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Abstract: Machine learning (ML) methods are pervading an increasing number of fields of application
because of their capacity to effectively solve a wide variety of challenging problems. The employment
of ML techniques in ultrasound imaging applications started several years ago but the scientific
interest in this issue has increased exponentially in the last few years. The present work reviews the
most recent (2019 onwards) implementations of machine learning techniques for two of the most
popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former,
which covers the major part of the review, was analyzed by classifying studies according to the
human organ investigated and the methodology (e.g., detection, segmentation, and/or classification)
adopted, while for the latter, some solutions to the detection/classification of material defects or
particular patterns are reported. Finally, the main merits of machine learning that emerged from the
study analysis are summarized and discussed.

Keywords: machine learning; deep learning; ultrasound imaging; medical diagnostics; NDE

1. Introduction

In recent years, machine learning (ML) techniques, which are based on the idea that
systems can learn from data, identify patterns and make decisions with minimal human
intervention, have had a significant impact on industry and science due to their capacity
to solve challenging problems. ML applications are innumerable and include computer
vision [1–4], self-driving cars [5,6], virtual person assistants [7], speech recognition [8] and
even ultrasound imaging, which is the field of application that will be discussed in detail
in this review.

Ultrasound imaging is employed in a wide variety of applications, including sonar [9–11],
non-destructive evaluation (NDE) [12–14], indoor positioning systems (IPS) [15,16] and
biometric recognition [17–19]. However, its best known application is medical diagnostics,
where it has been found to be very attractive and interesting compared to other imaging
modalities, such as magnetic resonance (MR), X-rays and computed tomography(CT),
because it enables the acquisition of organ images at low cost and in a safe and non-
invasive way. At present, it is commonly employed for various analyses, such as fetal
monitoring, the anatomical study of blood vessels and flow, lung and liver disease screening
and even the diagnosis of tumor pathologies.

The employment of ML techniques in ultrasound imaging has occurred for several
years [20–24], but, very recently, there has been a dramatic growth of scientific interest in
this issue, where the main fields involved are sonar, NDE and medicine. The present review
focuses on the latter two fields, with particular regard to the medical area. Sonar applica-
tions are not included here because, due to the very huge quantity of recent studies [25–30],
they deserve a separate review. Given the very large number of relevant scientific publica-
tions, this review is mainly devoted to the analysis of more recent studies, with a particular
focus on papers published after 2019 and on journal papers rather than conference papers.

The review is organized as follows: The Second 2 is devoted to a classification of
the most used ML algorithms in the analyzed articles; the Section 3 is focused on the
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basic principles of ultrasound imaging and the most used ultrasound techniques; the
Section 4 reviews papers related to applications of ML to ultrasound medical diagnostics,
sub-divided by organs; the Section 5 considers the application of ML algorithm in NDE; the
Section 6 is devoted to the conclusions, where the benefits and limits of ML applications
are highlighted.

2. Machine Learning

Machine learning (ML), one of the most rapidly developing subfields of artificial
intelligence (AI) research, is defined as the field of study of computer algorithms capable of
learning autonomously to automatically improve the performance of a task on the basis of
their own previous experience. The main intention of ML techniques is to allow the system
to obtain knowledge with no explicit programming and to learn from the data. A great deal
of scientific activity has been dedicated to proposing methods to enable machines to learn
by themselves without being explicitly programmed [31]. ML relies on different algorithms
to solve data problems, where the kind of algorithm used depends on a series of factors,
including the type of problem, the number of variables, and the most suitable model. ML
fundamentally includes two types of approaches: supervised and unsupervised learning.
Supervised learning is a machine learning method where an algorithm is trained on input
data that has been labeled for a particular output. Supervised algorithms, depending on
the output to be obtained, can be categorized as classification algorithms, which involve
identifying the category to which an object belongs on the basis of the characteristic of the
object itself, and regression algorithms, which involve estimating the value of a particular
feature of an object. The most used algorithms for regression problems are:

• Linear regression, which establishes a relation between dependent variables (output)
and independent variables (input) through a fitting line. Linear regression can be
of two types: simple and multiple linear regression, where the first includes one
independent variable, while the second includes two or more independent variables.

• Logistic regression, which is a statistical tool used to model a binomial result, i.e., bi-
nary problems with one or more explanatory variables. In this way, it is possible to
describe the data and the relationship between a binary dependent variable and one
or more independent variables.

The most used algorithms for classification problems are listed below.

• Naive Bayes is based on an underlying probabilistic model and enables capture of the
uncertainty of a model by determining the probabilities of the outcomes. The Bayesian
classification can solve predictive problems by providing practical learning algorithms
and combining observed data. This classification provides a useful perspective for
understanding and evaluating learning algorithms [32].

• Support vector machine (SVM) is a method for the classification of two groups of data
points, which exploits a hyperplane that divides two categories of data points with the
largest margin [33]. Linear SVM is the most simple form of an SVM classifier, where
examples are represented as points in space and mapped out so that the examples
belonging to two different categories are divided by a clear gap that maximizes the
difference. The prediction of the category to which examples belong is made on the
basis of the side on which they fall. SVM can be performed either linearly or non-
linearly. Non-linear SVM results are useful when data are not separable linearly. This
approach involves implementation of a kernel trick [31], a non-linear function which
replaces the scalar product, thus maximizing the hyperspace. The most used kernels
are polynomial and Gaussian.

• Decision tree, the goal of which is to create a model that predicts the value of a certain
variable by learning some decision rules obtained from data features. It consists of a
tree that classifies instances by sorting them based on feature values; each node of the
decision tree is an instance feature to be classified and each branch corresponds to a
value that can be assigned to the node. Basically, the procedure consists of classifying
the instances and sorting them on their feature values [34].
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• Random forest (RF) combines the output of multiple decision trees to reach a single
result. The random forest algorithm is an extension of the bagging method because
it utilizes both bagging and feature randomness to create an uncorrelated forest of
decision trees. RF is employed for classification, regression, and other activity based
on the construction of a multitude of decision trees during the training and generates
the class that represents the overall prediction of the single trees. Random forest
corrects the overfitting problem of decision trees [35].

• K-nearest neighbors(K-NN) aims to predict a new instance by knowing the data
points which are separated into different classes. Specifically, within each class there
are associated data points or instances, the set of which defines the data set. Its
operation is based on the similarity of the characteristics; that is, the closer an instance
is to a data point, the more the algorithm considers them similar. To evaluate the
similarity, the algorithm uses some distance, such as Euclidean [36], Chebyshev [37],
or Minkowski [38]. In addition to the distance, KNN plans to set a parameter k, chosen
in an arbitrary way, which identifies the number of minimum distances; the class that
obtains the greatest number of these distances is chosen as a prediction [39].

• Linear discriminant analysis (LDA) is a commonly used technique for supervised
classification problems, which aims to reduce their dimensions. It is used for modeling
differences in groups, i.e., separating two or more classes. It transfers features from
higher to lower dimension spaces. LDA, as SVM, computes optimal hyperplanes with
respect to their individual objectives. However, LDA hyperplanes are optimal only
when the covariance matrices are identical for all of the classes, while SVM computes
optimal hyperplanes without making an assumption [40].

With unsupervised learning, it is necessary to identify hidden structures in datasets,
without outputs being labeled. The principal unsupervised learning algorithms are:

• K-means clustering, which initially defines k centroids and iteratively selects the
closest data points to each centroid and assigns them to the centroid itself [33].

