratory of Water Science and Engineering Department of Ferdowsi University of Mashhad (FUM) to 

determine the soil parameters and water content of different soil layers in the field. Sensor calibration had been 

performed following the procedure outlined in Ref. [39] and the regression equation between the calibrated 

and measured soil water contents (y = 0.9959x + 0.0007; R2 = 0.947) showed the accuracy of TDR sensors. 

These data were also used to set up initial conditions of the models, and validate the simulation results. The 

overall status of the soil water content in the field was then calculated by the arithmetic average of the TDR 

values obtained from the five monitoring wells (i.e. spatial average). Table 1 summarizes the results of the soil 

physical properties. 

 
Table 1. Soil physical properties of experimental plots at different layers. 

Soil depth 

(cm) 

Soil mineral particles 

(%) 

Soil texture 

(USDA 

Classification) 

ρba 

[g/ cm3] 

SVWCb 

(%) 

θs* Ks * 

[cm/day] 

sand silt clay 

0 – 50 29.08 30.00 40.92 Clay loam 1.60 42 0.4418 3.84 

50 – 100 44.25 34.65 21.10 Loam 1.52 34 0.3991 9.30 

100 – 150 32.75 35.75 31.50 Clay Loam 1.65 41 0.4418 2.81 

150 – 200 61.00 26.75 12.25 Sandy Loam 1.50 36 0.387 31.62 

200 – 250 68.50 19.50 12.00 Sandy Loam 1.61 32 0.387 28.41 

250 – 300 55.60 24.40 20.00 Sandy Loam 1.56 36 0.387 13.99 

Note.  a Bulk density. b Saturated Volumetric Water Content. * The calibrated parameters of van Genuchten’s water 

retention model. 

 

2.2.5. Results 

In order to run HYDRUS-1D, the initial guess for soil hydraulic parameters were obtained using RETC [49] 

and ROSETTA [50] software based on the soil texture measurements (table 1). These values were fine-tuned 

in the calibration phase to improve the accuracy of simulations. Root water uptake parameters of Feddes’ 

function [45] were selected from Ref. [51]. The rooting depth of the Triticale was assumed to be 1 m and the 

effect of salinity was assumed to be negligible since soil and water quality samples showed an average of 2.89 

and 2.24 dS.m−1 on the region, respectively. The HYDRUS-1D simulated the soil water balance of the 

Triticale field for a period of six months starting from sowing to harvest date (01/11/2012- 22/04/2013). 
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The parameters of MSMAR model were calibrated using Genetic Algorithm in the MATLAB software 

(https://www.mathworks.com/discovery/genetic-algorithm.html) with the objective function of minimum 

RMSE between the observed and estimated soil moisture values. The sensitivity of MSMAR model to the 

depth of surface layer was assessed by assuming three different combinations of soil layers (Zr1/Zr2 = 15/285, 

30/270 and 50/250 [cm/cm]). In the case of Zr1/ Zr2 = 50/250 cm (figure 1c), for example, S150cm is the 

weighted average of TDR measurements at the depths of 15, 30, and 50 cm; whereas, S250cm is the weighted 

average of the TDR measurements at the depths of 100, 150, 200, 250 and 300 cm. The calibrated parameters 

of all layer combinations are presents in table (2) which are largely consistent with the correspondent values 

in table 1. The daily ETmax was assumed to be equal to the potential evapotranspiration (ETp) and estimated by 

FAO dual crop coefficient method (see section 3.2). ETw was assumed to be a constant value equal to 0.001 

cm/day. 

 
Table 2. MSMAR calibrated parameters for different surface and deep layer depths using GA in MATLAB based on 

the minimum RMSE with observed data. 

Surface layer soil depth [cm] sc1 [-] sw2 [-] sc2 [-] n1 [-] n2 [-] Ks [cm/day] c [-] 𝒔𝟐
∗ [-] 

S1_15cm 30 0.758 0.598 0.899 0.441 0.441 3.978 14.450 0.838 

50 0.725 0.525 0.700 0.441 0.441 2.389 17.337 0.665 

100 0.701 0.587 0.841 0.441 0.406 9.987 11.027 0.790 

150 0.899 0.518 0.894 0.441 0.407 9.956 11.075 0.819 

200 0.879 0.229 0.751 0.441 0.412 9.507 16.051 0.647 

250 3.52E-16 1.67E-16 0.9 0.441 0.441 1 26 0.72 

300 0.900 0.106 0.527 0.441 0.431 31.907 11.040 0.443 

S1_30cm 30 - - - - - - - - 

50 0.730 0.599 0.988 0.471 0.488 3.986 11.058 0.910 

100 0.730 0.089 0.993 0.471 0.501 9.993 11.010 0.812 

150 0.730 0.157 0.643 0.471 0.487 1.510 16.708 0.546 

200 0.730 0.005 0.953 0.471 0.407 26.778 12.091 0.764 

250 0.730 0.000 0.587 0.471 0.405 28.991 11.003 0.470 

300 0.730 1.24E-08 0.208 0.471 0.398 13.997 11.000 0.166 

S1_50cm 30 - - - - - - - - 

50 - - - - - - - - 

100 0.839 0.465 0.804 0.434 0.464 14.153 14.483 0.736 

150 0.839 0.464 0.564 0.434 0.462 18.121 13.956 0.544 

200 0.839 0.203 0.831 0.434 0.500 12.372 15.628 0.705 

250 0.839 0.139 0.561 0.434 0.493 10.210 15.807 0.477 

300 0.839 0.207 0.436 0.434 0.435 14.965 15.446 0.390 

 

In the following three separate sections, the results of MSMAR and HYDRUS-1D models in estimating Soil 

Moisture (SM), Evapotranspiration (ET) and Deep Percolation (DP) were discussed in details: 

 

2.2.5.1. Soil moisture content 

The soil moisture profiles of the Triticale farm during the growth period were generated using the average 

TDR values with the same depth over the field (Fig. 3a), the SM results of HYDRUS-1D (Fig. 3b), and the 

SM results of MSMAR model (Fig. 3c). In order to investigate the effects of infiltrated water on the SM 

profiles, the precipitations and irrigation events were illustrated in Fig. 3d. The TDR data was not available 

during some of the precipitations and irrigation events which leaded to losing some information about the 

dynamics of SM profile. Nevertheless, Fig.3 shows that these events could effectively recharge the soil profile 

to the field capacity point (≈ 0.4 [𝑐𝑚/𝑐𝑚]) down to the Triticale root zone (100 cm). Comparing the SM 

profiles reveals that infiltration process in MSMAR was sudden (on the same day as the precipitation or 

irrigation), while it was smoother for the HYDRUS-1D. The fluctuations and level of soil saturation decreased 

dramatically beneath the root zone, indicating the significance of root water uptake.  
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Figure 3. SM profile for (a) the average TDR values with the same depth over the field, (b) the HYDRUS-1D results, 

(c) the MSMAR results, as well as (d) precipitation and irrigation events during the growth period of Triticale between 

01/11/2012 and 21/04/2013. (a-c) have the same color map scales. 

 

In order to be able to evaluate the SM results of MSMAR, the TDR measurements at different depths were 

averaged according to the MSMAR layer combinations (as explained earlier) to produce an overall status of 

the soil profile. The SM results of HYDRUS-1D were presented as they were, though, since this model 

intrinsically considers the whole soil profile when generating the results. Figures 4, 5 and 6 illustrate the SM 

time series of MSMAR, HYDRUS-1D, and TDR measurements at different depths (30, 50, 100, 150, 200, 

250, and 300 cm) when the surface layer is 15, 30 and 50 cm, respectively. Not surprisingly, the soil moisture 

fluctuations are relatively extreme within topsoil layers especially after the precipitation or irrigation events. 

The amplitude of SM spikes dampened and reached a monotonous trend in the deeper soil layers. 

 

  
Figure 4. The time series of relative saturation in the soil profile assuming that the surface layer is 15 cm. (Blue) TDR 

measurements in the surface layer; (Red) TDR measurements in the deep layer; (Yellow) MSMAR estimates in the 

deep layer; and (Purple) HYDRUS-1D estimates in the deep layer. 
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Figure 5. The time series of relative saturation in the soil profile assuming that the surface layer is 30 cm. (Blue) TDR 

measurements in the surface layer; (Red) TDR measurements in the deep layer; (Yellow) MSMAR estimates in the 

deep layer; and (Purple) HYDRUS-1D estimates in the deep layer. 

 

  
Figure 6. The time series of relative saturation in the soil profile assuming that the surface layer is 50 cm. (Blue) TDR 

measurements in the surface layer; (Red) TDR measurements in the deep layer; (Yellow) MSMAR estimates in the 

deep layer; and (Purple) HYDRUS-1D estimates in the deep layer. 

 

Table 3. represents the values of Root Mean Square Error (RMSE) and coefficient of determination (R2) 

between the SM estimates of MSMAR and HYDRUS-1D models to provide a quantitative interpretation of 

the MSMAR performance. According to the Table 3, the MSMAR had an overall average RMSE = 0.069 cm3/ 

cm3 and R2 = 0.39 with the SM estimates of HYDRUS-1D of all three layer ratios, which is quite acceptable. 

