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Abstract
We study a ramification of a phenomenon discovered by Baird and Eells (in: Looi-
jenga et al (eds) Geometry Symposium Utrecht 1980. Lecture Notes in Mathematics,
Springer, Berlin, 1981) i.e. that non-constant harmonic morphisms � : MN → N 2

from a N-dimensional (N ≥ 3) Riemannian manifold MN, into a Riemann surface
N 2, can be characterized as those horizontally weakly conformal maps having min-
imal fibres. We recover Baird–Eells’ result for S1 invariant harmonic morphisms
� : M2n+2 → N 2 from a class of Lorentzian manifolds arising as total spaces
M = C(M) of canonical circle bundles S1 → M → M over strictly pseudoconvex
CR manifolds M2n+1. The corresponding base maps φ : M2n+1 → N 2 are shown to
satisfy limε→0+ πH φ μV φ

ε = 0, where μV φ

ε is the mean curvature vector of the verti-
cal distribution V φ = Ker(dφ) on the Riemannian manifold (M, gε), and {gε}0<ε<1
is a family of contractions of the Levi form of the pseudohermitian manifold (M, θ).

Keywords Harmonic morphism · Fefferman metric · Cauchy–Riemann manifold ·
Contraction of Levi form · Subelliptic harmonic morphism ·Mean curvature
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1 Harmonic Morphisms in Riemannian Geometry Versus Lorentzian
Geometry

A harmonic morphism is a continuous mapping� : MN → Nm of semi-Riemannian
manifolds (M, g) and (N , h) such that for every solution v : V → R to �hv =
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0, defined on an open subset V ⊂ N , the pullback u = v ◦ � is a distribution-
solution to �gu = 0 on U = �−1(V ), where �g and �h are the Laplace–Beltrami
operators of the given semi-Riemannian manifolds. Considerable attention has been
given to the study of harmonic morphisms within the Riemannian category, and the
main results up to 2003 were reported on in the wonderful monograph by Baird and
Wood [5]. By a result of Fuglede (cf. [34]) every non-constant harmonic morphism
of Riemannian manifolds is an open map. Remarkably, Fuglede’s result relies on the
Harnack inequality for positive harmonic functions on a Riemannian manifold (cf.
e.g. Serrin [59]) thus establishing a solid bond between the geometry of harmonic
morphisms and elliptic theory (cf. e.g. [39]). However, harmonic morphisms � :
M2 → N , from a Lorentzian surfaceM into a semi-Riemannian manifold, that aren’t
open maps, do exist (cf. [5, pp. 446–448]). For morphisms from Fefferman spaces we
may state (leaving definitions momentarily aside)

Theorem 1 Let M be a strictly pseudoconvex CR manifold, equipped with the posi-
tively oriented contact form θ ∈ P+(M), and let N be a Riemannian manifold. Any
nonconstant S1 invariant harmonic morphism� : C(M)→ N from the total space of
the canonical circle bundle S1 → C(M)→ M, endowed with the Lorentzian metric
Fθ [the Fefferman metric of (M, θ)], is an open map. Moreover, if M is compact and
N is connected then N is compact and � is surjective.

As another contrasting feature of the semi-Riemannian case, harmonic morphisms
of semi-Riemannianmanifolds may be non smooth. Indeed the proof that a continuous
harmonic morphism� : M → N of Riemannian manifolds is actually C∞ relies (cf.
[5, p. 111]) on two ingredients i.e. (i) the existence of harmonic local coordinate
systems on the target manifold N , and (ii) the hypoellipticity of the Laplace–Beltrami
operator�g of (M, g), itself following from the ellipticity of�g . The known proof of
the existence of harmonic local coordinates is tied (cf. DeTurck andKazdan [22]) to the
ellipticity of�h , although harmonic local coordinate systems on Lorentzianmanifolds
were used in spacetime physics as early as the work by Lanczos (cf. [47]) and Einstein
himself (cf. [30]), yet without questioning their existence. Moreover, if say (M, g)
is a Lorentzian manifold, then its Laplace–Beltrami operator is the geometric wave
operator�g which is not hypoelliptic. For morphisms from Fefferman spaces we may
state

Theorem 2 Any continuous S1 invariant harmonic morphism � : C(M) → N from
the Lorentzian manifold (C(M), Fθ ) into the Riemannian manifold N is smooth.

Unique continuation (cf. [5, pp. 111–112]) doesn’t hold for harmonic maps and
morphisms of semi-Riemannianmanifolds (cf. [5, p. 448]). It should also bementioned
that J.H. Sampson’s unique continuation theorem for harmonic maps of Riemannian
manifolds (cf. Theorem 1 in [58, p. 213]) relies on a unique continuation result for
solutions to elliptic equations due to N. Aronszajn (cf. [2]) whose proof is believed
to be wrong, cf. Appendix A in [25, pp. 433–434], (although the very result in [2]
may hold true, at least for solutions to �gu = 0). Apart from a brief conjectural
discussion in § 6, unique continuation of subelliptic harmonic maps and morphisms
will be addressed in further work.

123



Harmonic Morphisms from Fefferman Spaces Page 3 of 63 280

By a celebrated result of Baird andEells (cf. [3]) a smooth non-constant horizontally
weakly conformal map � : MN → Nm of Riemannian manifolds is a harmonic
morphism if and only if

(m − 2)H
{∇ log λ(�)

} + (N − m)�∗ μV = 0, (1)

where λ(�) and μV are respectively the dilation of � and the mean curvature vector
of its fibres. Cf. also [16] for the casem = N−1. In particular, if the target manifold is
a real surface (m = 2) then harmonic morphisms � : M → N 2 have minimal fibres.
The case whereM is Lorentzian has not been studied, and a Lorentzian analog to the
fundamental equation

τg(�) = −(m − 2)�∗
{∇ log λ(�)

} − (N − m)�∗ μV ,

(cf. (4.5.2) in [5, p. 120]) and to the characterization (1) are not known, so far.
Given a Riemannian manifold Nm , the purpose of the present paper is to analyze

harmonic morphisms � : M2n+2 → Nm from the total space M = C(M) of the
canonical circle bundle S1 → M → M2n+1 over a strictly pseudoconvexCRmanifold
M , of CR dimension n. Here M is equipped with a fixed positively oriented contact
form θ , so thatM is a Lorentzian manifold with the corresponding Fefferman metric
g = Fθ . The discussion is confined to S1 invariant harmonicmorphisms� of (M, Fθ )
into (Nm, h), whose associated base maps φ : M → N turn out to be subelliptic
harmonic morphisms, in the sense of Dragomir and Lanconelli [25]. Our result in this
direction is

Theorem 3 Let M be a strictly pseudoconvex CR manifold, of CR dimension n,
equipped with the positively oriented contact form θ ∈ P+(M), and let (N , h) be
a m-dimensional Riemannian manifold. Let � : C(M) → N be a continuous S1

invariant map, and let φ : M → N be the corresponding base map. The following
statements are equivalent

(i)� is a harmonic morphism of the Lorentzian manifold (C(M), Fθ ) into (N , h),
of square dilation 
(φ) ◦ π .

(ii) φ is a subelliptic harmonic morphism of the pseudohermitian manifold (M, θ)
into (N , h), of θ -dilation

√

(φ).

If this is the case then
(a) � is nondegenerate at p ⇐⇒ π(p) ∈ �(φ) := M\Z[


(φ)
]
.

(b) p ∈ Crit(�)⇐⇒ π(p) ∈ Crit(φ).
(c) � is degenerate at p ⇐⇒ either m = 1 and π(p) ∈ II1(φ), or m ≥ 2 and

π(p) ∈ M\S(φ).
(d)� is a harmonic map of the Lorentzian manifold (C(M), Fθ ) into the Rieman-

nian manifold (N , h), while φ is a subelliptic harmonic map of the pseudohermitian
manifold (M, θ) into (N , h).

(e) � is horizontally weakly conformal, while φ is Levi conformal.
(f) If m = 2 i.e. (N , h) is a real surface, then every leaf of the pullback foliation

π∗F of S(�) [the foliation of S(�) tangent to V �] is a minimal submanifold of(
C(M), Fθ

)
.
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The equivalence (i) ⇐⇒ (ii) in Theorem 3 was first observed by Barletta (cf. [6])
for the particular case of the Heisenberg group M = Hn . The more general case at
hand is treated in Section § 4 of the present paper.

Let μV φ (
gθ , ∇

) ∈ C∞(
H φ

)
be defined by formally replacing the Levi-Civita

connection ∇gθ (of the Webster metric gθ ) by the Tanaka–Webster connection ∇ (of
the pseudohermitian manifold (M, θ)) in the ordinary mean curvature vector μV φ ≡
μV φ (

gθ , ∇gθ
) ∈ C∞(

H φ
)
of the vertical distribution V φ = Ker(dφ) thought of as

a distribution on the Riemannian manifold (M, gθ ). Let� = φ ◦π be the vertical lift
of φ to the total space C(M) of the canonical circle bundle over M , equipped with the
Fefferman metric Fθ . To some surprise, while the tension field τFθ (�) projects on the
pseudohermitian tension field τb(φ), the square dilation �(�) is the vertical lift of the
square dilation
(φ), and gradients with respect to Fθ project on horizontal gradients
on (M, θ), the term �∗ μV �

(appearing in the fundamental equation (50)) doesn’t
project on φ∗ μV φ (

gθ , ∇
)
, as one might have hoped for, to start with. In a quest for

the “correct” pseudohermitian analog to the mean curvature vector of V φ , we endow
M with the family

gε = gθ +
( 1

ε2
− 1

)
θ ⊗ θ, 0 < ε < 1, (2)

of contractions (in the sense of Strichartz [60]) of the Levi form Gθ , and analyze
the behavior of μV φ

ε [the mean curvature vector of V φ as a distribution on the Rie-
mannian manifold (M, gε)] in the limit as ε → 0+. The family of Riemannian
metrics {gε}0<ε<1 is devised such that

(
M, dε

) → (
M, dH

)
as ε → 0+, in the

Gromov–Hausdorff distance. Here dε and dH are respectively the distance function
of the Riemannian manifold

(
M, gε

)
, and the Carnot–Carathéodory distance function

associated to the sub-Riemannian structure
(
H(M), Gθ

)
(the maximally complex

distribution of the CR manifold M , equipped with the Levi form, cf. [29, 60]). A
comparison to the works by Barone-Adesi et al. [13], Cheng et al. [20], Malchiodi
et al. [19], Danielli et al. [21], Garofalo et al. [37] and Pauls et al. [38], may reveal
μV φ

hor := limε→0+ μV φ

ε as the appropriate candidate for the mean curvature vector
[of a leaf of the foliation F tangent to V φ , as a submanifold of the pseudohermitian
manifold (M, θ)]. For the time being, we establish (in the spirit of the work by Ni
[53])

Theorem 4 Let φ : M2n+1 → N 2 be a non-constant subelliptic harmonic morphism,
of the pseudohermitian manifold (M, θ) into the real surface (N , h). Let μV φ

ε be the
mean curvature vector of V φ , as a distribution on the Riemannian manifold (M, gε).
Then πH φ μV φ

ε → 0 as ε → 0+, uniformly on any relatively compact domain
U ⊂ M.

We revisit the notion of horizontal mean curvature of a real hypersurface in a Carnot
group (cf. Capogna et al. [18], Capogna and Citti [17]) in the context of subelliptic
harmonic morphisms φ : M2n+1 → N 1 from a pseudohermitian manifold (M, θ)
into a m = 1 dimensional Riemannian manifold N 1. We compute the horizontal
mean curvature of every leaf of the foliationF by real hypersurfaces of S(φ) [where,
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by Theorem 6, S(φ) = M\Crit(φ), an open set] determined by the submersion φ :
S(φ) → N 1. Precisely, let {gε}0<ε<1 be the family of contractions of Gθ given
by (2), and let H φ

ε be the gε-orthogonal complement of V φ in (T (M), gε). Let
nε ∈ C∞(

H
φ
ε

)
such that gε

(
nε , nε

) = 1. The horizontal normal n0 is

n0 = 1

gε
(
νε , νε

)1/2 ν
ε , νε ≡ �H nε = nε − θ

(
nε

)
T ,

and the horizontal mean curvature K0 of the leaves ofF is

K0 = div
(
n0

) ∈ C∞(�),

where � = M \ Z(
) (an open set) and the divergence is computed with respect to
the volume form � = θ ∧ (dθ)n . The horizontal normal and mean curvature are well
defined on � because �(F ) ⊂ Z(
) [by Theorem 6 below, and our discussion in
§ 7] where �(F ) is the set of all characteristic points of the leaves ofF .

Theorem 5 Let φ : M → N 1 be a subelliptic harmonic morphism, of square dilation

. Then

(i) For every local coordinate system (V , y1) on N such that U = φ−1(V ) ⊂ �

n0 = 1√

0

∇Hφ1 , 
0 = 


h11 ◦ φ , φ1 = y1 ◦ φ,

so that

K0 = div
( 1√


0
∇Hφ1

)

= − 1√

0

{
�bφ

1 + (∇Hφ1
)
log

√

0

}
, (3)

everywhere in U.
(ii) The vector field

μV φ

hor ≡ μV φ (
gθ , ∇

) + 1

2n
πH φ

{ 2

θ(T )
JT −∇T T

}
∈ C∞(

H φ
)
,

and the mean curvature K0 are related by

2n gθ
(
μV φ

hor , n
0) = {

ϕ T (φ1)− 1
}
K0 ,

ϕ2
{

0 + T (φ1)2

} = 1− θ(T )2 , T = ‖T V ‖−1 T V . (4)

Consequently

2n μV φ

hor = α∇φ1 , α := −�bφ
1 +√


0 K0


0 + T (φ1)2
. (5)
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In particular, for any local harmonic coordinate system (V , y1) on N [i.e.�h y1 =
0 in V ] with U = φ−1(V ) ⊂ �

2n�H μ
V φ

hor = − 
0


0 + T (φ1)2
K0 n0, (6)

everywhere in U.

By a result in [5, p. 448], to every non-constant harmonic morphism� : C(M)→
N of class C∞, there corresponds a symbol σp(�) : (

Tp(C(M)), Fθ, p
) →(

T�(p)(M), h�(p)
)
which is a harmonic morphism (this may fail if � ∈ C� for

some 2 ≤ � < ∞ yet � /∈ C�+1). The CR structure on M induces a natural strictly
pseudoconvex CR structure on the tangent space Tx (M) at every point x = π(p), yet
the properties of the symbol σx (φ) : Tx (M) → Tφ(x)(N ) of a subelliptic harmonic
morphism are not known, so far.

The paper is organized as follows. Section 2 recalls the essentials of CR and pseudo-
hermitian geometry (by following [29]) and of subelliptic harmonicmapsφ : M → N ,
from a pseudohermitian manifold (M, θ) into a Riemannian manifold (N , h) (cf. [9,
44]). The needed material on subelliptic harmonic morphisms is reviewed in Sect. 3
(cf. [7, 25]). Theorems 1, 2 and 3 are proved in Sect. 5. The Lorentzian and pseudo-
hermitian ramifications of the result by Baird and Eells (cf. [3]) are treated in Sect.
3, where we also prove Theorem 4. In Sect. 7 we prove Theorem 5. Sect. 8 exhibits
a few examples i.e. subellitic harmonic morphisms from the Heisenberg group and
fromRossi spheres. The study of the properties of the symbol of a subelliptic harmonic
morphism φ : M → N is relegated to a further paper.

Given a 3-dimensional nondegenerate CR manifold M3, let � : M4 → N 2 be
a harmonic morphism from a 4-manifold M4 equipped with the Lorentizan metric
g, into the Riemann surface N 2, such that the vertical spaces V �

p = Ker
(
dp�

)
are

nondegenerate for every p ∈ M4, and letH � be the g-orthogonal complement ofV �.
By a result of J. Ventura (cf. [62]) the Ricci curvature of

(
M4, g

)
may be computed

in terms of i) the (square) dilation of �, ii) the first fundamental forms of H � and
V �, iii) the second fundamental forms of H � and V � and their adjoints, iv) the
sectional curvature of the fibers of �, v) the mean curvature of H �, vi) the mean
curvature of the fibers of�, and vii) the integrability 1-form ofH �. Let gV and gH

be the bundle metrics induced on V � and H �, respectively. Given C∞ functions
σ, ρ : M4 → (0, +∞) the Lorentzian metric

g̃ := 1

σ 2 gH + 1

ρ2
gV , (7)

is a biconformal deformation of g. The Einstein equation

Ricg̃ = 
 g̃, (8)

recasts as a PDE system in the unknown functions σ and ρ, and solving (8) for σ and ρ
amounts to producing solutions (Einsteinmetrics) g̃ bybiconformal deformations of an
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a priori given Lorentzianmetric g. The approachwas devised byVentura (cf. [62]) and
themethodwas applied to a number of space-times andmorphisms� : M4 → N 2 e.g.
for the Schwarzschild metric g and a projection� from the Schwarzschild space-time
onto N 2 = S2. Cf. also Baird andVentura [4], where the approach is however confined
to the case of a Riemannian 4-manifoldM4. Given a positively oriented contact form
θ on M3, the Fefferman metric g = Fθ is never Einstein (cf. Lee [49]). The curvature
calculations in [62] and the resulting attempt to solve (8) is then liable to produce
Einstein metrics on the total space M4 = C(M3) of the canonical circle bundle over
M , by a biconformal deformation [associated to a given harmonic morphism � from
C(M3) into a Riemann surface] of the Fefferman metric.