• Principal component analysis (PCA) reduces the dimensionality of a data set con-
sisting of many variables correlated with each other, either heavily or lightly, while
retaining the variation present in the dataset, to the maximum extent. The same
operation is performed by converting the original variables to a new set of variables,
named principal components, which are orthogonal and are ordered in such a way
that the retention of variation present in the original variables decreases by moving
down the order [41].

Deep learning (DL) is a subfield of machine learning, which attempts to learn high-
level abstractions in data automatically using hierarchical architectures [42]. The most
popular DL techniques are based on neural networks, which are inspired by the human
nervous system and the structure of the brain. It consists of processing units or nodes
organized in input, hidden, and output layers where the nodes in each layer are connected
to other nodes in adjacent layers. The inputs are multiplied by the respective weights and
summed at each node. The sum then undergoes a transformation based on the activation
function, which, in most cases, is a sigmoid function, tanh, or rectified linear unit (reLU).
The output of the function is then fed as input to the subsequent unit in the next layer.
Finally, the result of the final output represents the solution to the problem. The principal
type of neural network is the convolutional neural network (CNN). Fundamentally, a CNN
consists of a series of convolutional layers, sub-sampling or pooling layers, fully connected
layers, and a normalizing layer. In this case, instead of using the activation functions
described above, convolution and pooling functions are employed as activation functions.
The series of convolutions perform increasingly more refined feature extraction at every
layer moving from the input to the output layers. Pooling layers occur between each
convolution layer and reduce the feature maps and the size of network and then effectively
reduce the feature network’s susceptibility to scale and distortion of the image [43]. Finally,
the classification is performed by fully connected layers through a certain number of
categories. The most popular CNN types are reported below.
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UNet [44] is a CNN developed for biomedical image segmentation. The UNet ar-
chitecture has a U-shape and is based on two paths, a contraction or encoder path and
an expansion or decoder path, where each encoder convolution layer is concatenated to
its reciprocal decoder layer. Each concatenation provides a localized feature specific for
segmented classes. The basic concept behind the Unet deep learning technique is to use
convolutional layers and max-pooling architectures to extract identifying features and
patterns from a series of images.

Alexnet [45] is a CNN consisting of eight layers, where the first five are convolutional
layers and the last three are fully connected layers. Compared to traditional CNNs, AlexNet
identifies more features because it consists of a deep structure and has many parameters in
the model.

ResNet [46] is a specific architecture of CNN distinguished by its employment of
a skip connection to jump over some layers. The adding of a skip connection is useful
because it mitigates the problem of degradation (accuracy saturation) that occurs when a
high number of layers are used, leading to training errors. Figure 1 presents a scheme for
the algorithms described above.

Figure 1. A possible schematization of machine learning algorithms.

Traditional ML is based on training data and testing data by considering the same
input feature space and same data distribution. However, there are some cases where
the training data and testing data show different data distributions and the result of the
predictive learner can be degraded. The solution entails transfer learning that allows
definition of a high-performance learner for a target domain trained from a related source
domain, which copes with the difficulty of obtaining training data that matches the feature
space and the predicted data distribution characteristics of the test data.

Transfer learning consists mainly of re-employing a pre-developed model to accom-
plish a determined activity as a starting point for the development of a model destined to
execute another different activity. Transfer learning is widely employed in the majority of
deep learning models where neural networks, on which a large data set has already been
inserted, are retrained with the purpose of classifying images on a large scale. The intuition
behind transfer learning, especially in the image classification activity, is that, if a model
is trained on a sufficiently large and general data set, it will effectively act as a generic
model of the visual world; it will therefore be possible to exploit the general function maps
learned, without having to train a new model of neural networks from scratch, wasting
resources and time in the training process of the neural network on data sets large enough
to be able to return an optimal result.
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3. Ultrasound Imaging

One of the most popular ultrasound imaging techniques is the pulse-echo method,
where its basic modality is represented by A(Amplitude)-Mode [47]. In this modality,
a single-element transducer is excited by high-intensity short pulses through a signal
generator. The waves transmitted by the transducer propagate through the body and
echoes are reflected from various tissues because of the large interfaces between organs.
The echoes are detected by the same transducer and are amplified because ultrasound
energy is attenuated by the tissues as it penetrates deeper into the body, and is processed
and displayed.

A two-dimensional image is usually obtained by using linear or convex phased ar-
rays, which allow electronic scanning of the desired volume and performance of beam-
forming techniques (e.g., apodization, steering, focusing). A first kind of image, named the
B(Brightness)-mode image, is characterized by grayscale pixels whose value is proportional
to the amplitude of the returned echo [48]. Figure 2 shows an example of a B-mode image
of the liver and kidney.

Figure 2. Example of B-mode image of the right liver lobe and right kidney obtained with a convex
probe. The kidney is indicated by the arrow [48].

Another method for generating 2D images is represented by M(Motion)-Mode. In this
case, the transducer is placed in front of a moving target, and echo signals are repeatedly
acquired along the same A-line orientation. The obtained image represents the distances to
the targets as a function of time.

In cardiovascular analysis, the most employed techniques are based on the Doppler
effect that exploits the ultrasound capability to measure blood flow, principally to assess the
state of blood vessels and functions of an organ. The Doppler effect is the alteration of the
frequency of a received wave compared to the transmitted one due to the relative movement
of a transmitter and a receiver. It is based on the backscattering of ultrasonic waves by the
red blood cells in motion with respect to the probe. Conventionally, ultrasound Doppler
flow measurements are based on three main approaches: continuous wave (CW), pulsed
wave (PW) Doppler, and color Doppler. CW Doppler systems use two transducers, one
for transmission and one for reception, and can obtain information on the velocity along a
US beam without any information about the position [49]. PW Doppler, instead, is based
on a single transducer that alternatively transmits and receives. It is sensitive to the beam-
to-flow angle and enables extraction of the flow velocity at one specific depth [50]. the
color Doppler is a technique that allows display of B-mode and Doppler blood flow data
simultaneously, where the Doppler information is visualized as color and is superimposed
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onto the B-mode image. In particular, the color red indicates flow toward the transducer
while the color blue indicates flow away from the transducer [51,52]. A color Doppler
image of the carotid artery is shown in Figure 3.

Figure 3. Example of color Doppler image showing high-grade stenosis of internal carotid artery [51].

Another technique employed in the cardiovascular analysis is intravascular ultrasound
(IVUS), a catheter-based technique that provides real-time high-resolution tomographic
images of both the lumen and arterial wall of coronary segments [53].

A relatively new imaging technique is represented by elastography. This technique
has the aim of imitating palpation, one of the oldest methods to detect tumors and other
pathologies, using acoustic waves. Basically, a pathologic region is characterized by lower
elasticity in comparison to normal tissues—tissue stiffness is considered an important
biomarker for pathological processes. In this case, the reflected echoes are used to map
reflectivity properties and geometry by assuming that the examined organ is stationary
or moves only because of internal physiological changes. Another kind of contrast that
represents the elastic properties of the tissue can be obtained by applying a known external
mechanical load to the tissue [54].

An important evolution of ultrasound imaging is represented by the formation of
three-dimensional images that provide more information than 2D-images. 3D-images are
obtained by acquiring multiple slices of the images; the reconstruction of the 3D-image
can be performed offline or in real-time. In the latter case, there is reference to 4D-images,
i.e., 3D-images in real-time motion. 3D ultrasound data are achieved by employing a linear
array performing a single mechanical scan or a two-dimensional array performing only
electronic scans. Basically, 3D-images are displayed through two modalities: a series of
multiplanar images orthogonal to one another and/or images showing three-dimensional
structures [55].