However, the MSMAR was more consistent with the HYDRUS-1D when Zr2>100 cm (average RMSE = 0.079 

cm3/ cm3 and R2 = 0.47), than Zr2≤100 cm (average RMSE = 0.051 cm3/cm3 and R2 = 0.23). The MSMAR 

was also the most consistent with the HYDRUS-1D when Zr1 = 50 with average RMSE = 0.058 cm3/cm3 and 

R2 = 0.59. 

 
Table 3. RZSM and R2 values between the SM results of Hydrus-1D and MSMAR. 

* S1_15cm means the surface layer has been considered 15 cm 

Soil depth 30 cm 50 cm 100 cm 150 cm 200 cm 250 cm 300 cm 

RMSE [cm3/cm3] 

MSMAR S1_15cm* 
0.051 0.066 0.052 0.050 0.087 0.126 0.086 
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S1_30cm - 0.082 0.034 0.039 0.085 0.124 0.082 

S1_50cm - - 0.022 0.029 0.067 0.107 0.064 

R2 [-] 

MSMAR 

S1_15cm 0.482 0.274 0.159 0.297 0.074 0.926 0.675 

S1_30cm - 0.049 0.220 0.164 0.052 0.414 0.295 

S1_50cm - - 0.178 0.860 0.207 0.914 0.775 

 

2.2.5.2. Evapotranspiration 

In order to estimate the potential evapotranspiration (ETP), the FAO dual crop coefficient method was 

employed because of its performance on daily basis as results of a dynamic soil evaporation coefficient rather 

than an average value [52]. Also, Ref. [46] reported that after precipitations or irrigations, dual crop coefficient 

approach had better ET estimations. In the current study, the data provided by Ref. [46] and field observations 

were used to specify crop coefficient values and length of four growth stages. i.e., initial, crop development, 

mid-season, and late season stages. The basal crop coefficient values of mid-season and late season were then 

adjusted for local climatic conditions and the mean plant height at each stage. The variation of plant height 

was estimated using Richards’ function [53] which is a well-known S-shaped function commonly used for 

modeling plant growth. The initial value of plant height at sowing time (November 1, 2012) was set to zero. 

The function asymptotically approached to the maximum plant height which was assumed to be 1m herein for 

Triticale. Table 4 shows the adjusted crop coefficients and the length of each growth stage used in this part of 

the study. Figure 7 illustrates the time series of ETp in our Triticale study farm calculated by FAO dual 

coefficient method [46]. 

 
Table 4. Crop coefficient values and length of growth stages for Triticale. 

Crop Crop coefficient (Kcb) Length of growth stages (day) 

Triticale Kcb ini Kcb mid Kcb end Lini Ldev Lmid Llate 

0.5 1.16 0.25 30 120 60 30 

 

The daily actual evapotranspiration (ETa) of MSMAR model was calculated by Eq. (13) assuming Zr1 = 15, 

30, and 50 cm (Fig. 7a-c). However, the HYDRUS-1D computed the actual evaporation and transpiration 

separately at the upper boundary of soil profile governed by atmospheric condition, and the sum of these 

parameters produced ETa. Actual transpiration was calculated by integrating nodal actual root water uptake 

(Eq. (5)) at each time step over the root zone.  
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Figure 7.  The time series of ETp by FAO dual crop coefficient method; ETa by HYDRUS-1D from the surface of the 

soil, and ETa by MSMAR for Zr2 = 30 to 300 cm when (a) Zr1 = 15 cm, (b) Zr1 = 30 cm, and (c) Zr1 = 50 cm. 

 

According to Fig. 7, ETp rises at the beginning of spring due to the increase in the solar radiation, resulting in 

the depletion of soil water content (S2). ETa estimated by HYDRUS-1D and MSMAR follow the same pattern 

with a distance from ETp resulted from water deficit in the soil. The RZSM and R2 values between the ET 

estimates of Hydrus-1D and MSMAR are presented in Table 5. According to the Table 5, the MSMAR model 

was in good agreement and HYDRUS-1D in estimating the daily actual evapotranspiration (ETa) for all of Zr1 

and Zr2 combinations, with the average RMSE = 0.173 cm/day and R2 = 0.649. Moreover, the performance of 

MSMAR improved as Zr1 and/or Zr2 increases. 

 
Table 5. RZSM and R2 values between the ET results of Hydrus-1D and MSMAR simulations. 

 30 cm 50 cm 100 cm 150 cm 200 cm 250 cm 300 cm 

RMSE [cm/day] 

S1_15cm 0.231 0.141 0.143 0.199 0.150 0.137 0.138 

S1_30cm - 0.233 0.153 0.131 0.145 0.130 0.130 

S1_50cm - - 0.273 0.216 0.228 0.186 0.157 

R2 [-] 

S1_15cm 0.294 0.723 0.711 0.730 0.732 0.747 0.744 

S1_30cm - 0.477 0.752 0.765 0.769 0.772 0.776 

S1_50cm - - 0.164 0.420 0.709 0.712 0.689 

 

2.2.5.3. Deep percolation 

HYDRUS-1D yields DP at each control volume by means of Darcy-Buckingham flux using pressure head 

distribution obtained at each time step, while MSMAR estimates this parameter as a function of water content 

and hydraulic conductivity of the second layer of the soil following Eq. 12. Figures 8-10 represent the estimated 

DP by HYDRUS-1D and MSMAR models at different depths (30, 50, 100, 150, 200, 250, and 300 cm) when 

the surface layer is 15, 30 and 50 cm, respectively. 
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Figure 8. The time series of DP estimates of HYDRUS-1D and MSMAR (with Zr1 = 15 cm) at Zr2 = 30-300 cm; as 

well as the bar chart of precipitations and irrigation events. 

 

Fig.8 illustrates that when Zr1 = 15 cm, the MSMAR can produce consistent DP estimates with those of 

HYDRUS-1D down to Zr2 = 50 cm, and yet capture the DP dynamics in the soil down to Zr2 = 100 cm. 

  

  
Figure 9. The time series of DP estimates of HYDRUS-1D and MSMAR (with Zr1 = 30 cm) at Zr2 = 50-300 cm; as 

well as the bar chart of precipitations and irrigation events. 

 

Inspecting Figures 8-10 reveals that not only MSMAR model estimated no DP for Zr2 > 100 cm (except for 

Zr2 = 300 cm in Fig. 9), but also HYDRUS-1D estimated very small DP values which could be neglected. 

According to Eq. (12), Figures (4-6) and Table 2, the water content of soil layers with Zr2 > 100 cm were 

always lower than the field capacity during the study period leaded to estimating no DP in the MSMAR model. 

The results also showed that increasing the depth of surface layer decreased the sensitivity of MSMAR model 

in capturing the DP dynamics of the soil, which might be due to the same reason but for the concept of 

infiltration in Eq. 9. 
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Figure 10. The time series of DP estimates of HYDRUS-1D and MSMAR (with Zr1 = 50 cm) at Zr2 = 100-300 cm; as 

well as the bar chart of precipitations and irrigation events. 

 

The total RMSE and R2 values between the DP results of HYDRUS-1D and MSMAR simulations are 

presented in table 6. Table 6 represents that the best performance of MSMAR model in estimating DP was at 

Zr1 = 15 cm and Zr2 = 50 cm with RMSE = 0.32 cm, and R2 = 0.7.    

 
Table 6. RZSM and R2 values between the DP results of Hydrus-1D and MSMAR simulations. 

 30 cm 50 cm 100 cm 150 cm 200 cm 250 cm 300 cm 

RMSE [cm/day] 

S1_15cm 0.746 0.323 0.742 0.013 0.007 0.000 0.001 

S1_30cm - 0.469 0.058 0.013 0.007 0.000 0.002 

S1_50cm - - 0.058 0.013 0.007 0.000 0.001 

R2[-] 

S1_15cm 0.39 0.70 0.01 0.00 0.00 0.00 0.00 

S1_30cm - 0.14 0.00 0.00 0.00 0.00 0.01 

S1_50cm - - 0.00 0.00 0.00 0.00 0.00 

 

2.2.6. Discussion 

In this paper the ability of the MSMAR model in estimating SM, ET and DP was evaluated with the well-

known HYDRUS-1D model in a study Triticale farm with the sprinkler irrigation system in an arid region of 

Iran. MSMAR is an analytical solution for the water balance in a soil composed of two layers, whereas 

HYDRUS-1D is a software for numerical simulation of saturated/unsaturated water flow within a continuous 

soil profile using 1D Richards’ equation. Field data within the deep vadose zone (3 m) was provided for about 

six month using one three-meter-deep and four two-meter deep monitoring wells equipped with TDR sensors. 

In order to investigate the effect of the surface layer depth on the performance of MSMAR, this model was 

run assuming three different depths (15, 30 and 50 cm) for the surface layer. Having the soil texture 

measurements, the RETC and ROSETTA software were used to estimate the initial guess for soil hydraulic 

parameters of HYDRUS-1D. A genetic algorithm in MATLAB was also used to calibrate the MSMAR based 

on the minimum error with the TDR measurements. 

