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Abstract: Hyperspectral imaging (HSI) is one of the non-destructive quality assessment methods
providing both spatial and spectral information. HSI in food quality and safety can detect the
presence of contaminants, adulterants, and quality attributes, such as moisture, ripeness, and mi-
crobial spoilage, in a non-destructive manner by analyzing spectral signatures of food components
in a wide range of wavelengths with speed and accuracy. However, analyzing HSI data can be
quite complicated and time consuming, in addition to needing some special expertise. Artificial
intelligence (AI) has shown immense promise in HSI for the assessment of food quality because
it is so powerful at coping with irrelevant information, extracting key features, and building
calibration models. This review has shown various machine learning (ML) approaches applied
to HSI for quality and safety control of foods. It covers the basic concepts of HSI, advanced
preprocessing methods, and strategies for wavelength selection and machine learning methods.
The application of HSI to AI increases the speed with which food safety and quality can be in-
spected. This happens through automation in contaminant detection, classification, and prediction
of food quality attributes. So, it can enable decisions in real-time by reducing human error at food
inspection. This paper outlines their benefits, challenges, and potential improvements while again
assessing the validity and practical usability of HSI technologies in developing reliable calibration
models for food quality and safety monitoring. The review concludes that HSI integrated with
state-of-the-art AI techniques has good potential to significantly improve the assessment of food
quality and safety, and that various ML algorithms have their strengths, and contexts in which
they are best applied.

Keywords: non-destructive methods; machine learning; food processing; digitalization

1. Introduction

Food quality plays a vital role in the elucidation and development of preferences of
consumers and processors, among other end-users. Food quality is basically perceived
by the consumer according to its appearance, texture, and taste. Recently, food quality
monitoring also required rapid analytical procedures [1]. Food quality ensures these prod-
ucts meet standards related to nutrition, freshness, and taste, while consistency appeals
to consumers. Also, food safety is defined as avoiding the contamination of biological,
chemical, and physical hazards to prevent adverse public health consequences, includ-
ing foodborne illness. Moreover, large lots of low-quality food can be produced before
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processing difficulties are observed [2,3]. These again result in food losses. As a result of
this fact, some intrinsic and extrinsic critical parameter checking methodologies have been
developed; these are much faster, more reliable, and non-destructive [4–6].

Hyperspectral imaging is a non-destructive approach that finds an important appli-
cation in food safety for authentication [7–9] as well as microbial [10,11], chemical, and
physical contaminant identifications within the food industry [12–15]. The hyperspectral
imaging system of the qualification of foods captures the spectral reflectance of food items
across a wide range of wavelengths, which may be used to identify chemical and physical
properties related to moisture, freshness, and contamination. It captures comprehensive
spectral information at each pixel, creating spatially resolved maps that differentiate be-
tween distinct food components or parameters of quality and permit non-destructive
analysis in real time [6,11]. The main challenges of hyperspectral imaging rely on ex-
tracting interesting information from high-dimensional data often containing redundant
information [15]. Other relevant challenges are sensor noise, changing illumination condi-
tions, and environmental conditions, sample heterogeneity, and anisotropy [16,17]. The
development of an efficient algorithm and chemometric techniques is essential to reduce
the dimensionality in the hyperspectral data for improving the practical applications in
real-time food monitoring using HSI. These algorithms can reduce computational time,
improve model performance, and increase robustness by removing irrelevant variables and
redundancies [18].

Machine learning can help in food safety, contaminant detection, spoilage pre-
diction, and quality assessment through the analysis of large datasets received from
sensors. This is enabled by training algorithms with historical data on the identification
of patterns, risk classification, or making real-time predictions based on new input
data [19–24]. With ML came the offspring of AI, which encompasses a wide range of
algorithms drawing meaningful information from data and using the knowledge to
teach themselves for better classification [25–27] and prediction [28–30] within the food
safety and quality sections. Also, deep learning relies on an artificial neural network
composed of several layers, which automatically learn hierarchical features from raw
data, with gradual changes to abstract and nuanced representations. DL in some cases is
stronger than traditional ML and can process large volumes of big data in unstructured
information represented through images and videos without manual feature extraction,
hence improving accuracy and scalability [16,29,31–34]. The literature indicates that AI
catalyzes new revolution hyperspectral image and data analysis. Moreover, the effective
preprocessing and deliberate choice of wavelengths in hyperspectral imaging are rec-
ommended to reduce extraneous factors that can affect the quality of measured spectra,
such as the morphological variations and light-scattering characteristics of different
food items [33,35,36]. So, the integration of hyperspectral imaging with AI, including
optimized preprocessing and wavelength selection in view of food quality monitor-
ing, remains so far poorly addressed, and relevant studies have been identified only
in [1,10,15,18,37,38].

This review focuses on the potential of ML algorithms in analyzing HSI data, which
has the capacity to extract patterns, classify materials, and carry out predictive modeling
on high-dimensional and complex data produced with a view to food quality and safety.
HSI is being practiced on a wide variety of foodstuffs, including fruits, vegetables, grains,
meats, and seafood. Also, we discussed how HSI allows for a very accurate assessment
of freshness, nutrient content, and contamination. The techniques, as complemented
by ML, greatly enhance classification performance and predictive modeling, driving the
optimization of decision-making. In addition, the limitations are that the models require
high equipment costs, computation demands, and large well-annotated datasets to be
effectively trained. Furthermore, this review discusses various applied preprocessing
methods in HSI, something important in ensuring that the data being fed to ML algorithms
are accurate and reliable upon application.
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2. HSI Procedure

As mentioned before, compared to the normal images, hyperspectral images are very
different in both spectral and spatial features. While regular images record light in three
broad bands, namely red, green, and blue (RGB), hyperspectral images record hundreds of
narrow contiguous spectral bands ranging from 380 to 2500 nm. This provides the HSI with
detailed spectral information on the identification of materials and their properties, which
is very important in many applications like agriculture and environmental monitoring [16].
Taking different types of images to RGB requires different types of devices, accessories and
processes. Moreover, the preprocessing and feature extraction techniques of hyperspectral
images may different from regular images.

2.1. HSI System

Hyperspectral imaging represents one of the advanced technologies which can capture
the spatial as well as spectral data of any sample in great detail pixel by pixel. The objective
lens, imaging spectrograph consisting of collimator lens, diffraction grating, an input
slit, a detector like a CCD or CMOS sensor, and a focus lens constitute the HSI system.
This configuration enables high-precision spectral and chemometric analysis, making HSI
superior to traditional digital cameras in detecting and recognizing features across a wide
spectral range [16].

The technique of HSI produces a three-dimensional data structure, popularly called
the hypercube. It consists of two spatial dimensions and one spectral wavelength
dimension. Many scanning techniques are utilized, such as pixel-by-pixel scanning, line
scanning, and full-field scanning. While this provides very accurate results, it is slow
and hence less useful for fast applications. On the other hand, linear scanning enables
the simultaneous acquisition of spatial and spectral data, making them more suitable for
fast and online detection. Full-field scanning involves no motion of either the sample or
the detector to acquire images from a fixed scene, thereby increasing the efficiency of
the process.

The system can also operate in reflectance, transmittance, or interactance mode, depend-
ing on whether external, internal, or both kinds of parameters are analyzed (Figure 1) [2,39].
HSI can be carried out on any sample size and shape in several regions of the electromagnetic
spectrum, including ultraviolet, visible and near-infrared (Vis-NIR), and short-wave infrared,
for each of which there are specific applications [9]. Combining spectroscopy with imaging
results in continuous images taken over all the wavelengths of the investigated range, a
fact that constitutes an important advantage of the technique for sample characterization
in general.

2.2. Preprocessing

Raw hyperspectral images are often unsuitable for direct use in models due to inherent
noise that can distort both spectral and spatial features. Noise pollution, originating from
factors such as image acquisition errors, camera sensitivity, and atmospheric interference,
can significantly impact the accuracy of hyperspectral data analysis [35,40]. Preprocessing
techniques typically involve mathematical operations, applied on the spectral data of
HSI images, that are essential to mitigate these issues, enhancing feature extraction and
classification accuracy. Effective preprocessing copes with high-dimensional data and
inter-class correlations, hence improving the model’s performance [35].

2.2.1. Multiplicative Scatter Correction (MSC)

It was stated that MSC could correct for multiplicative effects such as baseline shifts,
light scattering, and instrumental variations in order to make the true spectral characteristics
of samples clearer [39,41]. MSC is typically carried out by regressing the measured spectrum
against a reference spectrum and applying corrections according to the regression model.
An appropriate benchmark spectrum is used for effective MSC. Predefined weight vectors
have been used in several studies to arrive at an optimum correction performance. MSC
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removes an estimate of the scattering component of the spectral data and can therefore
increase the intensity of absorption bands, which is related to the composition of the
sample [9,41]. When combined with other preprocessing techniques, such as moving
average (MA), Savitzky–Golay (SG) smoothing, and regression coefficients, MSC has been
shown to improve model calibration, including partial least squares regression (PLSR) [39].
This has proven effective for monitoring moisture content in food samples.
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Figure 1. The whole HSI system including (a) the hypercube diagram, (b) the relationship between
spatial and spectral dimensions, and (c) the main components of the HSI system. Furthermore,
(d) there are three approaches for generate hyperspectral images, as follows: when the image is
acquired point by point, whiskbroom imaging (point scanning) emerges (left); push-broom imaging
(line scanning) is carried out where the image is captured line-by-line along one axis (middle); and
finally, area imaging (wavelength scanning) is the case where the entire object or area is imaged at a
single wavelength at a time (right) [2].

Particularly, MSC has been proven to play a significant role in enhancing predictive
models, especially the performance of models on complex tasks. For instance, the inclusion
of MSC in the SVM + PCA + MSC + SPA model developed high accuracy for the detection
and location of ADFM in soybean protein meat semiproducts [42]. This preprocessing step
therefore improved the accuracy of the detection of the contaminants to enhance the quality
of the production and the food safety. Similarly, MSC was applied in the MSC-CARS-CNN
model in the classification of beef origin to select 29 critical feature wavelengths while
achieving a high classification accuracy [43]. As a result, further studies can be focused on
the quality assessment of different meat types using MSC preprocessing. Also, detecting
the origin of meat products, especially those that grow in different areas, is a field in which
it is possible that MSC can assist in achieving a high-accuracy model.