A similar problem was solved (outside harmonic morphisms theory) by Leitner (cf.
[50]) who built pseudo-Einstein (cf. [29]) contact forms θ of vanishing pseudoher-
mitian torsion, and observed that the corresponding Fefferman metric is conformally
Einstein i.e. there is a C∞ function σ : C(M3)→ (0, +∞) such that g̃ = (

1/σ 2
)
Fθ

is an Einstein metric [cf. (7) with σ ≡ ρ, as Fθ = FH
θ + FV

θ for any harmonic mor-
phism � with a nondegenerate vertical distribution]. The results in [50, 62] were not
paralleled so far. It is an open problem, suggested by the Reviewer, to build examples
of Einstein metrics on C(M3) by a biconformal deformation of the Fefferman metric
Fθ , associated to a contact form θ that is neither pseudo-Einstein nor transversally
symmetric (and compensating said obstructions by an appropriate choice of harmonic
morphism �).

2 Subelliptic Harmonic Maps

For notations, conventions and basic results in CR and pseudohermitian geometry,
we follow the monograph by Dragomir and Tomassini [29]. Let M be a strictly
pseudoconvex CR manifold, of CR dimension n, equipped with a positively oriented
contact form θ , and let N be a m-dimensional Riemannian manifold, with the Rie-
mannian metric h. Let T1,0(M) ⊂ T (M) ⊗ C be the CR structure on M and let
H(M) = Re

{
T1,0(M)⊕T0,1(M)

}
be the corresponding maximally complex, or Levi,

distribution. Here T0,1(M) = T1,0(M) and overbars denote complex conjugates. Let
J : H(M)→ H(M) be the natural complex structure i.e.

J
(
Z + Z

) = √−1
(
Z − Z

)
, Z ∈ T1,0(M).

Let H(M)⊥ ⊂ T ∗(M) be the conormal bundle i.e. the real line bundle

H(M)⊥x = {
ω ∈ T ∗

x (M) : Ker(ω) ⊇ H(M)x
}
, x ∈ M .

As is well known (cf. e.g. [29, pp. 8–9]) under the mild assumption that M is
orientable, the conormal bundle is trivial i.e. H(M)⊥ � M × R (a vector bundle
isomorphism). The set of all globally defined nowhere zero C∞ sections in H(M)⊥
is denoted by P(M). For every θ ∈ P(M) let Gθ be the Levi form i.e.

Gθ (X ,Y ) = (dθ)(X , JY ), X ,Y ∈ H(M).
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280 Page 8 of 63 S. Dragomir et al.

Cf. [29, pp. 5–7]. Let P+(M) denote the set of all θ ∈ P(M) such that Gθ

is positive definite. By its very definition, strict pseudoconvexity of the given CR
structure T1,0(M) is equivalent to P+(M) �= ∅. A contact form θ ∈ P+(M) is
termed positively oriented. Let us consider the functional Eb : C∞(M, N ) → R

given by

Eb(φ) = 1

2

∫

�

TraceGθ

(
�H φ

∗ h
)
θ ∧ (dθ)n .

Here � ⊂⊂ M is a relatively compact domain and �H B denotes the restriction
to H(M) ⊗ H(M) of the bilinear form B. A C∞ map φ : M → N is subelliptic
harmonic map if it is a critical point of Eb i.e.

d

dt

{
Eb

(
φt

)}

t=0
= 0,

for any smooth 1-parameter variation {φt }|t |<ε ⊂ C∞(M, N ) of φ0 = φ with
Supp(V ) ⊂ �, where V = ∂φt/∂t ∈ C∞(

φ−1T N
)
is the infinitesimal variation

induced by {φt }|t |<ε . Subelliptic harmonic maps [from a pseudohermitian manifold
(M, θ) into a Riemannian manifold (N , h)] were first introduced by E. Barletta et
al. [9], under the name pseudoharmonic maps. Cf. also [24]. Let {Xa : 1 ≤ a ≤ 2n}
be a local Gθ -orthonormal frame of H(M), defined on the open set U which is also
the domain of a local chart χ : U → R

2n+1. Then X ≡ {χ∗ Xa : 1 ≤ a ≤ 2n}
is a Hörmander system of vector fields on χ(U ) and for any pseudoharmonic map
φ the map φ ◦ χ−1 is subellitic harmonic in the sense of Jost and Xu [44] i.e. as a
map of χ(U ) [an open set in R2n+1 equipped with the Hörmander system X ] into the
Riemannian manifold N (thus motivating the adopted terminology).

Let∇ and∇h be respectively the Tanaka–Webster connection (cf. [29, Theorem1.3,
Definition 1.25, pp. 25–31]; see also Eq. (11) below) of (M, θ) and the Levi–Civita
connection of (N , h). For every C∞ map φ : M → N let

Bb(φ)(X ,Y ) = Dφ
Xφ∗ Y − φ∗∇XY , X ,Y ∈ X(M),

be the pseudohermitian second fundamental form of φ. Here φ∗X is the C∞ section
in the pullback bundle φ−1T (N )→ M defined by

(
φ∗ X

)
(x) = (dxφ)Xx , x ∈ M .

Also Dφ = φ−1∇h is the pullback of ∇h by φ [a connection in the vector bundle
φ−1T (N )→ M parallelizing the bundle metric hφ = φ−1h (the pullback of h by φ)].
Let us set

τb(φ) = traceGθ

[
�H Bb(φ)

] ∈ C∞(
φ−1T N

)
, (9)

(the pseudohermitian tension field of φ) so that

d

dt

{
Eb

(
φt

)}

t=0
= −

∫

�

hφ
(
V , τb(φ)

)
θ ∧ (dθ)n,
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(the first variation formula for Eb) for any smooth 1-parameter variation {φt }|t<ε of
φ supported in �. A C∞ map φ is subelliptic harmonic if and only if

τb(φ) = 0. (10)

Note that τb(φ) is not the full trace of φ∗ h, but rather the trace (with respect to
the Levi form Gθ ) of �H φ

∗ h [the restriction of φ∗ h to H(M)⊗ H(M)]. Omitting
a direction in the calculation of the trace [as in (9)] has far reaching consequences,
as explained by Dragomir and Perrone (cf. [28]): the principal part in the subelliptic
harmonic map system (10) is the sublaplacian �b of (M, θ), a degenerate elliptic
operator whose ellipticity degenerates at the cotangent directions spanned by θ .

Pseudohermitian second fundamental formswere introduced by Petit (cf. [56]) who
formally modified the definition of the second fundamental form (of a map of Rieman-
nian manifolds) by replacing the Levi–Civita connection of the source manifold with
the Tanaka–Webster connection. Nevertheless M does carry a natural Riemannian
metric gθ , springing from the given structure

(
T1,0(M), θ

)
, and Bb(φ) is related to

the ordinary second fundamental form B(φ) of φ, as a map between the Riemannian
manifolds (M, gθ ) and (N , h). Precisely, let T ∈ X(M) be the Reeb vector field
of (M, θ) i.e. the globally defined, nowhere zero tangent vector field on M , trans-
verse to H(M), determined by θ(T ) = 1 and T � dθ = 0. Profiting from the direct
sum decomposition T (M) = H(M) ⊕ RT one may extend the Levi form Gθ to a
Riemannian metric gθ on M [the Webster metric of (M, θ)] by postulating that

gθ = Gθ on H(M)⊗ H(M), gθ (X , T ) = 0, gθ (T , T ) = 1,

for any X ∈ H(M). Then gθ is a contraction of the sub-Riemannian structure(
H(M), Gθ

)
(cf. Strichartz [60]) i.e. d(x, y) ≤ ρ(x, y) for any x, y ∈ M , where

d and ρ are respectively the Riemannian distance (associated to the Webster metric)
and the Carnot–Carathéodory distance (associated to the sub-Riemannian structure).
Let ∇gθ be the Levi–Civita connection of (M, gθ ) and let

B(φ)(X ,Y ) = Dφ
Xφ∗Y − φ∗∇gθ

X Y , X ,Y ∈ X(M),

be the second fundamental form of φ as a map of (M, gθ ) into (N , h). The tension
field of φ is

τ(φ) = tracegθ B(φ) ∈ C∞(
φ−1T N

)
.

The Levi–Civita and Tanaka–Webster connections ∇gθ and ∇ are related by (cf.
[29, p. 46])

∇gθ = ∇ + (
�− A

) ⊗ T + τ ⊗ θ + 2 (θ � J ), (11)

where τ is the pseudohermitian torsion of ∇ and

� = −dθ, A(X ,Y ) = gθ (X , τY ).
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A calculation relying on (11) shows that

τ(φ) = τb(φ)+ Dφ
T φ∗ T , (12)

so that the notions of a harmonic map and a subelliptic harmonic map are logically
inequivalent. Let div : X(M) → C∞(M) be the divergence operator with respect to
the volume form � = θ ∧ (dθ)n i.e.

LX� = div(X)�,

whereLX is the Lie derivative. The sublaplacian is the formally self-adjoint, positive,
second order operator �b given by

�bu = −div
(∇Hu

)
, u ∈ C2(M),

∇Hu = �H∇u, �H = I − θ ⊗ T ,

gθ (X , ∇u) = X(u), u ∈ C1(M), X ∈ X(M).

Let φ : M → N be a C∞ map. Let {Xa : 1 ≤ a ≤ 2n} ⊂ C∞(U , H(M)) be
a Gθ -orthonormal [i.e. Gθ (Xa , Xb) = δab] local frame and let (V , yα) be a local
coordinate system on N such that φ(U ) ⊂ V . The subelliptic harmonic map system
(10) may be written locally as

−�bφ
α +

2n∑

a=1

{
α

βγ

}
Xa

(
φβ

)
Xa

(
φγ

) = 0, (13)

where φα = yα ◦ φ and

{
α

βγ,

}
are the Christoffel symbols of the second kind of

hαβ . The sublaplacian is degenerate elliptic, yet subelliptic of order 1/2 and hence
hypoelliptic (cf. Hörmander [42]). The study of subelliptic harmonic maps, and then
the study of subelliptic harmonic morphisms (a particular sort of subelliptic harmonic
maps, as introduced by Dragomir and Lanconelli [25]) fits into the larger program of
Jost and Xu (cf. [44]) devoted to the study of second order quasi-linear PDE systems
of variational origin whose principal part is at least hypoelliptic.

The sublaplacian �b may be thought of as the linear operator of Hilbert spaces

�b =
(∇H )∗ ◦ ∇H : D(

�b
) ⊂ L2(M)→ L2(M),

with domain

D
(
�b

) = {
u ∈ D

(∇H ) : ∇Hu ∈ D
[
(∇H )∗

]}
,

where∇H is the weak horizontal gradient and
(∇H

)∗ is its adjoint. Then, although the
subelliptic harmonic map system is but quasi-linear, weak solutions may be defined
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as maps φ ∈ W 1,2
H (M, N ) such that for any ϕ ∈ C∞

0 (M)

∫

U

{
gθ

(∇Hφα , ∇Hϕ
)

+
2n∑

a=1

{
α

βγ

}
Xa

(
φβ

)
Xa

(
φγ

)
ϕ
}
θ ∧ (dθ)n = 0.

To make sense of the Sobolev type spaces W 1,2
H (M, N ) (the Folland–Stein spaces)

the definition is either confined to targetmanifolds N whichmay be covered by a single
coordinate neighborhood, or one first embeds (isometrically) N into a sufficiently
high dimensional Euclidean space (by using Nash’s embedding theorem [52]). The
generalized Dirichlet problem for the PDE system (13) was solved by Jost and Xu
(cf. [44]) who also proved interior continuity of solutions. Finally, existence of C∞
subelliptic harmonic maps may be established by applying a result by Xu and Zuily
(cf. [63]) who proved smoothness of continuous solutions to a class of PDE systems
including the subelliptic harmonic map system.

3 Subelliptic Harmonic Morphisms

Definition 1 A continuous map φ of (M, θ) into (N , h) is a subelliptic harmonic
morphism if for every open subset V ⊂ N , and every C2 function v : V → R, if
�hv = 0 in V then the pullback function u = v ◦ φ is a distribution-solution to
�bu = 0 in U = φ−1(V ). �

Cf. Dragomir and Lanconelli [25]. Here

�hv ≡ − 1√
h

∂

∂ yα

{√
h hαβ

∂v

∂ yβ

}
, h = det

[
hαβ

]
,

is the Laplacian on (V , h).

Proposition 1 Every subelliptic harmonic morphism φ of the pseudohermitian mani-
fold (M, θ) into the Riemannian manifold (N , h) is smooth.

Proof For every point x0 ∈ M let (V , yα) be a harmonic local coordinate system with
φ(x0) ∈ V , and let us set φα = yα ◦ φ. Then �bφ

α = 0 in U = φ−1(V ) hence (as
�b is hypoelliptic) φα ∈ C∞(U ). ��
Definition 2 A C∞ map φ : M → N is Levi conformal if there is a continuous map
λ = λ(φ) : M → [0,+∞) (the θ -dilation of φ) such that λ2 is C∞ and

Gθ

(∇Hφα , ∇Hφβ
)
x = λ(x)2 δαβ, (14)

for any x ∈ M and any local normal coordinate system (V , yα) on N with center at
φ(x) ∈ V . �
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We set as customary 
(φ) = λ(φ)2 (the square θ -dilation). For a fixed Levi
conformalmapφ : M → N we abbreviate the notation to
 = 
(φ). Letφ : M → N
be a Levi conformal map, of (M, θ) into (N , h), and let x ∈ M be an arbitrary point.
Let

(
V ′ , y′α

)
be an arbitrary local coordinate system on N such that φ(x) ∈ V ′, and

let us set φ′α = y′α ◦ φ. Then

∇Hφ′α =
(∂ y′α

∂ yβ

)φ ∇Hφβ, (15)

on φ−1(V ∩ V ′). Moreover [by (15) and (14)]

Gθ

(∇Hφ′α , ∇Hφ′β
)
x

= 
(x) δμν
∂ y′β

∂ yμ
(
φ(x)

) ∂ y′β

∂ yν
(
φ(x)

) = 
(x) h′αβ
(
φ(x)

)
,

i.e. if φ is Levi conformal then for any x ∈ M and any local coordinate system (V , yα)
about φ(x)

Gθ

(
∇Hφα , ∇Hφβ

) = 
 hαβ ◦ φ, (16)

everywhere in φ−1(V ).
By a result of Barletta [7] (revisited as in Appendix B of [25]) a C∞ map φ :

M → N is a subelliptic harmonic morphism of (M, θ) into (N , h) if and only if φ is
Levi conformal and a subelliptic harmonic map. Moreover (again by [7]) if m > 2n
then every subelliptic harmonic morphism is a constant, while if m ≤ 2n then for
every point x ∈ M with λ(x) �= 0 there is an open neighborhood U of x such that
φ : U → N is a C∞ submersion. Barletta’s result is a pseudohermitian analog to
the Fuglede–Ishihara characterization (cf. Fuglede [34], Ishihara [43]) of harmonic
morphisms between Riemannian manifolds.

Let φ : M → N be a C∞ map and let us set

V φ
x = Ker(dxφ), H φ

x = (
V φ
x

)⊥
, x ∈ M,

where the orthogonal complement is meant with respect to the inner product gθ, x .

Lemma 1 Let M be a strictly pseudoconvex CRmanifold, of CR dimension n, endowed
with the positively oriented contact form θ , and let (N , h) be a m-dimensional Rie-
mannian manifold. Let φ : M → N be a C∞ map. Then

(i) For every x ∈ φ−1(V )

{(∇φα)x : 1 ≤ α ≤ m
}
⊂ H φ

x .

(ii) Let φ : M → N be a Levi conformal map, and let Z(
) = {x ∈ M : 
(x) =
0} be the zero set of its θ -dilation. Then

Crit(φ) ⊂ Z(
). (17)
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Also
Tx ∈ H φ

x (18)

for any x ∈ Z(
) \ Crit(φ).
(iii) Let us assume that m ≤ 2n, and let φ : M → N be a subelliptic harmonic

morphism. Then for every x ∈ M\Z(
)
{(∇φα)x : 1 ≤ α ≤ m

}
, (19)

is a linear basis inH φ
x . In particular

{
x ∈ M : Tx ∈ H φ

x

}
⊂ Z(
).

Proof (i) Let x ∈ M and v ∈ V
φ
x . Then

gθ , x
(
v,

(∇φα)x
) ( ∂

∂ yα

)

φ(x)
= v(φα)

( ∂

∂ yα

)

φ(x)
= (dxφ)v = 0,

that is

(∇φα)x ∈
(
V φ
x

)⊥ = H φ
x .

