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Abstract: The measurement of the energy spectra and densities of α-particles and other fast ions
are part of the ITER measurement requirements, highlighting the importance of energy-resolved
energetic-particle measurements for the mission of ITER. However, it has been found in recent
years that the velocity-space interrogation regions of the foreseen energetic-particle diagnostics do
not allow these measurements directly. We will demonstrate this for γ-ray spectroscopy (GRS),
collective Thomson scattering (CTS), neutron emission spectroscopy and fast-ion Dα spectroscopy
by invoking energy and momentum conservation in each case, highlighting analogies and differ-
ences between the different diagnostic velocity-space sensitivities. Nevertheless, energy spectra
and densities can be inferred by velocity-space tomography which we demonstrate using measure-
ments at JET and ASDEX Upgrade. The measured energy spectra agree well with corresponding
simulations. At ITER, α-particle energy spectra and densities can be inferred for energies larger
than 1.7 MeV by velocity-space tomography based on GRS and CTS. Further, assuming isotropy of
the α-particles in velocity space, their energy spectra and densities can be inferred by 1D inversion
of spectral single-detector measurements down to about 300 keV by CTS. The α-particle density
can also be found by fitting a model to the CTS measurements assuming the α-particle distribution
to be an isotropic slowing-down distribution.
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1 Introduction

Measurements of the densities and energy spectra of α-particles and other fast ions in ITER
are considered highly important and constitute the ITER measurement requirements for energetic
particle diagnostics [3]. However, in recent years it was found that the spectra measurable by
common fast-ion diagnostics are sensitive to restricted yet rather broad regions in phase space such
that densities and energy spectra cannot be directly measured by individual diagnostics. This is
illustrated by so-called weight functions [4–14]. Examples of weight functions for neutron emission
spectrometry (NES) [15, 16], γ-ray spectrometry (GRS) [17, 18], collective Thomson scattering
(CTS) [19–21] and fast-ion Dα (FIDA) spectroscopy [22–25] are presented in figure 1 [14]. The
2D velocity space in figure 1 is described by the energy E and the pitch p = v‖/v where v‖ is
the velocity component along the magnetic field and v is the speed. Each point in a measured
spectrum is sensitive to a particular region in 2D velocity space such as those illustrated in red
in figure 1. We also illustrate a hypothetical weight function which would allow direct energy
resolution. One-step reaction GRS [26] is the only diagnostic with some direct energy resolution
[9]. The shapes of weight functions for these diagnostics will be explained in this paper by invoking
energy and momentum conservation.

Despite the restricted velocity-space coverage of individual measurements, energy spectra and
densities can still be found by solving an inverse problem to infer the fast-ion 2D velocity distribution
function from the combined set of available measurements. This is referred to as velocity-space
tomography [13, 14, 24, 27–41]. Integration over the pitch gives the energy spectrum [33], and
subsequent integration over the energy gives the density [31, 35]. If we assume isotropy in velocity
space, we can use this approach to also invert measurements from only one detector [40]. Whereas
velocity-space tomography is the only known way to measure energetic-particle energy spectra, the
energetic-particle density can also be inferred by fitting spectra to the measurements assuming a
functional form of the velocity distribution function, e.g. a slowing-down distribution.
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This paper consists of twomain parts. Firstly, wewill show that the velocity-space interrogation
regions of fast-ion diagnostics are a consequence of energy and momentum conservation. We will
consider one-step reaction GRS, NES, FIDA (or generally charge-exchange recombination spec-
troscopy (CXRS)) and CTS as well as the analogous electron diagnostic Thomson scattering (TS).
Secondly, we will demonstrate techniques to measure energy spectra by velocity-space tomography
and related data inversion techniques using measurements at ASDEX Upgrade and JET as well as
modelling for ITER.

(a) CTS / FIDA (b) NES

(c) GRS one-step reaction (d) GRS two-step reaction

Figure 1. Examples of weight functions [a.u.] of various fast-ion diagnostics illustrated in red as compared
to the form required by a weight function to achieve direct energy resolution, marked by a black line at 2 MeV.