The results showed that the MSMAR was consistent with the HYDRUS-1D in estimating the daily actual 

evapotranspiration (Average RMSE = 0.173 cm/day and R2 = 0.649 for all Zr1 and Zr2 combinations). Also, 

the MSMAR was more accurate as Zr1 or Zr2 increased. The performance of MSMAR in estimating soil 

moisture content was also acceptable with the average RMSE = 0.069 cm3/ cm3 and R2 = 0.39 for all Zr1 and 

Zr2 combinations. The MSMAR model was successful in simulating deep percolation after the precipitations 

and irrigation events when Zr1 = 15 cm and Zr2 = 50 cm (RMSE = 0.32 cm, and R2 = 0.7), and capturing the 

DP dynamics for Zr2 =100 cm. The first layer of MSMAR model acts as the driving force for the water 

movement into the second layer. So it was assumed that by increasing the depth of first layer, more real-world 
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phenomena would be integrated and incorporated into MSMAR model and therefore it was expected that 

MSMAR yield more accurate results in the second layer. However, the results showed that increasing the depth 

of surface layer did not improve the performance of the MSMAR significantly. It should be noted that the 

MSMAR model had not been calibrated to produce minimum discrepancies with the HYDRUS-1D, and yet it 

succeeded in producing relatively consistent results using a few input parameters and low computational 

requirements. 

 

2.2.7. Conclusions 

It can be concluded that MSMAR model has the advantage of implementing a few inputs (including the time 

series of surface soil moisture and some information about the soil and climate of the study region) and 

producing valuable information about the hydraulic components of the root zone (i.e. SM, ET and DP) in 

different spatial scales depending on the utilization of in-situ or remotely sensed SM data, which gives a great 

promise for different environmental sectors (e.g. agriculture and water resource management) especially in the 

developing countries and ungauged regions. For the future works, it is suggested to improve the performance 

of MSMAR model by devising a more sophisticated calibration plan, or to couple the MSMAR model with 

other distributed hydrological models (e.g. SWAT, MODFLOW etc.). 
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Part 3. Estimation of soil moisture from UAS platforms  

 

2.3.1. Introduction 

Soil water content is one of the most essential environmental variables due to its key role in water and energy 

balances at the land-atmosphere interface [1]. Surface Soil Moisture (SSM) is highly varied in space and time 

and across different scales; therefore, detailed information on soil water content is of practical importance, 

especially over arid and semi-arid regions, which aims at improving water resources utilization efficiency, 

food productivity, irrigation planning and achieving sustainable water resources management [2-4].  

Direct in situ observations of SSM are prolonged, labor-intensive, costly, and limited to discrete measurements 

in point scale, which precludes the spatial distribution of SSM due to its temporal and spatial variability [5]. 

An alternative to measure and monitor large-scale SSM is the application of Remotely-Sensed (RS) products 

[6]. Soil surface reflectance is the basis of SM monitoring through visible radiation methods, while Thermal 

Infrared Radiation (TIR) methods function on the sensitivity of Land Surface Temperature (LST) to SSM [7]. 

RS methods based on microwave radiation functions relied on the high level of difference between the soil 

and water dielectric constants [8]. 

SM estimations at coarse spatial resolution have been provided from several satellite missions including Soil 

Moisture and Ocean Salinity (SMOS) [9], Soil moisture Active and Passive (SMAP) [10], and Advanced 

Scatterometer (ASCAT) [11]. However, SM spatial-temporal variability [12] creates challenges in accurately 

estimating soil water content even through the current high-resolution satellite sensors and despite the recent 

advances in RS methods [13-14]. 

In the last decade, with the increasing developments in Unmanned Aerial Systems (UASs), they have been 

promoted as a suitable alternative for precise monitoring due to their high versatility, flexibility, and the ability 

to operate rapidly without necessarily planned scheduling. UASs represent major advantages against 

conventional platforms that have been broadly used over the years due to the ability to acquire near real-time 

ultra-high spatial and temporal resolution aerial maps with low operational costs [15-17].  

Rapid signs of progress in the use of TIR techniques for soil moisture investigations have been made since 

1974 [18]. The thermal RS methods estimate SM based on soil thermal properties or LST measurements at the 

TIR wavelengths (3 to 14 μm). Vegetation indices affected by climate conditions are included in the latter 

empirical methods [1]. However, the former approach relates SM to soil Thermal Inertia (TI), an intrinsic 

property that represents the ability of surface soil to resist temperature change. High TI values indicate small 

changes in temperature, while the reverse is true for low TI values [18]. Heat capacity and thermal conductivity 

as the two elements governing the TI, increase as SM increases; thus, SM can be inversely determined using 

TI if a relationship between these parameters is obtained in advance [19].  

An algorithm was first developed by Price [20-21] to measure TI through satellite measurements of surface 

temperature by deriving an analytical expression that illustrates the satellite-based retrieved relation between 

bare soil temperature, mean evaporation and TI. Due to the requirements of a large number of observed ground 

data for model calibration in the TI-based empirical equations proposed by [22 and 19], these approaches are 

unavailable for many regions. Soil texture and porosity have been applied in models that relate TI to SM by 

[1, 23-24].  

Only a few studies have monitored SM through RS in Iran despite the importance of water in this arid and 

semi-arid region [25-27]; on the other hand, the thermal inertia approach for SM estimation and UAS 

application have never been tested in this region. The present study gives a description on generating high-

resolution SM products through applying a TI approach in this poorly monitored area by the application of 

drone-based thermal imagery. 
 

 

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/energy-transfer
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermodynamic-property
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/land-surface-temperature
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/soil-texture
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2.3.2. Methodology 

2.3.2.1. Thermal Inertia and Soil Moisture 

The temperature of the soil’s surface is influenced by many physical parameters, and the trends in temperature 

fluctuations of soil depend on its different thermal properties [28]. The method applied in this part of the study 

is to derive SM distribution based on TI, which describes the impedance of soil to temperature variations [29]. 

TI (J m−2 K−1 s−1/2) is determined by volumetric heat capacity (𝑐, J m−3 K−1) and thermal conductivity (𝑘, W 

m−1 K−1) of the surface layer: 

 

𝑇𝐼 = √𝑐 × 𝑘  (1) 

 

Variations in temperature that occur during a diurnal solar cycle are caused by variations of TI. High TI 

indicates a high resistance to temperature change, resulting in a low difference in temperature (e.g., wet soils). 

The opposite happens to surfaces characterized by low TI (e.g., dry soils). Therefore, SM can be estimated 

from the differences in soil temperatures during the day [20]. TI cannot be derived directly due to dependency 

on factors that cannot be retrieved from remote observations (c and k can only be measured in situ); therefore, 

Price [21] simplified the estimation of TI through application of Apparent Thermal Inertia (ATI). 

 

𝐴𝑇𝐼 = 1 − 𝛼 ∆𝑇⁄   (2) 

 

where α is the surface albedo and ΔT (K) is the difference between the maximum and minimum soil surface 

temperatures during a diurnal solar cycle.  

The procedure followed, as shown in Figure 1, included the derivation of ATI map using the FLIR Tau2 sensor 

(for diurnal ΔT estimation) and the grayscale reflection map from RGB sensor (for albedo estimation). In order 

obtain a good relationship between ATI and SM, the TI method must be applied over bare or scarcely vegetated 

soils [8]; therefore, the RGB orthomosaic was firstly applied to create a mask of bare soils and separate the 

vegetated pixels using the NGRDI index [30]. The common range for green vegetation is 0.1–0.8. The NGRDI 

threshold for separation of green vegetation from bare soils in the selected study area was 0.15.  Once removing 

the vegetated pixels from the thermal map, it is necessary also to remove the shadow of vegetation. In this 

regard, while investigating the histogram of the ATI map masked by NGRDI index, a bi-modal distribution 

was observed. The first peak with lower temperature values characterizes the shadowed pixels and the second 

peak with higher temperatures corresponds to wet and dry soil pixels. The minimum between these two peaks 

was chosen as a threshold to remove the vegetated pixels. ATI is dependent on boundary conditions; therefore, 

a normalization analogous has to be performed [23]: 

 

𝐾𝐴𝑇𝐼 =
𝐴𝑇𝐼−𝐴𝑇𝐼𝑑𝑟𝑦

𝐴𝑇𝐼𝑠𝑎𝑡−𝐴𝑇𝐼𝑑𝑟𝑦
  (3) 

 

where ATIdry (K−1) is ATI of dry soils, and ATIsat (K−1) represents the ATI of saturated soils, which are the 

minimum and maximum values of ATI spatial distributions during a time series, respectively. Considering the 

normalized value of ATI and soil porosity, the SM spatial distribution was derived from the equation below. 

 

𝜃 = 𝛷 [1 −
𝑙𝑛𝐾𝐴𝑇𝐼

𝜀
]
(1 −𝜇⁄ )

 (4) 

 

Where Φ is the soil porosity, ε and μ are two empirical parameters equal to 0.6 and 0.71 for fine-textured soils, 

respectively, whereas for coarse-textured soils these values are 2.95 and 0.16, respectively [23].  
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Figure 1. Flowchart of the applied methodology. 