��
(ii) Let x ∈ Crit(φ). Then

0 = (∇φα)x =
(∇Hφα

)
x + T

(
φα

)
x Tx �⇒,

[by the uniqueness of the direct sum decomposition Tx (M) = H(M)x ⊕ RTx ]

�⇒ (∇Hφα
)
x = 0,

hence [by (14)] x ∈ Z(
), accounting for (17).
Next, let x ∈ Z(
) \ Crit(φ). Then [by (14)]

(∇Hφα
)
x = 0, 1 ≤ α ≤ m,

so that

∃ α ∈ {1, . . . , m} : 0 �= (∇φα)x = Tx
(
φα

)
Tx

∃ α ∈ {1, . . . , m} : Tx
(
φα

) �= 0. (20)

Finally, for every v ∈ V
φ
x [by statement (i) in Lemma 1]

Tx
(
φα

)
gθ , x

(
v, Tx

) = gθ , x
(
v,

(∇φα)x
) = 0,
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yielding [by (20)] Tx ∈
(
V
φ
x

)⊥ = H
φ
x . ��

(iii) Let x0 ∈ M \ Z(
). By a result of Barletta [7], there is an open neighborhood
U ⊂ M of x0 such that φ : U → N is a C∞ submersion. Hence, dxφ : H φ

x →
Tφ(x)(N ) is a R-linear isomorphism, for any x ∈ U . By statement (i) in Lemma 1 it

suffices to show that the system
{(∇φα)x0 : 1 ≤ α ≤ m

}
⊂ H

φ
x is free. Indeed if

for some μα ∈ R, 1 ≤ α ≤ m,

0 = μα
(∇φα)x0 = μα

{(∇Hφα
)
x0
+ Tx0(φ

α) Tx0
}
,

then μα
(∇Hφα

)
x0

= 0 yielding μα = 0, because [by (14)] the vectors

{(∇Hφα
)
x0

: 1 ≤ α ≤ m
}
, (21)

are linearly independent.
Next, let x ∈ M be a point such that Tx ∈ H

φ
x . Either x is a critical point of φ,

so that [by (17)] x ∈ Z(
), or x ∈ M\Crit(φ). For the remainder of the proof we
argue by contradiction, i.e. let us assume that 
(x) �= 0. If this is the case, for any
1 ≤ α ≤ m

H φ
x ! (∇φα)x − Tx (φ

α) Tx =
(∇Hφα

)
x ,

hence (21) is a linear basis of H φ
x , too, yielding H

φ
x ⊂ H(M)x and in particular

Tx ∈ H(M)x , a contradiction. ��
Let φ : M → N be a subelliptic harmonic morphism, of the pseudohermitian

manifold (M, θ), into the Riemannian manifold (N , h). For each x ∈ M we set

V φ
H , x = H(M)x ∩ V φ

x , H
φ
H , x = H(M)x ∩H φ

x .

If x ∈ Crit(φ) then

V
φ
H , x = H(M)x , H

φ
H , x = {0}.

If x ∈ M\Crit(φ) then the differential dxφ : Tx (M)→ Tφ(x)(N )may, or may not,
be an epimorphism.

Definition 3 A regular point in the set

S(φ) = {
x ∈ M \ Crit(φ) : dxφ is on-to

}
,

is called a submersive point of the morphism φ. �

At every submersive point x ∈ S(φ)

dimRH φ
x = m, dimR V φ

x = 2n − m + 1.
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Lemma 2 Let M and N be a strictly pseudoconvex CR manifold, of CR dimension
n, and let N be an m-dimensional Riemannian manifold, such that m ≤ 2n. Let
φ : M → N be a subelliptic harmonic morphism, of θ -dilation

√

. Then (i)

M \ Z(
) ⊂ S(φ). (22)

(ii) For every submersive point x ∈ S(φ)

m − 1 ≤ dimRH
φ
H , x ≤ m, (23)

2n − m ≤ dimR V
φ
H , x ≤ 2n − m + 1. (24)

Proof (i) Let x ∈ M with x /∈ Z(
). Then, on one hand [by (ii) in Lemma 1] x is a
regular point of φ. On the other hand m ≤ 2n and 
(x) �= 0 so that, by a result of
Barletta (cf. [7]) φ is a submersion on some neighborhood of x , and in particular x is
a submersive point. ��

(ii) For instance, for every x ∈ S(φ) the relations

dimR

[
H(M)x +H φ

x

]
= 2n + m − dimRH

φ
H , x ,

2n ≤ dimR

[
H(M)x +H φ

x

]
≤ 2n + 1,

yield (19). ��
Note that [by taking complements in (22)] M\S(φ) ⊂ Z(
). Next, as a conse-

quence of (23) and (24), the set of submersive points of φ admits the natural partition

S(φ) = Im(φ) ∪ IIm(φ) ∪ IIIm(φ),

Im(φ) =
{
x ∈ S(φ) : dimRH

φ
H , x = m, dimR V

φ
H , x = 2n − m

}
,

IIm(φ) =
{
x ∈ S(φ) : dimRH

φ
H , x = m − 1, dimR V

φ
H , x = 2n − m + 1

}
,

IIIm(φ) =
{
x ∈ S(φ) : dimRH

φ
H , x = m − 1, dimR V

φ
H , x = 2n − m

}
. (25)

Indeed, case (IV) where dimRH
φ
H , x = m and dimR V

φ
H , x = 2n − m + 1 is ruled

out by H
φ
H , x ⊕ V

φ
H , x ⊂ H(M)x .

The main difficulties one encounters are related to the presence of two pairs of
complementary distributions on M [rather than just

(
H(M), RT

)
as in CR geometry,

or just
(
V φ , H φ

)
as in the theory of harmonic morphisms between Riemannian

manifolds]. These distributions intersect, and the dimension of the intersections may
vary from a point to another, requiring a classification of types of points, relative
to a fixed subelliptic harmonic morphism φ, as captured by the partition (25). Our
conclusive finding is

Theorem 6 Let M be a strictly pseudoconvex CR manifold, equipped with the contact
form θ ∈ P+(M), and let (N , h) be a m-dimensional Riemannian manifold. Let
φ : M → N be a subelliptic harmonic morphism, from (M, θ) into (N , h).
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(i) If m = 1 then

Z(
) = II1(φ) ∪ Crit(φ), M \ S(φ) = Crit(φ). (26)

(ii) If m ≥ 2 then
IIm(φ) = ∅, Z(
) = M \ S(φ). (27)

Consequently, for every subelliptic harmonic morphism φ : M → Nm all points
in M are submersive, except for the critical points of φ when m = 1, or for the zeros
of the square dilation 
 = 
(φ) when m ≥ 2.

The proof of Theorem 6 requires a number of lemmas.

Lemma 3 Under the assumptions of Lemma 2, let x ∈ S(φ) be a submersive point.
Then

(i) x ∈ Im(φ)⇐⇒ Tx ∈ V
φ
x .

(ii) x ∈ IIm(φ)⇐⇒ Tx ∈ H
φ
x .

Proof (i) If x ∈ Im(φ) then dimRH
φ
x = m hence H φ

x = H
φ
H , x ⊂ H(M)x yielding

V
φ
x = (

H
φ
x

)⊥ ⊃ H(M)⊥x = RTx . ��
Viceversa, if Tx ∈ V

φ
x then Tx is orthogonal to H

φ
x i.e. H φ

x ⊂ H(M)x yielding
H

φ
x = H

φ
H , x , and consequently dimRH

φ
H , x = m. The sets Im(φ), IIm(φ) and

IIIm(φ) are mutually disjoint, so it must be that x ∈ Im(φ). ��
(ii) If x ∈ IIm(φ) then dimR V

φ
H , x = 2n − m + 1, hence V φ

x = V
φ
H , x ⊂ H(M)x

implying that Tx is orthogonal to V
φ
x i.e. Tx ∈ H

φ
x . ��

Viceversa, if Tx ∈ H
φ
x then Tx is orthogonal to V

φ
x i.e. V φ

x ⊂ H(M)x . It
follows that the subspaces V φ

H , x and V
φ
x coincide, yet the space V φ

x is (2n−m + 1)-
dimensional, so that x ∈ IIm(φ), again because (25) is a partition.

Lemma 4 Under the assumptions of Lemma 2

IIm(φ) = S(φ) ∩ Z(
). (28)

Consequently

Im(φ) ∩ Z(
) = ∅, IIm(φ) ⊂ Z(
) \ Crit(φ), IIIm(φ) ∩ Z(
) = ∅.

Proof For every x ∈ IIm(φ) [by statement (ii) in Lemma 2] Tx ∈ Hφ
x and then [by

statement (iii) in Lemma 1] x ∈ Z(
). ��
To prove the opposite inclusion, let x ∈ S(φ) ∩ Z(
). Then 
(x) = 0 so that [by

(14)]

(∇Hφα
)
x = 0, 1 ≤ α ≤ m.
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Consequently [by statement (i) in Lemma 1]

Tx (φ
α) Tx =

(∇φα)x ∈ Hφ
x , 1 ≤ α ≤ m,

and there is α ∈ {1, . . . , m} such that Tx (φα) �= 0, because x is a regular point.
Therefore Tx ∈ Hφ

x . ��
Let us set � = �(φ) := M \ Z(
) (an open subset of M). Then

∂� ⊂ Z(
). (29)

Lemma 5 Under the assumptions of Lemma 2

S(φ) = �(φ) ∪ IIm(φ). (30)

Proof Let x ∈ S(φ). We distinguish two cases, as A) x ∈ Z(
), or B) z /∈ Z(
). In
case (A) [by Lemma 4]

x ∈ S(φ) ∩ Z(
) = IIm(φ).

In case (B)

x ∈ M \ Z(
) = �(φ).

To check the opposite inclusion, let x ∈ �(φ) ∪ IIm(φ). Then [by (28) and (22)]
either

x ∈ IIm(φ) = S(φ) ∩ Z(
) ⊂ S(φ),

or

x ∈ �(φ) = M \ Z(
) ⊂ S(φ).

��
Lemma 6 Under the assumptions of Lemma 2

(1) Im(φ) ⊂ �,
(2) IIIm(φ) = �\Im(φ).

Proof (1) Given any x ∈ Im(φ), let us show that x /∈ Z(
).We argue by contradiction.
If x ∈ Z(
) then [by statement (ii) in Lemma 1, as x is a regular point] Tx ∈ H

φ
x .

Yet [by statement (i) in Lemma 3] Tx ∈ V
φ
x , implying that Tx = 0, a contradiction.

(2) By (30) and the first statement in the current lemma

S(φ) = � ∪ IIm(φ) = Im(φ) ∪ IIm(φ) ∪
[
� \ Im(φ)

]
,

implying [by (25)] �\Im(φ) = IIIm(φ). ��
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Lemma 7 Let φ : M → N be a subelliptic harmonic morphism, from (M, θ) into
(N , h). Then for every x ∈ Z(
)\Crit(φ)

V φ
x = H(M)x , (31)

and in particular dimR (dxφ)Tx (M) = 1.

Proof Let x ∈ Z(
) \ Crit(φ). By 
(x) = 0 and (14) [as φ is Levi conformal]

(∇Hφα)x = 0, 1 ≤ α ≤ m.

Let {Ea : 1 ≤ a ≤ 2n} be a local Gθ -orthonormal frame of H(M), defined on an
open neighborhood U ⊂ M of x . Then

0 = (∇Hφα)x =
2n∑

a=1

Ea, x (φ
α) Ea, x �⇒ Ea, x (φ

α) = 0,

hence

0 = Ea, x (φ
α)

( ∂

∂ yα

)

φ(x)
= (dxφ)Ea, x �⇒ Ea, x ∈ V φ

x ,

that is
H(M)x ⊂ V φ

x . (32)

As x /∈ Crit(φ) it must be
Tx /∈ V φ

x . (33)

Indeed, if Tx ∈ V
φ
x then [by (32)] Tx (M) ⊂ V

φ
x i.e. dxφ = 0, a contradiction.

Next, let v ∈ V
φ
x so that

v = λa Ea, x + θx (v) Tx ,

for some λa ∈ R, 1 ≤ a ≤ 2n. By applying dxφ to both members [and using (32) and
(33)]

0 = (dxφ)v = θx (v) (dxφ)Tx �⇒ θx (v) = 0 �⇒ v ∈ H(M)x ,

that is V φ
x ⊂ H(M)x , yielding equality in (32). �� In particular [by (31)]

dimR Tx (M) = dimR V φ
x + dimR(dxφ)Tx (M) �⇒ dimR(dxφ)Tx (M) = 1.

��
At this point we may complete the proof of Theorem 6.
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(i) By Lemmas 1 and 4 the inclusion

Z(
) ⊃ IIm(φ) ∪ Crit(φ),

holds for arbitrary m ≥ 1. To check the opposite inclusion, let x ∈ Z(
). Then either
x ∈ Crit(φ) and we are done, or x /∈ Crit(φ) and then we may apply Lemma 7 to
conclude that the space (dxφ) Tx (M) is 1-dimensional. Hence (as m = 1) dxφ is an
epimorphism, implying that x ∈ S(φ), and then

x ∈ S(φ) ∩ Z(
) = II1(φ),

(according to Lemma 4). ��
To prove the second equality in (26) note first that

M \ S(φ) ⊃ Crit(φ),

[by its very definition, S(φ) lies in the complementary of Crit(φ)]. To check the
opposite inclusion, let x ∈ M\S(φ). We argue by contradiction i.e. we assume that
x /∈ Crit(φ). On the other hand [by x /∈ S(φ)] the differential dxφ is not on-to,
implying that 
(x) = 0 [otherwise φ is a submersion on some neighborhood of x , a
contradiction]. At this point we may apply Lemma 7 to conclude that (dxφ)Tx (M) is
1-dimensional, so that dxφ is surjective i.e. x ∈ S(φ), a contradiction.

(ii) The proof of IIm(φ) = ∅ is by contradiction. If IIm(φ) �= ∅, let x ∈ IIm(φ) i.e.
(by Lemma 4) x ∈ S(φ)∩ Z(
). Therefore dxφ �= 0 and
(x) = 0 so we may apply
Lemma 7 to conclude that Tφ(x)(N ) = (dxφ)Tx (M) is 1-dimensional i.e. m = 1, a
contradiction. ��

To prove the second statement in (27), let x ∈ Z(
). Then either x ∈ Crit(φ),
implying that dxφ is not on-to i.e. x ∈ M\S(φ), or x /∈ Crit(φ) and one may apply
Lemma 7 to conclude that

dimR(dxφ)Tx (φ) = 1 < m,

hence dxφ is not on-to i.e. x /∈ S(φ). The inclusion Z(
) ⊂ M \ S(φ) is proved. As to
the opposite inclusion, let x ∈ M \ S(φ) and let us assume that x /∈ Z(
). Then φ is a
submersion on some neighborhood of x , and in particular x ∈ S(φ), a contradiction.
This yields M\S(φ) ⊂ Z(
). ��

4 Harmonic Morphisms from Fefferman Spaces

Let M be a strictly pseudoconvex CR manifold, of CR dimension n, and let θ be a
positively oriented contact form onM . A complex p-form η onM is of type (p, 0), or a
(p, 0)-form, if T0,1(M) � η = 0.Let
p,0(M) ⊂ 
pT ∗(M)⊗Cbe the relevant bundle.
Unlike the case of complex geometry, top degree (p, 0)-forms are (n + 1, 0)-forms
[rather than (n, 0)-forms, due to the presence of the additional real cotangent direction
θ ]. Then R+ = GL+(1,R) acts freely on K 0(M) = 
n+1,0(M)\{zero section} and
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C(M) = K 0(M)/R+ is a principal S1 bundle over M (the canonical circle bun-
dle). The (2n+ 2)-dimensional manifold C(M) carries the Lorentzian metric Fθ (the
Fefferman metric) naturally associated to θ

Fθ = π∗G̃θ + 2(π∗θ)� σ . (34)

Cf. Lee [49] (or [29, pp. 128–129]). Here G̃θ is the (degenerate) bilinear form on
T (M) got by requiring that G̃θ = Gθ on H(M)⊗ H(M) and G̃θ (T , V ) = 0 for any
V ∈ X(M). Also σ is the (globally defined) real 1-form on C(M) given by

σ = 1

n + 2

[
dγ + π∗

(
i ωα

α − i

2
gαβ dgαβ −

ρ

4(n + 1)
θ

)]
, (35)

where π : C(M) → M is the projection and γ : π−1(U ) → R is a local fiber coor-
dinate on C(M). Also, for any local frame {Tα : 1 ≤ α ≤ n} ⊂ C∞(

U , T1,0(M)
)

∇Tβ = ωβ
α ⊗ Tα , gαβ = Gθ

(
Tα , Tβ

)
,

[
gαβ

] = [
gαβ

]−1
, Rαβ = Rα

γ
γβ , ρ = gαβ Rαβ,

and ρ is the pseudohermitian scalar curvature (cf. [29, p. 50]). By a result of Graham
(cf. [40]) σ is a connection 1-form on the canonical circle bundle [the Graham con-
nection on C(M)]. For every tangent vector field X ∈ X(M) let X↑ ∈ X(C(M)) be
the horizontal lift of X with respect to the Graham connection i.e.

X↑
p ∈ Ker(σp), (dpπ)X

↑
p = Xπ(p),

for any p ∈ C(M). Let S ∈ X(C(M)) be the tangent to the S1 action. Locally
S = [(n + 2)/2] (∂/∂ γ )

. Then T ↑ − S is a globally defined time-like vector field on
C(M), hence the Lorentzian manifold (C(M), Fθ ) is time oriented.