2.2.2. Standard Normal Variate (SNV)

Standard Normal Variate normalization is a preprocessing technique that attempts to
take those variations into account due to the effects of light scattering as well as particle
size. Light scattering can cause shifts in the levels of absorbance that produce curvature
and baseline shifts of the spectra [44]. In contrast with MSC, based on a reference spectrum,
SNV normalizes each individual spectrum by the subtraction of the mean and division
by the residual spectrum. Indeed, this method is effective in countering scattering effects
without the need for least squares fitting, and is useful for variables with different units
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or measurement ranges [39]. For instance, a study analyzing wolfberry fruit quality using
hyperspectral imaging mentions the enhancement of model accuracy when dealing with
variables measured across diverse scales [45]. Furthermore, SNV was effective when it was
applied to improve classification tasks for hyperspectral data in quality control systems
for fruits and vegetables [15]. It helps to adjust the data by centering and scaling, which
improves the accuracy of multivariate analysis techniques, ensuring consistency across
variables despite their different units.

SNV has been widely applied to improve the performance of predictive models on
various assessments related to food quality. The technique is important, improving the
HSI performance in conducting a task such as assessing the quality and safety of foods.
SNV applied to predict beef color when combined with PLSR was reported to perform very
well. It was also combined with SNV and algorithms like SPA and GS-SVM to produce
very high accuracy in classifying the bruises on apples [46]. The effectiveness of SNV in
classifying egg freshness was agreed upon, in particular, when combined with wavelet
threshold denoising (WTD) and an improved Support Vector Machine (SVM) model [47].
Li et al. (2023) also applied SNV to authenticate levels of adulteration in minced Atlantic
salmon with high prediction accuracy after the application of a CNN model [48]. According
to these findings, the potential of SNV preprocessing to assess the quality of other kinds of
food, such as seeds and leafy vegetables, can be studied further in order to guarantee the
effectiveness of this method in various food products.

2.2.3. Savitzky–Golay (SG)

The Savitzky–Golay filter is a powerful noise-reducing and signal-smoothing tool in
HSI. This digital filter applies local polynomial regression to smooth data while preserving
important features [49]. SG is a finite impulse response (FIR) filter, and since it is a zero-
phase filter, it can also keep the fundamental information of the signals unaltered [50]. By
adjusting the polynomial order and filter length, SG can compute up to the fifth derivative,
ensuring optimality conditions are met for accurate results [51]. SG is also known for its
ability to smooth signals while preserving important high-frequency components, unlike
standard FIR averaging filters, which tend to eliminate both noise and high-frequency
content. SG filters achieve this by fitting a polynomial to the data points and minimizing
the least-squares error within the window, which leads to better preservation of signal
details compared to traditional FIR filters that might blur or remove critical frequency [52].
By enhancing the metrics of SNR and MSE, the spectral data clarity is increased by SG,
which helps in the finer analysis of raw data. In fact, the effectiveness of this approach
depends upon the optimization of parameters such as polynomial order and window
length. Some studies reported that certain combinations of these parameters result in
optimal performance in classification. There are, however, certain limitations of SG, and
hence some alternative methods, including those coming under the category of FFT, are
also explored for spectrum processing [53–55].

Smoothing is widely used in conjunction with other preprocessing methods to refine
spectral data by removing noise at a small scale and enhancing clarity [9]. It is very effective
in high-noise conditions, as it emphasizes the shape rather than the height of the spectrum.
However, careful attention should be given to the choice of window size, because if the
window size is too small, noise can increase, while if it is too large, significant features may
be masked [56]. When combined with SG, it can improve the clarity of spectral features,
and enable easier identification and analysis [41].

SG is generally used in spectroscopic applications where the attenuation of high-
frequency noises is intrinsic. The application of SG is quite common as a preliminary step
toward improving spectral resolution and eliminating baseline variations in commonly
applied spectral derivation methods [9].

When a fractional-order SG filter was used along with enhancing water content predic-
tion in corn leaves, results were optimal when combined with SG and wavelength selection
methods [57]. SG convolution smoothing was also applied to HSI for the accurate evalua-
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tion of chicken flesh composition [58]. Additionally, the importance of SG when performing
predictions on egg freshness was demonstrated, especially when integrated with advanced
techniques for wavelength selection [47]. Since SG was impactful in predicting solid food
quality parameters, it is recommended to investigate its potential on the measurement of
liquid quality parameters.

2.2.4. Orthogonal Signal Correction (OSC)

OSC is one of the powerful preprocessing methods, removing irrelevant variations
from spectral data, which improves the predictive accuracy of machine learning models [59].
By filtering out the unrelated spectral components for a target variable, the relationship
between the spectral data and the variable of interest is enhanced [60]. It works particularly
well in combination with other preprocessing techniques, since its integration with CARS
showed large enhancements in the coefficients of determination and a decrease in RMSE
with the combined SNV-OSC-CARS-SVR model [61]. For instance, in the case of Kim
et al. (2024), OSC was used with SNV and CARS on the HSI data in predicting protein
content in dried laver. Similarly, Xiao et al. (2024) demonstrated the application of the
OSC-CARS-Support Vector Machine model for the SSC prediction of Agaricus bisporus
slices during ultrasound-assisted osmotic dehydration. By improving model accuracy, OSC
has become a useful tool in non-destructive food analysis [60], with applications across
a wide range of agricultural products. In this case, studying the usefulness of OSC in
products like fruits and vegetables can be considered for evaluation.

Although OSC’s advantages are obvious, it can lead to misconceptions regarding
the separation of predictive and non-predictive information, potentially confusing model
interpretation [62].

2.2.5. Auto Scaling (AS)

Auto Scaling is a normalization method that standardizes spectral data by normalizing
each variable against its standard deviation to achieve a mean of zero and a standard devi-
ation of one. This extends mean centering by considering data variations and transforming
the data into user-specific ranges, such as between −1 and 1 or 0 and 1. AS works well when
splitting spectral data into training and validation datasets, maintaining better consistency
during model development. One major disadvantage of AS is that it inflates small spectral
values and is highly sensitive to outliers. Applications of AS in food quality assessment are
rare [16,63].

Although applications of AS in food quality assessment are still limited, Kim et al.
(2024) showed the potential of AS to predict protein content in dried laver. In their study,
a variant of AS in combination with SNV and OSC as preprocessing steps enhanced
prediction accuracy, as reflected in the high coefficients of determination and low root
mean square errors obtained from their SVR models [61]. In the case of limit studies, the
feasibility demonstrates AS’s promise for non-destructive food quality assessment though
further studies will be required to generalize its applicability across different food products,
such as different types of algae, in predicting different quality parameters.

2.2.6. Mean Centering (MC)

MC is one of the preprocessing methods that reposition the origin at zero by sub-
tracting a variable mean from the variables, which does not change the variance of such
a variable. Such a transformation would be helpful for interpreting deviations from the
mean, and most importantly for mitigating problems in statistical models that present mul-
ticollinearity, for instance, moderated regression and structural equation models. Because
MC only mitigates micro-collinearity and does not comprehensively solve the correlations
between the variables, its efficiency in managing the collinearity in complex models can be
debated [16,64].

MC can also enhance the performance of calibration models when combined with other
preprocessing methods applied to HSI. An example was provided by Marín-Méndez et al.,
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who, during the development of a rapid non-destructive analytical method for predicting
nutritional content in food products, de-applied MC in a combined manner with SNV and
Savitzky–Golay first and second derivatives. Their analysis results indicated that Ridge
regression, after MC preprocessing, provided high accuracy in the prediction of protein
and moisture content; however, for carbohydrate and ash content, the model was slightly
less effective in terms of accuracy [64]. Further improvement can be obtained simply by
increasing the sample size or by combination with MSC to reduce the effect of external
noise, and this would increase the model’s accuracy for better prediction in hyperspectral
food analysis data [39]. In addition, since MC showed effectiveness in data extraction
to evaluate food composition, suggesting the effect of this preprocessor in detecting the
compositions of useful products such as dairy and eggs.

2.2.7. Moving Average (MA)

MA-based techniques play a very important role in HSI, especially in estimating
global statistics from partial data. They provide a very efficient way of computing mean
and covariance values, which can then be utilized by other applications such as anomaly
detection and classification. On remotely sensed hyperspectral or multispectral imagery,
MA sometimes has an application to denoising by smoothing the pixel values to achieve
the purpose of noise suppression with retention of the significant features [65].

In the food industry, MA has been widely applied to enhance the accuracy and
robustness of the analytical models. For example, in the case of spinach juice droplets
located on the surface of stainless steel, MA filters were used for noise smoothing and
enhancing the clarity of spectral features, thus giving rise to a very high classification
accuracy with SVM models [66]. Similarly, when MA was applied with other preprocessing
methods to improve the quality of spectral data in the prediction of protein content in potato
flour noodles, the performance of both PLSR and PCR models significantly improved. For
instance, the MA-CARS-PCR technique gave highly accurate predictions [59].

Nevertheless, in some cases, other more powerful techniques, such as OSC or OSC
combined with CARS, showed improved performances compared to MA-based meth-
ods; the latter’s performances relied so greatly on the type of machines used during
pre-processing [59]. These sometimes identified that MA preprocessing could reduce accu-
racy when labeled by certain ML models [66]. Therefore, great attention should be paid
when selecting the appropriate ML model with MA as the preprocessor.

2.2.8. Minimal Noise Fraction (MNF)

Minimal Noise Fraction is the linear transformation method that tends to improve the
SNR of spectral data. It assumes no correlation between signal and noise, involving the
simultaneous filtering of both low- and high-frequency signals with a view to estimating a
covariance matrix. This was originally very good at extracting useful spectral information,
although it has some limitations with regard to the automatic separation of signal and noise
in real-time processing [39].

