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Abstract—Next generation space-terrestrial-ocean integrated
mobile networks providing global internet access that extend
to the undersea are based on heterogeneous networks. In un-
derwater applications, a key role is played by the acoustic
positioning. In particular, this task can be accomplished making
use of multiple passive sensors that estimate the differential
signal delays employed for positioning. This paper exploits a
methodology aimed at improving delay estimation by means of
cross-cross-correlation, i.e., the cross-correlation between all the
multi-sensor cross-correlations. The resulting equation system
is formulated as a least squares (LS) minimization problem,
whose solution is efficiently found resorting to the pseudo-
inverse technique, ensuring a fast execution of the algorithm,
without using statistical information on random signal spectra.
The performance of the devised method is numerically analyzed
for an extensive range of operating parameters to demonstrate
the validity of the proposed approach in comparison with classic
counterparts and theoretical optimum bounds.

Index Terms—Cross-cross-correlation, delay estimation, het-
erogeneous network, multiple sensors, sensor signal processing,
underwater acoustics.

I. INTRODUCTION

An important vision of next generation mobile system
is to provide global internet access. The Space-Terrestrial
Integrated Network [1] has been proposed and intensively
studied to tackle this challenge. To tackle various underwater
applications, where radio signals suffer severe attenuation,
it is necessary to extend the current space-terrestrial-ocean
integrated network to underwater space to provide underwater
internet access. Therefore, this work can be framed in a
heterogeneous network system that allows to extend the radio
coverage to the undersea [2]. In underwater applications, such
as maritime surveillance, environmental monitoring, etc, a
key role is played by the acoustic positioning [3]–[6]. This
task can be accomplished making use of multiple passive
sensors that estimate the differential signal delays then used
for target localization. In fact, passive technologies utilize
a multitude of sensors to record a number of replicas of
the acoustic signal emitted by the target/source to detect
and localize it by processing the time delays estimated by
each signal at the receiver side. A classic way to obtain an

estimate of the time delay between two replicas of a stationary
signal received at two different spatial locations consists in
computing the cross-correlation between them and evaluating
the time instant at which its maximum value arises. A way
to improve the estimation accuracy was developed in the
seminal Knapp and Carter’s paper [7]. It consists in applying
a filter to the incoming signals before the computation of the
cross-correlation. By doing so, the maximum value of such
a filtered cross-correlation, referred to as generalized cross-
correlation (GCC), provides the optimum delay estimation
between the two involved signals [8]–[11]. However, the GCC
is strictly related to the availability of a priori information
about both signal and noise spectral statistics [7]. Therefore
its implementation is difficult in those applications for which
the spectral properties of the incoming signals are not fully
known or cannot be effectively estimated. In this respect, in
[12], a new delay estimator that does not require a priori
spectral signal knowledge has been developed and tailored
for radio-frequency scenarios. In particular, it refers to the
problem of passive radar location, performing the compu-
tation of the cross-cross-correlations (CCC), i.e., the cross-
correlation between each couple of cross-correlations [12], of
the received signals in the complex domain. Additionally, in
[13]–[15] the second-order time differences are used for black-
box localization.

Differently from [12], in this paper we make use of the
cross-cross- and conv-cross-correlation for the delay estima-
tion of real acoustic (unmodulated) signals in underwater
applications. Moreover, even if in [13]–[15] the second-order
time differences are already used for localization purposes,
herein it is also shown how to obtain them together with
also the sum of the time differences (obtained through the
conv-cross-correlations). It is also worth to note that, the
unknown time delays can be derived from the positions of the
maximum values of the cross-cross-correlations through the
formalization of a least squares (LS) linear problem. Hence, it
would be expected that this estimator performs better than the
conventional one in the presence of a correlated signal and a
relevant level of random noise for two basic reasons. Firstly,
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the random errors of cross-correlation peak’s noisy estimates
can be reduced by the higher number of equations of the
proposed method. In addition, the true cross-correlation is just
a shifted and scaled signal’s auto-correlation. Results obtained
by simulations prove the effectiveness of the proposed method
with respect to its standard counterpart.

