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Abstract The present paper is devoted to the study of a sequence of positive linear
operators, acting on the space of all continuous functions on [0, 1] as well as on some
weighted spaces of integrable functions on [0, 1]. These operators are, as a matter
of fact, a generalization of the Bernstein-Durrmeyer operators with Jacobi weights.
In particular, we present qualitative and approximation properties of these operators,
also providing estimates of the rate of convergence. Moreover, by means of their
asymptotic formula, we compare our operators with the Bernstein-Durrmeyer ones
and a suitable modification of theirs, showing that, in suitable intervals, they provide
a lower approximating error estimate.
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1 Introduction

In [18] a modification of the classical Bernstein operators �= on [0, 1] that fixes the
constants and the function G2 (instead of G) was introduced; the author in particular
showed that this modification provides an error of approximation that is as least as
good as the one of the Bernstein operators on certain subintervals of [0, 1].
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Since then, many other mathematicians have undertaken the task to construct
other modifications of well-known approximation processes in the same spirit of
[18], in order to get better approximation results. For a survey on such type of
operators we refer the interested readers to [4].

In particular, in [13], the authors introduced a modification of the Bernstein
operators that fixes the constants and a given strictly increasing function, as follows:
for any = ≥ 1 and 5 ∈ � ( [0, 1]),

�g= ( 5 ) = �= ( 5 ◦ g−1) ◦ g,

where g is a suitable strictly increasing �∞-function on [0, 1]. The authors stud-
ied qualitative and quantitative properties of such operators and compared their
approximation error estimate with the one of the �=’s.

Subsequently (see [3]) this ideawas applied in order to define amodification" g
= of

the Bernstein-Durrmeyer operators on [0,1] introduced in [15], and independently in
[20], which are a useful tool to study the approximation properties also of integrable
functions.

During the years, Bernstein-Durrmeyer operators have been object of investiga-
tions by many authors (see, e.g. [14, 12]); in particular, in [21] the author studied a
generalization "=,0,1 of Bernstein-Durrmeyer operators acting on weighted spaces
of integrable functions, where the considered one is the classical Jacobi weight
|0,1 on [0, 1]. Those operators have been intensely studied during the years in
the one-dimensional and in multidimensional setting (see, e.g., [1, 23, 26]), also in
connection with certain partial differential problems (see [5, 7]).

In this paper, we present a modification of the Bernstein-Durrmeyer operators
with Jacobi weights " g

=,0,1
in the same spirit of [13, 3].

We establish some qualitative properties of the operators " g
=,0,1

, such as their
behaviour with respect to Lipschitz-continuous functions; moreover, we prove that
they preserve some forms of convexity. We also prove that the sequence (" g

=,0,1
)=≥1

is an approximation process in � ( [0, 1]), as well in suitable spaces of integrable
functions, and we evaluate the rate of convergence by means of appropriate moduli
of smoothness.

Finally, we use an asymptotic formula for the operators" g
=,0,1

in order to compare
them with the "=,0,1’s and the " g

= ’s, showing under which conditions the operators
introduced in the present paper provide a lower approximating error estimate at least
on certain subintervals of [0, 1].

2 Preliminaries

From now on fix 0, 1 ∈] − 1, +∞[ and consider the normalized Jacobi weight

|0,1 (G) :=
G0 (1 − G)1∫ 1

0 H
0 (1 − H)1 3H

(0 < G < 1). (1)
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Moreover, let us denote by `0,1 ∈ "+1 ( [0, 1]) the absolutely continuous measure
with respect to the Borel-Lebesgue measure _1 on [0, 1] with density |0,1 . Obvi-
ously, if 0 = 1 = 0 then `0,0 = _1.

By means of such a measure, it is possible to define the so called Bernstein-
Durrmeyer operators with Jacobi weights (see [21, 22]). More precisely, for every
5 ∈ !1 ( [0, 1], `0,1), = ≥ 1 and G ∈ [0, 1], set

"=,0,1 ( 5 ) (G) :=
=∑
ℎ=0

l=,ℎ ( 5 )
(
=

ℎ

)
Gℎ (1 − G)=−ℎ , (2)

where

l=,ℎ ( 5 ) : =
1∫ 1

0 C
ℎ (1 − C)=−ℎ 3`0,1

∫ 1

0
Cℎ (1 − C)=−ℎ 5 (C) 3`0,1

=
Γ(= + 0 + 1 + 2)

Γ(ℎ + 0 + 1)Γ(= − ℎ + 1 + 1)

∫ 1

0
Cℎ+0 (1 − C)=−ℎ+1 5 (C) 3C,

(3)

Γ being the classical Euler Gamma function.
We also recall that in [7] it has been noted that

"=,0,1 ( 5 ) = �= (�=,0,1 ( 5 )) ( 5 ∈ !1 ( [0, 1], `0,1)) , (4)

where �= stand for the classical Bernstein operators on [0, 1] and �=,0,1 :
!1 ( [0, 1], `0,1) −→ !1 ( [0, 1], `0,1) are the positive linear operators defined in
[10, formula (4.6)] by