While MNF has sometimes been considered a method of preprocessing, others have re-
ferred to it as a method of feature extraction because of its part played in the transformation
of spectral data [16,67]. Luka et al. (2024) have clearly defined what MNF does to spectral
data, hence the reason it is placed firmly here within preprocessing tool categories [39].
Also, the noise-reduction feature, transforming noisy data into components ordered by
signal-to-noise ratio, was mentioned in other studies [68,69].

So far, in practical applications, MNF has been employed to detect milk powder
adulteration using near-infrared HSI. Variability and noise were introduced into the data
by the brand diversities; hence, MNF was used in the pretreatment of the data to separate
noise from the data carrying information for the detection of adulterants like vanillin and
melamine in milk powder. Also, treatments such as MNF yielded robust PLSDA and PLSR
models that were able to identify the presence of adulterants at very low concentrations [70].
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In comparison with PCA, MNF mostly overcame the sensitivity to the noise of PCA
by filtering noise from the informative signal separately through successive applications
of PCA [71,72]. Unlike standard PCA, this makes sure that the first few components are
guaranteed to contain significant variations while containing minimal noise [70]. However,
it was once demonstrated in a study that even with the noise-reduction capability of MNF,
applying PCA resulted in a better capturing of strong signals of absorption in spectral
data. Zhang et al. (2024) identified that models based on PCA were superior to MNF in
prediction capability related to moisture content and in ginseng. It has been stated that
MNF is useful in datasets with significant noise, but PCA remains a formidable alternative
when the data contain critical chemical absorption signals [73]. In this situation, further
research is required to understand the performance of MNF and PCA in different aspects
of food quality. The effectiveness of MNF as a preprocessing tool in HSI, especially in food
engineering, requires its comparison with other methods in order for the performances to
be optimized over a wide area of applications.

It is noteworthy that due to the characteristics of different food products, the per-
formance of MNF varies. More research on the efficiency of applying MNF in different
products, from fruits and vegetables to ready-to-eat foods, can better determine the benefit
rate of this preprocessing method.

2.2.9. Log (1/R)

The log(1/R) transformation is one of the spectral data processing methods used to
linearize the relationship between wavelength and the response variable. This technique is
helpful if the data in the spectra have a nonlinear relationship; it enhances absorption spec-
tra and sharpens important features. The reflectance can be logarithmically transformed,
whereby the sum of a small constant avoids undefined logarithmic values stemming from
zero or negative reflectance values; therefore, it does not change the stability and maintains
the relative differences [39].

Logarithmic transformation, Log(1/R), has been one of the most widely used transfor-
mations in HSI for monitoring moisture content along with other quality attributes of food
items during processing, such as binary mixtures of food powders [74], fat content [75],
and classification [76]. Arefi et al. 2021 used this transformation in tandem with visible and
near-infrared (Vis-NIR) hyperspectral imaging to monitor the moisture decay of apple slices
during hot-air drying. Logarithm transformation significantly cleaned the spectral noise,
and hence it was helpful for selecting wavelengths that carry information on moisture
content [77].

Similarly, Achata et al. (2021) applied a logarithmic transformation log(1/R) to assess
drying processes on beef jerky. Along with NIR HSI and chemometric models, the method
increased the precision of predicting moisture content in the drying process [78]. Due
to the improved spectral features, it was possible to develop superior process control
and a more complete prediction of moisture content, therefore proving the efficiency of
transformation to improve model performance in meat quality monitoring. In such a case,
it is suggested to ensure its efficacy by applying it to assess different quality aspects in
different meat products.

Consequently, the preprocessing algorithms have significantly enhanced the feature
extraction and generated more accurate predictive models while retaining much of the
increased clarity and interpretability in hyperspectral data. The proper application of
preprocessing techniques not only optimizes model performances but also provides more
reliable outcomes in the assessment of food quality and safety. Some pre-processing
techniques of the spectrum are summarized below in Table 1. Since hyperspectral imaging
is an advancement in a continuous manner, embedding the steps of preprocessing will
remain important in realizing how to exploit this premium technology in a wide range of
applications related to food industries.
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Table 1. A summary of the application of spectral pre-processing techniques used in hyperspectral
imaging system in the food industry.

Preprocessing
Method Objective Advantage Limitation and Challenges Reference

MSC Detect foreign matter in
meat products

Achieves 95% accuracy with
SVM + PCA + MSC + SPA model

Requires complex modeling;
performance may vary by
contaminant

[42]

MSC Origin classification
Improved model accuracy
(91.01%) with spectra
reconstruction from RGB images

High device costs, long imaging
times, and low image resolution
hinder broader use

[43]

SNV Detection of
adulteration

High accuracy with SVM
models, enhanced by feature
wavelength selection

Parameter optimization (GA,
grid search) adds complexity;
requires pretreatment and
variable selection

[48]

SNV + SG Freshness classification

Achieved high classification
accuracy using SVM models, with
feature wavelength selection
techniques improving
model performance

Parameter optimization using GA
and grid search adds
computational complexity;
requires data pretreatment and
variable selection

[47]

SG Estimation of
water content

High accuracy with FOSGD and
PLS models; reduced RMSE

Complex preprocessing with
multiple wavelength
selection methods;
computationally intensive

[57]

SG
Rapid determination of
chemical compositions
(moisture, protein, ash)

High prediction accuracy and
visual chemical distribution maps

Requires multiple preprocessing
steps and feature selection for
optimal performance

[58]

OSC

Predict soluble solid
content (SSC) during
ultrasound-assisted
osmotic dehydration

High accuracy with
OSC-CARS-SVM model, capable
of visualizing SSC distribution

Involves complex wavelength
selection (CARS) and
computationally intensive
full-spectrum modeling

[60]

OSC
Non-destructive
assessment of
protein content

High prediction accuracy, aiding
precise quality control of
dried laver

Involves multiple preprocessing
steps and advanced
regression, increasing
computational complexity

[61]

AS (Standard
Scaler)

Non-destructive
assessment of
protein content

Enhanced model accuracy
combined with CARS and other
preprocessing techniques

Involves multiple preprocessing
steps and complex wavelength
selection, increasing
computational demands and may
complicate implementation

[61]

MC
Prediction of
energy and
macronutrient content

Accurate predictions of protein
and nutritional values with
Ridge regression

Lower accuracy for carbohydrates
and ash predictions; model
selection and evaluation
can be complex

[64]

MA Prediction of
protein content

Enhances accuracy of regression
models like PLSR for
food composition

May lead to loss of fine spectral
details and may require additional
techniques for feature extraction

[59]

MA Droplets detection

Improves classification accuracy of
hyperspectral images for detecting
diluted spinach juice with
SVM models

Requires optimization to reduce
wavelengths and computation
time; may underperform with
highly diluted samples

[66]

MNF Detection of
adulteration

Effectively reduces noise and
brand interference, enhancing the
clarity of adulterant signals in
hyperspectral data

Requires complementary
algorithms for improved
classification accuracy and
quantification of adulterants

[73]
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Table 1. Cont.

Preprocessing
Method Objective Advantage Limitation and Challenges Reference

log (1/R)
Predicting various
quality parameters
during hot-air drying

Achieves high accuracy in
predicting vitamin C, SSC,
moisture content, and shrinkage
with lower computational
demands for multispectral systems

GPR models may struggle with
predicting parameters like
rehydration ratio and total
phenolic content

[77]

log (1/R) Predicting moisture
content during drying

Delivers high prediction
performance for moisture content,
achieving RPD values > 4, which
is effective for process control

Requires careful spectral
preprocessing and band selection,
adding complexity and
computational demands

[78]

2.3. Hyperspectral Wavelength Selection

It can capture a wide range of wavelengths, which helps in the detailed analysis of ma-
terials. However, not all wavelengths contribute equally to model accuracy, and some may
introduce noise or redundancy, hence leading to reduced efficiency in predictive models.
Due to this fact, wavelength selection has been considered one of the most important steps
in model enhancement, reducing computation time, and thus increasing interpretability.
These include various methods of wavelength selection developed independently, such as
filter, wrapper, and embedded approaches, each with their ideas of how best to enhance
the predictive capability of HSI data [16,39].

Images captured and stored by the device will follow the steps in the processing
(Figure 2). Image preprocessing will be carried out in three layers, namely low-level,
intermediate-level, and high-level image processing. Three different multi-variate algo-
rithms are applied for each distinct level of analysis [16].
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2.3.1. Competitive Adaptive Reweighted Sampling (CARS)

CARS, inspired by Darwin’s evolutionary theory of survival of the fittest, is a very
effective method of variable selection, reducing data dimensionality and collinearity. The
method employs Monte Carlo sampling to create spectral subsets, followed by an expo-
nential decay function that removes less-informative wavelengths. The steps continue
with ranking the rest of the wavelengths through Adaptive Reweighted Sampling, based
on their regression coefficients in descending order of their predictive relevance. This
cross-validation, which is usually carried out with the RMSE, helps in selecting the optimal
wavelengths. Thus, CARS has a number of advantages in balancing between minimum
collinearity and high robustness of models [39,78].
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In the work of Bonah et al. (2020), CARS was combined with PSO to carry out the
classification of bacterial pathogens on agar plates. The reduced number of wavelengths
resulted in a correct classification rate of 99.47% in the training set and 98.44% in the pre-
diction set, which served as evidence of the capability of the technique in reducing spectral
data without compromising accuracy [79]. Then, using the CARS-PLS-DA model for a
fish freshness assessment distinguished fresh, refrigerated, and frozen–thawed samples
with high accuracy. Furthermore, a good predictive ability was found for the storage
time estimation both under room temperature and refrigerated storage, with correlation
coefficients of 0.948 and 0.9319, respectively [80]. Durojaiye et al. 2024 further showed the
potential of CARS when presenting that the method was applied for chicken flesh chemical
composition prediction, and after processing, a high accuracy regarding protein content
prediction was achieved, hence showing the non-destructive potential of the method in
food analysis [16].

