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Abstract—In this letter, an automatic method to validate the
reciprocity theorem on full-polarimetric heterogeneous SAR data
is derived. The study extends, to the more general heterogeneous
scenario, the work of [1], where the conformity with the reci-
procity is studied in the homogeneous case. At the design stage,
it is assumed that the pixels in the polarimetric image sharethe
same covariance structure but different power levels. Then, the
dependence on nuisance parameters is removed resorting to the
Principle of Invariance. The resulting problem is formalized as
a binary hypothesis test and is solved through the generalized
likelihood ratio test (GLRT). Tests are conducted both on
simulated and real-recorded data to show the superiority ofthe
proposed GLRT with respect to its homogeneous counterpart.

Index Terms—Polarimetric SAR, reciprocity, covariance ma-
trix, heterogeneous environment, compound-Gaussian.

I. I NTRODUCTION

Polarimetry is undoubtedly among the hottest research
topics of the last years, which continuously find applica-
tion in several contexts regarding synthetic aperture radar
(SAR) processing. As a matter of fact, many works, which
essentially exploit the polarimetric information to complete
the understanding of the observed scene, are continuously
published [2]–[10]. However, in spite of the availability of
all the polarimetric channels (viz.,SHH, SVV , SHV , andSVH),
in the majority of data elaborations, a calibration on the
reference image is applied to reduce the mismatching effects
between HV and VH channels [11]. More precisely, the full-
polarimetric image is somehow reduced to three channels by
fusing together the HV and VH, for instance, substituting them
by their coherent average [12]. In fact, during the acquisition
campaign, it could happen that some targets/media might
produce mismatching due to statistical fluctuations, Faraday
rotations [13], or measurement errors related to sensor non-
idealities. Therefore, to better understand the impact of these
mismatches on the truthfulness of the reciprocity theorem,in
[1] a statistical test aimed at establishing if the reciprocity
property is valid for the pixels in a polarimetric image is
designed. More specifically, the derived problem is formu-
lated as a binary hypothesis test comprising the presence
(null-hypothesis) in competition with the absence (alternative-
hypothesis) of reciprocity. Then, it is solved resorting tothe
generalized likelihood ratio test (GLRT). The main limit of
the GLRT devised in [1] derives from the fact that, in the
presence of variations in the texture or deviations of data from
Gaussianity, it could produce false decisions on reciprocity. To
overcome this drawback, in this letter, the framework designed
in [1] for the homogeneous environment (HO) is extended
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to the more general heterogeneous environment (HE) [14],
in which it is assumed that the polarimetric pixels share the
same covariance structure but have different powers. It is worth
to highlight here that, the developed framework is important
not only for SAR processing but also for polarimetric search
radars, therefore it represents a more far-reaching technique.
In fact, many works based on the compound-Gaussian model
and that do not consider the validity of reciprocity in their
developments [15]–[17] could benefit for the obtained results
via a preliminary reciprocity test on training data. Now, since
in HE the number of unknown parameters is directly related
to that of the samples exploited for the statistical inference,
an increment in the amount of data does not reflect in an
enhancement in the accuracy of the parameters’ estimation.
To remove this dependence, the Principle of Invariance [18]
is used replacing the original data with their maximal in-
variant statistic (MIS) with respect to power factors. Then,
the statistical characterization of the MIS is obtained under
the two competing hypotheses together with the maximum
likelihood estimates of the involved parameters to derive
the corresponding GLRT. The tests have demonstrated the
effectiveness of the proposed GLRT on both numerical and
real-recorded data.

The letter is organized as follows. In SectionII , the problem
of reciprocity assessment in heterogeneous polarimetric SAR
images is formulated and the corresponding GLRT is derived.
In SectionIII the results of tests conducted on both simulated
and measured data are presented and discussed. Concluding
remarks are finally given in SectionIV.

Notation: boldface lower case are used for vectorsa and
boldface upper case for matricesA. The transpose, conjugate,
and conjugate transpose are denoted by(·)T , (·)∗, and (·)†,
respectively. tr{·} anddet(·) are the trace and the determinant
of the square matrix argument, respectively.I indicates the
identity matrix, 1 is a vector of all 1 entries, and0 is a
vector of all 0 entries, whose sizes are determined from the
context. The acronym i.i.d. means independent and identically
distribution from a statistical point of view. Finally,j =

√
−1

is the imaginary unit.