�=,0,1 ( 5 ) (G) =
Γ(= + 0 + 1 + 2)

Γ(=G + 0 + 1)Γ(= − =G + 1 + 1)

∫ 1

0
C=G+0 (1 − C)=−=G+1 5 (C) 3C.

(5)
Given (4) and denoted by 4< (G) = G<, < ∈ N, it is possible to evaluate "= (4<),

< ∈ N, since

�=,0,1 (4<) =
Γ(= + 0 + 1 + 2)

Γ(< + = + 0 + 1 + 2) (0 + 1 + =41) · · · (0 + < + =41) . (6)

In particular (see [22, Section 5.2]),

"=,0,1 (40) = 40 (7)

"=,0,1 (41) =
0 + 1 + =41
= + 0 + 1 + 2 , (8)

and
"=,0,1 (42) =

(0 + 1) (0 + 2) + 2=(0 + 2)41 + =(= − 1)42
(= + 0 + 1 + 2) (= + 0 + 1 + 3) . (9)

Moreover, if, for a given G ∈ [0, 1] we denote by k8G (C) = (C − G)8 , 8 ≥ 1, we have
that
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"=,0,1 (kG) (G) =
0 + 1 − (0 + 1 + 2)G

= + 0 + 1 + 2 (10)

and

"=,0,1 (k2G) (G) =
2=G(1 − G) + G2 (0 + 1 + 2) (0 + 1 + 3)
(= + 0 + 1 + 2) (= + 0 + 1 + 3)

− 2G(0 + 1) (0 + 1 + 3)
(= + 0 + 1 + 2) (= + 0 + 1 + 3) +

(0 + 1) (0 + 2)
(= + 0 + 1 + 2) (= + 0 + 1 + 3) .

(11)

3 Modified Bernstein-Durrmeyer operators with Jacobi weights

In what follows, g will be an infinitely differentiable function on [0, 1] such that
g(0) = 0, g(1) = 1, and g′(G) > 0 for G ∈ [0, 1].

Consider now the image measure `g
0,1

of `0,1 by means of g and the corre-
sponding Lebesgue space ! ? ( [0, 1], `g

0,1
), with 1 ≤ ? < +∞. Namely, a function 5

belongs to ! ? ( [0, 1], `g
0,1
) if∫ 1

0
| 5 |? 3`g0,1 =

∫ 1

0
| 5 ◦ g−1 |? 3`0,1 < +∞ .

Such a space is equipped with the norm ‖ · ‖!? ( [0,1],`g
0,1
) . If g = 41, `410,1 = `0,1 and,

if this is the case, we will omit the superscript 41. Note that 5 ∈ ! ? ( [0, 1], `0,1)
if and only if 5 ∈ ! ? ( [0, 1], `g

0,1
). Moreover, also `g

0,1
∈ "+1 ( [0, 1]). Finally,

whenever 0 = 1 = 0 and g = 41, the corresponding space is indeed ! ? ( [0, 1])
endowed with the usual norm ‖ · ‖ ? .

For every = ≥ 1, the positive linear operator

" g
=,0,1 : !

1 ( [0, 1], `g0,1) −→ !1 ( [0, 1], `g0,1)

that we are going to consider is defined by setting, for every 5 ∈ !1 ( [0, 1], `g
0,1
),

0 ≤ G ≤ 1,

" g
=,0,1 ( 5 ) (G) :=

=∑
ℎ=0

(
=

ℎ

)
gℎ (G) (1 − g(G))=−ℎl=,ℎ ( 5 ◦ g−1) (12)

(see (3)). More precisely

" g
=,0,1 ( 5 ) = "=,0,1 ( 5 ◦ g

−1) ◦ g. (13)

If we choose g = 41 we get the original Bernstein-Durrmeyer operators with
Jacobi weights "=,0,1 [21].

Further, in the particular case of 0 = 1 = 0, we get the modified Bernstein-
Durrmeyer operators introduced and studied in [3]. Observe that, if in addition
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g = 41, then those operators turn into the classical Bernstein-Durrmeyer operators
[15, 20].

If 5 = g< (< ∈ N), then 5 ◦ g−1 = 4<. Hence we have

" g
=,0,1 (g

<) = ("=,0,1 (4<)) ◦ g. (14)

In particular, from (7)-(9), we get

" g
=,0,1 (40) = 40 (15)

" g
=,0,1 (g) =

0 + 1 + =g
= + 0 + 1 + 2 , (16)

and
" g
=,0,1 (g

2) = (0 + 1) (0 + 2) + 2=(0 + 2)g + =(= − 1)g
2

(= + 0 + 1 + 2) (= + 0 + 1 + 3) . (17)

For the operators " g
=,0,1

, a formula similar to (4) can be obtained considering the
following modification �g= of the Bernstein operators introduced in [13]:

�g= ( 5 ) (G) =
=∑
ℎ=0

(
=

ℎ

)
gℎ (G) (1 − g(G))=−ℎ ( 5 ◦ g−1)

(
ℎ

=

)
(= ≥ 1, 5 ∈ � ( [0, 1]), 0 ≤ G ≤ 1). In fact, on account of (5),

" g
=,0,1 ( 5 ) = �

g
= (�=,0,1 ( 5 ◦ g−1) ◦ g) ( 5 ∈ !1 ( [0, 1], `g0,1)) . (18)

Theorem 1 For every 5 ∈ � ( [0, 1]) we have

lim
=→∞

" g
=,0,1 ( 5 ) = 5 uniformly on [0, 1] .