II. SYSTEM MODEL AND PROPOSED SOLUTION

An underwater acoustic passive locating system composed
by M sensors (depicted in Figure 1), whose physical dis-
placements in the area of interest are not known, is herein
considered. Each receiving sensor acquires a delayed copy of
the signal transmitted by the source (or target) to be localized.
Then, the reference node elaborates all received signals to
provide an estimate of the target position starting from the
delay estimates.

emi�ersensor

sensor

sensor

Figure 1. Illustration of passive location system for underwater acoustic
applications.

Therefore, indicating with s(t) the unknown acoustic sig-
nal transmitted by the object under identification, the signal
received at the i-th node can be described by means of the
following equation

ri(t) = ζis(t− ti) + wi(t), i = 0, . . . ,M − 1, (1)

where ζi ∈ R, i = 0 . . . ,M − 1, is an unknown scaling factor
accounting for the channel attenuation essentially related to
the distance between the transmitter and the i-th sensing
node, whereas wi(t) is the thermal noise contribution at each
receiving sensor assumed to be uncorrelated with the signal.
Additionally ti, i = 0 . . . ,M − 1, indicates the time delay at
each receiving node to be estimated, evaluated with respect to
the delay of the first sensor, say t0, assumed in the following,
without loss of generality, equal to 0 s. Moreover, due to the
random displacement of sensors, there is no a priori known
functional dependence between time instants ti.

Indicating with τ the generic delay variable (i.e., the
respective delay between two signals), the cross-correlation

estimation between each couple of signals, ri(t) and rj(t), at
the sensing nodes (i, j), i, j = 0, . . . ,M − 1, is given by

Rij(τ) =
1

T

∫ T/2

−T/2
ri(t)rj(t− τ)dt, (2)

having assumed the validity of the ergodicity property and
having indicated with T the observation time. Moreover, even
tough τ depends on the considered couple, the subscripts ij
on it are omitted for sake of simplicity.

Now, the classic way to obtain an estimate of the delay
difference consists in evaluating the peak position of cross-
correlation magnitude (in the ideal noise-free case) derived by
(2), that is

τ̂ = arg max
τ
{|Rij(τ)|} . (3)

Now, considering all couples of sensors (i, j), i, j =
0, . . . ,M−1, all the cross-correlation maxima can be properly
used to estimate the relative signals’ delays acquired by the
M sensors, viz. τ = ti − tj . We can observe that Rij(τ)
produces some redundant estimates due to its intrinsic sym-
metric definition as well as reduces to the auto-correlation for
i = j. Therefore, (2) is evaluated only for j > i to eliminate
all the above-mentioned redundant information. By doing so,
the total number of admitted combinations of M sensors is
Q = 1/2

(
M2 −M

)
.

To simplify the used notation, in the following, each cross-
correlation considered in (2) is numbered by a single subscript
q = 0, . . . , Q− 1, that is

Rq(τ) = Rij(τ), (4)

with q = 0, . . . , Q − 1, and i, j = 0, . . . ,M − 1 (j > i).
Then, it is possible to estimate the M − 1 delays in the
minimum mean square error (MMSE) sense by computing
the apex of each cross-correlation magnitude and writing the
corresponding equation as a linear combination of M − 1
unknowns (i.e., the signal delays). More precisely, we can
solve the overdetermined system made by the Q equations
consisting of a linear combination of the M − 1 unknowns
equal to the index of the maximum of the cross-correlations
considered in (2), that is

ti − tj = τ̂ij , (5)

with i, j = 0, . . . ,M − 1 (j > i), and

τ̂ij = arg max
τ
{|Rij(τ)|} . (6)

Resorting to a more compact matrix form, (5) can be
rewritten as

At = τ , (7)

with



t =

 t1
...

tM−1

 , and τ =

 τ̂01
...

τ̂(M−2)(M−1)

 .
The model matrix A of size Q × (M − 1) can be built as

described in [12]. Then, the solution to (7) is given by the
pseudo-inverse of A.