 

2.3.3. Study Area 

The experimental site, selected for the execution of field and aerial surveys, was located 10 km from the 

Municipality of Neishabour, Iran (Figure 2), which comprises a total area of 2 ha.  From the climatic point of 

view, the territory is part of the Eutemperate region with the biotope of the semi-desert. The annual average 

precipitation and potential evapotranspiration in this basin are 247.4 and 2335 mm, respectively. The highest 

and lowest monthly-averaged precipitations fall in March and August with values of 51 and 0.16 mm, 

respectively. The land use is characterized by bare soils and heterogeneous low vegetated agricultural fields. 

The main type of crop occurring at the aerial imagery acquisition day was wheat; although, some parts of the 

area were irrigated for saffron cultivation. 

 

Figure 2. Location of the study area (A) Triband orthomosaic over study site overlapped with observed SM data (red 

symbols), (B) and (C) Field survey performed on 17 October 2018. 
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2.3.3.1. Thermal data 

On 17 October 2018, two flight campaigns were carried out over the study area with a FLIR Tau2 336 thermal 

sensor (FLIR Systems, Inc. Wilsonville, Oregon, United States) installed onboard a quadcopter DJI Phantom 

3 Pro (SZ DJI Technology Co., Ltd. Shenzhen, Guangdong, China), which was equipped with an RGB color 

filter array camera of FC 300X.  

The first aerial survey was carried out around 11:30 in the morning UTC in order to evaluate the daily increase 

in surface soil temperature, while the second one was conducted on the same day at 20:00 UTC to estimate the 

soil temperature in the absence of solar load. Both surveys were performed in clear sky conditions. Flight 

height was set according to a ground sampling distance (GSD) of 19cm and 4.6cm for thermal and RGB 

images, respectively, and the flight plan applied a cross pattern with 90% side lap and 90% forward overlap. 

The radiometric solution produces thermographic IR video files in “.TMC” format, which were visualized, 

processed, and radiometrically corrected with ThermoViewer Software to extract 426 and 476 thermal images 

during day and nighttime, respectively. The procedure of georeferencing the thermal images was conducted in 

Geosetter Software in order to assign geographical data to each image metadata, and the final thermal 

orthomosaics were obtained in Pix4D Mapper Software. Afterward, Ground Control Points (GCPs) obtained 

on the field were assigned to the thermal and RGB orthomosaics to ensure a proper overlap. A total of 184 

RGB images were acquired to build the triband orthomosaic (Figure 2), which was further applied to extract 

the Normalized Green Red Difference Index (NGRDI).  

 

2.3.3.2. In-situ data  

Simultaneously with the acquisition of the thermal images, a ground campaign was carried out to collect soil 

samples at forty locations. The sampling was carried out on bare soil, which were further analyzed using the 

method of hydrometer in the laboratory to obtain the amount of each particle fraction from the United States 

Department of Agriculture (USDA) soil texture triangle. In particular, SM in 40 points was measured at a 

depth of 10-15 cm from a FieldScout TDR300 Soil Moisture Meter (by Spectrum Technologies, Inc.), which 

was applied to measure soil volumetric water content and were further analyzed in the validation procedures 

of the SM map. This portable device consists of a probe with 0.15 m long steel rods and is characterized by a 

soil moisture resolution of 0.1%. Table 1 shows the characteristics of the observed SM data. 

 
Table 1. Soil moisture of soil samples collected on 17 October 2018. 

Soil 

Sample 

Latitude 

(°N) 

Longitude 

(°E) 

Soil Moisture 

(%) 

Soil 

Sample 

Latitude 

(°N) 

Longitude 

(°E) 

Soil Moisture 

(%) 

1 36° 8'9.76" 58°51'39.10" 10.4 21 36° 8'11.23" 58°51'35.19" 8.4 

2 36° 8' 10.23" 58°51'38.55" 4.4 22 36° 8'11.68" 58°51'35.78" 8.3 

3 36° 8'10.70" 58°51'38.00" 3.1 23 36° 8'10.81" 58°51'33.48" 5.8 

4 36° 8'11.18" 58°51'37.45" 4.6 24 36° 8'10.37" 58°51'32.89" 5.7 

5 36° 8'11.65" 58°51'36.90" 5.5 25 36° 8'9.93" 58°51'32.31" 5.6 

6 36° 8'11.20" 58°51'36.32" 5.6 26 36° 8'9.3" 58°51'32.86" 6 

7 36° 8'10.74" 58°51'36.87" 6.5 27 36° 8'9.8" 58°51'33.44" 5.4 

8 36° 8'10.26" 58°51'37.42" 8.3 28 36° 8'10.35" 58°51'34.03" 6.6 

9 36° 8'9.79" 58°51'37.97" 6.8 29 36° 8'10.32" 58°51'35.16" 8 

10 36° 8'9.32" 58°51'38.52" 11.6 30 36° 8'9.87" 58°51'34.58" 8.3 

11 36° 8'9.35" 58°51'37.39" 13.6 31 36° 8'9.42" 58°51'33.99" 5.5 

12 36° 8'9.82" 58°51'36.84" 22.2 32 36° 8'8.98" 58°51'33.41" 6.1 

13 36° 8'10.29" 58°51'36.29" 5.2 33 36° 8'8.95" 58°51'34.54" 50.3 

14 36° 8'10.76" 58°51'35.74" 5.2 34 36° 8'9.39" 58°51'35.12" 51.4 

15 36° 8'12.12" 58°51'36.35" 5.8 35 36° 8'8.92" 58°51'35.67" 55.2 

16 36° 8'12.60" 58°51'35.81" 7.2 36 36° 8'8.49" 58°51'35.10" 57.1 

17 36° 8'12.16" 58°51'35.23" 7.1 37 36° 8'8.45" 58°51'36.22" 11.3 

18 36° 8'11.71" 58°51'34.64" 8.1 38 36° 8'8.43" 58°51'37.36" 9.6 

19 36° 8'11.27" 58°51'34.07" 7.6 39 36° 8'8.90" 58°51'36.81" 12.3 

20 36° 8'10.79" 58°51'34.61" 7.8 40 36° 8'8.87" 58°51'37.94" 12.1 

https://en.m.wikipedia.org/wiki/Shenzhen
https://en.m.wikipedia.org/wiki/Guangdong
https://en.m.wikipedia.org/wiki/China
http://www.analistgroup.com/pdf/phantom-336-ir/ENG-radiometric-vs-nonradiometric.pdf
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2.3.4. RESULTS AND DISCUSSION  

In this part of the study, the spatial distribution of SM was derived through a remotely sensed ATI map. In the 

following sections, we present the temperature, ATI, and SM maps. 

 

2.3.4.1. Temperature and ATI Maps 

Two temperature maps were obtained from the FLIR Tau2 sensor after the stitching and radiometrically 

correction of the imageries. The retrieved temperature maps are shown in Figure 3. In particular, Figure 3A 

shows the temperature map of the morning flight, ranging from 287 to 332 K; while, the temperature map of 

the nighttime flight, which varies between 273 and 286 K is shown in Figure 3B. Cai et al.[32] illustrated that 

a temperature variation of the order of 10 K is sufficient for an accurate estimation of SM, which is in 

concordance with the obtained temperature range. 

 

 
Figure 3. Soil surface temperatures obtained from the thermal camera (A) during maximum solar load; (B) at night. 

 

The ATI map obtained from the temperature variations of the study field after separating the vegetation and 

its shadow is illustrated in Figure 4A. After this step, a resampling method was applied over the ATI map to 

perform an averaging of 1 m over the pixels due to the ultra-high resolution of pixels. 

 

2.3.4.2. Soil Moisture Map 

The laboratory analyses’ results of the collected soil samples in the study area highlighted that all of our 

samples are almost homogeneous in terms of texture and recommended clay loam as the main soil texture in 

different parts of the field; thus, the parameters of Φ, ε, and μ were considered equal to 0.50, 0.6 and 0.71, 

respectively [23]. SM spatial distribution corresponding to the 40 sample points was obtained by using Eq. (4). 

Calculated SM values were compared with the measured ones (Figure 5A). The R2=0.81 and RMSE= 0.03 

were obtained, which are in full agreement with [31]. 
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Figure 4. (A) ATI map of the bare soils of the study area. The ATI values in the map are expressed in k-1 units; (B) 

Map of SM derived from FLIR thermal camera onboard the UAS expressed in m3/m3. 

 

Other studies have also demonstrated a good relationship between ATI over bare soils and SM values, as 

verified in our research [22-23]. Visual examination of SM (Figure 4B) indicates spatial trends of soil water 

content for bare and low vegetated soils in the study area, including observation of the lowest SM values 

identified in the northwest side of the acquired imagery; while, high SM values were recognized along the 

central section of the study area that is characterized by the irrigation performed for saffron cultivation. 

 
 

Figure 5. (A) Scatterplot of Estimated vs. Observed SM; (B) Relative errors observed in each sample point vs. the 

observed SM values. 