4. ML in US Medical Diagnostics

In recent years, ML techniques have played a fundamental role in the analysis of US
medical images in order to improve the reliability of diagnosis that is often compromised
by the relatively poor quality of images due to the presence of noise and acquisition
errors. Furthermore, ML techniques reduce operator-dependence, standardize the image
interpretation, provide stable results and the capability to make rapid decisions, and relieve
the heavy work of radiologists.

The next section is subdivided into several subsections; each subsection is devoted to
a particular organ and consists of two parts describing:

• the general issues related to organ diseases;
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• the most recent papers on innovative ML techniques organized according to the
methodology adopted: detection, segmentation and classification.

4.1. Breast

Breast cancer is a disease that represents one of the principal causes of cancer deaths for
women and this number is increasing. The probability that a woman will die from a breast
tumor is about 1 in 39. Only 10% of cases are detected at the initial stages. Breast cancer
can begin in different parts of the breast which is made up of lobules, ducts, and stromal
tissues. Most breast cancers begin in the cells that line the ducts, while some begin in
the cells that line the lobules and a small number begin in the other tissues [56]. Breast
cancer manifests itself mainly through a breast nodule or thickening that feels different
from the surrounding tissue, lymph node enlargement, nipple discharge, a retracted nipple,
or persistent tenderness of the breast.

A successful diagnosis in the early stages of breast cancer makes better treatment
possible with increase in the probability of the person’s survival [57]. Furthermore, the cost
of breast cancer treatment is high. For such reasons, in recent years, several breast diagnostic
approaches have been investigated, such as mammography, magnetic resonance imaging,
computerized tomography, biopsy, and ultrasound imaging. The latter, in the last few years,
has started to become an integral part of the characterization of breast masses because of
the advantages previously described. In addition, compared to mammography, ultrasound
is the most accessible imaging modality, is age-independent [58] and allows the assessment
of breast density that often represents a predictor of breast cancer risk evaluation and
prevention. The breast density percentage is defined as the ratio between the area of the
fibrograndular tissue and the total area of the breast. Breast ultrasound is also used to
distinguish benign from malignant lesions.

For the purposes mentioned above, most of the techniques investigated are based on three
principal issues, i.e., detection [59–65], segmentation [66–77], and classification [63,65,78–94].

Detection is fundamental in ultrasound analysis because it provides support for
segmentation and/or classification between malignant and benign tumors. In a recent
study, Gao et al. [60] proposed a method for the recognition of breast ultrasound nodules
with low labeled data. Nodule detection was achieved by employing the faster region-
based CNN. Benign and malignant nodules were classified through a semi-supervised
classifier, based on the mean teacher model, trained on a small amount of labeled data. The
results demonstrated that the SSL enabled performances comparable to those obtained
with SL trained on a large number of data to be achieved.

Segmentation [66] has an important role in the clinical diagnosis of breast cancer due
to the capability to discriminate different functional tissues, providing valuable references
for image interpretation, tumor localization, and breast cancer diagnosis. A segmentation
approach that combines fuzzy logic and deep learning was suggested by Badawy et al. [67]
for automatic semantic segmentation of tumors in breast ultrasound images. The proposed
scheme is based on two steps: the first consists of preprocessing based on a fuzzy intensifi-
cation operator and the second consists of semantic segmentation based on CNN, based
on experimenting with eight known models. It is applied using different modes: batch
and one-by-one image-processing. The results demonstrated that fuzzy preprocessing was
able to enhance the automatic semantic segmentation for each evaluated metric, but only
in the case of batch processing. Another automatic semantic segmentation approach was
proposed by Huang et al. [69]. In this approach, BUS images are first preprocessed us-
ing wavelet features; then, the augmented images are segmented through a fuzzy fully
convolutional network, and, finally, an accurately fine-tuning post-processing based on
breast anatomy constraints through conditional random fields (CRFs) is performed. The
experimental results showed that fuzzy FCN provided better performances than non-fuzzy
FCN, both in terms of robustness and accuracy; moreover, its performances were better than
all the other methods used for comparison and remained strong when small data sets were
used. Ilesanmi et al. [70] used contrast-limited adaptive histogram equalization (CLAHE)
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to improve image quality. Semantic segmentation was performed through a variant of
UNET, named VEU-NET, based on a variant enhanced (VE) block, which encoded the
preprocessed image, and concatenated convolutions that produced the segmentation mask.
The results indicated that the VEU-Net produced better segmentation than the other classic
CNN methods that were tested for comparison. An approach based on the integration
of deep learning with visual saliency for breast tumor segmentation was proposed by
Vakanski et al. [73]. Attention blocks were introduced into a U-Net architecture and feature
representations which prioritized spatial regions with high saliency levels were learned.
The results demonstrated that the accuracy of tumor segmentation was better than for
models without salient attention layers. An important merit of this investigation was the
use of US images collected from different systems, which demonstrated the robustness of
the technique.

Image classification is very important in medical diagnostics because it enables dis-
tinguishing lesions or benignant tumors from malignant ones and a particular type of
tissue from others. Shia et al. [78] presented a method based on a transfer learning algo-
rithm to recognize and classify benign and malignant breast tumors from B-mode images.
Specifically, feature extraction was performed by employing a deep residual network
model (ResNet-101). The features extracted were classified through the linear SVM with
a sequential minimal optimization solver. The experimental results highlighted that the
proposed method was able to improve the quality and efficacy of clinical diagnosis. Chen
et al. [89] presented a contrast-enhanced ultrasound (CEUS) video classification model for
breast cancer into benign and malignant types. The model was based on a 3D CNN with a
temporal attention module (DKG-TAM) incorporating temporal domain knowledge and a
channel attention module (DKG-CAM) that included feature-based domain knowledge. It
was found that the incorporation of domain knowledge led to improvements in sensitivity.
A study aimed at testing the capability of AutoML Vision, a highly automatic machine
learning model, for breast lesion classification was presented by Wan et al. [91]. The perfor-
mance of AutoML Vision was compared with traditional ML models with the most used
classifiers (RF, KNN, LDA, LR, SVM and NB) and a CNN designed in a Tensorflow envi-
ronment. The AutoML Vision performances were, on average, comparable to the others,
demonstrating its reliability for clinical practice. Finally, Huo et al. [93] experimentally
evaluated six machine learning models (LR, RF, extra trees, SWM, multilayer perceptron,
and XG Boost) for differentiating between benign and malignant breast lesions using data
from different sources. Two examples of the ultrasound depictions of malignant breast
lesions are shown in Figure 4. The experimental results demonstrated that the LR model
exhibited better diagnostic efficiency than the others and was also better than clinician diagnosis
(see Table 1).

Figure 4. Ultrasound depictions of malignant breast lesions: (a) lesion characterized by irregular
shape, calcification indicated by large arrow and not circumscribed margin by thin arrow (b) lesion
characterized by the an oval shape, circumscribed margins indicated by thin arrow and enhancement
posterior features by large arrow [93].
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Table 1. Summary of Detection ML algorithms employed in analyzed studies with respect to organ
investigated, diagnosis objective, dataset used, and main results achieved.