Let � be the Laplace–Beltrami operator of the Lorentzian manifold (C(M), Fθ )
(the geometric wave operator). By a result of Lee (cf. [49]) the pushforward of � is
precisely the sublaplacian �b of (M, θ) i.e.

π∗� = �b. (36)

By a result of Barletta et al. (cf. [9]) a C∞ map φ : (M, θ)→ (N , h) is subelliptic
harmonic if and only if its vertical lift � = φ ◦ π : (C(M), Fθ ) → (N , h) is a
harmonic map.

Our main purpose in the present section is to relate (S1 invariant) harmonic mor-
phisms from (C(M), Fθ ) to subelliptic harmonicmorphisms from (M, θ), in the spirit
of the geometric interpretation of subelliptic harmonicmaps provided in [8], and prove
Theorem 3.
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The equivalence (i) ⇐⇒ (ii) in Theorem 3 may be accounted for, as follows. Let
v : V → R be a C2 solution to �hv = 0 with V ⊂ N open, and let U = �−1(V )
and U = φ−1(V ). For any x ∈ U and p ∈ π−1(x) ⊂ U [by (36)]

�(v ◦�) (p) = �(v ◦ φ ◦ π)(p) = (π∗�)(v ◦ φ) (x) = �b(v ◦ φ) (x),

[hence �(v ◦�) = 0 in U ⇐⇒ �b(v ◦ φ) = 0 in U ]. ��
Proof of Theorem 1 Follows from statement (i) �⇒ (ii) in Theorem 3, a result by S.
Dragomir & E. Lanconelli (cf. Corollary 4 in [25, p. 421]), and the fact that π :
C(M)→ M is an open map. ��
Proof of Theorem 2 Follows from Theorem 3 and Proposition 1. ��

The study of harmonic morphisms in the semi-Riemannian category was started by
Fuglede [35] (cf. also Parmar [54]) and the state-of-the-art up to 2003 is described in
the monograph [5], where from we recall a few basic notions, confined to our needs
i.e. to the case of harmonic morphisms from the Lorentzian manifold (C(M), Fθ )
into the Riemannian manifold (N , h).

Definition 4 A C∞ map � : C(M) → N is harmonic if it is a critical point of the
energy functional

ED(�) = 1

2

∫

D
TraceFθ

(
�∗h

)
d vol(Fθ ),

for any relatively compact domain D ⊂⊂ C(M). That is

d

dt

{
ED

(
�t

)}

t=0
= 0,

for every smooth 1-parameter variation {�t }|t |<ε ⊂ C∞(
C(M), N

)
of �0 = �

supported in � i.e. Supp(V) ⊂ D. �

Here V ∈ C∞(
�−1T N

)
is the infinitesimal variation induced by {�t }|t |<ε i.e.

Vp = (d(p,0)�
)( ∂
∂t

)

(p,0)
, p ∈ C(M).

Also

d vol(Fθ ) =
√−G dγ ∧ du1 ∧ · · · ∧ du2n+1,

is the canonical volume form on C(M), associated to the Lorentzian metric Fθ , where
we have set

123



280 Page 22 of 63 S. Dragomir et al.

G = det
[
grs

]
, grs = Fθ

(
∂r , ∂s

)
,

∂s ≡ ∂

∂us
, 0 ≤ s ≤ 2n + 1, u0 = γ ,

uA = x A ◦ π , 1 ≤ A ≤ 2n + 1,

and (U , x A) is an arbitrary local coordinate system on M . The Euler–Lagrange equa-
tions of the variational principle δ ED(�) = 0 are

τFθ (�) = 0, (37)

where τFθ (�) ∈ C∞(�−1T N ) is the tension field of � i.e.

τFθ (�) = traceFθ
[
βFθ (�)

]
,

βFθ (�)(A, B) = D�
A�∗B −�∗∇Fθ

A B,

D� = �−1∇h , A, B ∈ X
(
C(M)

)
.

Let � : C(M)→ N be a C∞ map. For each point p ∈ C(M) we set

V �
p = Ker

(
dp�

)
, H �

p =
(
V �
p

)⊥
,

(the perp space is meant with respect to Fθ ).

Definition 5 � : C(M)→ N is nondegenerate at p ∈ C(M) ifV �
p is a nondegenerate

subspace of the inner product space
(
Tp(C(M)), Fθ, p

)
. Otherwise � is degenerate

at p ∈ C(M). �

We also recall (cf. [5, p. 444], or Fuglede [35]).

Definition 6 Let � : C(M) → N be a C1 map, and let p ∈ C(M) be a point. � is
horizontally weakly conformal at p provided that

(i) If p ∈ C(M) \ Crit(�) and V �
p is nondegenerate, then the differential dp� :

H�
p → T�(p)(N ) is on-to, and there is a unique nonzero number L(p) ∈ R\{0} such

that
h�(p)

(
(dp�)X , (dp�)Y

) = L(p) Fθ, p(X ,Y ), (38)

for any X ,Y ∈ H�
p .

(ii) If p ∈ C(M) and V �
p is degenerate, then

H �
p ⊂ V �

p , (39)

[i.e. Fθ, p(X ,Y ) = 0 for any X ,Y ∈ H �
p ]. The number L(p) is the (square) dilation

at p. �
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It is customary to set L(p) = 0 when p ∈ Crit(�) or V �
p is degenerate. The

resulting function L : C(M) → R [the (square)1 dilation of �] is continuous. Also
� ∈ C∞ �⇒ L ∈ C∞. Occasionally we refine the notation to L = L(�). We
shall need the following characterization of horizontal weak conformality (cf. [5, pp.
444–445]).

Lemma 8 Let � : C(M) → N be a C1 map, and let p ∈ C(M). The following
statements are equivalent

(i) � is horizontally weakly conformal at p ∈ C(M), with dilation L(p).
(ii) There is L(p) ∈ R such that

(�∗h)p = L(p) Fθ, p on H �
p ×H �

p ,

and L(p) �= 0 �⇒ dp� is on-to.
(iii) There is L(p) ∈ R such that, for every local coordinate system

(
V , yi ) on N

about �(p)

Fθ (∇�i ,∇� j )p = L(p) hi j
(
�(p)

)
, 1 ≤ i, j ≤ m,

where �i = yi ◦�.

Here ∇u = ∇Fθ u is the gradient of u ∈ C1(C(M)) with respect to the Fefferman
metric i.e. Fθ (∇u, X) = X(u) for any X ∈ X(C(M)).

We shall need the following result (the semi-Riemannian version of the Fuglede–
Ishihara theorem, cf. Theorem 14.6.2 in [5, p. 447], or Fuglede [35])

Theorem 7 A C2 map � : C(M) → N is a harmonic morphism of the Lorentzian
manifold (C(M), Fθ ) into the Riemannian manifold (N , h) if and only if� is both a
harmonic map, and a horizontally weakly conformal map.

We now attack the remaining part of the proof of Theorem 3. We start by observing
that

Lemma 9 The dilation L(�) is S1-invariant.

Proof Indeed the distributions V � and H � are invariant by right translations with
respect to the natural action of S1 on C(M) i.e. for every p ∈ C(M) and a ∈ S1

(dp Ra)V
�
p = V �

p·a and (dp Ra)H
�
p = H �

p·a .

Here Ra : C(M) → C(M) denotes the right translation with a ∈ S1. Next [as �
is horizontally weakly conformal]

(�∗h)p = L(�)p Fθ,p on H �
p ×H �

p . (40)

1 Which is the same as the terminology adopted in the Riemannian case [keeping in mind that eventually
L
(
C(M)

) ∩ (−∞, 0) �= ∅].
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Let a ∈ S1 and u, v ∈ H �
p , and let us set

u′ = (dpRa)u, v′ = (dpRa)v.

Then [by (40)]

L(�)p·a Fθ, p·a(u′, v′) = h�(p)
(
dp(� ◦ Ra)u, dp(� ◦ Ra)v

)

= hφ(p)
(
(dp�)u, (dp�)v

) = L(�)p Fθ,p(u, v),

and [by S1 ⊂ Isom(C(M), Fθ )]

Fθ, p·a(u′, v′) =
(
R∗
a Fθ

)
p

(
u, v

) = Fθ, p(u, v),

yielding

[
L(�)p·a − L(�)p

]
Fθ, p(u, v) = 0,

so that L(�)p·a = L(�)p when H �
p is nondegenerate, and L(�)p = 0 when H �

p
is degenerate. Once again, as the right translation Ra is an isometry, the degeneracy
of H �

p implies that of H �
p·a , and hence L(�)p·a = 0.

��
Next, we relate the horizontal weak conformality condition on � = φ ◦ π to the

Levi conformality condition on φ. Let us set

� j = y j ◦�, φ j = y j ◦ φ, 1 ≤ j ≤ m.

Let {Ea : 1 ≤ a ≤ 2n} be a local Gθ -orthonormal frame of H(M)

Gθ

(
Ea , Eb

) = δab , 1 ≤ a, b ≤ 2n,

defined on the open set U ⊂ M . Then

{Eα : 0 ≤ α ≤ 2n + 1},
E0 = T ↑ − S, Ea = E↑

a , 1 ≤ a ≤ 2n, E2n+1 = T ↑ + S,

is a local Fθ -orthonormal frame of T (C(M)) i.e.

Fθ
(Eα , Eβ

) = εα δαβ , ε0 = −1, ε j = 1, 1 ≤ j ≤ 2n + 1,

on π−1(U ). Then

∇� j = λα Eα,
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for some λα ∈ C∞(
π−1(U )

)
. Contracting with Fθ one gets

λ0 = −T ↑(� j ), λa = E↑
a (�

j ), λ2n+1 = T ↑(� j ),

namely

∇� j =
2n∑

a=1

E↑
a (�

j )E↑
a + 2T ↑(� j )S. (41)

Consequently
π∗ ∇� j = (∇Hφ j )π . (42)

We recall the following (cf. Proposition 14.5.4 in [5, p. 445])

Proposition 1 A C∞ map � : C(M) → N is horizontally weakly conformal at
p ∈ C(M) with (square) dilation L(p) if and only if one of the following statements
holds

(i) L(p) �= 0, dp� is on-to, and (�∗h)p = L(p) Fθ, p on H �
p ×H �

p .
(ii) p ∈ Crit(�) [so that L(p) = 0 and dp� = 0].
(iii) V �

p is degenerate and H �
p ⊂ V �

p [so that L(p) = 0 yet dp� �= 0].

Statement (a) in Theorem 3 is proved in two steps i.e. we show that

Lemma 10 � is nondegenerate at p ⇐⇒ L(�)p > 0 ⇐⇒ π(p) ∈ �(φ).
We proceed by distinguishing between the cases contemplated by Proposition 1.

To start with, let us assume that L(p) �= 0. Then dp� �= 0, the restriction of dp�
to H �

p is surjective, and (38) holds. Moreover � is nondegenerate at p and [by (iii)
in Lemma 8] {(∇� j )p 1 ≤ j ≤ m} is a linear basis in H �

p . Once again by (iii) in
Lemma 8

L(�)p h j j (�(p)) = Fθ, p(∇� j ,∇� j ) =,

[by (41) together with the fact that S is lightlike and Fθ -orthogonal to each E↑
a ]

=
2n∑

a=1

[
E↑
a (�

j )(p)
]2 ≥ 0.

Hence [as h is Riemannian] 0 �= L(�)p ≥ 0 i.e. L(�)p > 0. Thus L(�)p > 0
is a necessary condition for the nondegeneracy of � at p. Clearly, it also suffices
[if L(�)p > 0 then dp� is onto and H �

p is space-like by (ii)of Lemma 8]. So �
is nondegenerate at p ⇐⇒ L(�)p > 0. Next [by Lemma 9] there is a C∞ function
�(�) : M → (0, +∞) such that L(�) = �(�)◦π . The horizontal weak conformality
condition on � is then

Fθ
(∇�i , ∇� j )

p = �(�)π(p) h
i j (�(p)), (43)
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or [by (34)]

(
π∗G̃θ

)
(∇�i ,∇� j )p + (π∗θ)(∇�i )p σ(∇� j )p + (π∗θ)(∇� j )p σ(∇�i )p

= �(�)π(p) h
i j (φ(π(p))),

hence [by (42), and then by
(
π∗θ

)
(∇� j ) = 0]

Gθ (∇Hφi , ∇Hφ j )x = �(�)x hi j (φ(x)), x = π(p). (44)

Next [by the Levi-conformality condition on φ]

Gθ (∇Hφi , ∇Hφ j )x = 
(x) hi j (φ(x)),

hence [as h is positive definite and 
(φ)x = �(�)x ]

L(�)p = 
(φ)π(p),

so that L(�)(p) > 0 ⇐⇒ x ∈ M\[Z(
(φ))]. ��
Let us now examine the case L(p) = 0, when either p ∈ Crit(�) or dp� �= 0, V �

p

is degenerate, and H �
p ⊂ V �

p .
(b) If p ∈ Crit(�) then x = π(p) ∈ Crit(φ) and conversely. Indeed let dp� = 0.

Then
(∇� j

)
p = 0 hence [by (41)]

0 = (dpπ)(∇� j )p = (∇Hφ j )x ,

so that (∇φ j )x = T (φ j )x Tx . Yet

0 = (dp�
j )T ↑

p = (dxφ
j )Tx = T (φ j )x ,

so that (∇φ j )x = 0 i.e. dxφ = 0. ��
(c) If dp� �= 0, V �

p is degenerate, and H �
p ⊂ V �

p , then (equivalently) x ∈
Z(
) \ Crit(φ). Indeed, if x /∈ Z(
) then [by our discussion of the case L(p) �= 0]
� is nondegenerate at p, while if x ∈ Crit(φ) then p ∈ Crit(�) [by statement (b) in
Theorem 3]. The proof of statement (c) in Theorem 3 is now completed by applying
Theorem 6 to x = π(p) ∈ Z(
)\Crit(φ).

5 Harmonic MorphismsWithin Foliation Theory

Let φ : M → N be a subelliptic harmonic morphism of (M, θ) into (N , h), of
θ -dilation λ(φ), and let � = φ ◦ π be its vertical lift [a harmonic morphism of
square dilation L(�) = λ2(φ) ◦ π ]. Let S(φ) be the set of all submersive points of
the morphism φ (cf. Definition 3 above). The connected components of the fibres of
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φ : S(φ)→ N are the leaves of a foliation F of S(φ). Let us set

S(�) := π−1[S(φ)
] ⊂ C(M).

Then � : S(�) → N is a submersion and the corresponding foliation of S(�) is
the pullback of F by π i.e. the foliation π∗F of C(M) whose tangent bundle is

T (π∗F ) = T (F )↑ ⊕ Ker(dπ).

The horizontal lift is meant with respect to the Graham connection σ . Cf. Molino [51,
p. 54], and Dragomir and Nishikawa [26]. Cf. also [10].

Let Q = ν(F ) = T (M)/V φ be the transverse bundle, and let� : T (M)→ Q be
the projection. Let σQ : Q → H φ be the vector bundle isomorphism

σQ(s) = H Y = YH, s ∈ Q, Y ∈ T (M), � (Y ) = s,

and let gQ be the Riemannian bundle metric

gQ
(
s, r

) = gθ
(
σQ(s), σQ(r)

)
, s, r ∈ Q.

Let us consider the Q-valued symmetric 2-form α on V φ ⊗ V φ , the bundle endo-
morphism W (Z) : V φ → V φ , and the basic 1-form κ ∈ �1

B(F ), given by

gF
(
X , X ′) = gθ

(
X , X ′), α(X , X ′) = �∇gθ

X X ′ ,
gF

(
W (Z)X , X ′) = gQ

(
α(X , X ′), Z

)
,

κ(Z) = TraceW (Z),

for any X , X ′ ∈ V φ and Z ∈ H φ . We follow the notations and conventions in
Tondeur [61]. Let χF ∈ �p(M) [with p = 2n − m + 1] be the tangential volume
form i.e.

χF
(
Y1 , . . . , Yp

) = det
[
gθ

(
Yi , E j

)]

1≤i, j≤p
,

{
Ei : 1 ≤ i ≤ p

} ≡ {
Vj , T : 1 ≤ j ≤ 2n − m

}
,

Y1 , . . . , Yp ∈ T (M).

Note that H φ �χF = 0. Rummler’s formula is (cf. Eq. (6.17) in [61, p. 66])

(
LZ χF

)∣∣
V φ = −κ(Z) χF

∣∣
V φ , (45)

where LZ is the Lie derivative. Next, let

divF (X) =
p∑

i=1

gθ
(∇gθ

Ei
X , Ei

)
, X ∈ V φ,
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[globally defined, as the trace of X ′ ∈ V φ %→ πV φ ∇gθ
X ′ X ] be the divergence operator

along the leaves. Similar to (45)

(
LX χF

)(
X1 , . . . , X p

) = divF (X) χF
(
X1 , . . . , X p

)
,

X1 , . . . , X p ∈ V φ.