Proof It is sufficient to note that {40, g, g2} is an extended complete Tcheby-
chev system on [0, 1] and that, thanks to (15)-(17), lim=→∞ " g

=,0,1
(40) = 40,

lim=→∞ " g
=,0,1
(g) = g, and lim=→∞ " g

=,0,1
(g2) = g2, uniformly on [0, 1]. �

In order to get some estimates of the rate of convergence in Theorem 1, we use
a general result (see [22, 8]) which involves the usual first modulus of continuity
l( 5 , X) and the second modulus of smoothness l2 ( 5 , X). To this end, we need some
further notations.

For G ∈ [0, 1], let kG
g,8

be the function defined by

kGg,8 (C) = (g(C) − g(G))8 (8 = 0, 1, 2, . . .) .

If g = 41 we shall simply write k8G (C) = (C − G)8 .
For any = ≥ 1 and G ∈ [0, 1] (see (11)), we have
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" g
=,0,1 (k

G
g,2) (G) =

2=g(G) (1 − g(G)) + g(G)2 (0 + 1 + 2) (0 + 1 + 3)
(= + 0 + 1 + 2) (= + 0 + 1 + 3)

− 2g(G) (0 + 1) (0 + 1 + 3)
(= + 0 + 1 + 2) (= + 0 + 1 + 3) +

(0 + 1) (0 + 2)
(= + 0 + 1 + 2) (= + 0 + 1 + 3) .

(19)

Moreover, by using a result due to Freud (see [16]), we get that there exists a
constant  > 0 such that

 k2G (C) ≤ g′(G)kGg,2 (C) for every G, C ∈ [0, 1] . (20)

Obviously,  = 1 if g = 41.
We can now state the following result.

Proposition 1 Consider = ≥ 1, 5 ∈ � ( [0, 1]) and 0 ≤ G ≤ 1. Then

|" g
=,0,1 ( 5 ) (G) − 5 (G) | ≤ l( 5 , fg= (G)) +

3
2
l2 ( 5 , fg= (G)) , (21)

where

fg= (G) =
√
g′(G)
√
 
×√

2=g(G) (1−g(G))+g(G)2 (0+1+2) (0+1+3)−2g(G) (0+1) (0+1+3)+(0+1) (0+2)
(=+0+1+2) (=+0+1+3) .

Moreover,

‖" g
=,0,1 ( 5 ) − 5 ‖∞ ≤ l( 5 , Xg=) +

3
2
l2 ( 5 , Xg=) , (22)

where

Xg= =

√
‖g′‖∞√
 

√
=/2 +max{02 + 30 + 2, 12 + 31 + 2}
(= + 0 + 1 + 2) (= + 0 + 1 + 3) .

Proof Let = ≥ 1, 5 ∈ � ( [0, 1]), 0 ≤ G ≤ 1 and X > 0. Using [22, Theorem 2.2.1]
(see also [8, Theorem 1.6.2]), we have that

|" g
=,0,1 ( 5 ) (G) − 5 (G) | ≤ | 5 (G) | |"

g
=,0,1 (40) (G) − 1| +

1
X
|" g

=,0,1 (kG) (G) |l( 5 , X)

+
{
" g
=,0,1 (40) (G) +

1
2X2

" g
=,0,1 (k

2
G) (G)

}
l2 ( 5 , X)

=
1
X
|" g

=,0,1 (kG) (G) |l( 5 , X) +
{
1 + 1
2X2

" g
=,0,1 (k

2
G) (G)

}
l2 ( 5 , X) .

By Cauchy-Schwarz inequality we get
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|" g
=,0,1 (kG) | ≤

√
" g
=,0,1
(k2G),

therefore

|" g
=,0,1 ( 5 ) (G) − 5 (G) | ≤

≤ 1
X

√
" g
=,0,1
(k2G) (G)l( 5 , X) +

{
1 + 1
2X2

" g
=,0,1 (k

2
G) (G)

}
l2 ( 5 , X) .

From (20) and the positivity of the " g
=,0,1

’s, we get

" g
=,0,1 (k

2
G) ≤

g′(G)
 

" g
=,0,1 (k

G
g,2).