Ref. Organ Objective Technique Results Datasets

[60] Breast Recognition of Faster R-CNN Mean accuracy: 87% Public
breast ultrasound for detection of Performances of 6746 and

nodules with nodules and SSL SSL and SL 2220 nodules
low labeled images for classification are comparable

[95] Arteries Detection of Bi-GRU NN Mean accuracy: 80% Private
end-diastolic trained by a Better accuracy 20 coronary

frames in NIRS-IVUS segment of than expert analysts arteries
images of 64 frames with Doppler criteria

coronary arteries

[96] Heart Evaluation of CNN with Mean ROC AUC Public
biomarkers residual Anemia: 80% 108521

from connections and BNP: 84% echocardiogram
echocardiogram spatio-temporal Troponin I: 75% studies

videos convolutions for BUN: 71.5%
estimation of

biomarker values

[97] Heart Extract information Texture-based features ROC AUC: 80% Public
associated extracted with unsupervised Sensitivity: 86.4% 392 subjects

with myocardial similarity networks Specificity: 83.3%
remodeling ML models (DT,RF,LR,NN) Prediction of

from still for prediction of myocardial fibrosis
ultrasound functional remodeling only from textures

images LR for predicting of ultrasound images
presence of fibrosis

[98] Liver Detection of SSD and FPN to ROC AUC Public
gallstones and classify gallstones with ResNet-50: 92% 89,000 images

acute cholecystitis features extracted MobileNetV2: 94%
with still images by ResNet-50 and detect cholecystitis
for preliminary MobileNetV2 and gallstones with

diagnosis to classify acceptable discrimination
cholecystitis and speed

[99] Fetus Gestational age and AlexNet variation Accuracy % Private
automatic estimation for TC frames TC plane detection: 99% 5000 TC images

from TC diameter extraction TC segmentation: 97.98%
as a POCUS solution FCN for TC Accurate GA

localization and estimation
measurment

[100] Fetus Automatic LH-SVM Accuracy: 94.67% Private
recognition SVM for learning of Average precision: 94.25% 943 standard

and classification features extracted Average recall rate: 93.88% planes
of FFUSP by LBP and HOG Average F1 score: 94.88% 424 nasolabial

for diagnosis Effective prediction coronal planes
of cardiac and classification 50 nonstandard
conditions of FFUSP planes

[101] Lungs Assist diagnosis Pre-trained ResNet50 Average F1-score Public
of Covid19 Fully connected layer Bal dataset: 93.5% 3909 images

on LUS images for feature extraction Unbal dataset: 95.3%
of FFUSP Global average pooling Improves performances

for features classification. in radiologists’ diagnosis

4.2. Arteries

Another major cause of death in the world is represented by cardiovascular diseases
(CVD), caused principally by a pathological condition called atherosclerosis, which is
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characterized by alterations of artery walls that have lost their elasticity because of the
accumulation of calcium, cholesterol, or inflammatory cells. It is the principal cause of
ictus and infarct. Early detection of plaques in the arteries has a fundamental role in
the prevention of brain strokes. The imaging modality based on ultrasound represents a
useful method for the analysis of carotid diseases through visualization and interpretation
of carotid plaques because a correct characterization of this disease is fundamental to
identifying plaques vulnerable to surgery. A reliable and useful indicator of atherosclerosis
is the so-called intima-media (IM) thickness, defined as the distance from the lumen-
intima (LI) to the media-adventitia (MA) interface. Most studies have been devoted to
the improvement of early atherosclerosis diagnosis; in this respect, three main issues are
considered: detection [95,102–107], segmentation [108–115], and classification [116–128].

As far as detection is concerned, Bajaj et al. [95] designed a novel deep-learning
methodology for the automated detection of end-diastolic frames in intravascular ultra-
sound (IVUS) images. Near-infrared spectroscopy(NIRS)-IVUS were collected from 20 coro-
nary arteries and co-registered with the concurrent electrocardiographic (ECG)-signal for
identification of end-diastolic frames. A bidirectional-gated recurrent unit (Bi-GRU) neural
network was trained by a segment of 64 frames, which incorporated at least one cardiac
cycle, and then the test set was processed to identify the end-diastolic frames. The perfor-
mances of the proposed method demonstrated higher accuracy than expert analysts and
conventional image-based (CIB) methodologies.

Two recent segmentation approaches based on DL have been proposed by
Blanco et al. [111] and Zhou et al. [112]. The first method [111] employs small datasets for
algorithm training. Specifically, plaques from 2D carotid B-mode images, are trained on
three small databases, and are segmented through a UNet++ ensemble algorithm, which
uses eight individual UNet++ networks with different backbones and architectures in the
encoder. Good segmentation accuracy was achieved for different datasets without retrain-
ing. The second method [112] involves the concatenation of a multi-frame convolutional
neural network (MFCNN), which exploits adjacency information present in longitudinally
neighboring IVUS frames to deliver a preliminary segmentation, followed by a Gaussian
process (GP) regressor to construct the final lumen and vessel contours by filtering high-
dimensional noise. The results obtained with the model developed demonstrated accurate
segmentation in terms of image metrics, contour metrics, and clinically relevant variables,
potentially enabling its use in clinical routine by reducing the costs involved in the manual
management of IVUS datasets. Lo Vercio et al. [128] suggested an automatic detection
method fundamentally based on two machine learning algorithms: SVM and RF. The first
one is employed to detect lumen, media, and surrounding tissues through SVM algorithms,
and the second one to detect different morphological structures and to modify the initial
layer classification depending on the detected structures. Successively, the resulting classi-
fication maps are inserted into a segmentation method based on deformable contours to
detect LI and MA interfaces. The main steps of LI and MA segmentation are described in
Figure 5.

Figure 5. Main steps of LI and MA segmentation: (a) B-mode images,(b) edge map, (c) contour
segmentation, (d) final segmentation. LI and MA are marked in red and green, respectively [128].

With respect to classification, Saba et al. [119] focused on the classification of plaque
tissues by employing four ML systems, one transfer learning system, and one deep learning
architecture with different layers. Two types of plaque characterization were used: an
AI-based mean feature strength and a bispectrum analysis. The results demonstrated that
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the proposed method was able to accurately characterize symptomatic carotid plaques,
clearly discriminating them from symptomatic ones. Another study on carotid diseases
was published by Luo et al. [120] that proposed an innovative classification approach
based on lower extremity arterial Doppler (LEAD) duplex carotid ultrasound studies.
They developed a hierarchical deep learning model for the classification of aortoiliac,
femoropopliteal, and trifurcation disease and an RF algorithm for the classification of the
quantity of carotid stenosis from duplex carotid ultrasound studies. Then, an automated
interpretation of the LEAD and carotid duplex ultrasound studies was developed through
artificial intelligence. Successively, a statistical analysis was performed using a confusion
matrix and the reliability of novel machine learning models in differentiating normal from
diseased arterial systems was evaluated. Good accuracy in classifying the extent of vascular
disease was demonstrated (see Table 2).

Table 2. Summary of segmentation ML algorithms employed in the studies analyzed related to
organ investigated, diagnosis objective, dataset used, and main results achieved.

Ref. Organ Objective Technique Datasets Results

[67] Breast Automatic Fuzzy preprocessing GA: 95.45% Public
semantic 8 CNN-based Mean IoU: 78.7% 1200 images

segmentation SS models BF: 68.08%
of breast Improvements only
tumors with batch processing

[69] Breast Automatic BUS images enhanced TPR: 90.33% Private
semantic with wavelet features FPR: 90.00% 325 BUS images

segmentation Fuzzy FCN segmentation IoU: 81.29%
of breast Fine-tuning based on Fuzzy FCN
tumors anatomy constraints with provides better

conditional random fields performances
CRFs performs than non-fuzzy FCN

[70] Breast Automatic Preprocessing through CLAHE Mean values Public
semantic UNet variant based on HD: 77.6% 264 BUS images

segmentation VE block for encoding JM: 80.1% 830 BUS images
of breast Concatenated convolutions DM: 90.7%
tumors for segmentation Better segmentation

results than
classic CNN methods

[73] Breast Segmentation of UNet modified DSC: 90.5% Private
tumors by with attention Better accuracy 510 images

incorporating blocks accounting with saliency maps
prior domain for input saliency Robustness to

specific maps to generate images from
knowledge segmentation different US scanners

[111] Arteries Measurement 8 UNet++ with Mean DSC: 87.15% Private
of total carotid different backbones Datasets collected in 144 subjects
plaque area in and architectures different institutions 497 subjects

B-mode images Small datasets for
algorithm training

[112] Arteries Automatic MFCNN for Median values Public
segmentation preliminary segmentation JI_lumen: 0.913 160 IVUS
of lumen and GP regressor to JI_vessel: 0.94 pullbacks

vessel contours construct lumen HD_lumen: 0.196 mm
and vessel contours HD_vessel: 0.163 mm
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Table 2. Cont.