  

As shown in Fig 5B, the TI method applied on the thermal imagery obtained from the UAS estimated SM 

accurately in the medium range of its values from 8% up to 30% and showed the minimum relative error 

(100 × |𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑆𝑀 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑀|) 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑀⁄ ) values up to 30%. However, in the southwestern 

part of the field covered with the driest soils with less than 8% of water content, and in the middle-irrigated 

zone that water content was recorded by TDR up to 50%, this method was not able to estimate the SM values 

very precisely, and the errors obtained from the model results show higher error values. Based on similar 

results obtained by [23], it can be concluded that the applied method overestimated the values corresponding 

to soil water contents <0.05 m3 m−3. The errors observed in value ranges higher than 30% could be due to a 
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different porosity value over this zone, which will affect the SM results greatly since one porosity value for all 

parts of the field was applied. Another possible source of underestimations in this zone lies in the albedo 

calculations. Due to lack of multispectral sensor onboard the UAS, the albedo map was obtained from the 

grayscale reflection imagery and by comparing the maximum reflection amount from a total white pixel with 

the value of 255 with all the desired pixels throughout the field and by considering the known albedo value of 

the white surface. The albedo values over the irrigated area are lower than the dry soil due to lower reflections 

from the wet surface. Since the albedo calculation procedure was not from a multispectral camera, the albedo 

values over the irrigated area and the driest part of the field were overestimated, which affected the final SM 

results. Moreover, it should be considered that in the process of extracting vegetation from bare soil pixels, 

there were some vegetated pixels that were not precisely extracted due to the fact that separating 100% pixels 

of vegetation is nearly impossible since the resolution of thermal and RGB sensors are different. More 

importantly, we applied an RGB index instead of the most commonly used NDVI to separate vegetation from 

soil, which distinguishes vegetation from soil so much better. Therefore, by applying an RGB index, separating 

the exact pixels of vegetation from soil cannot be done due to the almost similar reflection from red, greed, 

and blue bands rather than NIR, which is applied in NDVI. Consequently, applying a multispectral sensor and 

calculating NDVI is suggested in future studies.  

 

2.3.5. Conclusions 

In this part of the study, a TI approach was applied to retrieve SM for bare and scarcely vegetated soils by 

integrating high spatial resolution thermal imagery onboard a UAS regarding the fact that diurnal thermal 

behavior of soil surface temperature is affected by fluctuations in SSM. For this purpose, ground soil sampling 

was carried out in the study area in order to determine the top soil moisture content and the composition of the 

soil samples. These data were used to validate the SM obtained on the basis of two different airborne thermal 

surveys. The results obtained with an R2=0.81 show a satisfactory relation between in situ observations and 

the estimated SM values obtained from integration of soil texture properties and surface temperature with an 

accuracy that can be considered satisfactory for practical purposes. The potential of UASs in acquiring high-

resolution thermal data was evaluated in this part of the study, suggesting that these instruments represent a 

fast, reliable, and cost-effective resource in measuring crop biophysical variables in precision farming 

applications as well as soil water content as an aid for sustainable water management in the agricultural domain 

over arid and semi-arid regions. The authors are currently working with a larger dataset, including a wider 

range of soil moisture conditions, to generalize this methodology. 
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3.1. Introduction 

The well-known RS vegetation indicators range from spectral indices, such as the Normalized Difference 

Vegetation Index (NDVI); to biophysical variable estimates such as the Leaf Area Index (LAI), Fraction of 

Absorbed Photosynthetically Active Radiation (FAPAR) (absorbed by the photosynthesizing tissue in a 

canopy) and Fraction of green vegetation Cover (FCover) [1].  

Many studies [3-5] suggested that Evapotranspiration (ET), in combination with other vegetation indices, is 

an important variable to monitor and estimate crop yield and biomass. ET is the process of transferring water 

vapor from the surface to the atmosphere through evaporation and plant transpiration from wet surfaces. ET 

plays an important role in the earth-atmosphere interactions, since it connects the energy, water and carbon 

cycles [4]. The potential and reference ET are influenced through prevailing weather conditions such as 

radiation, temperature, wind, and relative humidity [3]. The status of actual evapotranspiration (ETa), in 

comparison with the long historical records (e.g., the ETa anomaly for a given period), has the potential to 

identify vegetation stress in time and space [6], therefore, ETa is an essential element in the design, 

development, and monitoring of agricultural and environmental systems [4].  

By advancing the remote sensing technologies, ET has been consistently estimated at multiple spatiotemporal 

scales using models that can be grouped into: (I) vegetation index (VI)-based models which rely on vegetation 

indices (e.g. leaf area index (LAI) or the Normalized Difference Vegetation Index (NDVI)) as well as 

meteorological inputs (mainly net radiation (Rn), air temperature (Tair) and vapor pressure deficit (VPD)) 

following the Penman-Monteith logic; and (II) land surface temperature (LST)-based models which rely on 

LST as an effective proxy for soil moisture following the surface energy balance (SEB) [7].  Some of the well-

known VI-based models are the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) [8](Fisher et al., 2008), 

the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Evapotranspiration (MOD16) 

[9], and the Global Land-Surface Evaporation Amsterdam Methodology (GLEAM) [10]; whereas LST-based 

models are the Surface Energy Balance Algorithm for Land model (SEBAL) [11], Mapping Evapotranspiration 

at High Resolution with Internalized Calibration (METRIC) [12], and Surface Energy Balance System (SEBS) 

[13].   

Another important means of quantifying drought in a spatially comparable way across different regions is the 

Palmer Drought Severity Index (PDSI) originally developed by [14]. Different studies showed that PDSI is 

very effective in determining long-term drought, considering the basic effect of global warming through 

potential evapotranspiration, and taking precedent (prior month) conditions into account [15-18]. For the 

calculation of the PDSI four inputs are needed: precipitation, temperature, latitude, and the soil available water 

capacity (AWC) of the study area, which is a constant also known as the field capacity [19]. The four inputs 

are used to compute a water balance for the study area, which then serves as the basis for the calculation of the 

PDSI. For a detailed explanation of the calculation of the PDSI [20]. 

The main goal of this part of the study was to evaluate the potential of Fisher-Shannon statistical method to 

explore any anomalies happening for the vegetation cover around big urban areas using soil-water-atmosphere-

plant related satellite products available in the Google Earth Engine cloud database (i.e., LAI, NDVI, EVI, and 

ET from MODIS). Peri-urban parks were selected for our investigations as particularly significant areas 

because they play a key role not only in improving environmental quality and life but also in facing climatic 

change and mitigating climate change effects.  

 

3.2. Methodology 

3.2.1. The Singular Spectrum Analysis 

There are several techniques for decomposing a time series into a certain number of independent components; 

among these the Singular Spectrum Analysis (SSA) [21] represent an efficient and well known 

decompositional method that is based on phase-lagged copies of the series. The independent components 

obtained by applying the SSA can be easily recognizable as slowly changing trend, oscillatory components 

and structureless noise [22]. 

Let’s consider a time series yi (i =1, .., N) and a lag M, then the Toeplitz lagged correlation matrix can be 

constructed:  
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Since the eigenvalue k represents the fraction of the total variance of the original series explained in k-th 

reconstructed component Rk, the decreasing order of the eigenvalues also reflects the decreasing order of the 

reconstructed components by the fraction of the total variance of the series [23]. SSA requires that the lag M 

is properly selected. Khan and Poskitt [24] calculated the maximum M =(log N)c, 1.5  c  2.5.  

The minimum description length (MDL) criterion [25] 

        (4) 

is used to separate the series into two parts that we can define as trend and detrended series; k are the 

eigenvalues, p is the number of eigenvalues, identical to M, and N is the length of the original series. The 

separation occurs at the value of k 0, 1, 2, …, p-1 for which the MDL is minimized. 

 

3.2.2. The Fisher-Shannon method 

By the Fisher-Shannon the informational properties of a time series can be investigated, namely the Fisher 

Information Measure (FIM) and the Shannon entropy (SE), which in theory of information are used to quantify 

respectively the local and global smoothness of the distribution of a series. The FIM and SE can be employed 

to characterize the complexity of non-stationary time series described in terms of order and organization [26]. 

The FIM measures the order and organization of the series, and the SE its uncertainty or disorder [27]. The 

FIM and SE are defined by the following formulae:  
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where f(x) is the distribution of the series x. Instead of SE, it is generally used the Shannon entropy power NX 

𝑁𝑥 =
1

2𝜋𝑒
𝑒2𝑆𝐸, (7) 

to avoid to deal with negative quantities. FIM and NX are not independent of each other due to the isoperimetric 

inequality FIMNX≥D [28], where D is the dimension of the space, which for time series is 1. 

FIM and NX depend on f(x), whose accurate estimation is crucial to obtain reliable values of informational 

quantities. For calculating FIM and NX we applied the kernel-based approach that Telesca and Lovallo [29] 

demonstrated to be better than the discrete-based approach. Thus applying the kernel density estimator method 

for f(x) [30, 31] as shown in the following formula: 
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where M and b denote the length of the series and the bandwidth respectively, while K(u) is the kernel that is 

a continuous, symmetric and non-negative function satisfying the two following constrains: 
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f(x) is estimated by means of an optimized integrated procedure using the algorithms of Troudi et al. [32] and 

Raykar and Duraiswami [33], with a Gaussian kernel:  
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Due to the isoperimetric inequality, the Fisher-Shannon information plane (FSIP), which has the NX as x-axis 

and FIM as y-axis, represents a very useful tool to investigate the time dynamics of signals [34]. For scalar 

signals, the curve FIM∙NX=1 separates the FSIP into two parts, and each signal can be represented by a point 

located only in the space FIM∙NX>1. 