2 Velocity-space interrogation regions

Energy and momentum conservation determine to which velocity-space regions energetic-particle
diagnostics are sensitive. These conservation principles relate the energy and momentum of the
energetic particle in the plasma to the energy and momentum of the detectable particle (including
photons). This is well-established for NES and GRS weight functions [7, 9, 10, 30]. FIDA and
CTS as well as the related diagnostics CXRS and TS exploit the Doppler shift. The Doppler
shift is in turn implied by energy and momentum conservation [42]. Hence we invoke energy and
momentum conservation for each diagnostic and derive the shape of weight functions from these
principles. This common framework highlights reasons for analogies and differences among the
weight functions. To focus on the large-scale shapes of the observable velocity-space regions, we
here neglect effects leading to small changes in the observable velocity space, such as non-zero
plasma temperatures, Stark splitting or instrumental broadening [6, 7, 9, 30]. We do not consider
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any reaction probabilities since they influence only the amplitudes of the weight functions but not
the boundaries. [6, 7, 9, 30].

The following sections will show that, for each diagnostic, the fast-ion velocity component u
along the line-of-sight appears when themomentum and energy equations are combined. u is related
to the energy Ed of the detectable particle (including photons) by these conservation principles. u
is also related to the gyroangle Γ of the energetic particle according to [5]

u = v‖ cos φ + v⊥ sin φ cos Γ (2.1)

where φ is the observation angle between the line-of-sight and the magnetic field and v⊥ is the
velocity component perpendicular to the magnetic field. Given u, φ and (v‖, v⊥), the corresponding
gyroangles can be computed. The resulting probability that the detected particle has energies in the
interval [Ed,1,Ed,2] can be related to the probability that the fast ion has a line-of-sight velocity in
the interval [u1,u2] (see next section) and to the corresponding fraction of the gyroorbit [6]:

prob(Ed,1 < Ed < Ed,2 |φ, v‖, v⊥) = prob(u1 < u < u2 |φ, v‖, v⊥)

=
Γ1 − Γ2
π

=
1
π

(
arccos

u1 − v‖ cos φ
v⊥ sin φ

− arccos
u2 − v‖ cos φ

v⊥ sin φ

)
. (2.2)

The unobserved velocity space corresponds to a probability of zero such that no gyroangle exists
allowing a detection in the interval [Ed,1,Ed,2]. The observed velocity space corresponds to
probabilities between zero and one. In this case a detection in the interval [Ed,1,Ed,2] is possible
on some parts of the gyroorbit (for prob=1 on the full orbit). Equation 2.2 shows how to find the
observable velocity space from the line-of-sight velocity u for the diagnostics that we consider. In
the following we will calculate u from the energy Ed and momentum pd of the detected particle for
each diagnostic using energy and momentum conservation.

3 Energy and momemtum conservation principles for fast-ion diagnostics

We first formulate the specific non-relativistic energy and momentum conservation equations for
NES, GRS, FIDA, CXRS and CTS that connect the projected velocities u with the velocities of the
detected particles (including photons). TS will be treated relativistically. In the second step we will
solve a set of generic conservation equations modelling all of these fast-ion diagnostics.

GRS and NES:
Consider a generic one-step fusion reaction between a fast particle (f) and a reactant thermal particle
(r) to form a reaction product (pr) releasing a detectable photon or a neutron (d). The non-relativistic
energy and momentum conservation equations for particles with mass m, velocity v and v = |v| are,
respectively,

1
2

m f v
2
f +

1
2

mrv
2
r +Q =

1
2

mprv
2
pr + Ed, (3.1)

m f v f + mrvr = mprvpr + pd . (3.2)