Indeed

(
LX χF

)(
E1 , . . . , Ep

) = X
(
χF

(
E1 , . . . , Ep

))

+−
p∑

j=1

χF
(
E1 , . . . , E j−1 ,

[
X , E j

]
, E j+1 , . . . , Ep

) =,

[by χF
(
E1 , . . . , Ep

) = 1 and πV φ

[
X , E j

] =
p∑

i=1

gθ
([
X , E j

]
, Ei

)
Ei ]

= −
p∑

i=1

gθ
([
X , Ei

]
, Ei

) = −
p∑

i=1

gθ
(∇gθ

X Ei −∇gθ
Ei
X , Ei

) =,

[by ∇gθ gθ = 0 and ‖Ei‖ = 1]

=
p∑

i=1

gθ
(∇gθ

Ei
X , Ei

) = divF (X).

��

5.1 Mean Curvature of Fibres

Let (MN, g) be aN-dimensional semi-Riemannianmanifold, equippedwith the semi-
Riemannian metric g, and let D be a linear connection on M. Let D be a C∞
distribution on M, of rank 1 ≤ r ≤ N − 1, and such that Dx is a nondegenerate
subspace of (Tx (M), gx ), for any x ∈ M. Let D⊥ be the orthogonal complement of
D , and let π⊥ : T (M) → D⊥ be the projection associated to the direct sum decom-
position T (M) = D ⊕D⊥. Let us consider the bilinear form BD = BD (g, D) given
by

BD (X , Y ) = π⊥ ∇XY , X , Y ∈ D .

Next, let μD = μD (g, D) be given by

μD = 1

r
Traceg BD ∈ C∞(

D⊥)
. (46)
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When D = ∇g [the Levi-Civita connection of (M, g)] μD = μD (g, ∇g) is the
mean curvature vector ofD (cf. e.g. Definition 1.26 in [29, p. 37]). Given a subelliptic
harmonic morphism φ : M → N under the assumptions of Theorem 6, we consider
both the mean curvature vector of V φ in (M, gθ )

μV φ ≡ μV φ (
gθ , ∇gθ

) ∈ C∞(
H φ

)
, (47)

and its pseudohermitian analog [got by replacing the Levi–Civita connection of
(M, gθ ) by the Tanaka–Webster connection ∇ of (M, θ)]

μV φ (
gθ , ∇

) ∈ C∞(
H φ

)
.

From now on, let us assume that m ≥ 2 so that [by Theorem 6]

S(φ) = �(φ) = M \ Z
(

(φ)

)
.

By arguing as in the proof of Theorem 3 [case L(p) �= 0] for every p ∈ S(�) =
π−1

[
S(φ)

]
the horizontal spaceH �

p is space-like i.e. Fθ, p is positive definite onH �
p .

Consequently, for every p ∈ S(�) the vertical space V �
p has index ind V �

p = 1, i.e.
Fθ, p has signature (1, 2n − m + 1) on V �

p . Therefore

Lemma 11 C(M) is foliated by (2n−m+2)-dimensional Lorentzianmanifolds, whose
normal bundles are spacelike.

Let βp be the inverse of dp� : H �
p � T�(p)(N ) [β : �−1T (N ) → H � is the

horizontal lift, a vector bundle isomorphism].

Lemma 12 Let φ : M → N be a subelliptic harmonic morphism of (M, θ) into
(N , h), of θ -dilation λ(φ), and let � = φ ◦ π : C(M) → N be its vertical lift

(
a

harmonicmorphism of square dilation �(�)2 = [
λ(φ)◦π]2)

. The second fundamental
form BFθ (�) of � satisfies

BFθ (�)(H , H)

= 2 H (log �(�)) �∗H − Fθ (H , H) �∗∇ (log �(�)) , (48)

BFθ (�)(V , V ) = −�∗∇Fθ
V V ,

H ∈ C∞(
S(�), H �

)
, V ∈ C∞(

S(�), V �
)
, (49)

everywhere in S(�).

The proof of Lemma 12 is a verbatim repetition of the arguments in [5, pp. 119–
120]. Let us check for instance (48). To this end, let {Zα : 1 ≤ α ≤ m} be a local
h-orthonormal frame of T (N ), defined on the open set V ⊂ N . Then [by (ii) in
Lemma 8]

{
�(�) β Zα : α ≤ j ≤ m

}
,
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is a local Fθ -orthonormal frame for H �, defined on U = �−1(V ). Let Y ∈ X(V )
and let H = β Y ∈ C∞(U , H �). Then

2πH �

{
∇Fθ
H H

}
= 2 �(�)2

m∑

α=1

Fθ
(∇Fθ

H H , β Zα
)
β Zα =,

(by the explicit expression of ∇Fθ as a Levi–Civita connection, cf. e.g. Proposition
2.3 in [45, 46, Vol. I, p. 160])

= �(�)2
m∑

α=1

{
2 H

(
Fθ (H , β Zα)

) − (β Zα)
(
Fθ (H , H)

) +

−2 Fθ (H , [H , β Zα])
}
β Zα =,

[by (ii) in Lemma 8 i.e.

Fθ (H , β Zα) = �(�)−2 h(H , Zα) ◦�,
and by

�∗
[
H , Ẑα

] = [
Y , Zα

] ◦�,

cf. e.g. Proposition B.1 in2 [27, pp. 303–304]]

= �(�)2
m∑

α=1

{
2 H

(
�(�)−2) h(Y , Zα) ◦�

+ 2 �(�)−2 H
(
h(Y , Zα) ◦�

) − (β Zα)
(
�(�)−2) h(Y , Y ) ◦� +

−�(�)−2 (β Zα)
(
h(Y , Y ) ◦�) − 2 �(�)−2h(Y , [Y , Zα]) ◦�

}
β Zα.

Next [again by Proposition 2.3 in [45, 46, Vol. I, p. 160], applied to the Levi–Civita
connection ∇h]

πH �

{
∇Fθ
H H

}
=

(
∇h
Y Y

)
◦� +

m∑

α=1

{
− 2 H(log �(�)) h(Y , Zα)

+(β Zα)(log �(�)) h(Y , Y )
�
}
β Zα,

and

m∑

α=1

(β Zα)(log �(�)) h(Y , Y )
� Ẑα = Fθ (H , H) πH � ∇ log �(�),

2 Appendix B in [27, pp. 303–306], is concerned with the geometry of Riemannian submersions, yet
Proposition B.1 in there transposes ad literam to semi-Riemannian submersions (submersions of semi-
Riemannian manifolds, with nondegenerate fibres) and in particular to � : (

C(M), Fθ
) → (N , h).
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so that

βFθ (�)(H , H) = D�
H�∗H −�∗ πH �

{
∇Fθ
H H

}

= 2 H
(
log �(�)

)
�∗H − Fθ (H , H)�∗ ∇ log �(�).

��
Lemma 13 Under the assumptions of Lemma 12, the tension field of � is given by

τFθ (�) = −(m − 2)�∗ ∇ log �(�)− (2n − m + 2)�∗ μV �

, (50)

everywhere in S(�) [the set of submersive points of �].

Proof Let

{
Hα : 1 ≤ α ≤ m

} ⊂ H � ,
{
Vk : 0 ≤ k ≤ 2n − m + 1

} ⊂ V � , Fθ (V0 , V0) = −1,

be local Fθ -orthonormal frames. Then

τFθ (�) = TraceFθ
{
βFθ (�)

}

=
m∑

α=1

βFθ (�)(Hα , Hα)+
2n−m+1∑

k=1

βFθ (�)(Vk , Vk)− βFθ (�)(V0 , V0),

and [by Lemma 12]

βFθ (�)
(
Hα , Hα

) = 2 Hα
(
log �(�)

)
�∗ hα −�∗ ∇ log �(�),

so that

m∑

α=1

βFθ (�)(Hα , Hα) = 2�∗ ∇ log �(�)− m�∗ ∇ log �(�).

Also

βFθ (�)(Vk , Vk) = −�∗∇Fθ
Vk
Vk ,

2n−m+1∑

k=1

βFθ (�)(Vk , Vk)− βFθ (�)(V0 , V0) = −(2n − m + 2) �∗ μV �

.

��
Next, we project (50) on the base manifold M , so that to get a subelliptic version of

the fundamental equation for a harmonic morphism (cf. e.g. Eq. (4.5.2) in [5, p. 129]),
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applying to the base map φ. We start by recalling the following result3 (relating the
Levi–Civita connection ∇Fθ of (C(M), Fθ ) to the Tanaka–Webster connection ∇ of
(M, θ), cf. [9, p. 26] or [1])

Lemma 14 For any X ,Y ∈ H(M)

∇Fθ
X↑ Y

↑ = (∇X Y )↑ +�(X ,Y ) T ↑ −
[
A(X ,Y )+ (dσ)(X↑,Y↑)

]
S , (51)

∇Fθ
X↑ T

↑ = (τ X + ϕX)↑ , (52)

∇Fθ
T ↑ X↑ = (∇T X + ϕX)↑ + 2(dσ)(X↑, T ↑)S, (53)

∇Fθ
X↑ S = ∇Fθ

S X↑ = 1

2
(J X)↑, (54)

∇Fθ
T ↑ T

↑ = V ↑ , (55)

∇C(M)
S S = ∇C(M)

S T ↑ = ∇C(M)
T ↑ S = 0, (56)

where ϕ : H(M)→ H(M) and V ∈ H(M) are given by

Gθ (ϕX , Y ) = (dσ)(X↑ , Y↑), Gθ (V , Y ) = 2 (dσ)(T ↑,Y↑).

The tension field τFθ (�) may be shown to project on τb(φ) i.e.

τFθ (�) = τb(φ) ◦ π. (57)

To prove (57) let {Ea : 1 ≤ a ≤ 2n} be a local Gθ -orthonormal frame of H(M),
defined on the open set U ⊂ M . Then

{
E↑
a , T ↑ ± S : 1 ≤ a ≤ 2n

}
,

is a local Fθ -orthonormal frame for T
(
C(M)

)
, defined on U = π−1(U ), so that

τFθ (�) =
2n∑

a=1

{
D�

E↑
a
�∗ E↑

a −�∗ ∇Fθ
E↑
a
E↑
a

}
+ D�

T ↑+S�∗(T ↑ + S)

−�∗ ∇Fθ
T ↑+S

(T ↑ + S)− D�
T ↑−S�∗(T ↑ − S)+�∗∇C(M)

T ↑−S
(T ↑ − S).

Also, for every X ∈ H(M) [by Lemma 14 and �∗S = 0]

D�
X↑�∗ X↑ =

{
Dφ

Xφ∗ X
}
◦ π ,

�∗ ∇Fθ
X↑X

↑ = (φ∗ ∇X X) ◦ π ,
D�
T ↑+S�∗ (T ↑ + S)− D�

T ↑−S�∗ (T ↑ − S) = 2 D�
S �∗ T ↑ = 0,

−∇Fθ
T ↑+S

(T ↑ + S)+ ∇Fθ
T ↑−S

(T ↑ − S) = −2
{
∇Fθ
T ↑ S +∇Fθ

S T ↑}
= 0.

3 A missing 1/2 factor in Lemma 2 of [9, pp. 083504-26], is added here, cf. our identity (54) in Lemma 14.
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Finally

τFθ (�) =
2n∑

a=1

{
Dφ

Ea
φ∗ Ea − φ∗ ∇Ea Ea

}
◦ π = τb(φ) ◦ π.

��
The gradient ∇ log �(�) may be shown to project on the horizontal gradient

∇H log λ(φ). Indeed [by arguing as in the proof of (41)]

∇ log �(�) =
2n∑

a=1

E↑
a

(
log �(�)

)
E↑
a + 2 T ↑(

log �(�)
)
S.

Also [by �(�) = λ(φ) ◦ π ] X↑(log �(�)) = X(log λ(φ)) ◦ π hence

�∗ ∇ log �(�) = {
φ∗ ∇H log λ(φ)

} ◦ π.

��
Next, we seek to project the mean curvature vector

μV � = μV �(
Fθ , ∇Fθ

) ∈ C∞(
H �

)
.

We need to produce a local Fθ -orthonormal frame of V �, adapted to the decom-
position

T
(
C(M)

) = H(M)↑ ⊕ RT ↑ ⊕ RS,

[and allowing for the use of Lemma 14].We start from building a local gθ -orthonormal
frame of V φ , adapted to the decomposition T (M) = H(M)⊕ R. Once again, diffi-
culties arise from the fact that the pairs of complementary distributions (H(M), RT )
and

(
V φ , H φ) intersect, and then the use of Theorem 6 is crucial in ascertaining that

the intersections have constant ranks on certain open sets. Indeed

dimR

(
V φ
H

)
x = 2n − m,

at every point x ∈ S(φ) = �(φ) = Im(φ) ∪ IIIm(φ), provided that m ≥ 2. Let then

{
Vj : 1 ≤ j ≤ 2n − m

} ⊂ C∞(U , V φ
H ),

be a Gθ -orthonormal frame, defined on the open set U ⊂ �(φ). Let us set

T V := πV φ T ∈ V φ , TH := T − T V ∈ H φ.
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Our discussion in Sect. 3 shows that T V
x �= 0 for every x ∈ S(φ), hence one may

set

T := 1

‖T V ‖ T V ∈ C∞(
�(φ), V φ

)
.

Lemma 15
{
Vj , T : 1 ≤ j ≤ 2n − m

}
is a gθ -orthonormal frame for V φ , defined

on U ⊂ �(φ).

Proof Note that Tx �= 0 for every x ∈ �(φ) [otherwise Tx0 ∈ H
φ
x0 for some x0 ∈

�(φ) i.e. IIm(φ) �= ∅, a contradiction] and ‖T ‖ = 1. Also

gθ (Vj , T ) = 1

‖T V ‖ gθ
(
Vj , T

V + TH ) = 1

‖T V ‖ gθ (Vj , T ) = 0.

Also θ(T ) �= 0 everywhere in �(φ). Indeed, if θ(T )x0 = 0 for some x0 ∈ �(φ)
then

Tx0 ∈ H(M)x0 ∩ V φ
x0 =

(
V
φ
H

)
x0

�⇒ dimR

(
V
φ
H

)
x0

= 2n − m + 1,

a contradiction. ��
Using the local frame provided by Lemma 15 one may relate the mean curvature

vector μV φ ≡ μV φ (
gθ , ∇gθ

)
to its pseudohermitian analog μV φ (

gθ , ∇
)
i.e.

(2n − m + 1) μV φ = (2n − m + 1) μV φ (
gθ , ∇

)

+πH φ

{
θ(T )

(
τ + 2 J

)
T − (

Tracegθ �V φ A
)
T

}
, (58)

where �V φ A denotes the restriction of A to V φ ⊗ V φ . Indeed [by (11)]

∇gθ
V V = ∇V V − A(V , V ) T + θ(V ) τ V + 2 θ(V ) J V ,

∇gθ
T T = ∇T T − A(T , T ) T + u

(
τ + 2 J

)
T ,

for any V ∈ V
φ
H . Hence

= πH φ

{ 2n−m∑

j=1

∇gθ
Vj
Vj + ∇gθ

T T
}

= πH φ

{ 2n−m∑

j=1

∇Vj Vj + ∇T T − (
Tracegθ �V φ A

)
T + u (τ + 2 J

)
T

}
.

��
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For further use, note that [by (11)]

2n−m∑

j=1

gθ
(∇Vj T , Vj

) = divF (T )+ θ(T )
[
A(T , T )− Tracegθ �V φ A

]
.

(59)

Using the Graham connection σ to lift {Vj , T }, one produces the local frame
{
V ↑
j , T

↑ , S : 1 ≤ j ≤ 2n − m
}
for V �, defined on U = π−1(U ) ⊂ S(�).

Lemma 16 Let us set

u := θ(T ), v := 2− u2

u
, u, v ∈ C∞(

�(φ)
)
.

Then
{
V ↑
j , T ↑ + u S, T ↑ − v S : 1 ≤ j ≤ 2n − m

}
,

is a Fθ -orthonormal frame for V � with T ↑ − v S timelike.

The proof is straightforward. Note that

|u| = ∣∣gθ
(
T , T

)∣∣ ≤ ‖T ‖ ‖T ‖ = 1,

and in particular |v| ≥ 1.

Lemma 17

(2n − m + 2) �∗ μV � = (2n − m + 1) φ∗ μV φ (
gθ , ∇

)

+φ∗
{

2

θ(T )
J T −∇T T

}
◦ π. (60)

Proof We start by computing the needed components of BV � . By Lemma 14 and
S ∈ V �

BV �

(
X↑ , X↑) = πH � ∇Fθ

X↑X
↑

= πH �

{(∇X X
)↑ − A(X , X) S

}
= πH �

(∇X X
)↑
,

BV �(S, S) = πH � ∇Fθ
S S = 0.

The calculation of BV �

(
T ↑ , S

)
is a bit trickier. One first decomposes T =

�H T + u T and then [again by Lemma 14 and S(u ◦ π) = 0]

∇Fθ
S T ↑ = 1

2

(
J �H T

)↑
,
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i.e. (as J T = 0)

BV �

(
T ↑ , S

) = 1

2
πH �

(
J T

)↑
.

Next (by Lemma 16 and u + v = 2/u)

(2n − m + 2) μV �

= TraceFθ BV � =
2n−m∑

j=1

BV �

(
V ↑
j , V

↑
j

) + BV �

(
T ↑ + u S, T ↑ + u S

)

−BV �

(
T ↑ − v S, T ↑ − v S

)

=
2n−m∑

j=1

BV �

(
V ↑
j , V

↑
j

) + (
u2 − v2

)
BV �(S, S)+ 2(u + v) BV �

(
T ↑ , S

)

= πH �

[ 2n−m∑

j=1

∇Vj Vj + 2

u
J T

]↑
.