A. Cross-cross-correlation

This section describes the solution based on the cross-cross-
correlation to improve the delay estimate in the presence of
M > 2 receiving sensors casually arranged in the area of
interest. To this end, let us first introduce the CCC estimate,
that is

Cijlm(δ) =
1

2T

∫ T

−T
Rq(τ)Rp(τ − δ)dτ, (8)

with q, p = 0, . . . , Q − 1 (p > q). Once again, the choice
p > q is performed to avoid redundant equations. In addition,
similarly to (8), the flipped cross-cross-correlation (or conv-
cross-correlation) estimate can be also considered, that is

Fijlm(δ) =
1

2T

∫ T

−T
Rq(τ)Rp(δ − τ)dτ, (9)

with q, p = 0, . . . , Q−1 (p > q). Note that, in (9), the second
cross-correlation is time-reversed.

Now, representing all the combinations of (q, p) as row and
column indices of a Q × Q square matrix, the combinations
so that p > q in (8)-(9) are located under the main diagonal of
the matrix. Then, the total number of admitted combinations
of all (both direct and flipped) cross-cross-correlations is L =
1/4M4 − 1/2M3 − 1/4M2 + 1/2M .

As observed before, in the noise-free case the apex of the
magnitude of the cross-cross-correlation, |Cijlm(δ)|, should
be at the index ti − tj − tl + tm, while that of |Fijlm(δ)| =
|Cijml(δ)| should be at the index ti− tj + tl− tm. Hence, we
are now able to estimate the M−1 delays in the MMSE sense
solving the overdetermined system made by the L equations,
consisting of the linear combination of the M − 1 unknowns
equal to the index of the maximum of the standard and flipped
cross-cross-correlations considered in (8) and (9), that is

ti − tj − tl + tm = δ̄ijlm, (10)

with i, j, l,m = 0, . . . ,M − 1 (j > i and m > l), and

ti − tj + tl − tm = δ̆ijlm, (11)

with i, j, l,m = 0, . . . ,M − 1 (j > i and m > l), where

δ̄ijlm = arg max
δ
{|Cijlm(δ)|} , (12)

and

δ̆ijlm = arg max
δ
{|Fijlm(δ)|} . (13)

Again, resorting to a compact matrix form, (10)-(11) can be
rewritten as

Bt = δ, (14)

with

t =

 t1
...

tM−1

 , δ =



δ̄0102
...

δ̄(M−3)(M−1)(M−2)(M−1)

δ̆0102
...

δ̆(M−3)(M−1)(M−2)(M−1)


.

The procedure to construct the model matrix B of size
L× (M − 1) is given in [12]. Therefore, the solution to (14)
is obtained applying the pseudo-inverse of B. It is important
to note that B depends only on the number of sensors M ,
therefore it can be computed and a priori stored. Indeed,
its pseudo-inverse can be computed off-line, with the matrix
BTB of size (M − 1)× (M − 1) that can be easily inverted
due to its reduced dimension. These considerations allow to
frame the proposed method as a fast algorithm useful from
practical applications.

Finally, in addition to the above procedure, a second version
of the proposed algorithm, indicated as cross-cross-correlation
2 (CCC2), is considered. It exploits all the linear equations of
both the systems above defined

Ct = ξ, (15)

where

C =

[
A
B

]
and ξ =

[
τ
δ

]
.

III. PERFORMANCE ANALYSIS

In this section the performance of the proposed methodol-
ogy for estimating the time of arrival of signals received at M
passive locating sensors is assessed. To do this, the considered
figure of merit is the root mean square error (RMSE) of the
estimated time of arrivals, which is theoretically given by

RMSE =

√
E
[∣∣t̂− t∣∣2]. (16)

Since a closed-form expression for the RMSE in (16) is
not available, it has been extensively studied by performing
Monte Carlo simulations made of 103 independent trials. In
our tests, the transmitted signal s(t) is assumed to be a zero-
mean stationary Gaussian random process with unit variance
and a Gaussian-shaped auto-correlation function given by [10]

ρs(τ) = exp
(
−τ2/σ2

a

)
,

where σ2
a is the variance of the auto-correlation function,

corrupted by white Gaussian noise with the same variance
σ2
i = σ2 for all the M sensors. An observation period of



T = 103 s is used for the numerical tests, having assumed
a unitary sampling time. The study cases considered herein
comprise M sensors, and the M − 1 time of arrivals have
been picked-up at each Monte Carlo run as a realization of a
uniform random variable within the interval [0, 1] s, namely
ti = U [0, 1], i = 1, . . . ,M − 1. The trials were parametrically
run to investigate the performance versus the number M of
sensors, the autocorrelation width σa, and the SNR level 1/σ2.