Here Q is the released energy, and Ed and pd are the energy and momentum of the emitted detected
particle (or photon), respectively.
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FIDA and CXRS:
Usually FIDA weight functions are calculated invoking the Doppler shift. Here we instead invoke
energy and momentum conservation which in turn imply the Doppler shift [42]. In the rest frame
of the excited atom, the energy of the released photon, Q, is the difference between the energy
levels U and U ′ before and after the emission, respectively: Q = U −U ′ = h f0 where h is Planck’s
constant and f0 is the frequency. Primes (’) mark quantities after the reaction. In the lab frame
the total energy is the sum of the kinetic energy and the energy level U. Energy and momentum
conservation of the Dα-emission process in the lab frame are then [42]

1
2

m f v
2
f +U =

1
2

m f v
′2
f +U ′ + Ed, (3.3)

m f v f = m f v′f + pd . (3.4)

CTS and TS:
Whereas TS measures the distribution of electrons in the plasma, CTS measures the distribution
of ions. Scattering off ions is negligible compared with scattering off electrons due to the large
proton-to-electron mass ratio mp/me = 1836. The difference between TS and CTS can be illus-
trated using the dressed particle model which is a simplification of a rigorous kinetic treatment. The
dressed particle model is well-suited to highlight the analogy between CTS and TS and, together
with energy and momentum conservation, also with other fast-ion diagnostics. A test charge in a
plasma is surrounded by other charges that screen the potential of the test charge. The size of this
screening cloud is on the order of the Debye length λD . A test particle together with its screening
cloud is referred to as a dressed particle. For example, the screening cloud of an ion is composed
of (a surplus of) electrons and (a lack of) ions. We consider very fast ions so that thermal ions are
too slow to participate strongly in the screening, and hence the screening cloud consists mostly of
electrons.

In incoherent Thomson scattering, the wavelength of the fluctuation wave field is much smaller
than the Debye length, so that scattering occurs incoherently at random phases of the wave electric
field. The scattering power due to individual electrons can then be summed to obtain the power due
to Thomson scattering from a plasma. Hence we can consider energy and momentum conservation
for an individual electron and incident (index i) and scattered (index s) photons,

~ωi +
1
2

mev
2 = ~ωs +

1
2

mev
′2, (3.5)

~ki + mev = ~ks + mev′, (3.6)

where ~ = h/2π, ω is the angular frequency, and k is the wave vector.
For CTS in the dressed particle model, the radiation is scattered off electrons in the screening

cloud surrounding ions. As the wavelength of the mainly ion-induced fluctuation wave field is
much larger than the Debye length, the phases of the fluctuation wave field of the test charge and the
electrons in the screening cloud are correlated. Scattering from a test electron is therefore balanced
by a lack of scattering from its screening cloud, and hence the electron signature in the detectable
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spectra is strongly suppressed. This cancellation does not occur for the comparatively immobile
ions which are therefore revealed by coherent or collective scattering from their screening clouds.
Following the dressed particle model, the energy and momentum equations are identical with those
for incoherent Thomson scattering with me → mdi, where mdi ≈ mi is the dressed ion mass which
is about the same as the ion mass.

4 Generic energy and momentum equations for NES, GRS, CXRS, FIDA, TS and
CTS

We can now formulate non-relativistic energy and momentum equations which conveniently en-
compass all of the above emission processes. These energy and momentum equations have in
common that the energetic particle with energy 1

2 m f v
2
f and momentum m f v f undergoes a process

in which a detectable particle with energy Ed and momentum pd is formed. The detected particle
may be a photon. In NES, GRS and CTS, the process involves another reactant with energy Er and
momentum pr , whereas for FIDA we will just set these to zero. Apart from the detectable particle,
another particle with mass carries the energy 1

2 mprv
2
pr and momentum mprvpr for all processes.