Substitution from

πH φ

2n−m∑

j=1

∇Vj Vj = (2n − m + 1) μV φ (
gθ , ∇

) − πH φ ∇T T ,

yields (60). ��
Summing up [by Lemmas 13 to 17] the fundamental equation (50) projects on

τb(φ) = −m − 2

2
φ∗ ∇H log 
(φ)− (2n − m + 1) φ∗ μV φ (

gθ , ∇
)

+− φ∗
{ 2

θ(T )
J T − ∇T T

}
. (61)

Besides from the foliationF tangent to V φ
∣∣
S(φ) [the portion of the vertical bundle

V φ over the (open) set�(φ) = S(φ) = Im(φ)∪ IIIm(φ) of all submersive points], the
manifold M comes equipped with the Reeb foliation i.e. the codimension 2n foliation
R of M tangent to T . The case where R is a subfoliation of F is closest to the
Riemannian case i.e. (61) becomes

τ(φ) = −m − 2

2
φ∗ ∇ log
(φ)− (2n − m + 1) φ∗ μV φ

, (62)

which is the fundamental Eq. (4.5.2) in [5, p. 120], for φ : M → N as a map of the
Riemannian manifolds (M, gθ ) and (N , h). Indeed, at each point x ∈ Im(φ) [equiv-
alently (dxφ) Tx = 0] one has τb(φ)x = τ(φ)x [by (12)] and μV φ

x = μV φ (
gθ , ∇

)
x
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[by (60)] hence (61) becomes

τ(φ) = −m − 2

2
φ∗ ∇ log
(φ)− (2n − m + 1) φ∗ μV φ + φ∗ ∇T T ,

along Im(φ). IfR ⊂ F , i.e. φ∗ T = 0 everywhere in �(φ), then T V = T and u = 1
on the whole open set �(φ), hence ∇T = 0 yields ∇T T = 0 on �(φ). ��
Corollary 1 Let φ : M → N be a subelliptic harmonic morphism of the pseudoher-
mitian manifold (M, θ) into the real surface (N , h).

(i) If the Reeb foliation is a subfoliation ofF [the foliation of�(φ) tangent to V φ]
then every leaf of F is a minimal submanifold of the Riemannian manifold (M, gθ ).

(ii) If (dxφ)Tx �= 0 for some x ∈ M\Crit(φ), then

(2n − 1) μV φ (
gθ , ∇

) = πH φ

{
∇T T − 2

θ(T )
J T

}
.

Proof (i) If m = 2 then (62) yields μV φ = 0. ��
(ii) Follows from (61).

5.2 �-Contractions

Let p = 2n − m + 1. To some surprise, the term p φ∗ μV φ (
gθ , ∇

) +
φ∗

{
2 θ(T )−1 J T − ∇T T

}
replaces the term p φ∗ μV φ

[occurring in the fun-

damental equation (62), in the Riemannian setting]. Besides the term φ∗ μV φ
(gθ , ∇)

that one might have hoped for to start with, the fundamental equation for a subel-
liptic harmonic morphism contains the additional term φ∗

{
2 θ(T )−1 J T −∇T T

}

whose geometric meaning is so far unknown. So, given an immersion f : L → M
of a p-dimensional manifold L into the pseudohermitian manifold (M, θ), what is
the “correct” pseudohermitian analog to the mean curvature vector (of an isometric
immersion)?

Pseudohermitian geometry (on a strictly pseudoconvex CR manifold) embeds into
sub-Riemannian geometry. One may construct families of contractions {gε}0<ε<1 of
the Levi form Gθ [so that the norm of the Reeb vector T is O(ε−1)] and examine
Riemannian geometric objects in the limit as ε → 0+, in an attempt to discover new
pseudohermitian invariants. Cf. e.g. the approaches by Barletta et al. [12] and Capogna
and Citti [17].

Let 0 < ε < 1 and let gε be the Riemannian metric

gε(X ,Y ) = Gθ (X ,Y ), gε(X , T ) = 0, gθ (T , T ) = ε−2,

for any X , Y ∈ H(M). Equivalently

gε = gθ +
(

1

ε2
− 1

)
θ ⊗ θ, (63)
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(the ε-contraction of Gθ , cf. Strichartz [60], Barletta et al. [12]). To illustrate our
strategy, let us assume that, for every 0 < ε < 1, the map φ : (M, gε) → (N , h) is
horizontally weakly conformal, with square dilation
ε i.e. for any x0 ∈ M \Crit(φ)
and any local coordinate system

(
V , yα

)
on N with φ(x0) ∈ V

m
ε =
(
hαβ ◦ φ

)
gε

(∇ε φα , ∇ε φβ
)
. (64)

Here∇ε is the gradient with respect to gε . Choose V ⊂ N such thatU = φ−1(V ) ⊂
M is a relatively compact domain. A straightforward calculation (relying on (63), cf.
also [12]) leads to

∇ε φα = ∇H φα + ε2 θ(∇ φα) T ,

yielding

gε
(∇ε φα , ∇ε φβ

) = Gθ

(∇H φα , ∇H φβ
) + ε2 θ

(∇φα) θ(∇φβ),

and in particular

sup
x∈U

∣∣m
ε(x)− Gθ

(∇H φα , ∇H φβ
)
x hαβ

(
φ(x)

)∣∣ ≤ C(φ) ε2 ,

C(φ) = sup
x∈U

θ
(∇φα)x θ

(∇φβ)x hαβ
(
φ(x)

)
,

hence


ε → 1

m
Gθ

(∇H φα , ∇H φβ
)
hαβ ◦ φ , ε → 0+,

uniformly onU , and theLevi conformality condition (14) is got, in the limit as ε → 0+,
from the horizontal weak conformality condition on φ : (M, gε)→ (N , h).

Let φ : M → N be a subelliptic harmonic morphism of the pseudohermitian
manifold (M, θ) into the Riemannian manifold (N , h), of θ -dilation λ(φ). We shall
compute themean curvature vectorμV φ

ε of the vertical distributionV φ on the Rieman-

nian manifold (M, gε), and examine the behavior ofμV φ

ε as ε → 0+, in an attempt to
discover the “correct” pseudohermitian analog to the ordinary mean curvature vector.
To this end, let H φ

ε be the gε-orthogonal complement of V φ . Let us set

Bε(X ,Y ) = π
H φ

ε
∇ε
XY , X ,Y ∈ V φ ,

μV φ

ε = 1

2n − m + 1
Tracegε Bε,
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i.e. μV φ

ε is the mean curvature vector of V φ . Here ∇ε is the Levi-Civita connection
of (M, gε). Let us set

Tε = 1

gε(T , T )1/2
T = ε

√
ε2 + (1− ε2) u

T .

Then
{
Vj , Tε : 1 ≤ j ≤ 2n−m

}
is a local gε-orthonormal frame ofV φ , adapted

to the decomposition T (M) = H(M) ⊕ RT [which is both gθ and gε orthogonal].
Let

Bε(X , Y ) = π
H φ

ε
∇ε
XY , X , Y ∈ V φ,

[the second fundamental form of L ↪→ (M, gε), for every leaf L ∈ [
M\Crit(φ)]/F ].

Lemma 18 For every X ∈ X(M)

π
H φ

ε
X = πH φ X + (1− ε2)u

ε2 + (1− ε2) u2

{
u gθ (T , X)− θ(X)

}
T . (65)

Proof Let πε
V φ : T (M) → V φ be the projection associated with the direct sum

decomposition T (M) = V φ ⊕H
φ
ε . For every X ∈ T (M)

π
H φ

ε
X = X − πεV φ X

= X −
2n−m∑

j=1

gε
(
Vj , X

)
Vj − gε

(
Tε , X

)
Tε =,

[by (63)]

= X −
2n−m∑

j=1

gθ
(
Vj , X

)
Vj

+− ε2

ε2 + (1− ε2) u2

{
gθ (T , X)+

( 1

ε2
− 1

)
u θ(X)

}
T

= X −
2n−m∑

j=1

gθ
(
Vj , X

)
Vj − gθ (T , X) T

+ (1− ε2)u

ε2 + (1− ε2) u2

{
u gθ (T , X)− θ(X)

}
T .

��
We shall need (cf. Lemma 2 in [12, pp. 11–12])
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Lemma 19 The Levi–Civita connection ∇ε of (M, gε) and the Tanaka–Webster con-
nection ∇ of (M, θ) are related by

∇ε
X Y = ∇X Y +

{
�(X ,Y )− ε2A(X ,Y )

}
T ,

∇ε
X T = τ X + 1

ε2
J X , ∇ε

T X = ∇T X + 1

ε2
J X , ∇ε

T T = 0,

for any X ,Y ∈ H(M).

Lemma 20

(2n − m + 1) μV φ

ε = (2n − m + 1) μV φ (
gθ , ∇

)

+− (1− ε2) u2

ε2 + (1− ε2) u2

{
πH φ ∇T T + divF (T ) T

}

+− (1− ε2) u3

ε2 + (1− ε2) u2

{
A(T , T )− Tracegθ �V φ A

}
T

+ 2 u

ε2 + (1− ε2) u2
πH φ J T

+ε2 (
Tracegθ �V φ A

) {
− T + u

ε2 + (1− ε2) u2
T

}

+ (1− ε2) ε2 u2

ε2 + (1− ε2) u2
A(T , T ) T

+ ε2 u

ε2 + (1− ε2)u2
πH φ τ T − ε2 (1− ε2) u

[
ε2 + (1− ε2)u2

]2 T (u)T .

(66)

Proof

(2n − m + 1) μV φ

ε =
2n−m∑

j=1

Bε
(
Vj , Vj

) + Bε
(
Tε , Tε

)
,

Bε
(
Vj , Vj

) = π
H φ

ε
∇ε
Vj
Vj =, (67)

[by Lemma 19, as Vj ∈ H(M)]

= π
H φ

ε

{
∇Vj Vj − ε2 A

(
Vj , Vj

)
T

}
=,

[by (65) in Lemma 18 with X = ∇Vj Vj − ε2 A
(
Vj , Vj

)
T ]

= πH φ ∇Vj Vj − ε2 A
(
Vj , Vj

)
TH + (1− ε2) u

ε2 + (1− ε2) u2

×
{
u gθ

(
T , ∇Vj Vj

) + ε2
(
1− u2

)
A
(
Vj , Vj

)}
T ,
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or

Bε
(
Vj , Vj

) = πH φ ∇Vj Vj + (1− ε2) u2

ε2 + (1− ε2) u2
gθ

(
T , ∇Vj Vj

)
T

+ε2 A(
Vj , Vj

) {
− T + u

ε2 + (1− ε2) u2
T

}
. (68)

Next

Bε
(
Tε , Tε

) = ε2

ε2 + (1− ε2)u2
Bε

(
T , T

)
,

Bε
(
T , T

) = π
H φ

ε
∇ε
T T ,

and [by Lemma 19, and T = �H T + u T , and T � A = 0, τ T = 0, J T = 0]

∇ε
T T = ∇�H T �H T + u ∇T �H T + u

(
τ + 2

ε2
J
)
T

+{
T (u)− ε2 A(T , T )

}
T ,

∇T �H T = ∇TT − T (u) T ,

∇�H T �H T = ∇T T − u ∇T T + {
u T (u)−T (u)

}
T ,

or

∇ε
T T = ∇T T + u

(
τ + 2

ε2
J
)
T − ε2 A(T , T ) T . (69)

Note that [by (69)]

πH φ ∇ε
T T = πH φ ∇T T + u πH φ

(
τ + 2

ε2
J
)
T − ε2 A(T , T ) TH ,

gθ
(
T , ∇ε

T T
) = (

1− ε2
)
u A(T , T ),

θ
(∇ε

T T
) = θ

(∇T T
) − ε2 A(T , T ),

θ
(∇T T

) = T (u).

Let us apply πH φ
ε to both sides of (69) so that [by (65) in Lemma 18]

Bε(T , T ) = �H φ ∇T T + u πH φ ◦
(
τ + 2

ε2
J
)
T

+A(T , T )
(
uT − ε2 T

) − (1− ε2) u

ε2 + (1− ε2) u2
T (u)T .

(70)

Then [by (68) and (70)]
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(2n − m + 1) μV φ

ε =
2n−m∑

j=1

{
πH φ ∇Vj Vj + (1− ε2) u2

ε2 + (1− ε2) u2
gθ

(
T , ∇Vj Vj

)
T

+ε2 A(Vj , Vj )
[
− T + u

ε2 + (1− ε2)u2
T

]}

+ ε2

ε2 + (1− ε2) u2

{
πH φ ∇T T + u πH φ ◦

(
τ + 2

ε2
J
)
T

++ A(T , T )
(
uT − ε2 T

) − (1− ε2) u

ε2 + (1− ε2) u2
T (u) T

}
.

(71)

Using

(2n − m + 1) μV φ (
gθ , ∇

) = πH φ

{ 2n−m∑

j=1

∇Vj Vj +∇T T
}
,

Tracegθ �V φ A =
2n−m∑

j=1

A
(
Vj , Vj

) + A(T , T ),

2n−m∑

j=1

gθ
(
T , ∇Vj Vj

)
T

= −
{
divF (T )+ u

[
A(T , T )− Tracegθ �V φ A

]}
T ,

equation (71) simplifies to (66). ��
Proof of Theorem 4 Next [by (66) with p = 2n − m + 1]

∥∥∥p
[
πH φ μV φ

ε − μV φ (
gθ , ∇

)] + πH φ

[
∇T T − 2

u
J T

]∥∥∥

≤ ε2
∣∣∣Tracegθ �V φ A

∣∣∣
∥∥πV φ T

∥∥ + ε2

ε2 + (1− ε2)u2

{∥∥∥πH φ ∇T T
∥∥∥

+|u|
[∥∥∥πH φ τ T

∥∥∥ + 2(1− u2)

u2

∥∥∥πH φ J T
∥∥∥
]}
.

Let U ⊂ M be a relatively compact domain and a = infU u2, so that 0 < a ≤ 1.
Indeed if a = 0 then for every ν ∈ N

1

ν
> 0 = inf

U
u2,

hence there is xν ∈ U such that u(xν)2 < 1/ν. There is a subsequence, denoted by
the same symbol xν , such that xν → x0 as ν → ∞, for some x0 ∈ U . Thus

0 = u(x0) =
∥∥T V

∥∥
x0

�⇒ Tx0 ∈ H φ
x0 ,
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a contradiction. Let ϕ(t) = 2(1 − t)/t , 0 < t ≤ 1, so that supU ϕ(u) = ϕ(a). Note
that

∥∥πH φ T
∥∥ = ∥∥T − uT

∥∥ ≤ 1+ |u| ‖T ‖ ≤ 2,
∥∥∥πH φ ∇T T

∥∥∥ ≤ ∥∥πH φ

∥∥ ∥∥∇T T ‖,
∥∥∥πH φ τ T

∥∥∥ ≤ ∥∥πH φ

∥∥ ∥∥τ
∥∥,

∥∥∥πH φ J T
∥∥∥ ≤ ∥∥πH φ

∥∥,

where
∥∥πH φ

∥∥ is the operator norm. Finally

∥∥∥p
[
πH φ μV φ

ε − μV φ (
gθ , ∇

)] + πH φ

[
∇T T − 2

u
J T

]∥∥∥

≤ 2 ε2
∣∣∣Tracegθ �V φ A

∣∣∣ + ε2

a + ε2(1− a)

∥∥πH φ

∥∥
{∥∥∇T T ‖ + ‖τ‖ + ϕ(a)

}
.

Consequently

(2n − m + 1) πH φ μV φ

ε → (2n − m + 1) μV φ (
gθ , ∇

)

+πH φ

{2
u
J T −∇T T

}
, ε → 0+,

uniformly on U ⊂ M . ��
Let us set by definition

μV φ

hor := πH φ H
(
V φ

)
, (2n − m + 1) H

(
V φ

)

:= (2n − m + 1) μV φ (
gθ , ∇

) + 2

u
πH φ J T − πH φ ∇T T

+−
{
divF (T )+ u

[
A(T , T )− Tracegθ �V φ A

]}
T . (72)

When T is tangent to the leaves of F

μV φ

hor = H
(
V φ

) = μV φ (
gθ , ∇

)
.

By Lemma 20

lim
ε→0+

μV φ

ε = μV φ

hor .

On the other hand, by definition (72) Eq. (61) becomes

τb(φ) = −m − 2

2
φ∗ log
(φ)− (2n − m + 1) φ∗ μV φ

hor ,

so that τb(φ) = 0 and m = 2 yield μV φ

hor = 0. Theorem 4 is proved.
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6 Unique Continuation

Let � ⊂ R
N be a domain, α > 0, x0 ∈ �, and 1 ≤ p ≤ ∞. A measurable function

u : �→ C has a zero of order α at x0 in the p-mean if

∫

Br (x0)

∣∣u(x)
∣∣p d x = O

(
r pα+N )

.