2.3.2. Principal Component Analysis (PCA)

PCA is a traditional technique that has shown satisfactory performance in reducing
the dimensions of HSI. This algorithm orthogonally transforms the dataset by capturing
most of the data variance into fewer dimensions, enabling it to perform data visualization
and analysis efficiently. In terms of exploratory data analysis, it has already occupied a
leading position, as it normally learns the data structure with no optimization toward
any specific prediction tasks [81]. PCA often finds applications in HSI, mainly because it
reduces the processing load and simplifies data interpretation by selecting a very small
subset of the best features. For example, in PCA, due to minimum loss of information,
computational cost and time can be reduced; at the same time, it reveals the natural latent
structure present in the data. However, it is unsupervised and hence cannot give specific
classes. Thus, PCA might not be suitable for detailed classification problems [9].

PCA has high potential for use in conjunction with machine learning models that
improve classification efficiency in agricultural products. In one novel study, PCA was
performed for modeling degradation kinetics and estimating the shelf life of chia seeds.
Using scores of the first PC1 that monitored compositional degradation, the shelf life under
different storage conditions was predicted. [82]. Likewise, during the assessment of beef
moisture and tenderness upon heating with PCA, the result yielded an R2 value of 0.912
in the prediction of moisture and a value of 0.771 in tenderness. PCA also provided an
important understanding in developing a visual of the condiment distribution on cooked
meat and its overall quality analysis [83]. Another application of PCA is in identifying
the variety of sorghum; based on this, Zhao et al. (2024) made use of PCA to reduce the
dimensionality of the HSI data. These MVC-reduced data were then fed into a SICNN,
which yielded the result of >98% in classification accuracy [84].

2.3.3. Successive Projections Algorithm (SPA)

The SPA is a robust method for variable selection with the aim of reducing multi-
collinearity in hyperspectral data. In this algorithm, the variables are iteratively projected to
maximize the variance, thereby enabling SPA to choose the most informative wavelengths
by reducing redundancy as much as possible. In this respect, SPA is particularly useful
to simplify such a complex dataset and enhance the interpretability of models [85]. There
has been a wide variety of applications using SPA in HSI-based food quality and safety
assessments. We have shown the efficiency of SPA in the SSC and FI of Malus micromalus
Makino. A combination of SPA with ELM and GWO-SVM can ensure a fast, non-destructive
prediction of the features of fruit quality [86]. Simultaneously, the reduction in data com-
plexity did not affect the accuracy; therefore, SPA is suitable for large-scale applications of
quality control.

In seafood analysis, the freshness of largemouth bass filet under different thawing
conditions was assessed using SPA. According to the values of electrical conductivity in
the SPA-PLSR model, seven key wavelengths were selected for the prediction of freshness,
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which showed high accuracy and thus enabled the mapping of spatial distribution [87].
Spatial distribution maps were used to visually display freshness in filets as a rapid,
non-invasive analytical technique to quality control in seafood. Furthermore, Jiang et al.
(2021) applied the SPA to authenticate fresh and cooked mutton rolls with pork and
duck adulteration. Herein, the SPAPLS-DA model was able to classify samples into their
categories with 100% accuracy with minimum computational complexity, hence proving to
be useful for investigation in food fraud detection problems [88]. This kind of application
is of paramount importance in view of ensuring authenticity and safety in food items.

2.3.4. Uninformative Variable Elimination (UVE)

UVE is an effective technique for the selection of variables. It offers enhancements
to improve the predictive modeling in the analysis of hyperspectral data by removing
either redundant or otherwise irrelevant variables. PLS refines the regression models by
evaluating the stability of the regression coefficients and eliminates unstable variables that
will have low predictive power. This approach is very useful when one has to deal with
a high volume of spectral information, as usually happens with HSI [89]. UVE has been
widely followed to enhance the performance and increase the accuracy of the HSI models.
In one of these, chestnut quality detection was made using UVE. The critical wavelengths
were found near 1000, 1400, and 1600 nm. The choice of those critical target wavelengths
gave a fabulous result in developing a deep learning model, FD-UVE-CNN, with a high
accuracy of 97.33% that reduced recognition time massively and enhanced the performance
of the model [90]. This demonstrates the capability of UVE to simplify spectral data for
rapid, yet accurate qualitative analysis, especially in areas where speed is of the essence.

Similarly, Zhang et al. (2020) combined UVE with the Successive Projections Algorithm
(SPA) into analyzing fat and moisture content in salmon filets. The incorporation of UVE
optimized the LS-SVM model through spectral refinement and improved the accuracy
of the predictions at higher magnitude [91]. This case is an example of the synergism of
UVE with other preprocessing methods, especially in the area of optimization and fine-
tuning for models related to complex food matrices. Another case where UVE is used is
in the starch content detection in maize kernels, in combination with MSC and texture
features. Given the robustness for rapid detection with complications arising due to water
interference, UVE definitely plays an important role in enhancing robustness when the
sample conditions are adverse [92]. This makes UVE an important tool for enhanced
reliability and precision in predictive models, across diverse food quality assessments.

2.3.5. Variable Importance in Projection (VIP)

The VIP method answers which variables are important for the predictive capability
of the model and ranks them in order of importance. This method, included in PLS
regression, calculates scores for each variable. The higher the score, the more important
the variable. The VIP method identifies the critical variables with a minimum loss of
information that reduces the dimensionality of the data while enhancing the robustness of
the model. Normally, a threshold is fixed by the user in order to filter out less important
variables and focus the analysis on those that contribute most to model accuracy [93].
This is evident in the application of VIP in machine learning models for reducing data
dimensionality during the prediction of beef rancidity while it is cooling. Machine learning
models optimized by VIP learned to effectively forecast beef rancidity. The results showed
how useful and efficient this method was for a non-destructive quality assessment of
foods [94]. The rationale behind the trend in the recent application of variable importance
in projection and improving the accuracy of postharvest handling operations comes from
how the method manages to reduce dimensionality in spectral data, producing faster
results with less computational cost but retaining high accuracy.

Ryu et al. (2024) applied VIP to predict freshness indicators such as pH, TVB-N, and
K values of chub mackerel during seafood quality evaluation. With partial least squares
regression and Support Vector Regression methods trained by the VIP-PLSR model, high
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accuracy in its prediction was reached. Such facility of variable selection on the part
of VIP enhanced the general efficiency in freshness evaluations and demonstrated wide
applicability to various food matrices [95]. In addition, during nutritional analysis, where
VIP has proved useful, the model, upon improvement using VIP, showed high accuracy in
flavonoid content prediction and could predict total flavonoid content in fruits of Cerasus
Humilis during storage [96].

In general, it is believed that the choice of optimal wavelength maximizes the perfor-
mance of hyperspectral imaging systems. Well-chosen wavelengths enhance the models’
accuracy, reduce computational burdens, and bring better interpretability. CARS, PCA,
SPA, UVE, and VIP are some of the various methods used for the refinement in analyz-
ing the spectral data. Each of the techniques identified has strengths and applications in
different areas of material analysis and quality control for which it is superior. Table 2 pro-
vides an overview of many of the currently available techniques for wavelength selection
and applications.

Table 2. The potential of hyperspectral wavelength selection in HIS system.

Wavelength
Selection Application Drawbacks Proposed Corrections Reference

CARS
Classification,
freshness assessment,
predictive modeling

High computational cost,
potential overfitting

Combined with other
optimization techniques like
PSO for improved accuracy

[79,80]

PCA
Dimensionality reduction, data
visualization, exploratory
data analysis

Does not distinguish between
specific classes, unsupervised

Integration with machine
learning models for
improved classification

[81–84]

SPA
Quality control,
freshness assessment,
authenticity detection

May require large sample sizes
for optimal performance

Use in combination with other
algorithms like ELM and SVM
for enhanced accuracy

[85–88]

UVE
Quality detection,
compositional analysis,
rapid detection

May require careful calibration
of threshold values

Combine with other
techniques like MSC for
improved robustness

[89–92]

VIP Nutritional analysis, freshness
prediction, quality monitoring

Best used as a complementary
technique, requires careful
threshold setting

Integration with other
methods for optimal
performance and accuracy

[93–96]

3. Artificial Intelligence Approach

Artificial intelligence (AI) integrated with HSI has turned the traditional form of
predictive modeling in quality and safety assessments upside down. The AI techniques
can be named advanced food quality assessments, since they open up a whole new scale
for high-dimensional and complex datasets from high-spectral imaging, which bear the
potential for much more accurate, efficient, and automated data analysis. Among several
supervised and unsupervised ML-based regression techniques, classification methods, and
deep learning algorithms, those that will be discussed in this section, are for enhancing
food product evaluation and detection systems. The supervised methodologies comprising
linear regression analysis, decision trees, and partial least squares are widely used in
predictive tasks where the output is known. Unsupervised methods find hidden patterns in
data and, in general, will be very useful in cases where labels are unavailable. This is mainly
because deep learning, able to model nonlinear relationships and learn hierarchical feature
representations, holds even further potential for advanced food quality assessments.

3.1. Supervised ML

Supervised learning is one of the most popular paradigms in machine learning, where
models are trained on labeled inputs and their corresponding outputs. It is especially
suitable for the problem scenarios where the expected model output is known, and model
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learns from patterns in the data to generalize later to unseen datasets [97]. With this in mind,
several supervised learning methods have been developed to enhance the performance
and efficiency of AI models in HSI.

3.1.1. Linear and Logistic Regression

Linear regression is a straightforward method that calculates the dependence of a
dependent variable on one or more independent variables. Where there is the presence of
more than one independent variable, the concept of MLR extends to multiple predictors,
which predict the variance in a dependent variable [98,99]. However, MLR has generally
been applied in a number of HSI uses to analyze sensory features of food products. How-
ever, due to its simplicity, MLR may not execute as well compared to nonlinear methods
when dealing with complex datasets where the relationships among variables might not
follow a strictly linear pattern [46]. For example, Paz et al. (2024) suggested that a new
combination of digital imaging and multivariate calibration techniques such as SPA-MLR
be applied for color determination in sugar. This very promising technique provided high
accuracy cost-effectively and non-destructively, apart from some possible traditional chem-
ical analyses [100]. In this respect, the use of SPA-MLR witnesses the increasing application
of sophisticated regression models in food-quality control applications. Combining MLR
with other techniques can be investigated in further research.