Taking (19) into account and setting X = fg= (G), we get (21).
To get (22), note that, for every G ∈ [0, 1], 2=g(G) (1−g(G)) ≤ =/2 and that the

function

6(G) = g(G)2 (0 + 1 + 2) (0 + 1 + 3) − 2g(G) (0 + 1) (0 + 1 + 3) + (0 + 1) (0 + 2)

has a unique critical point at G = g−1
(
0 + 1

0 + 1 + 2

)
, which is a local minimum point,

so that its global maximum has to be max{6(0), 6(1)}. �

We pass now to discuss approximation properties of (" g
=,0,1
( 5 ))=≥1 also in the

space of ! ? ( [0, 1], `g
0,1
), ? ≥ 1. We note that these results seem to be new also in

the context 0 = 1 = 0.
First we recall that a measure ` on [0, 1] is said to be invariant for an operator

� of domain � (�) if∫ 1

0
�( 5 ) 3` =

∫ 1

0
5 3` for every 5 ∈ � (�)

(see [19, Section 5.1, p. 178]).
Lemma 1 The measure `g

0,1
is an invariant measure for the operators " g

=,0,1
on

!1 ( [0, 1], `g
0,1
), and in particular for their restrictions to� ( [0, 1]). Moreover, each

" g
=,0,1

is a contraction from ! ? ( [0, 1], `g
0,1
) into itself.

Proof Fix 5 ∈ !1 ( [0, 1], `g
0,1
); then∫ 1

0
" g
=,0,1 ( 5 ) 3`

g
0,1 =

=∑
ℎ=0

(
=

:

)
l=,ℎ ( 5 ◦ g−1)

∫ 1

0
gℎ (1 − g)=−ℎ 3`g0,1

=
1∫ 1

0 H
0 (1 − H)1 3H

∫ 1

0

[
=∑
ℎ=0

(
=

:

)
Hℎ (1 − H)=−ℎ

]
H0 (1 − H)1 ( 5 ◦ g−1) (H) 3H

=
1∫ 1

0 H
0 (1 − H)1 3H

∫ 1

0
H0 (1 − H)1 ( 5 ◦ g−1) (H) 3H =

∫ 1

0
5 3`g0,1 ,
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hence the first part of the claim is proven.
In order to prove the second part, first note that from Jensen’s inequality it follows

that, if 5 ∈ ! ? ( [0, 1], `g
0,1
), |" g

=,0,1
( 5 ) |? ≤ " g

=,0,1
( | 5 |?). Then∫ 1

0
|" g

=,0,1 ( 5 ) |
? 3`g0,1 ≤

∫ 1

0
" g
=,0,1 ( | 5 |

?) 3`g0,1 =
∫ 1

0
| 5 |? 3`g0,1 ,

that is ‖" g
=,0,1
‖!? ( [0,1],`g

0,1
) ≤ 1. �

Theorem 2 For every 5 ∈ ! ? ( [0, 1], `g
0,1
),

lim
=→∞

" g
=,0,1 ( 5 ) = 5 in ! ? ( [0, 1], `g0,1) .

Proof As a consequence of the previous lemma, the sequence (" g
=,0,1
)=≥1 is equi-

bounded from ! ? ( [0, 1], `g
0,1
) into ! ? ( [0, 1], `g

0,1
). On account of Theorem 1

and recalling that � ( [0, 1]) is dense in ! ? ( [0, 1], `g
0,1
) (see [11, Lemma 26.2 and

Theorem 29.14]) the proof is given. �

We proceed by obtaining an estimate of the convergence in Theorem 2 in the
particular case 0 = 1 = 0 for which, as quoted before, our operators turn into
those ones considered in [3]. Let us denote by " g

= the operators " g
=,0,0 and by `g

the measure `g0,0. We shall use a result due to Swetits and Wood [25, Theorem
1] which involves the second-order integral modulus of smoothness defined, for
5 ∈ ! ? ( [0, 1]), 1 ≤ ? < +∞, as

l2, ? ( 5 , X) := sup
0<C≤X

‖ 5 (· + C) − 2 5 (·) + 5 (· − C)‖ ? (X > 0).

In particular, recalling that 5 ◦g−1 ∈ ! ? ( [0, 1]), [25, Theorem 1] states that there
exists a constant �? > 0 such that

‖" g
= ( 5 ) − 5 ‖!? ( [0,1],`g ) = ‖"= ( 5 ◦ g−1) − 5 ◦ g−1‖ ?

≤ �?{d2=,? ‖ 5 ◦ g−1‖ ? + l2, ? ( 5 ◦ g−1, d=,?)},

where the sequence d=,? → 0 as =→∞ and it is defined as follows:

d=,? :=max
{
‖"= (kG)‖1/2? , ‖"= (k2G)‖

?/(2?+1)
?

}
.

From (10) we get ‖"= (kG)‖1/2? ≤
1

√
= + 2(? + 1)1/(2?)

=: V=,? → 0. Moreover,

‖"= (k2G)‖
?/(2?+1)
? =

‖2=41 (1 − 41) − 641 (1 − 41) + 2‖ ?/(2?+1)?

(= + 2) ?/(2?+1) (= + 3) ?/(2?+1)
=: W=,? .