However, for CTS and FIDA mpr = m f in a non-relativistic treatment. Lastly, there may be a
change of the excitation states releasing an energy Q = U −U ′ in the rest frame. Thus we get the
non-relativistic energy and momentum equations in the lab frame:

1
2

m f v
2
f + Er +U =

1
2

mprv
2
pr +U ′ + Ed, (4.1)

m f v f + pr = mprvpr + pd . (4.2)

To solve these, we eliminate vpr in the energy equation using the momentum equation:

1
2

m f v
2
f + Er +U =

m2
f

2mpr
v2
f −

m f

mpr
v f · (pd − pr ) +

1
2mpr

(pd − pr )2 +U ′ + Ed . (4.3)

The fast-ion velocity appears in direction-independent terms as v2
f = v2

‖
+ v2
⊥ and in the direction-

dependent dot products including v f . The projection of the energetic particle velocity onto the
momentum vector of the detectable particle, v f ·pd, highlights the selective role of the geometry of
the line-of-sight. We solve for v f · (pd−pr ) and set the difference in internal energies toQ = U−U ′:

v f · (pd − pr ) =
m f − mpr

2
(v2
‖
+ v2
⊥) +

mpr

m f
(Ed − Er −Q) +

(pd − pr )2

2m f
. (4.4)

Equation 4.4 is valid for all diagnostics that we consider. For NES and GRS, we neglect the energy
and momentum of the thermal species (v f � vr ). They are routinely taken into account in numeric
weight function computations using the GENESIS code. For FIDA, these terms are not relevant
and we consequently set them to zero.

The projected velocity onto the line-of-sight appears in the dot product v f · pd = upd where
pd is the magnitude of pd. Thus we get a simplified equation for the projected velocity u for NES,
GRS and FIDA:

u =
m f − mpr

2pd
(v2
‖
+ v2
⊥) +

mpr

m f

Ed −Q
pd

+
pd

2m f
. (4.5)

– 5 –



For NES, the detected particle is a neutron with Ed =
1
2 mnv

2
n and pd = mnvn:

uNES =
m f − mpr

2mnvn
(v2
‖
+ v2
⊥) +

mpr

m f

1
2 mnv

2
n −Q

mnvn
+

mnvn

2m f
. (4.6)

This is the result obtained in reference [7]. Substitution of equation 4.6 into equation 2.2 reveals
the velocity space interrogated by NES.

For GRS, the detected particle is a γ-ray with Ed = Eγ and pd = Eγ/c where c is the speed of
light:

uGRS = c

(
m f − mpr

2Eγ
(v2
‖
+ v2
⊥) +

mpr

m f

Eγ −Q
Eγ

+
Eγ

2m f c2

)
≈ c

(
m f − mpr

2Eγ
(v2
‖
+ v2
⊥) +

mpr

m f

Eγ −Q
Eγ

)
.

(4.7)

This is the result obtained in reference [9]. Substitution of equation 4.7 into equation 2.2 reveals
the velocity space interrogated by GRS. A difference between the neutron and γ-ray spectrometry
equations is that the last term is negligible for the γ-ray diagnostic as it is smaller by a factor of the
order of the ratio of the energy of the γ and the rest energy of the ion.

Similar to GRS, FIDA relies on the emission of a photon. Hence we obtain basically the same
equation for FIDA as for γ-rays. However, for FIDA we can set mpr = m f . We also set E = h f ,
Q = h f0 and pd = h f /c:

uFIDA = c

(
f − f0

f
+

h f
2m f c2

)
≈ c

(
f − f0

f

)
= c

(
λ0 − λ

λ0

)
. (4.8)

Neglecting the second term containing the small ratio of the photon energy and the rest energy of the
fast ion (h f /m f c2 ∼ 10−9), we obtain the usual Doppler shift formula determining the large-scale
shape of FIDAweight functions which can be substituted into equation 2.2 to obtain the interrogated
velocity space.

The analogy of the line-of-sight velocities obtained for FIDA (equation 4.8) and GRS (equa-
tion 4.7) becomes clear. The first term in equation 4.7 is quadratic in v‖ and v⊥ resulting in
the circular shapes of one-step reaction GRS weight functions in (v‖, v⊥)-space. It drops out for
mpr = m f so that no circular shapes appear in Doppler-shift based weight functions (for the classical
treatment). The second term in equation 4.7 is related to the Doppler shift. This term has a prefactor
mpr/m f for GRS. For the usual Doppler shift as in FIDA, we have mpr = m f , whereas mpr , m f

describes the recoil due to the emission of the energetic γ-ray. The third term in equation 4.6 is
important for NES only but is negligible for GRS and FIDA.