The analyses are conducted comparing the proposed tech-
nique based on the use of the cross-cross-correlation of the
received signals (indicated with CCC in the following) with the
classic method that exploits the cross-correlation only (referred
to as CC). In addition, a further algorithm that utilizes both the
systems of equations given by the two methods above (called
CCC2) is also considered. The Cramèr Rao lower bound
(CRLB) devised within the context of passive time delay
estimation [9] is used as performance benchmark, referring
to the expression developed by Schultheiss in [8]. Moreover,
the ideal GCC [7], [11] which almost draws the CRLB is also
considered as performance benchmark. In fact, it is based on
the ideal assumption of a perfect a priori knowledge of the
signal and noise spectra to derive the prefilter and hence hard
to realize in many practical contexts.

In Figure 2 the RMSE is plotted versus the number of
sensors for the above illustrated simulating scenario setting
the auto-correlation width to σa = 2 and SNR = 0 dB.
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Figure 2. RMSE (s) of the delay estimate versus number of passive receiving
sensors M .

The curves clearly show how a higher number of receiving
sensors permits to reduce the delay estimation error. This
trend is observed for both the new algorithms (CCC and
CCC2) that gain over their classic counterpart being closer
to the CRLB. This result is not surprising observing that the
proposed algorithm acts an implicit prefiltering approximating
that of the GCC. Moreover, the higher number of equations
in the LS problem allows to obtain a more accurate solution
with respect to the CC. In fact, the random errors of the peak
estimates in the cross-correlation results to be reduced by the
higher number of equations employed in the pseudosolution.

Similarly, Figure 3 shows the RMSE as a function of the

signal’s auto-correlation width for a given number of sensors
(M = 4) and for SNR = 0 dB.
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Figure 3. RMSE (s) of the delay estimate versus signal’s auto-correlation
standard deviation σa.

Interestingly, in this situation all estimators tend to expe-
rience almost a linear increment in the estimation error, but
with a lower slope for the proposed techniques with respect
to the classic one. Moreover, both the proposed version of the
algorithm ensure almost the same performance.

The last analysis, whose results are depicted in Figure
4, shows the behavior of the quoted estimation methods as
a function of SNR. As expected, the evidence is that all
estimators tend to reduce their errors getting closer and closer
to the CLRBs as the SNR increases. Moreover, as observed
in the previous analysis, the proposed algorithms share better
performance than their classic competitor.

-2 0 2 4 6 8

SNR (dB)

0

0.05

0.1

0.15

0.2

0.25

0.3

R
M

S
E

 (
s
)

CC

CCC

CCC2

CRLB

GCC

Figure 4. RMSE (s) of the delay estimate versus SNR.

Before concluding, it is worth to underline that the compu-
tational cost of the proposed method can be severely reduced
if the cross-cross-correlations are computed from the cross-
correlations windowed around their maxima. Moreover, also
the cross-cross-correlations can be computed only for a limited
number of lags in a neighborhood of the expected position
of its maximum. By doing so, the resulting cost of the



cross-cross-correlation method becomes close to that of the
conventional one, and hence this algorithm can be defined fast.

IV. CONCLUSIONS

In this paper, a novel algorithm, suited for the undersea
access in heterogeneous networks, has been applied and an-
alyzed to accurately estimate the time delays from multiple
passive underwater receivers. The advantages of the proposed
method are its fast computation and the capability to operate
without any a priori spectral knowledge. The effectiveness
of its performance in comparison with classic counterparts
and theoretical bounds is proved by simulations in several
underwater acoustic operating cases. As a possible future
work, it would be interesting to the extend the localization
algorithm to scenarios characterized by the presence of faulty
sensors [16].
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