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Abstract—In this letter, an automatic method to validate the
reciprocity theorem on full-polarimetric heterogeneous 3R data
is derived. The study extends, to the more general heterogeous
scenario, the work of [l], where the conformity with the reci-
procity is studied in the homogeneous case. At the design g,
it is assumed that the pixels in the polarimetric image shareghe
same covariance structure but different power levels. Thenthe
dependence on nuisance parameters is removed resorting thet
Principle of Invariance. The resulting problem is formalized as
a binary hypothesis test and is solved through the generale
likelihood ratio test (GLRT). Tests are conducted both on
simulated and real-recorded data to show the superiority ofthe
proposed GLRT with respect to its homogeneous counterpart.

Index Terms—Polarimetric SAR, reciprocity, covariance ma-
trix, heterogeneous environment, compound-Gaussian.

I. INTRODUCTION

Polarimetry is undoubtedly among the hottest researg

to the more general heterogeneous environment (HE), [

in which it is assumed that the polarimetric pixels share the
same covariance structure but have different powers. lbishw

to highlight here that, the developed framework is impdrtan
not only for SAR processing but also for polarimetric search
radars, therefore it represents a more far-reaching tqakni

In fact, many works based on the compound-Gaussian model
and that do not consider the validity of reciprocity in their
developments15]-[17] could benefit for the obtained results
via a preliminary reciprocity test on training data. Now)cs

in HE the number of unknown parameters is directly related
to that of the samples exploited for the statistical infemn

an increment in the amount of data does not reflect in an
enhancement in the accuracy of the parameters’ estimation.
To remove this dependence, the Principle of Invariancg [

is used replacing the original data with their maximal in-
Ariant statistic (MIS) with respect to power factors. Then

topics of the last years, which continuously find applicane statistical characterization of the MIS is obtained emd
tion in several_ contexts regarding synthetic aperture rrgqﬂe two competing hypotheses together with the maximum
(SAR) processing. As a matter of fact, many works, whicfye|ihgod estimates of the involved parameters to derive
essentially exploit the polarimetric information to com® he corresponding GLRT. The tests have demonstrated the
the understanding of the observed scene, are continuo ctiveness of the proposed GLRT on both numerical and
published P]-[1C]. However, in spite of the availability of oo\ recorded data.

all the polarimetric channels (viz3un, Swv, Shv, andSyw), The letter is organized as follows. In Sectionthe problem

in the majority 9“ data_ elaborations, a ca_llibration on th reciprocity assessment in heterogeneous polarimeAR S
reference image is applied to reduce the mismatching sffe ages is formulated and the corresponding GLRT is derived.

between HV and VH channels {]. More precisely, the full- In Sectionlll the results of tests conducted on both simulated

polarimetric image is somehow reduced to three channels fyy neasured data are presented and discussed. Concluding
fusing together the HV and VH, for instance, substitutingnth remarks are finally given in Sectidi .

by their coherent averagé ). In fact, during the acquisition Notation: boldface lower case are used for vectarsnd

campaign, It coulq happen that Some target;/medla Migidtace upper case for matricels The transpose, conjugate,
produce mismatching due to statistical fluctuations, Fajadand conjugate transpose are denoted(h§, (-)*, and ()1
_rotatl_o_ns L3, or measurement errors related t_o sensor nOﬂéspectively. t{-} anddet(-) are the trace and the determinant
idealities. Therefore, to better understand the impache$e of the square matrix argument, respectivelyindicates the
mismatches on the truthfulness of the reciprocity theo”em’identity matrix. 1 is a vector o,f all 1 entries. and is a

[1] a statistical test aimed at establishing if the reCime.ir\/ector of all O entries, whose sizes are determined from the

property is valid for the pixels in a polarimetric image 'Tontext. The acronym i.i.d. means independent and iddiytica

designed. Mo_re specifically,_the derived prpblem s formlt'j"lstribution from a statistical point of view. Finally,= v/—1
lated as a binary hypothesis test comprising the presence . imaginary unit

(null-hypothesis) in competition with the absence (alttive-
hypothesis) of reciprocity. Then, it is solved resortingthe
generalized likelihood ratio test (GLRT). The main limit of II.
the GLRT devised in 1] derives from the fact that, in the
presence of variations in the texture or deviations of datenf

PROBLEM FORMULATION AND GLRT DERIVATION

A full-polarimetric SAR sensor measuréé = 4 complex
returns collected from four polarimetric channels of the ac