 

3.3. Study Areas 

For the purpose of this part of the study, the following three study areas were selected in the center and south 

of Italy: Appia park and Castel Porziano in the center, and Castel Volturno in the south (Fig. 1). These areas 

were selected because they were representative of diverse vegetation covers, as detailed in the following 

sections 3.3.1. and 3.3.2. 

 
Figure 1. Location of the investigated areas. 

 

The characteristics of the study areas (including Longitude, Latitude, Area, Annual precipitation, Annual mean 

temperature, Vegetation description, and Climate system) are presented in Table 1. 

 

3.3.1.  Castel Volturno  

Castel Volturno is a natural reserve which occupies a total area of 268 hectares that extends along the sandy 

coast of the municipality of Castel Volturno (CE), in a strip between the mouth of the Regi Lagni to the north 

and the mouth of Lago Patria to the south. The site includes the protected area named ZSC IT8010021 “Pineta 

di Patria” and Regional Nature Reserve “Foce Volturno-Costa di Licola” made up of pines. 
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Table 1. Meteo-climatic and vegetational characteristics of the investigated sites 

Study area Castel Volturno Castel Porziano Appia park 

Longitude 14°1'45"E   12°23'36"E   12°31'55"E   

Latitude  40°56'1"N 41°42'35"N 41°49'40"N 

Area [km2] 19 85 96 

Annual 

precipitation 

[mm] 

1078 878 878 

Annual mean 

temp. [Co] 
15.5 15.8 15.8 

Climate 

system by the 

Köppen-

Geiger  

Hot-summer 

Mediterranean 

climate, Csa 

Csa Csa 

Vegetation 

description 

268 hectares  

The site is mainly 

characterized by the 

presence of   

woods holm oak, pine 

forests with Pinus 

pinea and a nucleus of 

retro-dunal 

hygrophilous 

vegetation. 

2300 hectares The site is 

mainly characterized by 

the presence of   

holm oak (261 hectares), 

cork oak wood (460 

hectares),  and stone pine 

forest (750 hectares)  The 

woods alternate with 

clearings and natural 

grasslands 

 4580 hectares : It is a mosaic of different 

environments: large spaces intended for 

cultivation and extensive grazing are 

interrupted by uncultivated areas, residual 

wooded strips, where agricultural 

exploitation has not arrived or has long 

since ceased, ditches with the presence of 

riparian vegetation and some wet areas 

 

 

 
Figure 2. Castel Volturno Site occupies an area of around 268 hectares mainly characterized by the presence of woods 

holm oak, pine forests with Pinus pinea and a nucleus of retro-dunal hygrophilous vegetation. The Land use classes are 

from the Corine Land cover. 
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3.3.2.  Castel Porziano  

The Presidential Estate of Castel Porziano is about 25 km from the center of Rome and covers an area of 60 

km2 (6039 hectares) consisting of humid areas behind the dunes and areas with low and high scrub with the 

typical evergreen and aromatic species. Most of the extension is occupied by the lowland hygrophilous wood 

(lowland wood linked to humid environments), characterized by the presence of evergreen and deciduous oaks 

and by more purely hygrophilous species, near the wetlands. The peculiarity of Castel Porziano is above all 

linked to the interpenetration of the oak grove typical of the Mediterranean climate and the oak grove typical 

of the continental climate. Among the evergreen oaks, the holm oak, the cork oak and the crenata oak, hybrid 

between turkey oak and cork oak, are widely diffused. Among the deciduous oaks we note the turkey oak, the 

English oak and the farnetto, while in the cooler wetlands we can find poplar, ossifillo ash, maple, hornbeam 

and oriental hornbeam typical of Mediterranean coastal environments. The wood (mixed plain), one of the 

most delicate ecosystems to be protected, extends for about 2300 hectares, the Mediterranean scrub 

environments, low and high, cover an area of about 500 hectares, the holm oak occupies an area of 261 hectares 

above all in the back dune area and the cork oak wood covers an area of about 460 hectares. The woods 

alternate with clearings and natural grasslands, forming plant associations of great environmental variety. The 

stone pine forests, created with artificial reforestation, extend for about 750 hectares with the purpose of 

consolidating the sandy dunes and protecting the rear dunes from sea winds, 

 

 
Figure 3.  Castel Porziano site occupies an area of around 268 hectares mainly characterized by the presence of holm 

oak (261 hectares), cork oak wood (460 hectares), and stone pine forest (750 hectares) The woods alternate with 

clearings and natural grasslands. The land cover land use shown is from. The Land use classes are from the Corine Land 

cover 

 

3.3.3. The Appia Antica Regional Park 

The Appia Antica Regional Park with its 4,580 hectares is the largest urban protected area in Europe. A green 

wedge that runs from the city center towards the Castelli Romani. This green wedge, vast 4,580 hectares 

(following the last extension in October 2018) is characterized by different areas of interest: The Via Appia 

Antica and its adjacencies, the Caffarella Valley, the archaeological area of the Via Latina and of the 

Aqueducts, the Tenuta di Tormarancia, the Tenuta Farnesiana and then the areas of Divino Amore, Falcognana 

and Mugilla. The park is so vast that it affects three municipalities: that of Rome, Ciampino and Marino. The 
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Park today looks like a mosaic of different environments: large spaces intended for cultivation and extensive 

grazing are interrupted by uncultivated areas, residual wooded strips, where agricultural exploitation has not 

arrived or has long since ceased, ditches with the presence of riparian vegetation and some wet areas. These 

semi-natural environments and the agricultural context now represent the agro-ecosystem of the Roman 

countryside. A system of considerable naturalistic and scientific interest thanks to the presence of wildlife 

communities and plant associations, consistent with the ecological potential of the area. The Appia Antica Park 

is a substantial part of the Ecological Network of the city of Rome and is the most important protected peri-

urban area of the Lazio Region. 

 

 
Figure 4. The Appia Park is around 4580 hectares.  It is a mosaic of different environments: large spaces 

intended for cultivation and extensive grazing are interrupted by uncultivated areas, residual wooded strips, 

where agricultural exploitation has not arrived or has long since ceased, ditches with the presence of riparian 

vegetation and some wet areas. The Land use classes are from the Corine Land cover 

 

3.4. Data 

Four different satellite products available in the cloud storage of Google Earth Engine were selected because 

they are in a way related to the interactions between soil, water, atmosphere, and plants. For the purpose of 

this part of the study, MODIS products were chosen due to its global coverage and long duration of data 

acquisition. The description and characteristics of the studied datasets were mentioned below: 

 

1. MOD16A2.006: Terra Net Evapotranspiration: It can be used to calculate regional water and energy 

balance, soil water status. With long-term ET data, the effects of changes in climate, land use, and ecosystems 

disturbances (e.g. wildfires and insect outbreaks) on regional water resources and land surface energy change 

can be quantified [Running et al., 2017]. MOD16 is a VI model based on the Penman-Monteith equation driven 

by MODIS data, and global meteorological reanalysis from the Modern-Era Retrospective analysis for 

Research and Applications (MERRA) [Mu et al., 2011]. ET can be estimated summing up soil evaporation 

(ES), canopy evaporation (EC), and canopy transpiration (TC). 

 

ET = ES +EC +TC            (11)  

 



86 

 

The radiation arriving to the soil can be partitioned between canopy and soil surface using the fraction of 

photosynthetically active radiation (fPAR) assuming that fPAR and canopy cover (fc) are equal. MOD16 also 

considers the pixel wet surface fraction (fw), calculated as a function of relative humidity (RH; when RH is 

higher than 70%, fw = RH4), representing the fraction of vegetation and soil covered by water [Laipelt et al., 

2021]. Estimations of ES, EC and TS are given by Equations 12 to 14, respectively.  

 

𝐸𝑆 = 𝑓𝑤
∆𝐴𝑠+

(1−𝑓𝑐)𝜌𝑎𝐶𝑃(𝑒𝑠−𝑒𝑎)

𝑟𝑎
𝑠

∆+𝛾
𝑟𝑠
𝑠

𝑟𝑎
𝑠

+ 𝑅𝐻
(𝑒𝑠−𝑒𝑎)

𝛽𝑠𝑚 (1 − 𝑓𝑤)
∆𝐴𝑠+

(1−𝑓𝑐)𝜌𝑎𝐶𝑃(𝑒𝑠−𝑒𝑎)

𝑟𝑎
𝑠

∆+𝛾
𝑟𝑠
𝑠

𝑟𝑎
𝑠

      (12) 

 

𝐸𝑐 = 𝑓𝑤
∆𝐴𝑠+

𝑓𝑐𝜌𝑎𝐶𝑃(𝑒𝑠−𝑒𝑎)

𝑟𝑎
𝑤𝑐

∆+𝛾
𝑟𝑠
𝑤𝑐

𝑟𝑎
𝑠

           (13) 

 

𝑇𝑐 = (1 − 𝑓𝑤)
∆𝐴𝑐+

𝑓𝑐𝜌𝑎𝐶𝑃(𝑒𝑠−𝑒𝑎)

𝑟𝑎
𝑡

∆+𝛾(1+
𝑟𝑠
𝑡

𝑟𝑎
𝑠 )

           (14) 

 

where Δ is the gradient of the saturation vapor pressure–temperature, As and Ac are the available energy to 

the soil and canopy, respectively, γ is the psychrometric constant, βsm is a parameter related to the soil moisture 

constraint, rss and rsa are the surface and aerodynamic resistance for the soil surface, rwcs and rwca are the 

surface and aerodynamic resistance for the wet canopy evaporation and rts and rta are the surface and 

aerodynamic resistance for the canopy transpiration (Laipelt et al., 2021). 