Ref. Organ Objective Technique Datasets Results

[128] Arteries Lumen intima and SVM and RF for JM Public
media-adventia classification maps LI: 0.88 ± 0.8 mm 435 images
fully automatic LI and MA segmentation MA: 0.84 ± 0.9 mm
segmentation of with deformable contours Good accuracy

arterial layers method Modular and open-source

[129] Liver Automatic DCNN developed ICCs Private
quantification with ICNet for Hepatic: 91.9% 294 liver images

of the hepatorenal organ segmentation Renal: 91.6%
index (HRI) for Gaussian texture for HRI: 73.4%
evaluation of HRI quantification Results comparable to

fatty liver those of radiologists

[130] Fetus Automatic CSC: UNet variant MIOU: 0.55 Private
segmentation that calibrate Better than DeepLabv3+ 421 fetal cardiac

of the ventricular segmentation with and U-net US videos
septum time-series information

[131] Fetus Automatic U-net/DeepLabV3+ IoU Private
segmentation segmentation enhanced DeepLabv3+: 0.47 538 4VC images
of the thoracic with MultiFrame and U-Net: 0.493 in 280 videos

wall in Cylinder methods Improved performances
ultrasound videos without altering

NN structure

[132] Fetus Automatic CPD variation for Target registration Private
fetal head point cloud segmentation error: 6.38 ± 3.24 mm 18 fetal brain

segmentation from and estimation of
3D noisy images probabilistic weights

obtained with RF

[133] Lungs Assessment of DSA-MIL to combine Accuracy Public
COVID19 from multiple LUS data Patient severity: 75% 233 patients

LUS and MA-CLR Binari identification: 87.5 %
clinical information for combination Especially suited for

of LUS data and pregnant women
clinical information and children

[134] Thyroid Efficient and CNN based on a layer IoU: 79.5% Public
precise semantic that integrates dense TPF: 88.5% 3794 images
segmentation of connectivity, dilated FPF: 0.13%
thyroid nodules convolutions and High accuracy/efficiency

factorized filters Real time

4.3. Heart

Echocardiography is one of the most employed diagnostic tests in cardiology, where
heart images are created through Doppler ultrasound. It is routinely employed in the diag-
nosis, management, and follow-up of patients with any suspected or known heart disease.

The heart is a muscular organ that pumps blood through the body and is fundamen-
tally divided into four different chambers: the upper left and right atria and the lower
left and right ventricles. The heart activity can be divided into two principal phases: sys-
tole and diastole. During systole, the myocardium contracts, ejecting blood to the lungs
(right ventricle) and the body (left ventricle). During diastole, the cardiac muscle dilates
expanding the heart’s volume and causing blood to flow in. The heart has four valves,
including the mitral valve that collapses the left atria and the left ventricle and plays a fun-
damental role by regulating the blood transition from atria to ventricle, opening up during
the diastole, while during the systole the valve closes and prevents reflux towards the left
atria. Echocardiography can provide information about different anatomical heart aspects
including position, shape of the atrium and ventricles [135], and even other variables such
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as cardiac output, ejection fraction and diastolic function. In addition, echocardiogra-
phy enables detection of a series of heart diseases, including cardiomyopathy, congenital
heart diseases, aneurysm, and mitral valve diseases. However, one of the major issues
in echocardiography is the difficulty of automatically classifying and identifying large
databases of echocardiogram views in order to provide a diagnosis. The classification task
is challenging because of several properties of echocardiograms, including the presence of
noise, redundant information, acquisition errors, and the variability of different scans due
to different acquisition techniques.

Several studies have been devoted to the automation of algorithms for the detection
of anomalies and heart anatomy [96,97,136–138], and the classification of echocardiogram
views to provide a full and reliable assessment of cardiac functionality improving diagnosis
accuracy [139,140].

As far as detection is concerned, an advanced method for the evaluation of several
biomarkers from echocardiogram videos based on DL has been developed by Hughes et al. [96].
The method, named EchoNet-Labs, is a CNN with residual connections and spatio-temporal
convolutions that provides a beat-by-beat estimate for biomarker values. Experimental
results have demonstrated high accuracy in detecting abnormal values of hemoglobin,
troponin I, and other proteins, and better performance compared to models based on
traditional risk factors. A detection method based on radiomics-based texture analysis
and supervised learning was proposed by Kagiyama et al. [97], who designed a low-cost
texture-based pipeline for the prediction of fibrosis and myocardial tissue remodeling.
The first part of the method consists of the extraction of 328 texture-based features of the
myocardium from ultrasound images and exploration of the phenotypes of myocardial
textures through unsupervised similarity networks. The second part involves the employ-
ment of supervised machine learning models (decision trees, RF, logistic regression models,
neural network) for the prediction of functional left ventricular remodeling, while, in the
third part, supervised models (logistic regression models) for predicting the presence of
myocardial fibrosis are employed. Figure 6 shows a comparison of two myocardial fibrosis
predictions from ultrasound and magnetic resonance images.

Figure 6. Prognosis of myocardial fibrosis. Three ultrasound renderings and the corresponding
myocardial textures [97].

A classification deep learning approach was developed by Vaseli et al. [139]. They
defined a method for obtaining a lightweight deep learning model for the classification
of 12 standard echography views, by employing a large echography dataset. For this
purpose, three different teacher networks are implemented, each of which consists of a
CNN module and fully-connected (FC) module, where the first module is based on one
of the three advanced deep learning architectures, i.e, VGG-16, DenseNet, and Resnet.
A dataset of 16,612 echo cines obtained from 3151 unique patients across several ultrasound
imaging machines was employed for the development and evaluation of the networks. The
proposed models were shown to be lightweight and faster than state-of-the-art huge deep
models, and to be suitable for POCUS diagnosis.

4.4. Liver

Liver disease is one of the principal causes of death worldwide and comprises a wide
range of diseases with varied or unknown origins. In 2017, about 1.32 million deaths
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worldwide were due to cirrhosis. Furthermore, liver cancer represents the fifth most
common cancer and the second cause of death for cancer according to the World Health
Organization (WHO). Studied pathologies can be summarized as:

• focal liver lesions , solid formations that can be benign or malignant,
• liver fibrosis, excessive accumulation of extracellular matrix proteins, such as collagen,
• fatty liver or liver steatosis, conditions based on the accumulation of excess fat in

the liver,
• liver tumors.

A number of studies have sought to develop automated algorithms for
detection [98,141–144], segmentation [143], and classification, [143,145–157] of the diseases
described above.

Yu et al. [98] developed a machine learning system to detect and localize gallstones
and to detect acute cholecystitis using still images for preliminary rapid and low cost
diagnoses. A single-shot multibox detector (SSD) and a feature pyramid network (FPN)
were used to classify and localize objects using image features extracted by ResNet-50
for gallstones and MobileNet V2 to classify cholecystitis. The deep learning models were
pretrained using public datasets. The experimental results demonstrated the capability of
the proposed system to detect cholecystitis and gallstones with acceptable discrimination
and speed and its suitability for point-of-care ultrasound (POCUS).