Similarly, Song et al. (2024) applied MLR for the prediction of oil content within corn
kernels by using HSI and highlighting some of the innumerable uses within agricultural
monitoring. This technique will provide a fast and non-destructive way; hence, MLR
became very useful in field applications [101]. Further investigation in similar cases such
as wheat, soybeans, and canola oils are required to evaluate the efficiency of MLR in oil
content prediction.

Partial least squares regression is a linear regression method that is applicable when
the dataset possesses high dimensions and the predictors are collinear, or when the samples
are outnumbered. It extracts latent variables with key predictive information, thus effective
in complicated data analysis [102]. Food quality could be assessed by PLSR in combination
with near-infrared hyperspectral imaging (NIR-HSI) to determine oil and fatty acid content
in Brassica seeds [103] and textural properties in mozzarella cheese [104]. The results from
these works showed the robustness of PLSR in handling complex datasets, which is useful
in observing the quality of the food.

While both MLR and PLSR add large value to hyperspectral data analysis, each has
its strong points. MLR works best in simple, low-order linear data, while PLSR generally
tends to perform better with high-dimensional, complex datasets. In choosing between the
two methods in HSI applications, an understanding of the intricacies of each method will
be important in the process.

Logistic regression, by construction, is mainly used for binary classification. It esti-
mates the conditional probability of an outcome given a set of input features; hence, it
yields a direct solution to classification problems [105]. In a study, a fruit contaminant
classifier using logistic regression is presented that exhibited very high sensitivity and
accuracy [106]. Based on spectral data, this model achieved high predictions in physical
hazards like branches or foreign objects, indicating the feasibility of this model in food
safety applications in real time. For classifying pesticide residue levels in grapes by NIR
spectra, logistic regression achieved accuracy above 97%. Its performance is pretty strong
in these applications regarding the detection of agricultural hazards and will be valuable
for hyperspectral data analysis in the context of food safety [107]. These studies represent
that logistic regression has been very successful in food safety for the detection of foreign
materials in foodstuffs and can also be studied in the case of detecting toxins on the surface
of citrus and other fruits.



Appl. Sci. 2024, 14, 9821 15 of 33

3.1.2. Linear Discriminant Analysis (LDA)

LDA is a machine learning methodology in a supervised manner to classify data or
perform dimensionality reduction. It has provided the idea of projecting data in lower-
dimensional space by finding a linear combination of features, which maximizes the
separation between different classes. This approach implicitly assumes that data belong to
a normal distribution, with classes sharing a common covariance matrix, and under those
conditions, it works very effectively [108,109].

The studies have applied this technique to classify tea varieties from different ge-
ographical origins using NIR spectra, which resulted in a 100% discrimination of five
varieties, namely Argentinean and Brazilian green teas and Sri Lankan black tea [110]. The
application of LDA in the detection and classification of adulterants in minced beef and
pork has also been explored by HSI. The method successfully discriminated the pure from
the adulterated, whilst identifying the adulterants themselves [111]. Another work, that of
Kang et al. 2021, uses LDA in conjunction with the Hyperspectral Microscopic Imaging
(HMI) technique for the classification of foodborne pathogens, resulting in a classification
accuracy of 92.9% [112]. The potential of LDA in terms of classification will lead to the
study of the classification of different foods by this method in future studies.

Despite its advantages, LDA also faces some drawbacks in terms of requiring certain
distributional assumptions and being constrained with regard to linear transformations;
hence, nonlinear or advanced models may perform better in many cases [112]. In this case,
it is necessary to completely understand the characteristics of the products and the reason
behind using LDA.

3.1.3. Partial Least Square (PLS)

PLS represents a multivariate statistical approach intended for both dimensionality
reduction and regression analysis. It is specially fitted for the analysis of spectral data,
in which datasets are usually big and collinear. So far, PLS has been the most frequent
application in the food industry, with the aim of predicting chemical composition among
other attributes in high-dimensional datasets. Moreover, the combination of PLS-DA and a
PLSR model for fish freshness classification was able to predict successfully storage time
under different temperature treatments, indicating the versatility of this technique in the
food industry [81]. In another similar study, the detection of fungal contamination in maize
kernels using HIS was carried out by PLS-DA, showing how PLS can be adapted for food
safety [113].

The flexibility of the PLS model is also shown through various key components in
several food products: the prediction of protein content in black fly soldier larvae [114],
the quantification of oil and fatty acid content in Brassica seeds [102], or assessing adul-
teration in Atractylodes rhizoma powders [115]. Although it may lag behind in nonlinear
relationships for which other methods like the Support Vector Machine Regression or deep
learning can provide superior performances [116], it is a powerful approach in food quality
and safety assessments because of its complexity in dealing with collinear data, in addition
to reducing dimensionality.

3.1.4. Decision Trees (DTs)

Decision Trees (DTs) are widely used in food science for their simplicity and inter-
pretability. DTs split data into subsets based on feature values, creating a tree-like structure
where nodes represent decision rules, and branches represent outcomes [117]. Food quality
assessment is the field in which DTs can be applied in HSI to evaluate different quality
parameters, with high accuracy.

Research using DTs coupled with NIR-HSI for the classification of black tea quality
reached an accuracy of 93.13% using the fine tree model, which evidently proved the
capability of DTs to manage complex, multi-factorial datasets on their own [118]. In
addition to that, DTs proved to be very resilient in agricultural applications, as evidenced
by their capability to estimate firmness and soluble solids in apples using hyperspectral
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images with R2 values of 0.881 and 0.679, respectively [119]. While decision trees bring in
these advantages, more sophisticated models, such as random forests or gradient boosted
trees, would easily outperform in a noisy dataset or with higher demands on accuracy.

3.1.5. Random Forest (RF)

RF is an ensemble machine learning algorithm that trains many decision trees and
combines the predictions of individual trees for improving classification or regression pre-
dictive performance. It has good robustness and is capable of handling high-dimensionality
data [31]. The potential of RF in rapidly and confidently food monitoring and assessing
the durability and variety of food products has been demonstrated, making this method
an applicable model in these areas. Also, the combination of RF with CARS to select the
wavelength has shown promising results in the classification tasks. In this context, RF
has classified Coix seed samples regarding storage years based on HSI data. Although
the developed RF classifier had a good performance, other deep learning models, includ-
ing ResNet and SVM, achieved better accuracy [31]. As a result, this model is useful for
non-destructive food analysis.

In another application, RF was applied to classify 27 different varieties of sorghum
using VNIR-HSI. The model returned a calibration precision of 94.58% and a prediction
precision of 64.44%. With dimensional reduction using the CARS algorithm, the proposed
CARS-RF model improved the prediction accuracy to 84.07%, reflecting the capability of RF
to deal with high-dimensional spectral data from imaging techniques [120]. It was further
shared how RF can predict wheat characteristics and compared similar models such as the
SVM and XGBoost gradient boosting trees. While RF was outperformed by more advanced
ensemble models, RF performed well, thus indicating its reliability for spectral data in food
quality prediction [121].

3.1.6. Support Vector Machine (SVM)

The Support Vector Machine is a powerful supervised learning algorithm with broad
applications in the evaluation of food quality, mainly in combination with HSI. It is particu-
larly capable of dealing with high-dimensional data, which comprehensively makes SVM
suited for a wide variety of food attribute classification and contaminant detection cases.
SVM has extensive potential for the capture of very subtle spectral variations reflecting
changes in food composition, freshness, or contamination. Its strength lies in handling
complex datasets where similar visual features mask significant spectral differences [16].

With the ability to capture complicated nonlinear relationships between spectral
data and chemical compositions, a widely conducted model in food analysis includes the
Support Vector Machine-based model, namely Support Vector Machine Regression—SVMR.
For example, it has been used to predict protein content in chickpeas [122] and to detect
Robusta adulteration in Arabica coffee [123]. In addition, deep learning-integrated SVM
models further improved their performance, such as in convolutional neural networks.
The studies that combined CNNs with SVMR showed success regarding adulterants in
processed meat. Thus, this hybrid approach represents a reliable and non-destructive
method of food safety monitoring. Although SVMR has some shortcomings, for example,
its careful parameter tuning and high computational burden, this technique possesses great
generalization abilities; therefore, it is very useful in food science [124].

3.1.7. K-Nearest Neighbor (KNN)

K-nearest neighbor is a straightforward yet effective algorithm for classification and
regression analysis. It simply classifies unknown food items by matching their spectral
signature with the known ones. K-nearest neighbors assume that similar food items are
located around one another in a feature space. It is not surprising then that the technique
has been found quite useful in a variety of HSI-based food quality assessments [125]. KNN
has been successful in finding applications in foodborne pathogen detection, classifying
moldy tea leaves, and identifying adulteration in meats with the help of hyperspectral
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data due to its high accuracy in non-invasively identifying bacterial strains [126]. Xin
et al. (2019) classified mold contamination levels in dried tea leaves using KNN with
optimal wavelengths and roughness penalty smoothing methods [127]. KNN has also
been applied to meat authenticity through the determination of adulteration in cooked
mutton kebabs, which helped in distinguishing the mutton from the skim alternatives like
chicken or pork [128]. While a method such as KNN may not give superior results to more
complicated models, its simplicity and performance are good enough to make it a practical
option when a rapid food quality assessment is needed.

3.1.8. Naïve Bayes

The Naïve Bayes is a basic probability classification algorithm based on features in
conditional independence. It is simple yet effective in many applications, since the full
joint distribution needs not to be estimated. Despite this, Naïve Bayes can be useful in
preliminary food quality screening because it has computational efficiency [129]. In a
study, Naïve Bayes was the main ML model classifying oat samples according to the
mycotoxin content; it could detect DON contamination with moderate success. While less
accurate than more complex models like random forest, Naïve Bayes nevertheless provided
meaningful insights on those classification tasks [130]. Simplicity makes it a suitable tool for
early-stage screening, but the feature independence assumption tends to bind its accuracy
in applicative cases where variable interactions are present.