 

2. MOD13Q1.006 Terra Vegetation Indices: MODIS vegetation indices are derived from 

atmospherically-corrected reflectance in the red, near-infrared, and blue wavebands; the normalized difference 

vegetation index (NDVI), and the enhanced vegetation index (EVI), which minimizes canopy-soil variations 

and improves sensitivity over dense vegetation conditions [Didan, 2015]: 

 

𝑁𝐷𝑉𝐼 =
(𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑)

(𝜌𝑁𝐼𝑅+𝜌𝑟𝑒𝑑)
            (15) 

 

where ρNIR, ρred are the surface reflectance over the near-infrared (NIR) and red bands of MODIS. The NDVI 

is well correlated with vegetation cover, vegetation canopy, vegetation dynamics, biomass, and leaf area index 

and often considered as the vegetation proxy [Huete et al., 1999; Kumari et al., 2020; and Huete et al., 1993]. 

Similar to Normalized Difference Vegetation Index (NDVI), Landsat Enhanced Vegetation Index (EVI) can 

also quantify vegetation greenness in addition to correcting for some atmospheric conditions and canopy 

background noise (e.g. highly variable aerosol conditions, such as smoke from biomass burning) which makes 

it more sensitive in areas with dense vegetation [Kumari et al., 2021; and Huete et al., 1999]:  

 

𝐸𝑉𝐼 = 𝐺(
𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅+𝐶1(𝜌𝑟𝑒𝑑)−𝐶1(𝜌𝑏𝑙𝑢𝑒)+𝐿
)         (16) 

 

where G is a gain factor (G = 2.5), C1 = 6 and C2 = 7.5 are the aerosol coefficients. L adjustment factor to 

correct the effects induced by canopy background, and ρ values represents the surface reflectance which are 

atmospherically corrected. 

3. MOD15A2H.006: Terra Leaf Area Index/FPAR: LAI is defined as the one-sided green leaf area per 

unit ground area and is used for calculating surface photosynthesis, evapotranspiration, and net primary 

production. It is calculated based on the fraction of photosynthetically active radiation absorbed by green 

vegetation [Myneni et al., 2015]. 

4. MOD11A2.006 Terra Land Surface Temperature and Emissivity: The Land Surface Temperature 

(LST) daily data are retrieved by the day/night algorithm where, daytime and nighttime LSTs and surface 

emissivities are retrieved from pairs of day and night MODIS observations in seven TIR bands [Wan et al., 

2015]. 
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Table 2. General description of datasets and bands used in this study available in the cloud storage of Google 

Earth Engine. 

Collection 
Snippet 

Dataset 
Availability 

Bands RESOLUTION 

Name Units Min Max Scale Description 
Temporal 

[day] 
Spatial 

[m] 

ee.ImageColle
ction("MODI
S/006/MOD1

6A2") 

2001-2022 ET 
kg/m^
2/8day 

-32767 32700 0.1 
Total 

evapotranspira
tion 

8 500 

ee.ImageColle
ction("MODI
S/006/MOD1

3Q1") 

2000-2022 

NDVI [-] -2000 10000 0.0001 

Normalized 
Difference 
Vegetation 

Index 

16 250 

EVI [-] -2000 10000 0.0001 
Enhanced 
Vegetation 

Index 
16 250 

ee.ImageColle
ction("MODI
S/006/MOD1

5A2H") 

2000-2022 Lai_500m 

sq. 
meter/

sq. 
meter 

0 100 0.1 
Leaf Area 

Index 
8 500 

ee.ImageColle
ction("MODI
S/006/MOD1

1A2") 

2000-2022 
LST_Day

_1km 
Kelvin 7500 65535 0.02 

Day land 
surface 

temperature 
8 1000 

 

The area-averaged time-series of studied parameters were extracted for the polygons representing the study 

regions (see figures 1) using the GEE JavaScript API for the study period of 2001-2020. 

 

3.5. Results 

We analyzed the 2000-2020 time variation of four vegetation indices: evapotranspiration (ET), normalized 

difference vegetation index (NDVI), leaf area index (LAI) and enhanced vegetation index (EVI). 

First of all, the SSA was applied to each time series, and the value of the phase lag M was selected taking into 

account the sampling time of the series (8 days for ET and LAI; 16 days for EVI and NDVI).  To detect at 

least the annual cycle, M was set as 45 for ET and LAI series, and as 24 for EVI and NDVI series, and, 

moreover, these values, well fit with the Khan and Poskitt’s [24] criterion, varying the length of the data from 

503 values (EVI and NDVI) to 965 (ET) and 1003 (LAI).  

Figure 5 shows as an example, the application of the SSA to the ET time series of Appia. Before applying the 

SSA, the original time series was normalized. Figure 5a) shows the eigenvalue spectrum of the SSA 

decomposition; each eigenvalue corresponds to a reconstructed component and represents the fraction of the 

total variance of the original series explained by that component. Figure 5b) shows all the obtained 

reconstructed components, whose behaviour varies from oscillatory with amplitude modulation to apparently 

noisy.  
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a) b) 

  
c) d) 

 

 

e)  
Figure 5. Application of the SSA to the ET series of Appia: a) eigenvalue spectrum; b) reconstructed components; c) 

MDL versus the number of components k; the minimum MDL is at kmin=11; d) trend; e) detrended series 
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a)  b) 

  
c)  d) 

 

 

e)  
Figure 6. Application of the SSA to the ET series of Volturno: a) eigenvalue spectrum; b) reconstructed components; c) 

MDL versus the number of components k; the minimum MDL is at kmin=5; d) trend; e) de-trended series 
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a) b) 

  
c) d) 

 

 

e)  
Figure 7. Application of the SSA to the ET series of Porziano: a) eigenvalue spectrum; b) reconstructed components; c) 

MDL versus the number of components k; the minimum MDL is at kmin=7; d) trend; e) de-trended series 

 

 

Table 3. Values of minimum MDL. 

 Castel Volturno Castel Porziano Appia 

ET 5 7 11 

EVI 5 10 10 

LAI 5 7 9 

NDVI 5 9 10 
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Applying the MDL criterion, the signal is separated into a trend and a de-trended series; the value of kmin 

corresponding to the minimum MDL represents the number of the first reconstructed components to sum up 

for obtaining the trend (Table 3). Applying this criterion to ET time series of Appia, the MDL curve is shown 

in Figure 5c), and the minimum MDL is at kmin=11; thus, the trend is obtained summing up the first 11 

reconstructed components (Figure 5d) and the detrended series by subtracting the trend from the original 

normalized series (Figure 5e). Figure 6 and Figure 7 show, similarly to Figure 2, the application of SSA to the 

ET series of the other two sites, Castel Volturno and Castel Porziano. 

The trend is characterized by an oscillatory behaviour that explains the seasonal cycles of the series, very likely 

linked with the meteo-climatic variability. The detrended series, although apparently noisy, would represent 

the inner time dynamics of the series that might be not influenced by external driving mechanisms. Table 3 

shows for all the investigated indices the value of the minimum of MDL criterium.  

Our aim is to characterize the time dynamics of inner vegetation of the investigated sites by using the Fisher-

Shannon method. Thus, for each site we focused on the detrended series, since this represents the inner time 

variability of vegetation not influenced by external meteo-climatic factors. 

Figure 8 shows the FSIP of ET (Figure 8a), EVI (Figure 8b), LAI (Figure 8c) and NDVI (Figure 8d). The FSIP 

indicates that Castel Volturno site is characterized by the highest Shannon entropy power and the lowest FIM 

that  suggests a low level of order and organization of vegetation indices; Appia park, except for the ET, is 

characterized by the lowest Shannon entropy power and the lowest FIM that reveal a relative high level of 

order and organization of vegetation indices; Castel Porziano is generally characterized by an “intermediate” 

behaviour, since the vegetation indices, except ET, are located in the FSIP between Castel Volturno and Castel 

Porziano. 

 

  
a)  b) 

  

c)  d) 
Figure 8. FSIP of ET (a), EVI (b), LAI (c) and NDVI (d). 
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3.6. Discussion 

The potentiality of satellite systems for the monitoring of vegetation resources is widely recognized and 

nowadays the most recent ICT technological developments, the joint use of artificial intelligence and EO, 

along with the growing availability of information (and data also from free cloud as GEE) have opened new 

frontiers and application fields.  