II. PROBLEM FORMULATION AND GLRT DERIVATION

A full-polarimetric SAR sensor measuresN = 4 complex
returns collected from four polarimetric channels of the ac-
quiredL×M image. TheN returns associated with the same
pixel are organized in the order HH, VV, HV, and VH in the
vectorxl,m, l = 1, . . . , L and m = 1, . . . ,M . As a conse-
quence, a 3-D data stack of sizeL×M ×N is realized. The
polarimetric returnsxl,m are assumed to be i.i.d. and modeled
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as zero-mean circularly symmetric complex Gaussian vectors
with covariance matrixµl,mM , i.e.,xl,m ∼ CN (0, µl,mM).
More precisely, differently from [1], in this letter1, the pixels
are assumed to share the same unknown covariance structure,
M , but possibly different unknown power levels,µl,m. Under
this assumption, the probability density function (pdf) ofxl,m

is

f (xl,m;µl,m,M) =

1

(πµl,m)N det(M )
exp







−
tr
[

M−1xl,mx
†
l,m

]

µl,m







.
(1)

For each pixel under test, a rectangular neighborhoodA
of size K = W1 × W2 ≥ N is extracted and the vectors
in it contained are indicated withx1, . . . ,xK . Therefore, the
polarimetric returnsxk, k = 1, . . . ,K, are characterized by
the covarianceµkM0 (or µkM1) if the reciprocity property
is (or not) valid, with the scaling factorsµk accounting for
different unknown power levels. Now, to distinguish among the
validity of the reciprocal property on SAR data, the problem
can be formulated as the following binary hypothesis test

{

H0 : xk ∼ CN (0, µkM 0) (reciprocity)
H1 : xk ∼ CN (0, µkM 1) (non-reciprocity)

(2)

Before proceeding further, it is important to note that the
number of unknown parameters is an increasing function
of the number of data vectors belonging toA due to the
presence of the scaling factorsµk. In this case, the ratio
between the number of unknown parameters and the number
of observationsK does not tend to zero asK → ∞. To
overcome this limitation and to remove the dependence of the
cardinality ofA from the number of nuisance parameters, the
Principle of Invariance is used [18]. To this end, as in [9],
[10], the original data vectors can be replaced with a suitable
function of them, namely the MIS, i.e.,

zk =
xk

‖xk‖
, k = 1, . . . ,K. (3)

The transformed data vectors,zk, k = 1, . . . ,K, are also
i.i.d., and their joint pdf is [21]

f (z1, . . . , zK ;M) =

Ξ(N)[det (M)]
−K

K
∏

k=1

{

tr
(

M−1Sk

)}−N
,

(4)

with Sk = zkz
†
k andΞ(N) a normalization constant.

As shown in [1], under theH0 hypothesis, the covariance
has the structure

1Note that the heterogeneity assumption made in this letter is only one of
several possibilities. As a matter of fact, some pixels in the reference window
could contain targets returns with different covariance matrix structures [19],
[20] (e.g., single scattering from soil, double scattering from a tree trunk and
volumetric scattering from vegetation, and so on), that should be accounted
at the design stage.

M0 =









M̄
δ δ
δ1 δ1

δ∗ δ∗1
δ∗ δ∗

1

σ2
11

†









+ γ2I, (5)

with M̄ a 2×2 Hermitian positive semidefinite matrix andγ2

the power level of thermal noise. The first term stems from the
observation that under the reciprocity assumption,SHV = SVH ,
the covariances satisfy

E

[

|SHV |2
]

= E

[

|SVH |2
]

= E

[

SHVS
†
VH

]

= E

[

SVHS
†
HV

]

= σ2,
(6)

E

[

SHHS
†
HV

]

= E

[

SHHS
†
VH

]

= δ, (7)

and

E

[

SVVS
†
HV

]

= E

[

SVVS
†
VH

]

= δ1. (8)

Introducing the unitary matrixU

U =





I 0 0

0
T 1/

√
2 1/

√
2

0
T 1/

√
2 −1/

√
2



 , (9)

it is possible to transformM0 in a block diagonal matrix, i.e.,

UM0U
† =

(

M̃ 0

0
T γ2

)

, (10)

whereM̃ is a 3× 3 Hermitian positive definite matrix.
The GLRT for (2) is given by

max
M1

f (z1, . . . , zK |M1, H1)

max
M0

f (z1, . . . , zK |M0, H0)

H1

>
<
H0

η, (11)

with η a suitable threshold andf (z1, . . . , zK |Mh, Hh) the
likelihood under theHh hypothesis,h = 0, 1, given in (4). The
expression of the maximum likelihood underH1 hypothesis
can be derived as

max
M1

f (z1, . . . , zK |M1, H1)

= max
M1

Ξ(N)

[det(M1)]K

K
∏

k=1

{

tr
(

M−1

1
Sk

)}−N

=
Ξ(N)

[det(M̂ )]K

K
∏

k=1

{

tr
(

M̂
−1

Sk

)}−N

,

(12)

whereM̂ is a fixed point of [14], [22]

M =
N

K

K
∑

k=1

Sk

tr
(

M−1Sk

) . (13)

UnderH0 hypothesis, the maximum likelihood can be cast
as
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max
M0

f (z1, . . . , zK |M0, H0)