3.1.9. Soft Independent Modeling of Class Analogy (SIMCA)

SIMCA is a classification technique using the principal component analysis method.
When one class is modeled separately and new samples are classified according to their
degree of fit in these models, it can be subjected to some strong advantages: soft classifica-
tion approach, whereby some samples could be members of more classes or perhaps none.
In conducting one-class classification, SIMCA is suitable for modeling in the detection of
unknown adulterants of the food products [9]. When this technique was applied to HSI
for adulterant detection in almond powder, a high level of sensitivity and specificity was
achieved [131]. A similar situation occurred when SIMCA was used along with NIR-HSI
to classify adulterated cumin at an accuracy of 95%, showing great efficiency in food au-
thentication [132]. Then, De Araújo et al. (2021) applied SIMCA for the authentication of
gourmet coffee varieties using both NIR spectroscopy and digital images to classify the
coffee samples into high-value and commercial categories [133]. The versatility reported by
this technique is one of the most popular powerful tools in food authentication, especially
in systems where it is necessary to quickly test and analyze large numbers of samples or
data points, such as quality control sections.

3.2. Unsupervised ML

Unsupervised learning refers to a class of machine learning methods based on knowl-
edge discovery from data. There are no explicit regularities in the form of pre-defined labels
or structured semantic relationships between such labels. By contrast, supervised learning
involves algorithms that are usually trained by examples of pre-defined input–output
pairs; correspondingly, unsupervised learning operates directly on raw, unstructured data
without explicitly predefined labels with the intent of discovering hidden structures or
patterns [134].

3.2.1. Cluster Analysis

A cluster analysis is a statistical method of grouping objects into classes based on the
characteristic features of objects with the aim of maximizing their similarity within one
class and minimizing similarity between classes. Major techniques in cluster analysis can
be divided into hierarchical and non-hierarchical methods [135]. Hierarchical clustering
structures data in a tree-like fashion, called a dendrogram, which can provide a way of
visually showing the relations between data points at a higher level of similarity. This



Appl. Sci. 2024, 14, 9821 18 of 33

technique finds wide application in the field of food safety. The specifics of the technique
followed Medina-García et al. (2024), who, using hierarchical clustering, classified bread
pixels into visible–near-infrared spectra and estimated the proportion of wholemeal flour.
This technique has proved useful in identifying effectively those pixels related to flour
content in heterogeneous food samples [136]. It also showed that when UMAP was
combined with hierarchical clustering, both adulterants were suitably identified in food
matrices [137].

K-means clustering has assigned data points to a predefined number of clusters based
on their features, with the objective of minimizing variance within each cluster [135].
K-means was used to classify Pleurotus eryngii into quality grades during post-harvest
storage based on HSI data. The method simplified the work of quality control by clustering
the samples efficiently, which provided much assistance in product grading and classifi-
cation [138]. It was also applied along with self-organizing maps to classify Iranian rice
varieties, which proved effective in clustering similar products, with very high accuracy
(values of 16.896, 15.7161, and 18.920 in the best total sum of distances of three different
varieties) during authenticity verification [139].

FCM clustering is an extension of the traditional clustering method where a sample
can be associated with more than one cluster and holds membership values for each cluster.
Basically, this has an advantage under situations with data structures that overlap [140].
An experiment could be observed in the work on chia seeds’ storage, where NIR-HSI was
implemented together with FCM to observe the polyunsaturated fatty acid degradation
and build up free fatty acids under the storage conditions [141]. Its capability for the
detection of slight changes in composition with time, along with appropriate chemometric
techniques like PLSR, made FCM precisely predict the concentrations of the fatty acids and
hence demonstrated its capability with regard to food quality and safety during storage.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) finds density
separates areas of data, with noise tolerance, and therefore it can be applied to datasets
that have outliers [135]. Lei et al. (2022) and Jiang et al. (2023), respectively, used DBSCAN
to remove the outliers in HSI data before further processing. These pre-processing steps
enhanced the later models to find the grain type and mixing ratios with higher accuracy. The
ability of DBSCAN to identify core samples and label outliers adds significant reliability
in unsupervised classification models, especially in the case of food analysis [142,143].
Each one of these clustering methods has its foods and unique advantages relative to
quality and safety, be it in differentiating ingredients or identifying adulterants and the
authentication of products. It is within cluster analytics techniques that food scientists
can then confer effective data management for complex data arising from HSI and other
advanced sensing technologies.

3.2.2. Principle Component Analysis (PCA)

Principal component analysis (PCA) transforms a set of potentially correlated variables
into a new set of uncorrelated variables, known as principal components. It diminishes
the dimensionality of the original data while maintaining the most important information
within the dataset [1]. PCA is of great help in reducing the dimensions, which, in turn,
allows for faster processing and better visualization in a more comprehensible manner.
In this work, critical dimensions from hyperspectral data were selected using PCA and
merged with a deep learning model in classification tasks to improve the accuracy of the
classification process of sorghum seeds. This study also showed how feature extraction
using PCA increased performance to almost 99% correct classification [84]. The application
described here highlighted how PCA is very efficient in handling large complex datasets,
which usually happens when performing food item inspections. Chemical composition,
color, and fat content provided significant compositional markers that enabled the success-
ful classification of all types of cheese by PCA models. This application shows how feature
selection through PCA can help improve estimation accuracy in food composition [144].
Indeed, PCA accelerates the processes of qualification in food, including those contribut-
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ing to consumer safety and product quality by reducing data dimensions and increasing
their interpretability.

3.3. Deep Learning

Deep learning is a higher level of machine learning, which involves multi-layer artifi-
cial neural networks to interpret large volumes of data for specific purposes, even complex
ones. Deep learning addresses training neural networks themselves to extract features from
the raw data. Multiple layers interconnected in deep neural networks allow for represent-
ing complex relationships between inputs and outputs [145]. Deep learning will further
enhance HSI capabilities beyond those provided by conventional methods by modeling
complex nonlinear relationships within the spectral data. One such application of deep
learning has been with the integration of NIR-HSI to estimate nutrition in foods. The
introduction of OptmWave was another approach involving deep learning that coupled
the selection of wavelength characteristics with modeling in order to optimize the analysis.
Applied to a dataset of scrambled eggs with tomatoes, the OptmWave method returned a
high determination coefficient of 0.9913 and a low RMSE of 0.3548 [146].

Applications that can show high potentials for deep learning include microbial detec-
tion and food safety. In this regard, deep learning frameworks have been applied to identify
and quantify Clostridium sporogenes spores within food matrices. Their comparison of
the 1D convolutional neural network against random forest models showed that CNN
significantly outperformed the RF model by improving the accuracy in spore quantification
up to 8% [147]. While in difficult conditions, such as snapshot HSI systems, the robustness
of deep learning forms its essential advantage, where traditional methods often failed. In
the meat industry, the use of deep learning was applied by researchers, classifying red
meat using hyperspectral images from the 3D convolutional neural network. It introduced
novel graph-based post-processing to improve the accuracy. This achieved an over 96%
classification accuracy in the meat classification problem with the use of both NIR and
visible HSI data [148].

Despite certain challenges, deep learning offers significant advantages over traditional
machine learning approaches, including the capability of handling large and complex
datasets, making it particularly well-suited for detecting adulteration and ensuring food
safety [34] (Table 3). Diverse applications of deep learning can make it useful in different
processing methods and different food products like meat, diary, fruits, and vegetables.
Overall, as technology continues to advance, deep learning is expected to play an increas-
ingly critical role in the future of food analysis and quality control.

Table 3. AI approach in HSI system.

ML/Deep
Learning Method Preprocessing Method Wavelength

Selection Method Objective Result Accuracy References

MLR - SPA Predicting the oil content
of individual corn kernels

RMSECV: 9.5 IU

[101]

RMSEP: 4.9 IU

REP: 9.879%

R2pred: 0.976

RPDpred: 6.289

PLS-DA SNV - species discrimination of
Brassicas seeds Classification accuracy: 100% [103]

PLSR

For hardness, springiness,
and meltability:
SG_Smoothing

-

predicting low-fat
mozzarella texture

Hardness: R2p = 0.846, RMSEp = 2911.29
Springiness: R2p = 0.85, RMSEp = 0.0939
Meltability: R2p = 0.728, RMSEp = 22.08

[104]
For adhesiveness and free-oil:
First Deriative of SG (SG_FD)

Adhesiveness: R2p = 0.809, RMSEp = 56.39
Free-oil: R2p = 0.992, RMSEp = 0.442

For gumminess: First
Deriative of SG (SG_FD) Gumminess: R2p = 0.835, RMSEp = 1446.52

For chewiness: MSC Chewiness: R2p = 0.817, RMSEp = 1186.2
Cohesiveness: R2p = 0.654, RMSEp = 0.071

SVM - - Food samples recognition classification accuracy: 68.74% [105]
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Table 3. Cont.

ML/Deep
Learning Method Preprocessing Method Wavelength

Selection Method Objective Result Accuracy References

PLS-DA
- -

Detection of Physical
Hazards in a Variety of
Fruit Processed Products

Detection accuracy: 97.6%
[106]

Logistic Regression Detection accuracy: 97.8%

Logistic Regression SG - Detection of pesticide
residue level in grape Detection accuracy: 97% [107]

LDA MSC - detecting adulterants in
minced meats Detection accuracy: 93% [111]

SVM - PCA identification of
foodborne bacteria Identification accuracy: 92.9% [112]

1D-CNN SNV-SG -
detection of fungal
contamination in
maize kernel

Average error rate: 3.15 [113]

PLSR, SVMR - -
Determination of protein
content in single black fly
soldier larva

RMSEP values of 1.57–1.66% and RPD
values of 2.0–2.5, respectively. [114]

PLSR

- CARS, SPA

Prediction of
Adulteration Content in
Atractylodes chinensis

R2
T: 99.85%

[115]

RMSET: 1.25%

R2
P: 98.61%

RMSEP: 5.06%

PLSR
Prediction of
Adulteration Content in
Atractylodes lancea

R2
T: 99.92%

RMSET: 1.16%

R2
P: 99.00%

RMSEP: 2.16%

DT PCA
Gray-level
co-occurrence
matrix (GLCM)

delineating black
tea quality Classification rate: 93.13% [118]

DT - Bootstrap
Random Forest

assessing internal quality
parameters of apple fruits

For firmness:
R2: 0.881

[119]
For SSC:
R2: 0.679

RF MSC-SNC-SG CARS classification of Coix seed
storage years

Maximum accuracy: 83.52 [31]