Note that

0 ≤ W=,? ≤
(

= + 4
2(= + 2) (= + 3)

) ?/(2?+1)
→ 0 .



A modification of Bernstein-Durrmeyer operators with Jacobi weights 9

By setting
U=,? := max{V=,? , W=,?}

we obtain that

‖" g
= ( 5 ) − 5 ‖!? ( [0,1],`g ) ≤ �? (U2=,? ‖ 5 ◦ g−1‖ ? + l2, ? ( 5 ◦ g−1, U=,?)). (23)

We now present some shape preserving properties of the operators " g
=,0,1

.
For every : ∈ N, consider the linear subspace Pg,: generated by the set {g8 : 8 =

0, . . . , :}. This space is invariant under our operators, i.e.

" g
=,0,1 (Pg,: ) ⊂ Pg,: (: ∈ N, = ≥ 1).

Indeed, as shown in (6), �=,0,1 maps polynomials on [0, 1] into polynomials on
[0, 1] of the same degree; by this, (18), (14) and the fact that �g= (Pg,: ) ⊂ Pg,: (see
[13, Section 2]), the statement easily follows.

We also prove that the " g
=,0,1

’s preserve some forms of convexity and we inves-
tigate their behaviour with respect to Lipschitz-continuous functions.

First of all, we point out that the operators " g
=,0,1

do not preserve the usual
convexity. For instance, if g(G) = 4/c arctan(G) (0 ≤ G ≤ 1), then " g

=,0,0 (41) is not
convex for low values of =.

Anyway, the operators " g
=,0,1

preserve other forms of convexity.
We recall (see [27]) that a function 5 ∈ � ( [0, 1]) is said to be convex with respect

to g if, whenever 0 ≤ G0 < G1 < G2 ≤ 1,������ 1 1 1
g(G0) g(G1) g(G2)
5 (G0) 5 (G1) 5 (G2)

������ ≥ 0.
In particular, 5 is convex with respect to g if and only if 5 ◦ g−1 is convex.
We can state the following result.

Proposition 2 Let 5 ∈ � ( [0, 1]) be convex with respect to g. Then " g
=,0,1
( 5 ) is

convex with respect to g for any = ≥ 1.

Proof Since, for every = ≥ 1, the operators"=,0,1 map continuous convex functions
into (continuous) convex functions (see, for example, [7, Proposition 2]), if 5 ∈
� ( [0, 1]) is continuous with respect to g, then "=,0,1 ( 5 ◦g−1) is convex and, hence,
" g
=,0,1
( 5 ) is convex with respect to g by means of (13). �

Another form of convexity can be considered.
Let us fix : ≥ 1 and 00 < 01 < . . . < 0: ∈ R; moreover, for G ∈ R set

D(G) := (G − 00) · · · (G − 0: ). If 5 : [00, 0: ] → R, the divided difference of 5 with
respect to 00, . . . , 0: is defined by

[00, . . . , 0: ; 5 ] :=
:∑
ℎ=0

5 (0ℎ)
D′(0ℎ)

.
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A function 5 : � → R is said to be :-convex (see, e.g., [8, Appendix 2]) on the
interval � if for all 00 < 01 < . . . < 0: in � one has [00, . . . , 0: ; 5 ] ≥ 0.

On the other hand, if 0 ∈ � and ℎ > 0 are such that 0, 0+ℎ, 0+2ℎ, . . . , 0+ :ℎ ∈ �,
then

[0, 0 + ℎ, 0 + 2ℎ, . . . , 0 + :ℎ; 5 ] = 1
:!ℎ:

Δ:ℎ 5 (0),

where Δ:
ℎ
5 (0) is the classical :-th difference of 5 with step ℎ at point 0.

Hence, if 5 is :-convex, then Δ:
ℎ
5 (0) ≥ 0 for all 0 ∈ �. Moreover, if 5 is

continuous, it is always possible to choose the 00, . . . , 0: in the definition of :-
convex functions in such a way they are equally spaced (see [24]), so a continuous
function is :-convex if and only if Δ:

ℎ
5 (0) ≥ 0 for all 0 ∈ �.

We remark that a function 5 ∈ �: ( [0, 1]) is :-convex if 5 (:) ≥ 0.
Obviously, 1-convex functions are just the increasing ones, while 2-convex func-

tions are the usual convex ones.
It is possible to further extend the definition of :-convex functions following [17].

If 5 ∈ � (�), set, for all 0 ∈ �,

Δ:ℎ,i 5 (0) := Δ
:
ℎ ( 5 ◦ i

−1) (i(0)),

i being a�∞-function on � such that i′(G) ≠ 0 for all G ∈ � and that limG→0 i(G) = 0,
provided that 0 is a cluster point for �. 5 is said i-convex of order : (see [17]) if
Δ:
ℎ,i

5 (0) ≥ 0.
If 5 ∈ �: ( [0, 1]), then 5 is i-convex of order : if

�
(:)
i ( 5 ) (G) := ( 5 ◦ i−1) (:) (i(G)) ≥ 0 (G ∈ �).