A recent study by Cha et al. [129] proposed a deep learning model aimed at auto-
matically quantifying the hepatorenal index (HRI) for evaluation of ultrasound fatty liver,
in order to overcome limitations due to interobserver and intraobserver variability. They
developed an organ segmentation based on a deep convolutional neural network (DCNN)
with Gaussian mixture modeling for automated quantification of the hepatorenal index
(HRI) by employing B-mode ultrasound abdominal images. Interobserver agreement for
the measured brightness of liver, kidney, and calculated HRI were analyzed between two
board-certified radiologists and DCNN using intraclass correlation coefficients. The au-
tomatic quantification of HRI through DCNN results were found to be similar to those
obtained by expert radiologists.

Regarding classification, Wang et al. [146] proposed a method to differentiate malig-
nant from benign focal liver lesions through two-dimensional shear-wave elastography
(2D-SWE)-based ultrasomics (ultrasound-based radiomics). The ultrasomics technique was
employed to extract from 2D-SWE images features that were used to define an ultrasomics
score model, while SWE measurements and ultrasomics features were used to define a
combined score model through an SVM algorithm. Good diagnostic accuracy for the com-
bined score in differentiating malignant from benign focal liver lesions was demonstrated.
The authors highlighted, however, that, to achieve more reliable results, a higher number
of cases would be required to better train the ML model. An alternative approach based
on ultrasomics was proposed by Peng et al. [147] who concentrated on the differentiation
of infected focal lesions from malignant mimickers. In particular, they defined an ultra-
somics model based on machine learning methods with ultrasomics features extracted from
grayscale images, and dimensionality reduction methods and classifiers employed to carry
out feature selection and predictive modeling. The experimental results demonstrated the
usefulness of ultrasomics in differentiating focal liver lesions from malignant mimickers.
An alternative approach focusing on ultrasound SWE was proposed by Brattain et al. [149],
who developed an automated method for the classification of liver fibrosis stages. This
method was based on the integration of three modules for the evaluation of SWE image
quality, selection of a region of interest, and use of machine learning-based (SVM, RF,
CNN and FCNN) multi-image SWE classification for fibrosis stage ≥ F2. The performance
of the system was compared with manual methods, showing that the proposed method
improved classification accuracy. A study focused on liver steatosis was published by
Neogi et al. [155]. They presented a novel set of features that exploited the anisotropy
of liver texture. The features were obtained using a gray level difference histogram, pair
correlation function, probabilistic local directionality statistics, and randomness of texture.
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Three datasets that included anisotropy features were employed for the classification of
images using five classifiers: MLP, PNN, LVQ, SVM, Bayesian. The best results were
achieved with PNN and anisotropy features.

4.5. Fetus

Ultrasound imaging was introduced into the field of obstetrics by Donald et al. [158],
and, since then, it has become the most commonly used imaging modality for investi-
gating several factors related to fetal diagnosis, such as information on fetal biometric
measurements, including head and abdominal circumferences, biparietal diameter and
information on fetal cardiac activity. Several scientific studies have been devoted to ad-
vancement of the quality of prenatal diagnoses by focusing on three main issues: detection
of anomalies, fetal measurements, scanning planes and heartbeat [99,100,159–164], seg-
mentation of fetal anatomy in ultrasound images and videos [99,130–132,164–167] and
classification of fetal standard planes, congenital anomalies, biometric measures, and fetal
facial expressions [99,100,163,165,167–173].

A detection approach based on DL was proposed by Maraci et al. [99]. They designed
a method for point-of-care ultrasound estimation of fetal gestational age (GA) from the
trans-cerebellar (TC) diameter. In the first step, TC plane frames are extracted from a short
ultrasound video using a standard CNN based on a variation of the AlexNet architecture.
Then, an FCN is employed to localize TC structure and to perform TC diameter estimation.
GA is finally achieved through a standard equation. A good agreement was found between
the automatic and manual estimation of GA. A recent ML detection method has been
published by Wang et al. [100], who focused on the accurate identification of the fetal
facial ultrasound standard plane (FFUSP), which has a significant role in facial deformity
detection and disease screening, such as cleft lip and palate detection. The authors proposed
an LH-SVM texture feature fusion method for automatic recognition and classification of
FFUSP. Texture features were extracted from US images through a local binary pattern
(LBP) and a histogram of oriented granted (HOG) ; successively, features were fused and
SVM was employed for predictive classification. The performances obtained demonstrated
that the proposed method was able to effectively predict and classify FFUSP.

With respect to segmentation, Dozen et al. [130] proposed a novel segmentation
method called cropping-segmentation-calibration (CSC) of the ventricular septum in fetal
cardiac ultrasound videos. This method was based on time-series information of videos
and specific information for U-Net output calibration, obtained by cropping the original
frame. The experimental results demonstrated a clear improvement in performance with
respect to general segmentation methods, such as DeepLab v3+ and U-net.

A novel model-agnostic DL method (MFCY) was proposed by Shozu et al. [131] in
order to improve the segmentation performance of the thoracic wall in ultrasound videos.
Three standard UNet (DeepLabV3+), pre-trained with the original sequence video and
labels of thoracic wall (TW), thoracic cavity (TC) and whole thorax (WT), were used to
perform a preliminary segmentation of the video sequence. Then a multi-frame method
(MF) was used to extract predictions for each labeled target. Finally, a cylinder method
(CY) integrated the three prediction labels for final segmentation. The results showed
improvement in the segmentation performance of the thoracic wall in fetal ultrasound
videos without altering the neural network structure.

Perez-Gonzalez et al. [132] presented a method, named probabilistic learning coherent
point drift (PL-CPD), for automatic registration of real 3D ultrasound fetal brain volumes
with a significant degree of occlusion artifacts, noise, and missing data. Different acquisition
planes of the brain were preprocessed to extract confidence maps and texture features,
which were used for segmentation purposes and to estimate probabilistic weights by means
of random forest classification. Point clouds were finally registered using a variation of
the coherent point drift (CPD) method that basically assigns probabilistic weights to the
point cloud. The experimental results, although obtained from a relatively small dataset,
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demonstrated the high suitability of the proposed method for automatic registration of
fetal head volumes.

A recent deep learning classification model was developed by Rasheed et al. [165]
for automation of fetal head biometry by employing a live ultrasound feed. Initially,
the headframes were classified through the CNN ALEXNET, obtained in this case from the
ultrasound videos. The classified headframes were then validated through occipitofrontal
diameter (OFD) measurement. Successively, the classified headframes were segmented by a
UNET with mask and annotated images. Then, the least square ellipse (LSE) was employed
to compute the biparietal diameter (BPD) and head circumference (HC). This approach
enabled accurate computation of the gestational age with very reduced interaction of the
sonographer with the system (see Table 3).

Table 3. Summary of classification ML algorithms employed in studies analyzed related to organ
investigated, diagnosis objective, dataset used, and main results achieved.