ResNet MSC-SNV-SG CARS Recognition accuracy: 87.27% [31]

RF SG-SNV-MSC CARS Identification of varieties
of sorghum Precision accuracy: 84.7% [120]

SEL MSC CARS

Detection of wheat
saccharification power

Rp
2: 0.9308

RMSE: 0.0081
[121]

Detection of wheat
protein content

Rp
2: 0.9939

RMSE: 0.0116 g kg−1

SVMR OSC-SNV -
prediction of protein
content in single
chickpea seed

Rp
2: 0.912

[122]
RMSE: 1.032

PLSR
external parameter
orthogonalization-SNV

-
Rp

2: 0.935
[122]

RMSE: 0.987

SVMR - -
Assessing the levels of
robusta and arabica in
roasted ground coffee

Rp
2: 0.956

[123]
RMSEP: 6.07%

VGG16-SVM Continuous Wavelet
Transform (CWT) -

identification of soybean
protein in minced
chicken meat

Classification accuracy: 98.1% [124]

LDA roughness penalty
smoothing (RPS) Wavelet-KNN moldy tea feature

classification Classification accuracy: 98.33% [127]

KNN Normalization PCA
identifying the
authenticity of fresh and
cooked mutton kebabs

Classification accuracy: 99.38% [128]

Naïve Bayes SNV-SG - classification of
deoxynivalenol-
contaminated oat

Classification accuracy: 63.9% [130]

RF Classification accuracy: 77.8% [130]

SIMCA SG - detection of adulterants
in almond powder

Sensitivity: 100%
[131]

Specificity: 89–100%

SIMCA - - Detection of nutshells in
cumin powder classification error of 2.2% [132]
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Table 3. Cont.

ML/Deep
Learning Method Preprocessing Method Wavelength

Selection Method Objective Result Accuracy References

SIMCA - -
Authentication of
Gourmet ground
roasted coffees

Recognition accuracy: 64% [133]

Hierarchical
Clustering - - authentication of

wholemeal bread Maximum deviation: 0.08 [136]

Hierarchical
Clustering

essential spectral
pixels (ESPs)

Uniform manifold
approximation
and projection
(UMAP)

identifying minor
compounds in
food matrix

Not reported numerically. It has been stated
that the model is a well-classifier method [137]

K-means Clustering - - Quality grading for
Pleurotus eryngii

Classification accuracy: 91.58%

[138]
F1 score: 91.36%

Precision: 89.65%

Recall: 90.60%

K-means Clustering MSC -

Identifying the
authenticity and
geographical origin
of rice

In three rice samples:
silhouette coefficient: 0.5169, 0.5433,
and 0.4964

[139]

FCM-PLSR SNV -
Studying Chia
(Salvia hispanica)
seeds degradation

free fatty acids: 91.7% accuracy

[141]
oleic acid: 97.4% accuracy

linoleic acid: 97.1% accuracy

α-linolenic acid: 88.7% accuracy

BPNN DBSCAN PCA
resolution of types and
proportions of
broken grains

Classification accuracy: 99% [142]

BPNN DBSCAN-SG-MSC CARS
detecting of wheat
varieties and mixing ratio

Average accuracy: 92.29%
[143]

Maximum deviation range: 5%

PLS-DA - PCA
prediction of cheeses
composition

For moisture content: RPD > 2.5

[144]For fat: 2.0 < RPD < 2.5

For protein: ∼1.5 < RPD < 2.0

OptmWave - - food nutrition estimation
Rp

2: 0.9913
[146]

RMSE: 0.3548

1D-CNN-RF - PCA
quantification of
Clostridium sporogenes
spores in food products

Overall accuracy: 86% [147]

4. Application of HSI and AI in the Food Industry

Food in the industry exists in solid and liquid phases. These different phases have spe-
cific characteristics with each phase having its own problems in relation to the assessment
of quality and safety. Solid foods often undergo spoilage through physical, chemical, and
microbiological processes, necessitating rigorous quality management practices such as
proper storage and handling to mitigate deterioration. On the other hand, liquid foods are
more susceptible to microbial contamination, requiring proper evaluation of their quality
parameters to prevent them from spoilage [149]. With the development of HSI integrated
with AI, a more accurate and comprehensive analysis is enabled across these phases. HSI
detects spatial and chemical properties of solid products, such as grains, fruits, meat, and
liquid products, like juices and oils, and boosts AI models in the enhancement of classifica-
tion and identification of defects. In addition, this supports the lacunars for the real-time
monitoring not only of chemical composition but also of contaminant detection, making it
a suitable fit through which real-time quality control could be effective for all states of food.

4.1. Solid Products

The areas in which the HSI has also seen increasing adoption include the evaluation
of several quality parameters of fruits, such as pH, SSC, TA, and TP.

The studies show that the integration of ANN and PLS with SNV and MSC leads to the
non-destructive prediction of apple varieties with a high degree of accuracy (Rcv ≈ 0.99)
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among all quality parameters [150]. Furthermore, in predicting spoiled blueberries, the
MT-SIS method used in combination with SPA extracted decaying regions, leading to an
accuracy of over 97% for the training set and test set accuracy [151]. The results indicate
that the performance of this method is remarkable in the processing of fruits. It is suggested
to investigate the AI in different processing steps, such as detecting the pesticide residuals
on the surface of different fruits.

In grains, successful classifications of bulk grain samples using modified ResNet
architecture have been performed, exploiting both spatial and spectral information from
HIS that demonstrated 99.75% accuracy [152]. In the classification of broken grains and
calculating the ratios for mixing by HSI using a Back Propagation Neural Network (BPNN),
an accuracy of over 99% was shown [138]. As a consequence, AI-based HIS processing can
play a key role in the classification of broken and whole grains, which is a very useful tool in
terms of quality control for producers, by allowing them to adjust processing parameters to
maintain product consistency. The classification of seeds and other grains can be considered
in further research.

In the meat industry, the development of a new approach using HSI with a 3D convo-
lutional neural network to classify different classes of minced meat based on myoglobin
pigment retention in the meat spectra was introduced. Techniques that included preprocess-
ing schemes before data analysis outcompeted traditional techniques that do not consider
features in space at high accuracy in classification [14]. Moreover, the high accuracy of HSI
processing in predicting intramuscular fat (IMF) and pH in different red meat species (beef,
lamb, and venison) using PLSR and deep convolutional neural networks (DCNN) [153],
assessing pork quality characteristics through ANN [154], and observing color changes
and freshness quantification [87,155], offers precise classifications of meat authenticity and
quality traits. These approaches improve accuracy by incorporating both spectral and
spatial data. Future applications in the meat industry could focus on the rapid detection
of freshness, the spatial analysis of fat content, and comprehensive models predicting
moisture and protein distribution for a variety of meats.

In the case of leafy vegetables, the detection of cadmium (Cd), as a metal with a
toxic nature and potential health risks, was predicted accurately through a combination of
VNIR HSI with different machine learning models, for example, such as ANN, ensemble
learning (EL), and SVM. This achievement was facilitated by considering wavelengths
affecting chlorophyll and internal structure changes in the leaves due to cadmium [156]. In
another study, the detection of foreign materials in freshly cut vegetables was performed
using short-wave infrared (SWIR) data combined with PLS-DA [157]. Finally, the detection
of vegetables in complex food matrices was achieved alongside E-nose data and LDA
preprocessing, with an accuracy as high as 97.50% [158]. The results highlight AI potential
in food safety and external quality control, which are necessary steps for leafy vegetables
to ensure their health. The detection of bacteria and toxins is the next step to be considered
for vegetables.

The capability of Vis/NIR-HSI for the determination of physicochemical character-
istics of dairy powders, which involve tapped density, moisture content, surface free fat,
and bulk density, was investigated using different techniques, namely portable, bench-
top devices, and HSI systems. PLSR models successfully predicted the various quality
attributes with accuracy ranging from moderate to good, proving the flexibility of the
Vis–NIR technology for its employment online in dairy powder quality control. Each of
these scanning techniques had their own relative advantages for different applications in
industries and, therefore, provided flexibility for choosing an appropriate system for fast,
non-invasive analysis [159].

The assessment of physicochemical characteristics of dairy powders demonstrating the
accurate prediction of attributes like tapped density, moisture content, surface free fat, and
bulk density by Vis/Nir-HSI provided moderate to good accuracy, which underscores its
potential for online quality control in dairy powder production. This method emphasizes
the practical applications and benefits of Vis/NIR-HSI in enhancing dairy powder quality
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assessment processes. [159]. For further exploration, investigating the use of deep learning
models, and extending this approach to predict other complex attributes like shelf life or
nutritional content, can be considered.

In another study, determining the end date of the cheese-ripening process using NIR-
HSI by using a PLSR model to predict E-index associated with maturation time showed an
accuracy of 69.6% [160], demonstrating the good potential of HSI in the detection of cheese
ripeness. However, further refinement should be carried out with larger datasets, and
repetitive scans, in order to view improvements in predictive capacity at commercial use.

It has been stated that two HSI techniques for egg quality assessment were developed,
namely a Hyperspectral Egg Defect Inspection Technique (HEDIT) for factory use and a
Hyperspectral Egg Freshness Inspection Technique (HEFIT) for consumers. Both obtained a
high accuracy from the CNN architecture, with 99% on freshness and 100% on defects [161],
while another approach based on VNIR with XGBoost reached a high precision of egg
freshness, R2p = 0.91, with a yolk detection of 97.33% and a crack detection of 93.33% [162].
It has been recommended to optimize AI-based HSI methods for real-time automation,
especially for defects like cracks and scattered yolks, in order to develop a rapid and
non-destructive method for an efficient egg processing.