Gaussianity, it could produce false decisions on recipyo€o

quired L x M image. TheN returns associated with the same

overcome this drawback, in this letter, the framework desit pixel are organized in the order HH, VWV, HV, and VH in the

in [1] for the homogeneous environment (HO) is extend%ctoml l=1 . . Landm = 1...
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., M. As a conse-
guence, a 3-D data stack of sizex M x N is realized. The
polarimetric returng; ,,, are assumed to be i.i.d. and modeled
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as zero-mean circularly symmetric complex Gaussian vector

with covariance matriyu ,, M, i.e., ;. ~ CN (0, iy M). [

More precisely, differently from1], in this lettet, the pixels M, = o1 01 2T (5)
are assumed to share the same unknown covariance structure, 6" o7 o211t ’

M, but possibly different unknown power levels,,,,. Under or  of

this assumption, the probability density function (pdflgf,,

i with M a2 x 2 Hermitian positive semidefinite matrix and

the power level of thermal noise. The first term stems from the

observation that under the reciprocity assumptisiy, = Svn,

I (@im; pg,m, M) = the covariances satisfy
tr | M 'z mccT
(7fi1,) ¥ det (M) o Y H v Sun -
. . =E [SVHS;IN} =
For each pixel under test, a rectangular neighborhdod
of size K = W; x Wy > N is extracted and the vectors t t
in it contained are indicated witle, ..., xx. Therefore, the E {SHHSHV} =E [SHHSVH} =9, @)
polarimetric returnsey, k£ = 1,. K are characterized by and
the covarianceu;, M (or Mle) |f the reciprocity property
is (or not) valid, with the scaling factorg,, accounting for E [SWSLV} —F [SWS\T/H} =5, 8)
different unknown power levels. Now, to distinguish amoimg t
validity of the reciprocal property on SAR data, the problem Introducing the unitary matriXy
can be formulated as the following binary hypothesis test
I 0 0
U=|0" 1/v2 1/v2 |, )

Hy : xp, ~ CN (0, u, M) (reciprocity) T
{ Hy :xp ~CN (0, ux M) (non-reciprocity @) ot 1/V2 -1/v2
it is possible to transformd in a block diagonal matrix, i.e.,
Before proceeding further, it is important to note that the
number of unknown parameters is an increasing function -
of the number of dat.a vectors belongi_ng ¥ due to thg UM, U = (M O) ’ (10)
presence of the scaling factoys,. In this case, the ratio
between the number of unknown parameters and the number
of observationsk” does not tend to zero a& — co. To W ereM is a3 x 3 Hermitian positive definite matrix.
overcome this limitation and to remove the dependence of the! "€ GLRT for @) is given by
cardinality of A from the number of nuisance parameters, the
Principle of Invariance is usedL§]. To this end, as in{], S (11)
[10], the original data vectors can be replaced with a suitable max f (z1,...,2zx| Mo, Hy) = m;
function of them, namely the MIS, i.e., Mo Ho

max f (21,...,zx|M1,H1) H;
M,

- with n a suitable threshold and (z1,...,zx| M, Hy) the
k

zp=7—, k=1,...,K. (3) likelihood under thefd;, hypothesish = 0, 1, given in @). The
] expression of the maximum likelihood undé&f, hypothesis
The transformed data vectors,, k = 1,..., K, are also ¢an be derived as
i.i.d., and their joint pdf is 21]
Hﬁ?“xf(zlw' .,ZK|M1,H1)
f(z1,...,2x; M) = - K
:(N) 1 N
= max tr M Sk
Z(N)[det (M) H {tr (M)}, @) [det(M1)]X -4 H {ir (My50) ) (12)

e T (s}

with Sy, = zkzL and=(N) a normalization constant. det
As shown in [], under theH, hypothesis, the covariance . _ _
has the structure where M is a fixed point of 4], [27]
K
INote that the heterogeneity assumption made in this lestenly one of M — E Z Sk (13)
several possibilities. As a matter of fact, some pixels mrference window K tr ( 15 )

could contain targets returns with different covariancerixatructures 19,

[20] (e.g., single scattering from soil, double scatteringrfra tree trunk and
volumetric scattering from vegetation, and so on), thatukh®e accounted

at the design stage. as

Under H, hypothesis, the maximum likelihood can be cast
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A. Smulated Data

max f (z1,...,2x| My, Hy) This subsection illustrates numerical results descrilbirey
Mo detection probabilityP, of the proposed GLRT. Due to the
~ meax E(N) ﬁ {tr (M”Sk)}_N lack of a closed form expressio®p is evaluated oveil0?
Mo [det(Mo)]* 0 independent Monte Carlo trials, with the threshold set to