It is easy to show that, given our assumptions on g, a function 5 ∈ �: ( [0, 1]) is
g-convex of order : if and only if

( 5 ◦ g−1) (:) ≥ 0;

in other words, 5 is g-convex of order : if 5 ◦ g−1 is :-convex.
Many classical approximation processes preserve :-convex functions, like for ex-

ampleBernstein operators (see [8, Prop.A.2.5]) or the classical Bernstein-Durrmeyer
operators (see [2]). Also Berstein-Durrmeyer operators with Jacobi weights preserve
:-convexity.

First off, given : ∈ N and ℎ = 0, . . . , =, we set

Δ:1l=,ℎ ( 5 ) =
:∑
;=0
(−1):−;

(
:

;

)
l=,ℎ+; ( 5 ).

By induction, it is easy to prove that, for every = ≥ 1, : ∈ N, 5 ∈ � ( [0, 1]), and
G ∈ [0, 1],
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"
(:)
=,0,1
( 5 ) (G) = =(=−1) · · · (=−:+1)

=−:∑
ℎ=0

(
= − :
ℎ

)
Δ:1l=,ℎ ( 5 )G

ℎ (1−G)=−ℎ−: . (24)

Following the same reasoning as in [2] (see also [7, Proposition 2.7]), we can
prove the following result.

Proposition 3 If 5 ∈ � ( [0, 1]) is :-convex, then "=,0,1 ( 5 ) is :-convex.
As a consequence, the operators " g

=,0,1
preserve g-convexity of order : .

Proof Let us fix a :-convex function 5 ∈ � ( [0, 1]). It is enough to assume 5 ∈
�: ( [0, 1]); in fact every continuous :-convex function is the uniform limit a sequence
( 5<)<≥1 of :-convex and�: functions (take, for example 5< = �< ( 5 ) for all< ≥ 1).

To show that "=,0,1 ( 5 ) is :-convex, taking (24) into account, we have to prove
that

Δ:1l=,ℎ ( 5 ) ≥ 0.

Indeed,

Δ:1l=,ℎ ( 5 ) = (−1)
: Γ(= + 0 + 1 + 2)
Γ(ℎ + 0 + 1 + :)Γ(= − ℎ + 1 + 1)

∫ 1

0
� (:) (G) 5 (G) 3G,

where � (G) = Gℎ+0+: (1 − G)=−ℎ+1 . From this, integrating by parts,

(−1):
∫ 1

0
� (:) (G) 5 (G) 3G, =

∫ 1

0
� (G) 5 (:) (G) 3G ≥ 0

and this completes the proof.
Consider now a g-convex function 5 of order :; we have to show that

" g
=,0,1
( 5 ) ◦g−1 is :-convex but this is a straightforward consequence of the previous

considerations, (13) and the fact that 5 ◦ g−1 is :-convex. �

We pass now to investigate the behavior of the operators " g
=,0,1

on Lipschitz-
continuous functions. We first recall that we denote by Lip( [0, 1]) the space consist-
ing of those 5 ∈ � ( [0, 1]) such that

| 5 |Lip := sup
G,H∈[0,1]

G≠H

| 5 (G) − 5 (H) |
|G − H | < +∞.

Moreover, for " > 0, 5 ∈ Lip"1 if

| 5 (G) − 5 (H) | ≤ " |G − H | for every 0 ≤ G, H ≤ 1.

Lip"1 is said to be the space of all Lipschitz continuous functions with Lipschitz
constant " .

Finally, for 0 ≤ U ≤ 1, we shall write 5 ∈ Lip"U if

| 5 (G) − 5 (H) | ≤ " |G − H |U for every 0 ≤ G, H ≤ 1.
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Observe that, both g and g−1 are Lipschitz continuous functions. More precisely,
g ∈ Lip!1 with ! := ‖g′‖∞ and g−1 ∈ Lip# 1 with # := (min[0,1] g

′)−1.

Proposition 4 " g
=,0,1
( 5 ) ∈ Lip( [0, 1]) for every = ≥ 1 and 5 ∈ Lip( [0, 1]); more-

over
|" g

=,0,1 ( 5 ) |Lip ≤
(
1 + l

=

)
!# | 5 |Lip. (25)

where
l := −0 + 1 + 2

0 + 1 + 3 < 0. (26)

As a consequence

" g
=,0,1 (Lip"1) ⊂ Lip"!# 1 for every = ≥ 1 . (27)

Further, for every = ≥ 1, 5 ∈ � ( [0, 1]), X > 0, " > 0 and 0 < U ≤ 1,

l(" g
=,0,1 ( 5 ), X) ≤ (1 + !#)l( 5 , X) and " g

=,0,1 (Lip"U) ⊂ Lip(!# )U"U .
(28)

Proof By recalling [7, Theorem 3.2], "=,0,1 (Lip( [0, 1])) ⊂ Lip( [0, 1]) and

|"=,0,1 ( 5 ) |Lip ≤
(
1 + l

=

)
| 5 |Lip ≤ | 5 |Lip,

hence we get " g
=,0,1
(Lip( [0, 1])) ⊂ Lip( [0, 1]) and (25) easily follows from

|" g
=,0,1 ( 5 ) |Lip ≤

(
1 + l

=

)
| 5 |Lip |g |Lip |g−1 |Lip .