4.2. Liquid Products

The versatility of the HSI-AI combination in analyzing liquid products offers non-
destructive, real-time, and highly accurate solutions for quality assessment across various
liquid food industries. A robust analysis methodology of the composition of alcohols
and esters in Baijiu will be developed using HSI and machine learning. Applying PSO,
Support Vector Regression and random forest models demonstrated high accuracy for
ethanol-ester detection. Specific wavelengths in the NIR region allowed for the highly
precise quantification of the compounds, with an Rp2 above 0.99. This means that when HSI
processing is being carried out through AI-based methods, it has the potential to offer a non-
destructive, accurate method of assessment of chemical composition as regards alcoholic
beverages for quality control and confirmation of authenticity [163]. Since monitoring
liquid products is important to preserve them from decontamination and mitigation, it is
crucial to develop an HSI method to check the composition, consistently. Furthermore, in
some cases like pasteurized milk, models can be developed to check the microorganism
activities inside the milk in order to optimize the storage conditions.

This was also carried out for the morphological and moisture content changes in
drying droplets of Lonicerae Japonicae Flos extract. Partial least squares regression and
artificial neural network analysis, which were integrated with hyperspectral data, enabled
the noninvasive monitoring of drying kinetics. This method can be transferred to various
other liquid food products, such as milk or fruit juice concentrates, in order to support
food manufacturers in the elaboration of optimized processing methods that yield more
uniform final products [164]. Another study tested oil adulteration detection by HSI
through the use of various machine learning models, including logistic regression and
linear discriminant analysis. This study could, hence, establish that HSI has the potential to
be a very powerful technique in the detection of the nature of adulteration in oils at various
stages of processing. The method is of wider applicability in liquid food products such as
edible oils vis-à-vis their authenticity and protection of consumer health [165]. Moreover,
this work may present complementary results and point out potential applications of
both HSI and machine learning models in the optimization of drying processes for other
products, like coffee extracts and plant-based beverages. The fact that this technology
allows for the monitoring of dynamic changes in liquid foods with high accuracy makes
it a potential tool for enhancing consistency and quality for a wide range of processed
products. Further development dealing with integration of HSI into systems for real-time
monitoring could further improve processing efficiency in the food industry, especially for
liquid matrices of complicated composition.
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It can be inferred that the integration of HSI with AI has brought a revolution in
the quality control and safety measures at all three phases of the food products, namely
solid, solid–liquid, and liquid. The integration showed enormous benefits compared
to conventional and statistical methods, as represented in Table 4. For solid products,
such as fruits, grains, and meats, the HSI integrated with AI models improved the non-
destructive evaluation quality parameters, including spoilage detection and identification
of fraud, at an incredible accuracy. Coupling HSI with AI provides powerful solutions for
liquid products regarding composition analysis, adulteration detection, and monitoring
processing stages. This technological synergy leads to efficiency and accuracy, from real-
time, non-invasive inspections to high standards of food safety and quality. In fact, these
advances in HSI and AI applications hold quite immense potential for benefiting the
entire food industry by making intelligent and dependable quality-control systems a
feasible reality.

Table 4. HSI-AI application in the food industry.

Product Objective Reason of Application Model Topology
ReferencePreprocessing Feature Selection ML Model

Chicken meat
Chemical
compositions
detection

Simplifies wavelength
selection, chemical
mapping capabilities

CARS SGCS PLS [58]

Fish Freshness
Visualization

Visualizes
freshness distribution,
non-invasive detection

SPA - PLSR [87]

Minced chicken meat Soy protein
detection

High classification
accuracy, optimized
preprocessing

CWT VGG16 SVM [124]

Pleurotus eryngii Quality detection
Improves
classification accuracy,
generalization ability

K-means
Clustering - SVM [138]

Cheese Identification
of types

Predicts composition with
imaging, comparable to
traditional spectrometry

- PCA PLS [144]

Red Delicious
and Golden
Delicious apples

Quality detection Faster, non-destructive,
and high accuracy - - PLSR [150]

Blueberries Decayed region
segmentation

High detection accuracy,
multi-source data fusion SPA CARS BPNN [151]

Bulk grains Classification Leverages spatio-spectral
data, highest accuracy - - CNN [152]

Minced meat Identification
of types

Retains spatial-spectral
info, nonlinear features - - 3D-CNN [14]

Red meat Intramuscular fat
and pH prediction

High adaptability
across species,
superior prediction

PLSR - DCNN [153]

Meat Quality
determination

Improves spatial
prediction accuracy,
rapid assessment

SpecimIQ [154]

Yellow croaker
(Larimichthys crocea)
filets

Monitoring color
changes Accurate, non-invasive

Feed-forward
neural
networks

[155]

Fish Freshness
Visualization spatial visualization SPA - PLSR [87]

Kale (Brassica oleracea)
and basil (Ocimum
basilicum)

Cadmium
concentration
prediction

Precise detection, robust
ML model - PCA ANN [156]

Freshly cut vegetables Foreign material
detection Fast, High accuracy SPA - PLS-DA [157]



Appl. Sci. 2024, 14, 9821 25 of 33

Table 4. Cont.

Product Objective Reason of Application Model Topology
ReferencePreprocessing Feature Selection ML Model

Egg pancake distinguishing
green vegetables

Rapid, more accurate
through feature vision - CARS LDA [158]

Dairy powders Quality assessment Rapid, Non-invasive,
high accuracy - - PLSR [159]

Cheese Maturation
detection

potential to optimize
ripening logistics SNV - PLS [160]

Chicken eggs Residual dirt or
breakage detection

Real-time inspection,
rapid processing time - - CNN [161]

Egg quality detection

Accurate detection of egg
freshness and high
identification accuracy for
scattered yolk and
eggshell cracks using
non-destructive methods

- - XGBoost [162]

Soy Sauce
Analyzing the
composition of
alcohols and esters

Precise non-invasive
detection of alcohol and
ester composition inside
the solution

EPO - RF [163]

Lonicerae Japonicae
Flos extracts

Obtaining
information on the
morphology and
moisture content
changes in droplets

Rapid method suitable for
real-time monitoring

Faster
R-CNN-ANN [164]

Oils Adulteration
detection

High accuracy offering a
robust pipeline for
non-invasive food safety
and quality control

Various techniques [165]

5. Challenges, Limitations, and Future Prospects

Application development in hardware and software for hyperspectral imaging in
recent years has brought about a promising perspective on food quality and safety assess-
ment. However, there are still some key issues that need to be solved in further studies.
Those are mainly connected with the establishment of more efficient, reliable, fast, and low-
cost modality that could be traditionally applied both in research functions and practical
industrial applications.

The large volume of spectral–spatial data is often characterized by a number of
irrelevant or noisy signals that may seriously challenge the processing of the data and the
extraction of meaningful information. In general, models are built with limited datasets,
acquired under controlled conditions in a laboratory, which may not work well for new
samples that will normally be measured in natural environments. Indeed, in this respect,
it is of crucial importance to provide these models first with extensive calibration and
validation against a wide variability of samples and conditions; this research needs to
be carried out within the industry for robust and effective models that will work well in
practical situations.

The construction of an effective and robust model should be based on serious
insight into light–tissue interactions and also the relationships between spectral–spatial
features and the quality attributes under investigation. However, few of them offer
in-depth data analysis during the development of the calibration model, a factor that
often results in limited generalization among different application scenarios. Future
studies should, therefore, be supported with investigations of the mechanisms of light–
tissue interaction in hyperspectral imaging, and secondly in the development of more
sophisticated methods of data mining to the full advantage of all the spectral–spatial
information provided by the technology.
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Hyperspectral imaging indeed shows high potential in mapping the quality attributes
or chemical composition of food products in both 2D and 3D spatial domains. However,
this is confronted with the development of proper models that account for physical and
physiological factors. These shall be accompanied by the development of more effective
methods of validation and acquisition of accurate ground-truth data at pixel level, enabling
higher resolutions of heterogeneities in this spatial domain. Current challenges regarding
the application of machine learning models along with hyperspectral imaging include
the need for large datasets of high quality and well-labeled to develop robust models,
which usually are complicated and time consuming to acquire. In addition, enhancing
the visualization and interpretation of hyperspectral data remains a challenge due to the
high dimensionality of spectral information. These could be achieved by developing data
augmentation techniques to artificially increase the size of a dataset or by using transfer
learning through the adaptation of a previously trained model. The development of more
efficient dimensionality reduction and feature extraction algorithms is also another possible
approach. These kind of ideas may be developed in close collaboration between academic
researchers, food industries, and technology developers in these areas; machine learning
experts and computational scientists have a key role in model improvements and the
development of better visualization tools.

Although there are some challenges in the application of this method and using
it widely in the food industry, some remarkable patents have been registered in recent
years. Different cases were investigated in order to optimize food processing. Detecting
the fertility and gender of unhatched eggs [166] using AI-based HSI can represent the
potential of this technology in food quality assessment and increasing the production
efficiency of food industries. Furthermore, it has been stated that it is possible to measure
the nutrition value of food using HSI and neural network models [167], enabling the better
classification of food products. These advancements illustrate the potential of AI-based
HSI to solve real-world problems and enhance production efficiency, reduce waste, and
improve food safety.

The literature review indicated a reliance on ML algorithms for the analysis of hy-
perspectral images [24,26,107,119,129,165]. Studies on the use of deep learning algorithms
in food products are still at a nascent stage and need further research to realize complete
exploitation. Currently, machine learning algorithms in common practice operate in isola-
tion, whereby for a given algorithm execution, one considers training datasets to develop
models and does not retain knowledge for future use. Also, most of the studies reviewed
have focused on the applications of machine learning in solid products rather than in
solid–liquid and liquid products.

6. Conclusions

The review paper explores the potential of combining non-destructive inspection HSI
techniques with ML to enhance quality and safety in food, each with a general demonstra-
tion of success. However, it would be even stronger in offering a more specific assessment
of how such methods apply to real-world food safety scenarios. In this respect, the applica-
ble models and techniques include the use of a convolutional neural network and Support
Vector Machine for feature extraction and classification in systems, respectively, due to the
high accuracy they present. Other examples of such tasks involve wavelength selection
and dimensionality reduction, which are going to be essential in making the models more
scalable and efficient for real-time use toward ensuring food safety across the food chain.
The control authorities, external and internal, may be contacted in order to show that,
through the combination of HSI and AI, this may offer quicker assessment times, more
precise, and non-destructive ones, reducing the risk of contamination together with costs
related to the recall of food products. In fact, this review will certainly stimulate further
research, covering other ML techniques for the non-destructive assessment of food quality.
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