=1 . o
ensure a nominal false alarm probabili, = 10~%. Data

= max - are modeled as spherically invariant random vectors (SJRVs
My [det(M)]K 2K (24, i.e.,
it o -~ (14) zr = /gy, k=1,....K, 18
X {tr (M Scl,k) +1r (72302,k)} . * _,\/—kgk ) - ( )_
Pt} where 7, is a positive real random variable statistically in-
2(N) dependent ofy, s, which are i.i.d.N-dimensional zero-mean

= [det(M KK complex circular Gaussian vectors with covariankg, =
el c2 M +~2I. The term~? = 1073 is the actual power level

K _
- —1 . -N of thermal noise, whileM; is a N x N Hermitian matrix
x kl:[l {tr (Md Sd”“) T (mCZSCz”“)} associated with a scene of mixed scrub |
where M —
Scip wk 1 0.60 0 0
Sy = US,U'" = ( w;i s L o0s 0.60 1.08 0 0
and : 0 0 0.19 0.19(1+&)e % |
0 0 0191486  019(1+¢)>
M, = UMU = M., w with ¢ a scaling factor modeling modulus variations and
v wl e accounting for phase mismatches between the HV and VH
channels. Finallyr,...,7x are i.i.d. and obey the Gamma

with M a fixed point of (3). Now, the GLRT can be computed

as the ratio betweerl®) and (4), i.e., distribution with pdf

(IR
_ v lg T/
o 1 T =gy e
det(Mcl)mcg > . : .
— 1, (15) wherer (-) is the Eulerian Gamma functiop, andv > 0 are

<
det (M) Hy the scale and shape parameters, respectively (the coedider
with 7 a suitable modification of the original threshold. Sinc&etting assumeg = 1/v to have a Gamma distribution with
det(M) = det(NM ) and using the block partitioned matrixUnit mean).
determinant expressior? ], (15) can be also recast as Figure 1 reports Pp versus¢ for some values of the
parameter of the Gamma distribution for the proposed GLRT
. . . in HE (HE-GLRT in the following) also in comparison with its
det(]v{cl) ey = det(Me)rie2 homogeneous counterpart devisediihgnd referred to as HO-
det(M) det(M ;) (mcg — wTMc_llw) GLRT. The subplots are obtained for &)= 9 and b)K = 25
- (16) looks, whereas the phase difference among the polarimetric
= = —- channels HV and VH is chosen to be a uniform random
(Thcg —wiM, w) variable ¢ ~ U[—10°,10°]. The curves clearly show that for
¢ close to 0, theH| hypothesis (i.e., reciprocity) is detected,

Consequently, the GLRT is given by the following equivas o as moving away from that value, thi hypothesis

lent form (i.e., non-reciprocity) is preferred. In addition, incse®y the
Xl H number of looksK (i.e., from subplot a to b)H; selection

wM,w > n (17) arises in correspondence of low values&fconfirming the

M2 ﬁo ’ effectiveness of the test. It is also evident that the predasst

. ) . . _ is able to perform better than the HO-GLRT for low values
with 7 a suitable threshold. Finally, it is worth to underlingf ;,, However, as the latter increases, the data distribution
that, even if the functional form of the statistic ih7) is equal approaches the Gaussian, with the consequent reduction of

to that provided in ], this test is more robust since it isihe performance gain of the HE-GLRT over the competitor.
derived in a more challenging scenario that encloses the HO

as a special case (i.e., whep = u, k=1,..., K). B. Real-Recorded Data
This subsection validates reciprocity on the L-band®7
ll. RESULTS GHz) coherent full-polarimetric datadetacquired by the

In this section, the performance of the proposed GLRT, _
sData can be downloaded dlttps://earth.esa.int/web/polsarpro/data-

for the reciprocity a_ssessment in heterogeneous SAR dataslol?ca/sampledatasets [12] thanks to Prof. Yoshio Yamaguchi and CRL
evaluated both on simulated and on real-recorded SAR datgigata University.



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 4

1 ‘ ‘ ‘ ‘ detection maps of Figurezd and?2-e. Moreover, it can be
—6—HO-GLRT v=0.2 observed that texture variations also produce false d#ssi
08 e’ l whose amount is reduced if the proposed GLRT is applied

L [—0—HE-GLRTv=2 in place its homogeneous counterpart. As a matter of fact,

from the detection maps it is also clear that the HE-GLRT

gains over the HO-GLRT in correspondence of higher texture
values, as highlighted by the circles inside those figurbss T

is motivated by the fact that the presence of strong textures
associated to some pixels within the reference window used