For CTS, consider first the generic equation 4.4. Introducing the energies and momenta of the
incident photon (i) and the scattered photon (s), we set

pd = ~ks, pr = ~ki, Ed = ~ωs, Er = ~ωi . (4.9)

As the ion mass and the internal energies are not changed, we have mpr = m f and Q = 0.
Equation 4.4 simplifies to

v f · (ks − ki) = ωs − ωi +
~(ks − ki)2

2m f
. (4.10)
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We also introduce the differences (δ) of the frequencies and wavevectors of the incident photon
(i) and the scattered photon (s),

kδ = ks − ki, ωδ = ωs − ωi, (4.11)

and recover the Doppler shift relation for TS and CTS

ωδ = v f · kδ −
~k2

δ

2m f
. (4.12)

With v f · kδ = ukδ we obtain

uCTS =
ωδ
kδ
+

~kδ
2m f

, (4.13)

where the second term can be neglected. Equation 4.13 describes two Doppler shifts as apparent
from equation 4.10: v f · ki and v f · ks. The probe radiation has a Doppler shifted frequency in
the rest frame of the particle and the emitted radiation from the moving particle has yet another
Doppler-shifted frequency in the lab frame. The observable velocity-space for a CTS measurement
is found by substitution of equation 4.13 into equation 2.2.

Electrons in hot plasmas have large speeds, often a significant fraction of the speed of light, so
that a relativistic description may sometimes be necessary. The relativistic energy and momentum
equations for CTS are

~ωi + γ f m f c2 = ~ωs + γ
′
f m f c2, (4.14)

~ki + γ f m f v f = ~ks + γ′f m f v′f , (4.15)

containing the Lorentz factor γe with γ2
e = 1/(1 − v2

e/c
2). The relativistic solution is

ωδ = ve · kδ −
~

2γeme

(
k2
δ −

ω2
δ

c2

)
, (4.16)

from which we can recover the non-relativistic equation by setting γe → 1 and seeking the solution
with k2

δ ≈
ω2

δ

u2 �
ω2

δ

c2 .

5 Velocity-space tomography and model fitting

The previous section showed that the principles of energy and momentum conservation suggest that
the CTS, FIDA, GRS and NES observe broad regions in velocity space, so that the determination
of fast-ion energy spectra from the measurements directly is not possible. Some one-step GRS
reactions have direct energy resolution [9], but unfortunately they do not involve α-particles.
Further, the diagnostics observe restricted parts of velocity space, so that the direct determination
of fast-ion densities is not possible, either. Nevertheless, these important parameters can still be
determined by various analysis techniques.

Ideally, the interrogation regions of individual diagnostics can be combined to get a full
coverage of the fast-ion phase-space. Integrated data analysis of several diagnostics by velocity-
space tomography allows the determination of the 2D velocity distribution function. The integral
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(a) (b)

Figure 2. Measurements of fast-ion energy spectra and corresponding simulations. The measurements
are obtained by velocity-space tomography and integration over the pitch. (a) FIDA measurement and
TRANSP simulation of a fast-ion energy spectrum before and after a sawtooth crash in ASDEX Upgrade
discharge #32323 [35]. (b) Combined GRS and NES measurements of an energy spectrum of deuterium
ions accelerated by 3rd harmonic ICRF in JET discharge #86459 [36]. The measurements are compared to
ASCOT/RFOF and SPOT/RFOF simulations.

over pitch is the energy spectrum [33] and the double integral over energy and pitch gives us the fast-
ion density [31, 35]. As the velocity-space tomography problem is ill-posed, we must regularize the
solution by prior information. A popular approach is to assume the velocity distribution function to
be smooth. As compared to other techniques discussed below, this approach uses the least amount
of prior information but requires many measurements.