The use of EO-based indicators for the monitoring of vegetation is particularly relevant and recently the RS-

derived data have been shown to be useful across many fields, but undoubtedly big earth observation data as 

satellite time series poses several challenges to face in order to transform data in useful and reliable 

information.   

For the purpose of our investigation, the four vegetation indices (ET, NDVI, LAI and EVI) are different 

satellite products available in the cloud storage of Google Earth Engine and selected because they are related 

to the interactions between soil, water, atmosphere, and plants, while MODIS products were chosen due to its 

global coverage and long duration of data acquisition. 

The analyses of satellite time series are generally quite complex and time consuming due to the amount of 

data, but they are expected to be suitable for the identification of both slow and fast changes as, for example, 

parasites or salinization, deforestation or wildfires, which adversely have been affecting CN during the last 

decades. Actually, the ability and effectiveness of change detection approaches and methods depends on the 

ability to account for the great variability exhibited by the seasonal variations (at seasonal and /or intra-annual 

scales) while identifying small multi-year trends and changes at diverse inter-annual time scales.  

The methodological approach consisted of the following steps: decomposition of each satellite vegetation 

index through the SSA, detection of annual and seasonal cycles, separation between trend and de-trended series 

and application of the Fisher-Shannon method to the detrended series. In particular, this approach enabled us 

to perform the de-seasonality and, therefore, to split the stronger seasonal dynamics from the subtle inner time 

variability of the investigated signals. Identifying and extracting information related to the potential presence 

of small but significant trends or variations in vegetation is an important issue, and actually the effectiveness 

of change detection approaches depends on their ability to account for both the great variability exhibited by 

the seasonal variations but also the small multi-year changes that might be completely veiled by the seasonal 

dynamics. 

Our study highlighted that the trend is characterized by an oscillatory behaviour that explains the seasonal 

cycles of the series, very likely linked with the meteo-climatic variability. Furthermore, the detrended series, 

whose variability our study has focused on, although apparently noisy, would represent the inner time 

dynamics of the series that might be not influenced by external driving mechanisms. 

For Castel Volturno a low level of order and organization of the MODIS time series was observed during the 

whole investigated period. This behaviour denoted an anomalous vegetational dynamics that can be explained 

and attributable to the effect of attack by the parasite Toumeyella Parvicornis, which in the recent years 

adversely impacted the Pinus trees of the area dramatically damaging it.  

The reliability of the analytical results obtained from the Fisher-Shannon approach was assessed by 

comparisons with field surveys and independent data analyses. In fact, the results obtained from the statistical 

analysis herein conducted, well fit with the results obtained from the processing of Sentinel 2 data jointly 

carried out by CNR and Carabinieri [35]) and shown in Figure 9; the grey pixels (in Figure 9d) indicate the 

areas affected by a decreasing trend (site degradation) as a resulting effect of the parasite attacking the pinus 

trees; the white pixels are related to areas involved in increasing trend, mainly linked to agricultural activities. 

Finally, Figure 9f and Figure 9g, acquired during the field survey, clearly provide evidence of the macroscopic 

effect of the Toumeyella Parvicornis on the pinus trees. An example of this behaviour, i.e. grey and white 

pixels, related to decreasing and increasing trends is shown in Figure 9e, where the blue and red lines depicted 

the maximum NDVI over time as obtained from Sentinel 2 data for the pixels indicated by the blue and red 

triangles respectively. 
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Figure 9. Outputs from the analysis jointly conducted by CNR and Carabinieri [35] based on Sentinel 2 NDVI time 

series. Details related to the results obtained by the independent analyses on Sentinel 2 (a,b,c) conducted by CNR and 

verified by Carabinieri by field surveys. The grey areas indicated the pixels affected by a decreasing trend (site 

degradation) for which an example is in Figure 6e. Field survey highlighted that this decreasing trend is mainly linked 

to the parasite attack which in the last 5 years strongly affected the pinus tree and dramatically damaged the area 

 

 

The inner dynamic of vegetation of Appia Antica Park seems quite stable and this was confirmed by in-situ 

analysis. This site is mainly involved in and characterised by agricultural activities that were conducted 

systematically maintaining the same cultivation types for the whole period of our analysis [35]. The behaviour 

of the inner vegetation appears without anomalous dynamics, because the area was not involved in significant 

changes of vegetation status as well as of the land use  and land cover as it can be seen from the Corine land 

cover updates (free available on line in the framework of the  Copernicus  initiative   see for example, CORINE 

Land Cover — Copernicus Land Monitoring Service). 

Castel Porziano, instead, presents FIM and Shannon Entropy values in the middle between those of Castel 

Volturno and Castel Porziano, except for the Evapotranspiration. Comparison with independent data sets [35] 

can confirm that from 2000 to 2020 the area was quite stable as it can be seen from Figure 10, where the 

Google Earth satellite pictures at higher resolution do not show particular changes in land cover. 

 

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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Figure 10. Castel Porziano from GE high resolution images, which show that from 2000 to 2020 no significant changes 

occurred (Google Earth Pro courtesy) 

 

 

3.7. Conclusion 

The vegetation of three study areas from the Central (Appia ancient park and castel Porziano) to the Southern 

(Castel Volturno) part of Italy were analyzed. The study areas were peri-urban and specifically selected as key 

in improving environmental quality: in fact, they are rich in biodiversity and allow urban areas to be more 

sustainable, helping to combat climate change, and make cities more comfortable, as recently strongly 

emphasized by the pandemic emergency. 

Thus, for each site we focused on the detrended series, since this represents the inner time variability of 

vegetation not influenced by external meteo-climatic factors.  

Results of our analyses highlighted that the (i) trend is characterized by an oscillatory behaviour that explains 

the seasonal cycles of the series, very likely linked with the meteo-climatic variability, (ii) detrended series, 

although apparently noisy, would represent the inner time dynamics of the series that might be not influenced 

by external driving mechanisms 

Among the sites investigated, Castel Volturno was characterized by the highest Shannon entropy power and 

the lowest FIM that indicate a low level of order and organization of the vegetation indices for this site. 

Independ analyses and field survey highlighted that Castel Volturno is strongly affected by a parasite, the 

Toumeyella Parvicornis, which has been provoking a dramatic damage to the Pinus trees in the last years. 

Our results could contribute to the definition of methods suitable for an early diagnosis of deterioration trends, 

and create operational tools for multi-scale, multi-sensor, multi-temporal monitoring of bio-physical 

parameters relating to the state of vegetation. 
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Abstract 

Global warming, as the biggest manifestation of climate change, has changed the distribution of 

water in the hydrological cycle by increasing the evapotranspiration rate resulting in 

anthropogenic and natural hazards adversely affecting modern and past human properties and 

heritage in different parts of the world. The comprehension of environmental issues is critical for 

ensuring our existence on Earth and environmental sustainability. Environmental modeling can 

be described as a simplified form of a real system that enhances our knowledge of how a system 

operates. Such models represent the functioning of various processes of the environment, such as 

processes related to the atmosphere, hydrology, land surface, and vegetation. The environmental 

models can be applied on a wide range of spatiotemporal scales (i.e. from local to global and from 

daily to decadal levels); and they can employ various types of models (e.g. process-driven, 

empirical or data-driven, deterministic, stochastic, etc.). Satellite remote sensing and Earth 

Observation techniques can be utilized as a powerful tool for flood mapping and monitoring. By 

increasing the number of satellites orbiting around the Earth, the spatial and temporal coverage 

of environmental phenomenon on the planet has in-creased. However, handling such a massive 

amount of data was a challenge for researchers in terms of data curation and pre-processing as 

well as required computational power. The advent of cloud computing platforms has eliminated 

such steps and created a great opportunity for rapid response to environmental crises. The purpose 

of this study was to gather state-of-the-art remote sensing and/or earth observation techniques and 

to further the knowledge concerned with any aspect of the use of remote sensing and/or big data 

in the field of geospatial analysis. In order to achieve the goals of this study, some of the water-

related climate-change phenomena were studied via different mathematical, statistical, 

geomorphological and physical models using different satellite and in-situ data on different 

centralized and decentralized computational platforms. The structure of this study was divided 

into three chapters with their own materials, methodologies and results including: (1) flood 

monitoring; (2) soil water balance modeling; and (3) vegetation monitoring. The results of this 

part of the study can be summarize in: 1) presenting innovative procedures for fast and semi-

automatic flood mapping and monitoring based on geomorphic methods, change detection 

techniques and remote sensing data; 2) modeling soil moisture and water balance components in 

the root zone layer using in-situ, drone and satellite data; incorporating downscaling techniques; 

3) combining statistical methods with the remote sensing data for detecting inner anomalies in the 

vegetation covers such as pest emergence; 4) stablishing and disseminating the use of cloud 

computation platforms such as Google Earth Engine in order to eliminate the unnecessary steps 

for data curation and pre-processing as well as required computational power to handle the 

massive amount of RS data. As a conclusion, this study resulted in provision of useful information 

and methodologies for setting up strategies to mitigate damage and support the preservation of 

areas and landscape rich in cultural and natural heritage. 

 

Keywords: Remote sensing, Earth observation, Environmental modeling, Cloud computation, 

hazard monitoring. 
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