An ordinary zero of order α [i.e. except on a set of measure zero
∣∣u(x)

∣∣ = O
(∣∣x −

x0
∣∣α) as x → x0] corresponds to a zero in the p-mean for p = ∞. Let L be a second

order linear elliptic operator. By a result of N. Aronszajn (cf. [2]) if u is a solution to

∣∣Lu(x)
∣∣2 ≤ M

{ N∑

i=1

∣∣∣
∂u

∂xi

∣∣∣
2 + |u(x)|2

}
,

and u has a zero of infinite order in the 1-mean at some x0 ∈ �, then4 u ≡ 0 in
�. Aronszajn’s proof to his result was criticized in [25, pp. 433–434], because of
Aronszajn’s claim that a pair of conformally related Riemannian metrics (associated
to the symbol of L) have the same geodesics. We conjecture that the arguments in [2]
may be reconsidered within conformal Riemannian geometry i.e. by understanding
the conformal properties of geodesic spheres, based on the use of conformal geodesics
(cf. e.g. [33]). The result itself in [2] may nevertheless be true, and if that is the case
it yields Sampson’s unique continuation theorem for harmonic maps of Riemannian
manifolds (cf. Theorem 1 in [58, p. 213]). Let Let {Xa : 1 ≤ a ≤ 2n} be a Gθ -
orthonormal frame of H(M), defined on the open set U ⊂ M , and let � ⊂ U be a
domain. Let u = (

u1 , . . . , um
) : �→ R

m be a solution to

∣∣�bu
α
∣∣ ≤ C

{∑

a, β

∣∣Xa
(
uβ

)∣∣ +
∑

β

∣∣uβ
∣∣
}
. (73)

We conjecture that, if u has a zero of infinite order at some point of � then u ≡ 0
in �. Should the conjecture be true, one has

Corollary 2 Letφ, ψ : M → N be two subelliptic harmonicmaps, from the connected
pseudohermitian manifold (M, θ) into the Riemannian manifold (N , h). If φ and ψ
agree on some open set, then they are identical.

Proof Let χ = (y1 , . . . , ym) be a local coordinate system on N , whose domain is a
ball V = χ−1

[
Br (ξ0)

]
, and let {Xa : 1 ≤ a ≤ 2n} be a local Gθ -orthonormal frame

of H(M), defined on the open set U ⊂ M such that φ(U ) ∪ ψ(U ) ⊂ V . Let us set
uα := φα − ψα so that [as both φ and ψ are harmonic maps]

�bu
α =

2n∑

a=1

[({
α

βγ

}
◦ φ

)
Xa(φ

β) Xa(φ
γ )

4 Subject to a number of structural assumptions on L , cf. [2, p. 236].

123



Harmonic Morphisms from Fefferman Spaces Page 45 of 63 280

+−
({

α

βγ

}
◦ ψ

)
Xa(ψ

β) Xa(ψ
γ )

]

=
2n∑

a=1

[({
α

βγ

}
◦ φ

)
Xa(u

β)
[
Xa(φ

γ )+ Xa(ψ
γ )

]

+−
[{

α

βγ

}
◦ ψ −

{
α

βγ

}
◦ φ

]
Xa(ψ

β) Xa(ψ
γ )

]
.

Let x ∈ U and let ξ = φ(x) and η = ψ(x). By the mean value theorem, there is
0 < τ < 1 such that

{
α

βγ

}(
χ−1(η)

) −
{
α

βγ

}(
χ−1(ξ)

)

=
∂
{
α

βγ

}

∂ yμ
[
χ−1((1− τ) ξ + τ η

)] (
ημ − ξμ

)
.

By eventually shrinking U the derivatives Xa(φ
β) and Xa(ψ

β) are bounded, so
that uα satisfy (73). ��

We conjecture that the uniqueness continuation result by Garofalo and Lanconelli
(cf. Theorem 1.2 in [36, p. 319]) on the solutions to�bu+V (x) u = 0 carries over to
equations of the form �bu + f (u) = 0 [with the nonlinear term f (u) as considered
by Birindelli and Prajapat [15] (cf. also Birindelli and Lanconelli [14]) for different
purposes] with applications to the unique continuation of subelliptic harmonic maps.

7 Horizontal Mean Curvature

Letφ : M → N be a subelliptic harmonicmorphism, of the pseudohermitianmanifold
(M, θ) into the Riemannian manifold (N , h). Let F be the foliation of S(φ) by
maximal integral manifolds of V φ . A point x ∈ S(φ) is a characteristic point ofF if

H(M)x ⊂ V φ
x . (74)

Let�(F )be the set of all characteristic points ofF . If x ∈ �(F ) and L ∈ S(φ)/F
is the leaf of F passing through x , then x is a characteristic point of L , e.g. in the
sense of L. Capogna & G. Citti (cf. [17, p. 7]). The inclusion (74) yields

2n ≤ dimR V φ
x ≤ 2n + 1, (75)

hence one has equality in (74) unless x ∈ Crit(φ). Yet S(φ), and hence�(F ), contains
no critical points. Also [by (75)]

�(F ) �= ∅ �⇒ m = 1.
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This limitation doesn’t occur in [17] (where the ambient space M is a Carnot
group, the rank of whose first stratus, or horizontal plane, is in general smaller than
the dimension of F ). For the remainder of the present section we confine ourselves
to subelliptic harmonic morphisms φ : M2n+1 → N 1 i.e. m = 1 (so that every leaf
of F is a real hypersurface in S(φ)). By Theorem 6 (with m = 1)

Z(
) = II1(φ) ∪ Crit(φ), S(φ) = M \ Crit(φ),
� = S(φ) \ II1(φ), I1(φ) ⊂ �, III1(φ) = � \ I1(φ),

where [by Lemmas 5, 6]

I1(φ) =
{
x ∈ S(φ) : H φ

x ⊂ H(M)x , dimR V
φ
H , x = 2n − 1

}
,

II1(φ) =
{
x ∈ S(φ) : V φ

x = H(M)x
}
,

III1(φ) =
{
x ∈ S(φ) : H

φ
H , x = (0), dimR V

φ
H , x = 2n − 1

}
,

I1(φ) ∪ III1(φ) = �, II1(φ) = �(F ).

Let {gε}0<ε<1 be the family of contractions of the Levi form Gθ given by (2), and
let nε ∈ C∞(

S(φ), H φ
ε

)
such that gε

(
nε , nε

) = 1. Next, let

νε := �H nε = nε − θ
(
nε

)
T , (76)

be the projection of nε on H(M).

Lemma 21 For every x ∈ S(φ), the following statements are equivalent
(i) x ∈ �(F ).
(ii) νεx = 0 for any 0 < ε < 1.

Proof (i) �⇒ (ii). Let x ∈ �(F ), so that

H(M)x = V φ
x ⊥gε,x H

φ
ε , x ! nε,

i.e. for every X ∈ H(M)x

0 = gε , x
(
X , nεx

) = gθ , x
(
X , nεx

) +
( 1

ε2
− 1

)
θx (X) θ

(
nε

)
x ,

yielding [by θx (X) = 0]

nεx ⊥gθ,x H(M)x ,

or nεx = λ Tx for some λ ∈ R. Then [by (76)] νεx = 0. ��
(ii)�⇒ (i). Let νεx = 0. Then [by (76)] nεx = λ Tx with λ := θ

(
nε

)
x . As Sing(n

ε) =
∅ and Sing(T ) = ∅, it must be λ �= 0. Hence nεx ⊥gθ,x H(M)x implying [by (2)] that

nεx ⊥gε,x H(M)x . On the other hand nεx ⊥gε,x V
φ
x so that (by the uniqueness of the

gε , x -orthogonal complement of nεx ) it must be H(M)x = V
φ
x i.e. x ∈ �(F ). ��
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Let us set

n0(x) := 1√
fε(x)

νεx , x ∈ � \�(F ),

fε := gε
(
νε , νε

) ∈ C∞(
�, R+

)
, (77)

with R+ = [0, +∞). According to the terminology by L. Capogna et al. (cf. [17, p.
7]) n0 is the horizontal normal (on the leaves of F ).

Lemma 22 For each x ∈ � the function

ε ∈ (0, 1) %−→ fε(x)
−1/2 νεx ∈ H(M)x ,

is constant i.e. n0(x) in (77) doesn’t depend on 0 < ε < 1.

Proof Note that [by (76)]

fε = 1− 1

ε2
θ
(
nε

)2
. (78)

Also, for any ε, ε′ ∈ (0, 1)

gε′ = gε +
( 1

ε′2
− 1

ε2

)
θ ⊗ θ. (79)

Also [by dimRH
φ
x = 1 for any x ∈ �] nε

′ = λnε for some C∞ function
λ : �→ R\{0}. Thus [by (79)]

1 = gε′
(
nε

′
, nε

′) = λ2
{
1+

( 1

ε′2
− 1

ε2

)
θ
(
nε

)2}
,

yielding fε′(x)−1/2 νε
′

x = fε(x)−1/2 νεx for every x ∈ �. ��
For every C1 vector field X on M , its divergence with respect to the volume form

� = θ ∧ (dθ)n is given by

LX � = div(X) �,

where LX is the Lie derivative at the direction X .

Definition 7 The horizontal mean curvature of F is

K0 = div
(
n0

) ∈ C∞(�). (80)

�

Let

d vol(gθ ) = √
g dx1 ∧ · · · ∧ dx2n+1 ,
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g = det
[
g jk

]
, g jk = gθ

(
∂ j , ∂k

)
, ∂ j ≡ ∂

∂x j
,

be the canonical volume form of the oriented Riemannian manifold (M, gθ ). Then
(cf. e.g. [9])

d vol(gθ ) = Cn �,

for some constant Cn > 0 depending only on the CR dimension n. Hence the diver-
gence operator in (80) is the ordinary Riemannian divergence on (M, gθ ). The volume
form� is parallel with respect to the Tanaka–Webster connection∇ of (M, θ), hence
div(X) can be computed as the trace of the covariant derivative ∇X . Therefore, if
x ∈ � and {Xa : 1 ≤ a ≤ 2n} is a local Gθ -orthonormal frame of H(M), defined on
a neighborhood U ⊂ � of x , then [as {Xa , T : 1 ≤ a ≤ 2n} is a local orthonormal
frame of T (M) on U ]

K0(x) =
2n∑

a=1

gθ
(∇Xan

0, Xa
)
x + gθ

(∇Tn0 , T
)
x ,

hence [by ∇Tn0 ∈ H(M), as H(M) is parallel with respect to ∇, and by ∇gθ = 0]

K0(x) =
2n∑

a=1

{
Xa

(
gθ (n0 , Xa)

)
x − gθ

(
n0 , ∇Xa Xa

)
x

}
. (81)

To draw a parallel between the considerations in the present paper and those in
the work by Capogna et al. (cf. [17]) let M = Hn be the Heisenberg group i.e. the
noncommutative Lie group Hn = C

n × R with the group law

(z, t) · (w, s) = (
z + w, t + s + 2 Im(z · w)),
t, s ∈ R, z, w ∈ C

n , z · w = δαβ zα wβ,

equippedwith the strictly pseudoconvex, left invariant, CR structure T1,0(Hn) spanned
by

Lα ≡ ∂

∂zα
+ i zα

∂

∂t
, 1 ≤ α ≤ n,

[so that Lα are the Lewy operators] and with the contact form

θ0 = dt + i
n∑

α=1

(
zα dzα − zα dzα

) ∈ P+(Hn).

The work [17] deals with an arbitrary Carnot group G, yet in general the hor-
izontal plane H of G may lack a complex structure. Also, if the horizontal plane
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admits a complex structure J : H → H , and the corresponding almost CR structure
Eigen

(
JC, +i

) ⊂ H ⊗ C is formally integrable, then in general the CR codimen-
sion of the resulting CR structure is > 1. So for comparison reasons, between the
theory developed here and the geometric foundations on which [17] relies, we con-
fine ourselves to the Heisenberg group G = Hn , which is both a Carnot group and a
strictly pseudoconvex CR manifold (isomorphic to the boundary of the Siegel domain
in Cn+1). If this is the case

Xα ≡ 1√
2

(
Lα + Lα

)
= 1√

2

( ∂

∂xα
− 2 yα

∂

∂t

)
,

Xn+α ≡ i√
2

(
Lα − Lα

)
= 1√

2

( ∂

∂ yα
+ 2 xα

∂

∂t

)
,

is a (globally defined) Gθ0 -orthonormal frame of the Levi distribution H(Hn). The
Reeb vector field and the Tanaka–Webster connection of

(
Hn , θ0

)
are T ≡ ∂/∂t and

∇L A LB = 0, A, B ∈ {
0, 1, · · · , n, 1, · · · , n}

,

L0 ≡ T , Lα ≡ Lα , 1 ≤ α ≤ n.

Consequently ∇Xa Xa = 0, so that for every subelliptic harmonic morphism φ :
Hn → N 1 our formula (81) becomes

K0 =
2n∑

a=1

Xa
(
gθ0(n

0 , Xa)
)

which is formula (2.2) in [17, p. 7]. Going back to the general case, let us observe that
T V
x �= 0 for every x ∈ �. Otherwise Tx ∈ H

φ
x for some x ∈ �, hence [by Lemma 3]

x ∈ II1(φ) = �(F ), a contradiction. Therefore the vector field

T = ∥∥T V
∥∥−1

T V ∈ C∞(
� \�(F ), V φ

)
,

(considered by us in Sect. 5.1, though confined to the case m ≥ 2) is well defined for
m = 1, as well. In particular, Lemma 15 applies to the case m = 1, producing a local
Gθ -orthonormal frame
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{
Vj , T : 1 ≤ j ≤ 2n − 1

} ⊂ C∞(
U , V φ

)
,

Vj ∈ C∞(
U , V φ

H

)
, U ⊂ �.

Let us complete {Vj : 1 ≤ j ≤ 2n − 1} to a local Gθ -orthonormal frame

{Va : 1 ≤ a ≤ 2n} ⊂ C∞(U , H(M)).

If (V , y1) is a local coordinate system on N 1 and U = φ−1(V ) then

V2n = 1√

0

∇H φ1 , φ1 ≡ y1 ◦ φ, 
0 ≡ 


h11 ◦ φ . (82)

Indeed ∇Hφ1 = λa Va and

0 = φ∗ Vj = Vj
(
φ1

) ( ∂

∂ y1

)φ = gθ
(
Vj , ∇Hφ1

) ( ∂

∂ y1

)φ

= λ j
( ∂

∂ y1

)φ �⇒ λ j = 0,

i.e. ∇Hφ1 = λ2n V2n . By the Levi conformality condition


(x) h11
(
φ(x)

) = Gθ

(∇Hφ1 , ∇Hφ1
)
x ,

for every x ∈ U , hence λ2n = √

0. ��

Lemma 23 For every subelliptic harmonic morphism φ : M2n+1 → N 1

nε = 1
√
1+ ε2 f 2

{
V2n − ε2 f T

}
, 0 < ε < 1,

f ≡ gθ
(
V2n , T

)

θ(T )
∈ C∞(U ), (83)

everywhere in U = φ−1(V ), where V2n ≡ 

−1/2
0 ∇Hφ1.

Proof As nε ∈ H
φ
ε ⊂ T (M) = H(M)⊕ RT

nε =
2n∑

a=1

fa Va + f0 T ,

with f j = 0 [because of gε
(
nε , Vj

) = 0] i.e. nε = λ V2n + f0 T with λ := f2n . On
the other hand

gε(T , T ) = 1

u
gε

(
T , T V ) = 1

u

{
gθ

(
T , T V ) +

( 1

ε2
− 1

)
θ
(
T V )} = u

ε2
,
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[because of θ
(
T V

) = gθ
(
T , T V

) = ‖T V ‖2 = u2]. Here u = θ(T ). Then

0 = gε
(
nε , T

) = λ gε
(
V2n , T

) + f0
u

ε2

nε = λ
{
V2n − ε2 f T

}
. (84)

Finally [by (84)]

1 = gε
(
nε , nε

) = gθ
(
nε , nε

) +
( 1

ε2
− 1

)
θ
(
nε

)2

= λ2
{
1+ ε2

u2
gθ

(
V2n , T

)2} = λ2
{
1+ ε2 f 2

}
.

��
As a corollary of (83)

Proposition 2 (i) The function fε ∈ C∞(�) in (77) is given by

fε = 1

1+ ε2 f 2
.

(ii) The vector field νε ∈ C∞(
�, H(M)

)
is given by

νε = 1
√
1+ ε2 f 2

V2n = 1
√(

1+ ε2 f 2
)

0

∇Hφ1,

everywhere on U = φ−1(V ).
(iii) The horizontal normal n0 is given by

n0 = V2n = 1√

0

∇H φ1,

on U.
(iv) The horizontal mean curvature of F is given by

K0 = div
( 1√


0
∇Hφ1

)
= − 1√


0

{
�bφ

1 + (∇Hφ1
)
log

√

0

}
,

on U.

Proof (i) By (83)

θ
(
nε

) = − ε2 f
√
1+ ε2 f 2

,
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gε
(
nε , T

) = 1

ε2
θ
(
nε

)
, gε(T , T ) = 1

ε2
,

and then

fε = gε
(
νε , νε

) = 1− 2 θ
(
nε

)
gε

(
nε , T

) + θ
(
nε

)2
gε(T , T )

= 1

1+ ε2 f 2
.