As a consequence (27) is fulfilled.
Finally, taking [6, Cor. 6.1.20] into account and since ‖" g

=,0,1
‖ = 1 and property

(27) holds, for every = ≥ 1, 5 ∈ � ( [0, 1]), X > 0, " > 0 and 0 < U ≤ 1, (28) is
proven. �

4 Asymptotic formula and its consequences

In this section we want to find a tool to compare the operators "=,0,1 and " g
= with

the operators " g
=,0,1

, showing under which conditions the latter perform better in
order to approximate certain functions. A way to do that consists in comparing the
corresponding asymptotic formulae.

We recall that (see [7]), for every D ∈ �2 ( [0, 1]),

lim
=→∞

=("=,0,1 (D) − D) = �0,1 (D) (29)

uniformly in [0, 1], where, for every D ∈ �2 ( [0, 1]),
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�0,1 (D) (G) = G(1 − G)D′′(G) + (0 + 1 − (0 + 1 + 2)G)D′(G).

On the other hand, also in view of [3], it is easy to obtain the following result.

Proposition 5 For every D ∈ �2 ( [0, 1]),

lim
=→∞

=(" g
=,0,1 (D) (G) − D(G)) = (�0,1 (D ◦ g

−1) ◦ g) (G)= g(G) (1 − g(G))
g′(G)2

D′′(G)

+ 1
g′(G)

(
(0 + 1) − (0 + 1 + 2)g(G) − g(G) (1 − g(G))g

′′(G)
g′(G)2

)
D′(G)

(30)

uniformly w.r.t. G ∈ [0, 1].

By comparing (29) and (30), we can infer the next theorem.

Theorem 3 If 5 ∈ �2 ( [0, 1]) and there exists =0 ∈ N such that, for all = ≥ =0 and
G ∈]0, 1[,

5 (G) ≤ " g
=,0,1 ( 5 ) (G) ≤ "=,0,1 ( 5 ) (G) ,

then, for G ∈]0, 1[,

5 ′′(G) ≥ g
′′(G)
g′(G) 5

′(G) − g′(G)
g(G) (1 − g(G)) ((0 + 1) − (0 + 1 + 2)g(G)) 5

′(G)

≥
(
1 − G(1 − G)g

′(G)2
g(G) (1 − g(G))

)
5 ′′(G) − (0 + 1) − (0 + 1 + 2)G

g(G) (1 − g(G)) g′(G)2 5 ′(G)
(31)

Conversely, if there exists G0 ∈]0, 1[, in which (31) holds with strict inequalities,
then there exists =0 ∈ N such that, for all = ≥ =0,

5 (G0) < " g
=,0,1 ( 5 ) (G0) < "=,0,1 ( 5 ) (G0) .

Example 1 Consider
g =

42 + U41
1 + U (U > 0) .

Moreover, for the sake of simplicity, let us suppose that 0 = 1/2, 1 = −1/2, and
5 = 42.

We prove that, for a fixed U > 0, there exist a subinterval �U of ]0, 5/6[ and
=0 ∈ N such that, for each G ∈ �U and = ≥ =0,

G2 < " g
=,1/2,−1/2 (42) (G) < "=,1/2,−1/2 (42) (G) .

Taking Theorem 3 into account, we have to show that, in a suitable interval of
]0, 5/6[,

1 >
g′′(G)
g′(G) G −

g′(G) (3 − 4g(G))
2g(G) (1 − g(G)) G > 1 −

G(5 − 6G)g′(G)2
2g(G) (1 − g(G))

or, equivalently,
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�g (G) = 1 − g

′′(G)
g′(G) G +

g′(G)
g(G) ·

3 − 4g(G)
2(1 − g(G)) G > 0 ,

�g (G) = −�g (G) + G(5 − 6G)g
′(G)2

2g(G) (1 − g(G)) > 0 .
(32)

Direct calculations show that, for all G ∈]0, 5/6[,

�g (G) = U

2G + U +
2G + U
G + U ·

3(U + 1) − 4(G2 + UG)
2(1 + U − (G2 + UG))

> 0 .

Observe that limG→0+ �g (G) = 5/2. Moreover

lim
G→0+

�g (G) = − 5
2(1 + U) , lim

G→5/6−
�g (G) = − 105U + 200

(5 + 3U) (5 + 6U) (11 + 6U) .

Finally �g (2/3) > 0.
In what follows we continue to denote by �g and �g respectively the extensions

by continuity in 0 and in 5/6 of the functions in (32).
First we observe that from �g (0) < 0 < �g (2/3) if follows that there exists

HU ∈]0, 2/3[ such that �g (HU) = 0. Analogously, from �g (5/6) < 0 < �g (2/3) it
follows that there exists IU ∈]2/3, 5/6[ such that �g (IU) = 0.