Ref. Organ Objective Technique Results Datasets

[78] Breast Classification of Pretrained ResNet-101 Sensitivity: 94.34% Private
tumors between for feature extraction Specificity: 93.22% 2099 images

benign and Linear SVM PPV: 92.6%
malignant from for classification NPV: 94.8%
B-mode images More accurate

performances
than radiologists

[89] Breast Classification of 3D CNN Sensitivity: 97.2% Public
tumors between for temporal/spatial Accuracy: 86.3% 221 lesions

benign and extraction Domain knowledge
malignant DKG-TAM for allows diagnostics

from CEUS temporal attention improvements
DKG-CAM for

features concatenation

[91] Breast Highly automatic AutoML Vision Accuracy: 86% Public
classification of For comparison: Sensitivity: 84% 895 images

tumors from CNN and Specificity: 88%
B-mode images ML classifiers F1: 0.83

(RF, KNN, LDA, LR) AutoML Vision
comparable with

other methods

[93] Breast Evaluation of ML 6 ML classifiers: LR Public
methods for LR, RF, Extra Trees, ROC AUC: 90.6% 1345 patients
breast cancer SVM, MLP, XG Boost Brier score: 0.65

diagnosis images

[119] Arteries Characterization and 7 CNN Mean accuracy Public
classification of for data optimization DL: 93.55% 346 patients

carotid ultrasound TL for characterizing TL: 94.55%
plaque tissues carotid plaques and ML: 89%

4 ML models
(KNN, SVM,DT,RF)

[120] Arteries Automation of the HNN for classification Accuracy Public
initial interpretation of aortillac and Normal: 97% 5761 LEAD
of lower extremity trifurcation disease Aortillac: 82% studies

arterial Doppler RF for Femoropopliteal: 90.1% 18,659
and duplex carotid classification Trifurcation: 90.5% duplex
ultrasound studies of stenosis Good performances carotid

studies
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Table 3. Cont.

Ref. Organ Objective Technique Results Datasets

[139] Heart Lightweight and Three teacher Accuracy: 89 % Public
fast transthoracic networks (VGG-16, Six times 16,612
ecocardiography DenseNet and Resnet) faster than echocines
classification for transfer learned huge models

diagnosis of knowledge to
cardiac conditions lighweight models

[146] Liver Differentiation of SVM algorithm AUC: 0.94% Private
malignant from for establishing Sensitivity: 92.59% 175 focal lesions

benign focal liver two predictive Specificity: 87.5%
lesions using models: ultrasomics PPV: 94.59%

2D SWE-based features and NPV: 82.50%
ultrasomics SWE measurements Good accuracy

of combined method

[147] Liver Differentiation of LR and PCA to AUC Private
of infected focal reduce dimension HCC: 0.836% 104 focal

liver lesions of radiomics features CC: 0.766% liver lesions
from malignant NB, DT,KNN,LR,SVM cHCC-CC: 0.74 485 hepatic

mimickers in to obtain Liver metastasis: 0.808 tumors
B-mode images predictive models MH tumor: 0.745

[149] Liver Liver fibrosis Image proc pipeline: AUC Private
classification Quality assessment Specificity: 71% 5526 SWE

with SWE images ROI selection Sensitivity: 95% images
fibrosis classification Better accuracy

with SVM, RF, CNN, FCNN than manual methods

[155] Liver Identification of Five different Sensitivity: 99% Private
liver steatosis classifiers (MLP, Accuracy: 100% 340 images

from anisotropy PNN,SVM,LVQ, with anisotropy
features in B-mode Bayesian) features and

images Three features PNN classifiers
sets including

anisotropy features

[165] Fetus Classification and CNN AlexNet for Accuracy: 96 % Public
segmentation of classification of Almost automatic 10,000 labeled

fetal head headframes gestational age images
from ultrasound CNN Unet for estimation 1000 ultrasound

videos segmentation of videos
classified

headframes

[174] Lungs Development of Deep learning Accuracy Private
a system for based on Reg-STN Frame: 92.2% 623 videos

accurate interpretation trained with Video: 91.1%
of pleural effusion supervised and Good agreement

in LUS images weakly supervised with expert
methods models clinicians

4.6. Lungs

Computed tomography (CT) is considered as the imaging gold standard for pulmonary
disease due to its high reliability. However, CT presents a series of disadvantages because
it is risky due to the presence of radiation, expensive and non-portable. A valid alternative
is represented by lung ultrasound (LU), which is cheap, safe, portable, and is capable of
generating medical images in real-time. LU has been used for many years for the evaluation
of several lung diseases, including tumors [175,176], interstitial diseases [177,178], post-
extubation distress [179], lung edemas [180], and subpleural lesions [181]. In very recent
years, research activity into lung ultrasonography has been growing significantly due to
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the diffusion of the pandemic worldwide. In particular, in COVID-19 evaluation, the use of
AI has assumed an increasingly important role concerning the analysis of images in order
to make rapid decisions and relieve the heavy workload of radiologists.

AI techniques reduce operator-dependence, standardize the interpretation of images
and provide stable results; they have been focused principally on COVID-19 syndrome
detection [101,182–186], segmentation of lung regions [133,182–186], classification of lung
diseases between COVID-19 positivity and COVID-19 negativity [174,182–189].

With respect to detection, Shang et al. [101] proposed a CAD system that consists
of the feature extraction of LUs images through a residual network (ResNet) to assist
radiologists in distinguishing COVID-19 syndrome from healthy and non-covid pneumonia.
The architecture of the ResNet, pre-trained using ImageNet, was modified by adding a
fully connected layer for feature extraction and a global average pooling for features
classification. Then, the gradient-weighted class activation mapping (Grad-CAM) method
was used to create an activation map that highlights the crucial areas to help radiologist
visualization. The CAD system has proved capable of improving radiologists’ performance
of COVID-19 diagnosis in experiments carried out.

An interesting segmentation method for accurate COVID-19 diagnosis has been pro-
posed by Xue et al. [133]. The method is based on a dual-level supervised multiple instances
learning module (DSA-MIL) and can predict patient severity from heterogeneous LUS
data of multiple lung zones. An original modality alignment contrastive learning module
(MA-CLR) is proposed for the combination of LUS data and clinical information. Nonlinear
mapping was trained through a staged representation transfer (SRT) strategy. This method
demonstrated great potential in real clinical practice for COVID-19 patients, particularly
for pregnant women and children.

A classification deep learning procedure was proposed by Tsai et al. [174] who defined
a standardized protocol combined with a deep learning model based on a spatial trans-
former network for automatic pleural effusion classification. Then, supervised and weakly
supervised approaches, based on frame and video ground truth labels, respectively, were
used for training deep learning models. The method was compared with expert clinical
image interpretation with similar accuracy obtained for both methods, which brings closer
the possibility of achieving the automatic, efficient and reliable diagnosis of lung diseases.

4.7. Other Organs

Machine learning ultrasound is being successfully applied to a number of other
organs including:

• Prostate [190–192]: research activity has mainly focused on prostate segmentation
on ultrasound images, fundamental in biopsy needle placement and radiotherapy
treatment planning; it is quite challenging due to the relatively low quality of US
images. In recent years, segmentation based on deep learning techniques has been
widely developed due to several benefits compared to classical techniques which are
difficult to apply in real-time image-guided interventions.

• Thyroid [88,134,193–206]: the risk of malignancy of thyroid nodules can be evaluated
on the basis of nodule ultrasonographic characteristics, such as echogenicity and
calcification. Much activity has been devoted to automate thyroid detection through
CAD systems, mainly based on CNN.

• Kidneys [207–220]: US image-based diagnosis are widely used for the detection of
kidney abnormalities including cysts and tumors. For the early diagnosis of kid-
ney diseases, DNN and SVM are very often used as machine learning models for
abnormality detection and classification.

Tables 1–3 summarize the main features of the analyzed studies subdivided by detec-
tion, segmentation, and classification, respectively.