The remainder of the section is devoted to the proof of Theorem 5. Statement (i)
was proved in Proposition 2.

(ii) The horizontal mean curvature is given by

K0 = div
(
n0

) =
2n∑

a=1

gθ
(∇Van

0 , Va
) =,

[by gθ
(∇V2nn

0 , V2n
) = 0 and ∇gθ = 0]

= −
2n−1∑

j=1

gθ
(
n0 , ∇Vj Vj

)
.

On the other hand

2n μV φ (
gθ , ∇

) = πH φ

{ 2n−1∑

j=1

∇Vj Vj + ∇T T
}
,

hence [by taking the inner product with n0]

gθ
(
n0 , 2n μV φ

(gθ , ∇)− πH φ ∇T T
) = −K0 −

2n−1∑

j=1

gθ
(
n0 , πV φ ∇Vj Vj

)
.

(85)

Next [by (iii) in Proposition 2]

n0 = 1√

0

{∇φ1 − T (φ1) T
}
, (86)

and [by Lemma 1] ∇φ1 ∈ H φ . Consequently [by (86)]

πV φ n0 = − 1√

0

T (φ1) T V = −θ(T )√

0

T (φ1)T . (87)

123



Harmonic Morphisms from Fefferman Spaces Page 53 of 63 280

As dimRH
φ
x = 1, there is a unique function ϕ ∈ C∞(�) such that

TH = ϕ ∇φ1 = ϕ
{∇Hφ1 + T (φ1) T

}
. (88)

To compute ϕ one starts from TH = T − T V , yielding

‖TH ‖2 = 1− u2.

On the other hand [by (88)]

‖TH ‖2 = ϕ2
{∥∥∇Hφ1

∥∥2 + T (φ1)2
}
,

so that [by the Levi conformality property]

ϕ2
{



(
h11 ◦ φ) + T (φ1)2

}
= 1− θ(T )2. (89)

We may now compute the last term in (85) i.e.

2n−1∑

j=1

gθ
(
n0 , πV φ ∇Vj Vj

) =
2n−1∑

j=1

gθ
(
πV φ n0 , ∇Vj Vj

) =,

[by (88)]

= − 1√

0

T (φ1)
2n−1∑

j=1

gθ
(
T V , ∇Vj Vj

) =,

[by T V = T − TH and T ⊥ H(M) ! ∇Vj Vj ]

= 1√

0

T (φ1)
2n−1∑

j=1

gθ
(
TH , ∇Vj Vj

) =,

[by (88)]

= ϕ√

0

T (φ1)
2n−1∑

j=1

gθ
(∇φ1 , ∇Vj Vj

)

= ϕ√

0

T (φ1)
2n−1∑

j=1

gθ
(∇Hφ1 , ∇Vj Vj

) =,
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[by ∇gθ = 0]

= ϕ√

0

T (φ1)
2n−1∑

j=1

{
Vj

(
gθ

(∇Hφ1 , Vj
)) − gθ

(∇Vj∇Hφ1 , Vj
)} =,

[as ∇Hφ1 ∈ H φ ⊥ V φ ! Vj ]

= − ϕ√

0

T (φ1)
2n−1∑

j=1

gθ
(∇Vj∇Hφ1 , Vj

) =,

[by (iii) in Proposition 2]

= − ϕ√

0

T (φ1)
{
div

(∇Hφ1
) − gθ

(∇V2n

(√

0 V2n

)
, V2n

)} =,

[as gθ
(∇V2n V2n , V2n

) = 0 and gθ
(
V2n , V2n

) = 1]

= ϕ√

0

T (φ1)
{
�bφ

1 + V2n
(√

0

)}

= ϕ√

0

T (φ1)
{
�bφ

1 + (∇Hφ1
)
log

√

0

}
,

hence [by (iv) in Proposition 2]

2n−1∑

j=1

gθ
(
n0 , πV φ ∇Vj Vj

) = −ϕ T (φ1) K0. (90)

Equation (85) becomes [by (90)]

gθ
(
n0 , 2n μV φ

(gθ , ∇)− πH φ ∇T T
) = {

ϕ T (φ1)− 1
}
K0. (91)

This yields (4) in Theorem 5 because of

gθ
(
n0 , πH φ JT

) = 0. (92)

Indeed, the identity T = u−1
{
T − ϕ ∇φ1} implies

JT = −ϕ
u

√

0 Jn0. (93)

Also [by (87)]

πH φ n0 = n0 + u√

0

T (φ1)T . (94)
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Finally

gθ
(
n0 , πH φ JT

) = gθ
(
πH φ n0 , J T

) =,

[by (94), as gθ (T , JT ) = 0]

= gθ
(
n0 , J T

) = [by (93)]

= −ϕ
u

√

0 gθ

(
n0 , Jn0

) = 0,

and (92) is proved.

Let us recall (61). This was stated for m ≥ 2 yet it is easily seen to hold for any
m ≥ 1, everywhere in �. Then [by (61) with m = 1]

τb(φ) = φ∗ ∇H log
√

− 2n φ∗ μV φ

hor ,

so that [by τb(φ) = 0]

2n μV φ

hor = πH φ ∇H log
√

. (95)

Note that 
0 = 

(
h11

)φ yields

∇H log
√

 = ∇H log

√

0 +

{
1
11

}φ
∇Hφ1. (96)

Then [by (95) and (96)]

2n gθ
(
n0 , μV φ

hor

) = gθ
(
πH φ n0 , ∇H log

√

0

) +
{

1
11

}φ
gθ

(
πH φ n0 , ∇Hφ1

)
.

(97)

The right hand side in (97) may be computed as follows

gθ
(
πH φ n0 , ∇H log

√

0

) = 1√

0

[
1− ϕ T (φ1)

] (∇Hφ1
)
log

√

0 ,

gθ
(
πH φ n0 , ∇Hφ1

) = √

0

[
1− ϕ T (φ1)

]
,

hence (97) becomes

2n gθ
(
n0 , μV φ

hor

) = {
1− ϕ T (φ1)

}[ 1√

0

(∇Hφ1
)
log

√

0 +

√

0

{
1
11

}φ ]
,

or [by (3)]

2n gθ
(
n0 , μV φ

hor

) = {
ϕ T (φ1)− 1

} [
K0 + 1√


0
�bφ

1 − √

0

{
1
11

}φ ]
,
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where−�bφ
1+
0

{ 1
11

}φ = 0 (as φ is also a subelliptic harmonic map). Therefore,

unlike the case m = 2, the fundamental equation (61) for a subelliptic harmonic
morphism is equivalent to (4) in Theorem 5 and implies no further restrictions on K0.

8 Examples

8.1 Morphisms from the Heisenberg Group

Let us set f (z, t) = |z|2 − i t , so that f is a CR function on Hn i.e. Lα f = 0 for any
1 ≤ α ≤ n.

Theorem 8 Let φ : Hn \ {0} → R be the C∞ map given by

φ = 1
/(

f f
)n/2

. (98)

Then
(i) φ is a subelliptic harmonic morphism of the pseudohermitian manifold(

Hn\{0}, θ0
)
into the Riemannian manifold

(
R, dy1 ⊗ dy1

)
.

(ii) Crit(φ) = ∅ and S(φ) = Hn\{0}.
(iii) I1(φ) = C

∗ × {0} where C∗ = C \ {0}.
(iv) φ is a subelliptic harmonic map of (Hn\{0}, θ0) into (R, dy1 ⊗ dy1), and a

Levi conformal map of square dilation


(x) = 2n2 |z|2
|x |2Q , x = (z, t) ∈ Hn , x �= 0. (99)

Consequently

II1(φ) = {0} × R
∗ , III1(φ) = C

∗ × R
∗ , R

∗ = R \ {0}. (100)

(v) The horizontal mean curvature of the leaves of F is

K0 = 1

2
√
2 |z|

(
f f

)−1/2 [
f + f − 2 Q |z|2] = − (Q − 1) |z|√

2 |x |2 . (101)

Here Q = 2n + 2 (the homogeneous dimension of Hn) and |x | = (|z|4 + t2
)1/4

[the Heisenberg norm of x = (z, t) ∈ Hn].

Proof (i) By (98) φ(x) = |x |−Q+2 for any x ∈ Hn . Then φ(x) is the fundamental
solution to L0 = �b discovered by Folland (cf. [31]) i.e. there is a constant c0 �= 0
such that �bφ = c0 δ, where δ is the Dirac distribution (concentrated in zero). In
particular φ : Hn\{0} → R is a subelliptic harmonic morphism of

(
Hn\{0}, θ0

)
into(

R, dy1 ⊗ dy1
)
.
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(ii) The Euclidean gradient of φ is

Dφ(x) = − (Q − 2) |z|2
|x |Q+2

(
z,

t

2|z|2
)
, x = (z, t), (102)

so that Crit(φ) = ∅, and then S(φ) = Hn\{0}.
(iii) Note that

T (φ)x = − n t

|x |Q+2 , x = (z, t).

Hence [by statement (i) in Lemma 3]

x ∈ I1(φ)⇐⇒ (dxφ)Tx = 0 ⇐⇒ t = 0.

��
(iv) The horizontal gradient of φ is

∇Hφ = − n

|x |Q+2

n∑

α=1

{
zα f Lα + zα f Lα

}
. (103)

Then [by (16)] the square dilation is


(z, t) = Gθ (∇Hφ,∇Hφ)(z,t) = 2n2 |z|2
(|z|4 + t2

)n+1 ,

which is (99). Next [by (99) together with statements (ii) in Lemma 3 and (iii) in
Lemma 1]

x ∈ II1(φ)⇐⇒ 
(x) = 0 ⇐⇒ z = 0.

��
(v) The use of the CR function f (z, t) = |z|2 − i t greatly simplifies calculations.

One starts by rephrasing the square dilation as


0 = 
 = 2 n2 |z|2
(
f f

)Q/2 ,

so that

Lα
(
log

√

0

)
= zα

2 f |z|2
(
f − Q |z|2

)
,

yielding [by (103) and statement (i) in Theorem 5] (101). ��
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The sublaplacian�b on (Hn , θ0) belongs to the family {Lγ }γ∈C of Folland-Stein
operators (cf. e.g. [29, p. 177])

Lγ ≡ −1

2

n∑

α=1

(
Lα Lα + Lα Lα

) + i γ
∂

∂t
, γ ∈ C.

AC∞mapφ : Hn\{0} → N into aRiemannianmanifold (N , h) is aLγ -morphism
if for any harmonic function v : V ⊂ N → R [i.e. �hv = 0 in V ] Lγ (v ◦ φ) = 0 in
U = φ−1(V ).

A complex number γ ∈ C is admissible if and only if cγ �= 0 where

cγ = 22−2n πn+1

 
(n + γ

2

)
 

(n − γ

2

) .

By a result of Folland and Stein (cf. [32], or [29, p. 179]) if γ is admissible (equiv-
alently γ ∈ { ± n, ±(n + 2), ±(n + 4), . . . })

φγ = f −(n+γ )/2 f
−(n−γ )/2

,

is a fundamental solution to Lγ i.e. Lγ φγ = cγ δ. In particular

φ±p : Hn \ {0} → R, p ∈ {
n, n + 2, n + 4, . . .

}
,

are L±p-morphisms, of Hn\{0} into
(
R, dy1 ⊗ dy1

)
. Also Lγ is hypoelliptic if

and only if γ is admissible. The study of Lγ -morphisms into a general Riemannian
manifold (N , h) is an open problem.

8.2 Morphisms from Rossi Spheres

Let S2 = {(
y1 , y2 , y3

) ∈ R
3 : ∑3

j=1(y
j )2 = 1

}
and S3 = {

(z, w) ∈ C
2 : |z|2 +

|w|2 = 1
}
, and let π : S3 → S2 be the Hopf fibration i.e. π(z, w) = (

y1 , y2 , y3
)

⎧
⎪⎨

⎪⎩

y1 = |z|2 − |w|2 ,
y2 = zw + zw,

y3 = −i (zw − zw) .

(104)

Let hSN = j∗ g0 be the first fundamental form of j : SN ↪→ R
N+1, where g0 is

the Euclidean metric on R
N+1. Let S3 be equipped with the standard CR structure

T1,0(S3) [induced by the complex structure of C2], and with the canonical contact
form

θ = i

2

{ − z dz + z dz − w dw + w dw
} ∈ P+(S3). (105)
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T1,0(S3) is the span of L = w
(
∂/∂z

) − z
(
∂/∂w

)
. Let us set

Lt = L + t L, |t | < 1,

and let Ht beCR structure on S3 spanned by Lt [{(S3 , Ht )}|t |<1 are theRossi spheres].
By a result in [57], the CR manifold (S3 , Ht ) is globally embeddable in C

2 if and
only if t = 0.

Theorem 9 (i) The Hopf map π : S3 → S2 is a subelliptic harmonic morphism of(
S3 , T1,0(S3), θ

)
into (S2 , hS2

)
.

(ii) π is a subelliptic harmonic morphism of
(
S3 , Ht , θ

)
into (S2 , hS2

)
if and

only if t = 0.

Note that θ is indeed a positively oriented contact form on each Rossi sphere
(S3, Ht ). The corresponding Levi form Gθ (t) is

Gθ (t)
(
Lt , Lt

) = 1− t2

2
, |t | < 1.

The Reeb vector field of (S3 , θ) is

T = i
{
z
∂

∂z
− z

∂

∂z
+ w

∂

∂w
− w

∂

∂w

}
. (106)

Also, theCRmanifolds {(S3 , Ht
)}|t |<1 have the sameLevi distribution as

(
S3 , H0

)

i.e. H(S3) = Re{H0 ⊕ H0}
Proof of Theorem 9 (i) A calculation shows that π∗ T = 0. Let gθ be the Webster
metric of (S3 , H0 , θ). Then gθ = gS3 (cf. e.g. [29]). The Hopf map π is an ordinary
harmonicmorphism of

(
S3 , gS3

)
into

(
S2 , gS2

)
. Therefore [by (12)]π is a subelliptic

harmonic morphism of
(
S3 , H0 , θ

)
into

(
S2 , gS2

)
.

(ii) By statement (i) in Theorem 9, the Hopf map π is a C∞ submersion such that
V π = RT . In particular the Levi and horizontal distributions coincide i.e. H(S3) =
H π .

Let us assume that π is Levi conformal, as a map of (S3 , Ht , θ) into (S2 , hS2).
The vector fields

X1(t) = Lt + Lt = (1+ t)
(
L + L

)
,

X2(t) = i
(
Lt − Lt

) = i (1− t)
(
L − L

)
,

span H(S3) and

Gθ (t)
(
Xt
a , X

t
a

) = 1− t2 , Gθ (t)
(
Xt
1 , X

t
2

) = 0, a ∈ {1, 2}.

Then [by (16)] for any (z, w) ∈ S3\Crit(π)
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1− t2 = Gθ (t)
(
X1(t), X1(t)

)
(z,w) = 
(z, w) hπS2

(
π∗ X1(t), π∗ X1(t)

)
(z,w)

= 4(1+ t)2
(z, w),

i.e.

4
(z, w) = 1− t

1+ t
.

On the other hand

1− t2 = Gθ (t)
(
X2(t), X2(t)

)
(z,w)

= 
(z, w) hπS2
(
π∗ X2(t), π∗ X2(t)

)
(z,w) = 4(1− t)2
(z, w),

yields

4
(z, w) = 1+ t

1− t
,

hence t = 0. ��

The Authors are grateful to the Referee for drawing their attention on the work by J.
Ventura (cf. [62]) and the Ricci curvature calculations there vis-a-vis to a horizontally
weakly conformal map � : M → N 2 from a 4-dimensional Lorentzian manifold M
to a surface N 2, together with the investigation (cf. op. cit.) of the behavior of Ricci
curvature under biconformal deformations (7). It should be noticed that according to
our Theorem 9 examples in that context are actually scarce (the only CR structure
on S3 in Rossi’s family, with respect to which the Hopf map π : S3 → S2 is a
subelliptic harmonic morphism, is the standard CR structure on the sphere). Several
new space-timemodels are built in [62] starting fromclassical examples of space-times
and harmonic morphisms (cf. [5]) and it is a natural question, asked by the Reviewer,
whether and how biconformal changes of the metric affect our examples in Sect. 8.
We leave that as an open problem.

We closewith the observation that, in a simple context such asM3 = H1 (the lowest
dimensionalHeisenberg group) andM4 = C

(
H1

)
equippedwith the Feffermanmetric

g0 = Fθ0 [associated to the canonical contact form θ0 in Sect. 7] looking for vacuum
solutions to the gravitational field equations on C(H1) by conformal or biconformal
deformations of g0, lacks a physical meaning. Indeed g0 isn’t flat and its curvature
corresponds, by theGeneral Relativity andGravitation Theory, to the content of matter
and energy of the region � ⊂ C(H1) where gravitational effects are perceived. Said
matter-energy content of� is described by an energy-momentum tensor Tλμ that is by
definition the traceless Ricci tensor associated to g0. The linearized Einstein equations
(in the presence of the matter distribution assimilated with the non flat character of g0
i.e. involving Tλμ) were solved by Barletta et al. [11].
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