= max
M0

Ξ(N)

[det(M0)]K

K
∏

k=1

{

tr
(

M−1

0
Sk

)}−N

= max
M̃ ,γ

Ξ(N)

[det(M̃)]Kγ2K

×
K
∏

k=1

{

tr
(

M̃
−1

Sc1,k

)

+ tr
(

γ2sc2,k
)

}−N

=
Ξ(N)

[det(M̂ c1)]Km̂K
c2

×
K
∏

k=1

{

tr
(

M̂
−1

c1 Sc1,k

)

+ tr (m̂c2sc2,k)
}−N

(14)

where

S1,k = USkU
† =

(

Sc1,k wk

w
†
k sc2,k

)

and

M̂U = UM̂U † =

(

M̂ c1 w

w† m̂c2

)

with M̂ a fixed point of (13). Now, the GLRT can be computed
as the ratio between (12) and (14), i.e.,

det(M̂ c1)m̂c2

det(M̂ )

H1

>
<
H0

η, (15)

with η a suitable modification of the original threshold. Since
det(M̂ ) = det(M̂U ) and using the block partitioned matrix
determinant expression [23], (15) can be also recast as

det(M̂ c1)

det(M̂ )
m̂c2 =

det(M̂ c1)m̂c2

det(M̂ c1)
(

m̂c2 −w†M̂
−1

c1 w
)

=
m̂c2

(

m̂c2 −w†M̂
−1

c1 w
) .

(16)

Consequently, the GLRT is given by the following equiva-
lent form

w†M̂
−1

c1 w

m̂c2

H1

>
<
H0

η, (17)

with η a suitable threshold. Finally, it is worth to underline
that, even if the functional form of the statistic in (17) is equal
to that provided in [1], this test is more robust since it is
derived in a more challenging scenario that encloses the HO
as a special case (i.e., whenµk = µ, k = 1, . . . ,K).

III. R ESULTS

In this section, the performance of the proposed GLRT
for the reciprocity assessment in heterogeneous SAR data is
evaluated both on simulated and on real-recorded SAR data.

A. Simulated Data

This subsection illustrates numerical results describingthe
detection probabilityPD of the proposed GLRT. Due to the
lack of a closed form expression,PD is evaluated over103

independent Monte Carlo trials, with the threshold set to
ensure a nominal false alarm probabilityPFA = 10−4. Data
are modeled as spherically invariant random vectors (SIRVs)
[24], i.e.,

xk =
√
τkgk, k = 1, . . . ,K, (18)

where τk is a positive real random variable statistically in-
dependent ofgks, which are i.i.d.N -dimensional zero-mean
complex circular Gaussian vectors with covarianceM 1 =
M̄1 + γ2I. The termγ2 = 10−3 is the actual power level
of thermal noise, whileM̄1 is a N × N Hermitian matrix
associated with a scene of mixed scrubs [2],

M̄1 =

0.098









1 0.60 0 0
0.60 1.08 0 0
0 0 0.19 0.19 (1 + ξ) e−jφ

0 0 0.19 (1 + ξ) ejφ 0.19 (1 + ξ)
2









,

with ξ a scaling factor modeling modulus variations andφ
accounting for phase mismatches between the HV and VH
channels. Finally,τ1, . . . , τK are i.i.d. and obey the Gamma
distribution with pdf

f (τ) =
1

Γ (ν)

1

µν
τν−1e−τ/µu (τ) ,

whereΓ (·) is the Eulerian Gamma function,µ andν > 0 are
the scale and shape parameters, respectively (the considered
setting assumesµ = 1/ν to have a Gamma distribution with
unit mean).

Figure 1 reports PD versus ξ for some values of the
parameterν of the Gamma distribution for the proposed GLRT
in HE (HE-GLRT in the following) also in comparison with its
homogeneous counterpart devised in [1] and referred to as HO-
GLRT. The subplots are obtained for a)K = 9 and b)K = 25
looks, whereas the phase difference among the polarimetric
channels HV and VH is chosen to be a uniform random
variableφ ∼ U [−10◦, 10◦]. The curves clearly show that for
ξ close to 0, theH0 hypothesis (i.e., reciprocity) is detected,
whereas moving away from that value, theH1 hypothesis
(i.e., non-reciprocity) is preferred. In addition, increasing the
number of looksK (i.e., from subplot a to b),H1 selection
arises in correspondence of low values ofξ, confirming the
effectiveness of the test. It is also evident that the proposed test
is able to perform better than the HO-GLRT for low values
of ν. However, as the latter increases, the data distribution
approaches the Gaussian, with the consequent reduction of
the performance gain of the HE-GLRT over the competitor.