Figure 7 presents a resuming histogram where the frequency of application of the
different ML techniques in the analysed period is reported for each analyzed organ. As can
be seen, DL techniques based on CNN are clearly the most popular for almost all organs.
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In particular, for breast and liver, which are the most investigated organs, CNN is em-
ployed in about 63 and 50 percent of the cases, respectively. Only for arteries is a slight
predominance of SVM methods observed.

Figure 7. Frequency of ML algorithms application across all organs.

5. ML in US Non-Destructive Evaluation

Ultrasound application to the mechanical field is principally focused on material NDE.
Ultrasound is implemented in NDE to obtain information about the location and size of
subsurface defects in different materials. In general, NDE techniques are employed to
extend component life, reduce manufacturing costs and increase safety. The inspections
typically involve evaluating a material’s response to a physical stimulus, such as ultrasound.
This is often carried out from many angles and positions to build an image of the internal
structure of a component and identify the presence of damage. Defect characterization is
obtained through inspection of NDE data by a human operator that can create consistency
issues, especially when the data is very complex. As data volume increases, inspection by
a single operator becomes very slow, and then more operators who work in parallel may
be necessary, but the results become more inconsistent. These problems have promoted
a push towards the identification of an automated method. Since it is based on a pattern
recognition process, machine learning represents the ideal candidate. Machine learning can
use all available information and produce a more accurate result, increasing automation,
and reducing the possibility that the human operator will create errors. In recent years,
several machine learning techniques have been employed in order to improve the reliability
of ultrasound non-destructive testing [124,221–228].

Pyle et al. [221] proposed a method based on the use of DL for crack characterization in
NDE through ultrasound technology. The principal problem of this method is represented
by the scarcity of real defect data to train on. This problem was solved through an efficient
hybrid finite element (FE) and ray-based simulation employed in order to train a CNN to
characterize real defects. The effectiveness of such a method was demonstrated by sizing
surface-breaking cracks in ultrasonic inline pipe inspection obtaining high characterization
accuracy of the deep learning approach compared to traditional image-based sizing.

Oliveira et al. [222] proposed the application of several novelty detection methods
(identification of novel, or unusual, data from within a dataset), combined with non-
destructive ultrasound testing, to identify structural problems in wind turbine blades.
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In particular, ultrasound signals were preprocessed to extract relevant features through
discrete Fourier transform (DFT) and PCA to reduce noise using wavelet decomposition.
Several novelty detection algorithms have been applied to detect the presence of defects
in wind turbine blades, including k-means, one-class SVM, and distance-based methods.
The results of those novelty detection methods were compared with those obtained from
multi-class classifiers, such as artificial neural networks, and demonstrated very high
discrimination efficiencies.

Li et al. [223] introduced an alternative method of spectral analysis named quantile-
frequency analysis (QFA). QFA is based on trigonometric quantile regression and converts a
time series into a bivariate function of quantile level and frequency variables. For problems
of time series classification, the technique of functional principal component analysis
(FPCA) is applied to the quantile periodogram and the resultant projection coefficients
are employed as features with reduced dimensions for time-series classification. Various
machine learning classifiers were trained and tested by cross-validation using the proposed
features. The study case analyzed was on ultrasound signals that have to be automatically
classified for NDE of the structural integrity of aircraft panels made with bonded aluminum
layers. Three classifiers were employed to evaluate the performance of FPCA: LDA,
quadratic discriminant analysis (QDA), and SVM. The QFA method was found to be more
effective than its ordinary periodogram–based counterpart in delivering higher out-of-
sample classification accuracy.

Arbaoui et al. [229] proposed a methodology for automatic crack detection and mon-
itoring in concrete structures. The method involves three stages. In the first stage, NDE
of the specimen is performed and an ultrasonic signal, which contains information on
the presence of defects, is obtained. Then a multiresolution analysis based on wavelets is
performed to analyze crack sizes at different scales. Finally scalogram features are extracted
by CNN in order to identify the type of defect that will be classified as a crack or not.
CNN is basically composed of four stages, each composed of four layers (convolution,
batch normalization, RELU and pool), and a final FC stage that performs the classification.
The method was tested on a public dataset (SDNET2018) using both AlexNet and ResNet50
architectures, achieving good accuracy.

In the archeology field, a study investigating a new pattern recognition application
for the ML classification of the provenance of archeological ceramics has recently been
published by Salazar et al. [230]. The method is based on non-destructive ultrasonic testing
and data analysis through advanced pattern recognition techniques, including feature
ranking, sample augmentation, semi-supervised active learning, and optimal late fusion.
Ultrasonic characterization of ceramic material from the measured ultrasonic signal is
performed for the construction of a material signature that consists of time, frequency,
and statistical variables defined on the base of a material reflectivity model. More exactly,
the proposed method involves processing of the ultrasound features extracted from a set
of pieces by considering classification on the basis of the fusion of the results from three
different classifiers: LDA, RF, SVM. A problem of archeological provenance classification
of pieces consisting of terra sigillata and non-terra sigillata ceramic shards from the same
archeological sites, Iberian ceramic shards from two cities in Spain, and Roman sigillata
ceramic shards from two origins, was investigated. The experimental results demonstrated
that the fusion-based method achieved the best results in comparison with LDA, RF,
and SVM.

6. Conclusions

In the present review, the most recent ML techniques applied to ultrasound imaging
have been illustrated with a focus on medical diagnostics and NDE. The review commenced
with an overview of the most employed ML and ultrasound imaging techniques in the
analyzed papers and subsequently was devoted to the application of such techniques in
the field of medical diagnostics and NDE.
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From the analysis of the studies examined, in which a great variety of ML algorithms
have been tested, we highlighted the noticeable employment of deep learning techniques
based on CNN for almost all organs, especially for the breast and liver. The use of SVM
methods, in particular for arterial disease diagnosis, was also quite frequent.

The main merits of ML over conventional methods can be summarized as follows.
First, ML methods enable enhancing of the quality of US images, which is lower than
for other imaging technologies due to the common presence of artifacts and noise. ML
approaches also guarantee a more objective evaluation of the data than traditional methods
that involve analysis by operators, often based on a heuristic approach, avoiding consistency
issues. In addition, they provide a reduction in time and cost for evaluation and analysis.
The principal benefits of ML are particularly noticeable in the medical diagnostics field,
where ultrasound techniques are extensively used for the diagnosis of several kinds of organ
diseases. From the papers analyzed, it is evident that ML enables significant improvements
in terms of accuracy in the detection and classification of different tissues and diseases,
and the segmentation of several types of organs. Furthermore, it is able to reduce the
rate of missing or incorrect diagnoses because the algorithms manage to find some details
or particulars that could not be identified by medical operators. The diagnostic results
are often better than those provided by clinicians, both in terms of precision and quality.
In many cases, the usefulness of ML is to assist radiologists by providing a “second
opinion” in clinical preliminary examinations, which should improve their diagnostic
capacity, and reduce the time and effort associated with manual analysis of ultrasound
images. As an important consequence, it is anticipated that the availability of reliable
automatic techniques will democratise effective access to ultrasound diagnostic tools
(POCUS), extending them also to people living in rural zones or developing countries.
A possible drawback highlighted in many of the studies reviewed is the relatively low
number of samples present in databases, which limits the reliability of results. In many
cases, the databases from medical diagnosis are generated by a single type of device and/or
by a single collection site (e.g. institution or hospital), limiting the generalizability of
the ML classification models derived from these databases. Unfortunately, this issue is a
peculiar problem of US images because, based on present clinical practice, their quality
and information content are highly operator-dependent. This also underlines the almost
total absence of ML techniques applied to 3D US images, which are increasingly used in
modern US diagnosis methods.
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