Energy spectra determined from FIDA measurements in this way appear in figure 2(a) along
with a corresponding TRANSP simulation. At ASDEX Upgrade [43], five FIDA spectra can be
acquired simultaneously [33]. The energy spectra show the distribution of core fast-ion energies
in ASDEX Upgrade discharge #32323 just before and after a sawtooth crash. A velocity-space
tomography movie of this event has been published previously [35]. Here we focus on energy
spectra. The neutral beam deuterium injection energy is 60 keV so that the energy spectra are
expected to have kinks at 60 keV and 30 keV (half injection energy). The inversions from FIDA
measurements show weaker kinks at these energies than the TRANSP simulation. This is expected
since the measured 2D velocity distribution functions have smaller beam injection peaks than the
TRANSP simulations which is explained by the first-order Tikhonov regularization [35].

Figure 2(b) shows measured energy spectra of fast deuterium ions accelerated by 3rd harmonic
ICRF heating at JET [1, 44] as compared to ASCOT/RFOR and SPOT/RFOF simulations [45,
46]. A high-resolution GRS detector and three NES detectors acquired spectra simultaneously
[15]. Velocity-space tomography based on the GRS and NES measurements gives a 2D velocity
distribution function, from which we obtain the energy spectra by integration over pitch. The
agreement between theory and experiment is excellent.

Several important points are lost when considering just the energy spectra, which constitute
the α-particle ITER measurement requirement [3], instead of 2D velocity distribution functions.
Firstly, the strong anisotropy of the 2D velocity distribution function of the NBI ions is lost due to the
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integration over pitch. Secondly, the measured and simulated energy distributions are monotonic
whereas the measured and simulated 2D velocity distribution functions have peaks at the full and
half injection energy such that a bump-on-tail is formed in 2D velocity space. Nevertheless, energy
spectra provide an intuitive meeting ground between theory and experiment. The rich information
can further be simplified by integration over the energy to obtain the fast-ion density. The agreement
of simulated and measured fast-ion densities determined by this approach is good [9, 31].

ITER will be equipped with CTS [5, 40, 47–50] and GRS systems [18, 51, 52]. Velocity-space
tomography should be possible for α-particle energies Eα > 1.7 MeV [40]. A reconstruction of
an energy spectrum computed from synthetic GRS and CTS measurements at ITER [18, 48, 49]
appears in figure 3. The α-particle energy spectrum can be reconstructed by integrated data analysis
of the GRS and CTS measurements. We stress again that any velocity-space anisotropy of the α-
particle distribution function is not reflected in the energy spectra. To study anisotropy, the full
2D distribution function must be measured but this requires an additional detector with an oblique
line-of-sight with respect to the magnetic field [40].

Figure 3. Reconstruction of the energy spectrum for E > 1.7 MeV for an isotropic α-particle slowing-down
distribution based on synthetic GRS and CTS measurements.

For 0.5MeV < Eα < 1.7MeV, CTSwill be the only direct diagnostic for confined α-particles at
ITER since GRS is not sensitive below 1.7 MeV. The lower energy limit arises from the assessment
where scattering due to α-particles significantly exceeds scattering due to thermal deuterium and
tritium. Depending on assumptions, energies down to about 0.3-0.4 MeV might be accessible.
Despite the absence of other diagnostics entering an integrated data analysis, α-particle energy
spectra and densities can still be determined using CTS spectra only. To do this we here assume the
distribution function to be smooth and isotropic in velocity space [40]. An example of this technique
appears in figure 4(a). In particular the region below 1.7 MeV, where GRS is not sensitive, is well
reconstructed from the CTSmeasurements. However, the kink near the α-particle birth energy is not
as well reconstructed as is possible in the 2D inversion based on GRS and CTS. The same approach
works for single-detector GRS measurements at ITER (figure 4(b)). The GRS inversion does an
excellent job at reconstructing the α-particle birth energy due to the very good sensitivity at high
energies but GRS becomes insensitive for energies below 1.7 MeV. This 1D inference technique is
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(a) (b)