B. Real-Recorded Data

This subsection validates reciprocity on the L-band (1.27
GHz) coherent full-polarimetric dataset2, acquired by the

2Data can be downloaded athttps://earth.esa.int/web/polsarpro/data-
sources/sample-datasets [12] thanks to Prof. Yoshio Yamaguchi and CRL
Niigata University.
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Figure 1. PD versusξ for a random phase variation between the HV and
VH channelsφ ∼ U [−10◦, 10◦], and different number of looks: a)K = 9
and b)K = 25. The nominalPFA is set to10−4.

airborne Polarimetric and Interferometric SAR (PiSAR) de-
veloped by the Communications Research Laboratory (CRL)
of the Ministry of Posts and Telecommunications of Japan and
the National Space Development Agency of Japan (NASDA).
The image, of size2000 × 2000 pixels, represents a scene
of the Tsukuba Site Area (JP) acquired with a resolution of
2.5 m, and contains a mixed urban, vegetation and cultivated
fields. Figure2 shows the Pauli decomposition [5] in the
Red-Green-Blue (RGB) color space of the Tsukuba PiSAR
polarimetric data, its span (i.e., the polarimetric image power
|HH|2 + |VV |2 + |HV|2 + |VH|2), the modulus of the differ-
ence between the HV and VH channels, and the results of
application of the HO-GLRT and HE-GLRT with a sliding
window of sizeK = W ×W = 9 exploiting a threshold set
for a nominalPFA = 10−4. From the inspection of this result
(subplots d-e), it can be claimed that this polarimetric data
share the reciprocity property, since the number of detections
(i.e., H1 hypothesis) in the image is very low. In fact, as
drawn in Table I, the percentage of pixels that exhibit a
reciprocal behavior is equal to95.81% for the HE-GLRT
and 93.70% for the HO-GLRT, respectively (a similar trend
can be also observed forPFA = 10−3). It is also worth to
emphasize the agreement among the detection maps in Figures
2-d) - 2-e) and the|HV − VH| values represented in2-c),
with detections corresponding to high values of|HV − VH|.
Comparing Figures2-b and 2-c, it can be conjectured that,
beyond the noise contribution, that is uniformly distributed
over the entire images, some miscalibration between the two
competing HV and VH images is present, with more evidence
in correspondence of high intensity pixels. These differences in
the two channels of course produce several detections in the

detection maps of Figures2-d and2-e. Moreover, it can be
observed that texture variations also produce false decisions
whose amount is reduced if the proposed GLRT is applied
in place its homogeneous counterpart. As a matter of fact,
from the detection maps it is also clear that the HE-GLRT
gains over the HO-GLRT in correspondence of higher texture
values, as highlighted by the circles inside those figures. This
is motivated by the fact that the presence of strong textures
associated to some pixels within the reference window used
to estimate the covariance could produce a severe degradation
in the performance of a GLRT designed assuming an homo-
geneous scenario. From this premise, it can be claimed that
the remaining percentage of detection can be explained as due
to possible loss of Gaussianity as well as miscalibration of
the two channels during the acquisition process (as confirmed
by the visual inspection of Fig.2-c). Before concluding, it is
useful to emphasize that miscalibration could be caused by
saturation (identified by the white color in Fig.2-a). In fact,
saturation reduces the accuracy in the polarimetric analysis
that, in turn, leads to possible miscalibrations (see the areas
in the 2 circles in the lower right corner of the figures).

Table I
NUMBER OF ESTIMATED PIXELS(IN PERCENTAGE) COMPLYING WITH

RECIPROCITY FOR THETSUKUBA PISAR DATA OF FIG. 2.

PFA = 10−3 PFA = 10−4

HO-GLRT HE-GLRT HO-GLRT HE-GLRT

H0 85.68% 88.70% 93.70% 95.81%

H1 14.32% 11.29% 6.30% 4.19%

IV. CONCLUSIONS

This letter has devised a new framework aimed at establish-
ing the validity of the reciprocity theorem in real-recorded full-
polarimetric heterogeneous data. More precisely, at the design
stage, it has been assumed that each pixel has a different power
level but the same covariance structure; then original data
have been substituted by their MIS to remove dependence on
nuisance parameters before deriving the corresponding GLRT.
The performance analyses, conducted both on simulated and
measured data, have shown the effectiveness of the proposed
solution and its advantages with respect to its competitor for
homogeneous environments. Possible future works could test
the proposed algorithm on images acquired by satellite sensors
as well as in higher bandwidths such as X or Ku. Moreover, it
would be interesting to consider more-sophisticated models
for the heterogeneous environment accounting for different
covariance structures arising for the presence of different kinds
of targets in the reference window data.
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Figure 2. Reciprocity assessment for the L-band PiSAR data of Tsukuba (JP), usingK = 9 looks. Subplots refer to a) RGB Pauli decomposition, b) span,
c) |HV − VH| (dB), d) HO-GLRT, and e) HE-GLRT. Threshold is set to havePFA = 10−4 .
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