It can be proven that �g is positive in ]HU, IU [.
Such a neighborhood is contained in ]0, 5/6[ and it is the desired subinterval in

which (32) holds.
As an example we provide the plot of �g for U = 1.

Fig. 1 The plot of �g for U = 1.

Under suitable assumptions, the operators " g
=,0,1

also perform better than the
operators " g

= considered in [3], as showed in the following result. Note that the
asymptotic formula for the operators " g

= is (30) for 0 = 1 = 0.

Theorem 4 If 5 ∈ �2 ( [0, 1]) and there exists =0 ∈ N such that, for all = ≥ =0 and
G ∈]0, 1[,

5 (G) ≤ " g
=,0,1 ( 5 ) (G) ≤ "

g
= ( 5 ) (G) ,
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then, for G ∈]0, 1[,

5 ′′(G) ≥ g
′′(G)
g′(G) 5

′(G) − g′(G)
g(G) (1 − g(G)) ((0 + 1) − (0 + 1 + 2)g(G)) 5

′(G)

≥ g
′′(G)
g′(G) 5

′(G) − g′(G)
g(G) (1 − g(G)) (1 − 2g(G)) 5

′(G) .
(33)

Conversely, if there exists G0 ∈]0, 1[, in which (33) holds with strict inequalities,
then there exists =0 ∈ N such that, for all = ≥ =0,

5 (G0) < " g
=,0,1 ( 5 ) (G0) < "

g
= ( 5 ) (G0) .

Example 2 Fix g = 42+U41
1+U (U > 0), −1 < 0 = 1 < 0 and let 5 = 42. Then, (33) with

strict inequalities becomes

1 >
g′′(G)
g′(G) G −

g′(G) (0 + 1) (1 − 2g(G))
g(G) (1 − g(G)) G >

g′′(G)
g′(G) G −

g′(G) (1 − 2g(G))
g(G) (1 − g(G)) G

and it is easy to see that it holds whenever 1 − 2g(G) > 0, that is for every
0 < G < (

√
U2 + 2U + 2 − U)/2 < 1.

A further consequence of the asymptotic formula (30) consists in finding a rep-
resentation in terms of the operators " g

=,0,1
of suitable semigroups acting on spaces

of continuous as well as integrable functions. For similar results see, e.g. [8], where
the reader can also find more details about semigroup theory.

Corollary 1 There exists a Markov semigroup () (C))C≥0 such that for every 5 ∈
� ( [0, 1]), C ≥ 0 and for every sequence (:=)=≥1 of positive integers such that
lim
=→∞

:=/= = C,

lim
=→∞
(" g

=,0,1)
:= ( 5 ) = ) (C) ( 5 ◦ g−1) ◦ g uniformly on [0, 1] . (34)

Moreover, for every 5 ∈ � ( [0, 1]),

lim
<→∞
(" g

=,0,1)
< ( 5 ) =

∫ 1

0
5 3`g0,1 = limC→∞) (C) ( 5 ◦ g

−1) ◦ g (35)

uniformly on [0, 1].
Further, for every ? ≥ 1, () (C))C≥0 has a unique extention ()? (C))C≥0 which

is a positive contraction semigroup on ! ? ( [0, 1], `0,1) and, if C ≥ 0 and (:=)=≥1
is a sequence of positive integers satisfying lim

=→∞
:=/= = C, then for every 5 ∈

! ? ( [0, 1], `g
0,1
),

lim
=→∞
(" g

=,0,1)
:= ( 5 ) = )? (C) ( 5 ◦ g−1) ◦ g in ! ? ( [0, 1], `g0,1). (36)

Finally, if 5 ∈ ! ? ( [0, 1], `g
0,1
) and = ≥ 1,
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lim
<→∞
(" g

=,0,1)
< ( 5 ) =

∫ 1

0
5 3`g0,1 = limC→∞)? (C) ( 5 ◦ g

−1) ◦ g (37)

in ! ? ( [0, 1], `g
0,1
).

Proof First note that, for every :, = ≥ 1 and 5 ∈ � ( [0, 1]) we put

(" g
=,0,1)

: ( 5 ) := ":
=,0,1 ( 5 ◦ g

−1) ◦ g.

Formula (34) follows directly from [9, Theorem 3.3]. Formula (35) is a conse-
quence of [3, formula (8)] and [7, Theorem 4.2].

On the other hand, (36) derives from [7, Theorem 4.4], since 5 ∈ ! ? ( [0, 1], `g
0,1
)

if and only if 5 ∈ ! ? ( [0, 1], `0,1). Finally, formula (37) can be obtained from (35),
since � ( [0, 1]) is dense in ! ? ( [0, 1], `g

0,1
). �

Remark 1 We notice that the generator of the semigroup () (C))C≥0 in Corollary 1 is
the closure of the differential operator �0,1 (D ◦ g−1) ◦ g on �2 ( [0, 1]) (see (30)).
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