¢ to estimate the covariance could produce a severe degvadati

@) in the performance of a GLRT designed assuming an homo-

geneous scenario. From this premise, it can be claimed that

1 o bdidddbidoddedudod the remaining percentage of detection can be explainedeas du
08t AT -0 to possible loss of Gaussianity as well as miscalibration of
06 —e—:ggt;”:j | the two channels during the acquisition process (as confirme

by the visual inspection of Fig2-c). Before concluding, it is
useful to emphasize that miscalibration could be caused by

i saturation (identified by the white color in Fig-a). In fact,
saturation reduces the accuracy in the polarimetric aisalys

that, in turn, leads to possible miscalibrations (see tleasr

0 0.2 0.4 0.6 0.8 1 ) . . . .
¢ in the 2 circles in the lower right corner of the figures).
(b)
Table |
Figure 1. Pp versus¢ for a random phase variation between the HV and NUMBER OF ESTIMATED PIXELS(IN PERCENTAGE) COMPLYING WITH
VH Channe|s¢ ~ Z/{[—].OO, 100}’ and different number of looks: a =9 RECIPROCITY FOR THETSUKUBA PISAR DATA OF FIG. 2.
and b) K = 25. The nominalPg, is set to10—%.
Pep =103 Pea=10"%

HO-GLRT HE-GLRT HO-GLRT HE-GLRT
Hyp 85.68% 88.70% 93.70% 95.81%
Hi 14.32% 11.29% 6.30% 4.19%

airborne Polarimetric and Interferometric SAR (PiSAR) de-
veloped by the Communications Research Laboratory (CRL)
of the Ministry of Posts and Telecommunications of Japan and
the National Space Development Agency of Japan (NASDA).
The image, of size&2000 x 2000 pixels, represents a scene IV. CONCLUSIONS

of the Tsukuba Site Area (JP) acquired with a resolution of 1g etter has devised a new framework aimed at establish-
2.5 m, and contains a mixed urban, vegetation and cultivat the validity of the reciprocity theorem in real-recoddell-

fields. Figure2 shows the Pauli decompositiors][in the g arimetric heterogeneous data. More precisely, at tsigde
Red-Green-Blue (RGB) color space of the Tsukuba PiSAR,ge. it has been assumed that each pixel has a differegt pow
polar2|metr|c dgata, Its QSpan (|.e2., the polarimetric imag&er |eye| put the same covariance structure; then original data
[HHI® + [V 7 + [HV[* + [VH["), the modulus of the differ- haye peen substituted by their MIS to remove dependence on
ence between the HV and VH channels, and the results fisance parameters before deriving the correspondinglGLR
application of the HO-GLRT and HE-GLRT with a slidingthe performance analyses, conducted both on simulated and
window of size k' = W x W = 9 exploiting a threshold set ea5ured data, have shown the effectiveness of the proposed
for a nominal Pea = 107, From the inspection of this resultgq|ytion and its advantages with respect to its competiior f
(subplots d-e), it can be claimed that this polarimetricadap, o mogeneous environments. Possible future works coutd tes
share the reciprocity property, since the number of deBsti e roposed algorithm on images acquired by satellitessens
(e, H1 hypothesis) in the image is very low. In fact, @5 well as in higher bandwidths such as X or Ku. Moreover, it
drawn in Tablel, the percentage of pixels that exhibit g4 pe interesting to consider more-sophisticated medel

reciprocal behavior is equal t05.81% for the HE-GLRT {o; the heterogeneous environment accounting for differen
and 93.70% for the HO-GLRT, respectively (a similar trendqariance structures arising for the presence of diffekienls
can be also observed fdfea = 1072). It is also worth to ¢ targets in the reference window data.

emphasize the agreement among the detection maps in Figures

2-d) - 2-e) and the|HV — VH| values represented i&-c), ACKNOWLEDGMENT

with detections corresponding to high values|@l/ — VH|. The author would like to acknowledge ESA for providing
Comparing Figure-b and2-c, it can be conjectured that,the PiISAR sample data.

beyond the noise contribution, that is uniformly distrétit  The author acknowledges fruitful discussions with Prof.
over the entire images, some miscalibration between the tAatonio De Maio of University of Naples “Federico II”.
competing HV and VH images is present, with more evidence The author thanks the Associate Editor and Reviewers for
in correspondence of high intensity pixels. These diffeesin the interesting comments that have helped to improve this
the two channels of course produce several detections in tater.
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Figure 2. Reciprocity assessment for the L-band PiSAR dhfsokuba (JP), usind<d = 9 looks. Subplots refer to a) RGB Pauli decomposition, b) span
) [HV — VH| (dB), d) HO-GLRT, and e) HE-GLRT. Threshold is set to ha¥g = 10~%.
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