Figure 4. (a) Reconstruction of the energy spectrum for E > 0.5 MeV for an isotropic α-particle slowing-
down distribution based on single-detector CTS measurements and the prior information that the distribution
function is isotropic. (b) As (a), but for GRS for E > 1.7 MeV.

also useful for runaway electron measurements [53].
A disadvantage of this technique is that the assumption of isotropy precludes the measurement

of any anisotropy effects. Nevertheless, the ITER measurement requirement to measure α-particle
energy spectra can be met down to 0.5 MeV (optimistically 0.3 MeV) based on the CTS mea-
surements. The assumption of isotropy is perhaps already implied by the requirement to measure
energy spectra which ignores any pitch effects. This approach allows the determination of the
α-particle density under the assumptions that the α-particle velocity distribution function is smooth
and isotropic in velocity space. While smoothness is probably a good assumption, the isotropy
assumption is questionable since some anisotropy is expected due to the drift orbit topology, the di-
rectional bias of NBI and any anomalous transport due to Alfvénic or other magnetohydrodynamic
activity [40].

The last approach that we discuss is to fit a model to the measured spectra by assuming a
functional form of the α-particle velocity distribution function, for example a classical slowing-
down distribution. The assumption of a functional form of the velocity distribution function is
stronger prior information yet than isotropy and smoothness. The slowing-down distribution is
both isotropic and smooth, and additionally the spectral shape is given (assuming we know the
crossover energy). This approach precludes the measurement of energy spectra as they are assumed
in the approach. Nevertheless, the α-particle densities can be inferred by determining the α-particle
density that produces the best fit to the measured spectra, for example using a least-square metric
accounting for nuisance parameters [54]. Figure 5 illustrates the sensitivity of CTS measurements
to the α-particle density for an isotropic slowing-down distribution in a deuterium-tritium plasma.
The frequency of the injected electromagnetic waves is 60 GHz. The shapes of the measured spectra
depend on the α-particle densities which can hence be determined. In particular the wings of the
spectra with Doppler shifts larger than about 1 GHz vary strongly with the α-particle density. The
inner part of the spectra with Doppler shifts smaller than about 1 GHz are dominated by scattering
from thermal deuterium and tritium. Since the isotropic slowing-down distribution is probably a
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fairly good model, it should allow the determination of α-particle densities with good accuracy.

Figure 5. Sensitivity of CTS spectra to the α-particle density for the central CTS measurement volume
for the ITER baseline scenario. The α-particle velocity distribution is assumed to be an isotropic slowing-
down distribution. The alpha particle density nα can be inferred by finding the best fit of the model to the
measurements.

6 Conclusions

Energy and momentum conservation imply that fast-ion diagnostics observe restricted yet rather
broad regions in velocity space. This makes it impossible to directly measure densities and energy
spectra of fusion α-particles. The consistent use of energy and momentum conservation stresses the
analogies and differences in the velocity-space interrogation regions of NES, GRS, CTS and FIDA.
We can nevertheless determine energy spectra and fast-ion densities. Integrated data analysis of the
available fast-ion diagnostics allows the tomographic reconstruction of a 2D velocity distribution
function which can be integrated to obtain energy spectra and densities. Energy spectra measured
in this way at JET and ASDEXUpgrade agree very well with corresponding numerical simulations.
This approach will be possible at ITER for α-particles with energies larger than 1.7 MeV based on
GRS and CTS. For lower energies down to about 300-500 keV the measurement relies on CTS only,
and we need to assume additional prior information on the distribution function to obtain solutions.
Energy spectra and densities of the α-particles can be obtained by assuming that their distribution
is isotropic in velocity space. Alternatively, fast-ion densities can also be obtained by assuming
a functional form of the fast-ion velocity distribution function, such as an isotropic slowing-down
distribution, which is stronger prior information yet than smoothness and isotropy.
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