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A B S T R A C T   

Wildfires represent one of the primary disturbance agents in the Mediterranean, significantly affecting the 
ecological integrity of forests. Therefore, understanding the spatial patterns of post-fire vegetation recovery is 
crucial to improving forest restoration planning and assessing the regeneration capacity of different forest stands 
that have been impacted by wildfires. In this study, we analysed post-fire vegetation recovery rates within the 
context of fire severity, pre-fire vegetation, and post-fire climate conditions, for different Mediterranean forest 
classes, namely, Mediterranean pine, holm, deciduous oak forests, sclerophyllous vegetation, and thermophilous 
shrublands. Basilicata, in Italy, was chosen as a study area, as it represents a wide range of forests. 

The Relative Recovery Indicator (RRI) was derived from Normalized Burn Ratio (NBR) patterns extracted from 
30-meter Landsat time series for different wildfires that occurred during the 2004–2016 within Google Earth 
Engine (GEE) environment. A Linear Mixed Model (LMM) was used to test the effect of the different variables on 
the RRI. Results showed a general decrease in recovery rate within five-years post-fire for each forest cover class, 
which is mainly related to pre- and post-fire conditions. Pre-fire vegetation conditions significantly influenced 
post-fire vegetation recovery, especially in sclerophyllous and deciduous oak forests. Post-fire climate conditions 
(e.g., temperature) were also important predictors of vegetation recovery explaining the variation in post-fire RRI 
patterns. The proposed method could provide new insights into the restoration and management of forest eco-
systems in the Mediterranean.   

1. Introduction 

In recent decades, ecosystems have been increasingly affected by 
natural and anthropogenic disturbances that are driven by climate ex-
tremes (Seidl et al., 2017). In the Mediterranean, wildfires represent one 
of the main ecological disturbances, as they greatly disrupt ecosystems 
across structural and functional axes (Pausas et al., 2008). Specifically, 
this region exhibits variability in the post-fire successional trajectories 
that is amplified by several factors, yielding complex ecosystem dy-
namics and disturbance regimes (McLauchlan et al., 2020). Under-
standing how the interaction of environmental factors and post-fire 
successional trajectories would shape future forest ecosystems is 
important in the prediction of post-fire recovery patterns under rapidly 
changing climatic conditions. Fire-linked disturbances in Mediterranean 
forests yield a heterogeneous set of outcomes, driven by the structure 
and composition of plant communities and a variety of wildfire-linked 
factors (e.g., pattern, frequency, and intensity) (Keeley et al., 2011). 
Wildfires impact many aspects of forest ecosystems; for example, they 

can facilitate the loss of biomass via soil erosion and water runoff, 
modifying the following factors: community composition, 
stand-replacing processes, and landscape dynamics (Pérez-Cabello et al., 
2009; Holden et al., 2016; Ludwig et al., 2018). However, wildfires can 
also positively impact the ecological integrity of forests; because they 
play a key ecological role in shaping their structure and composition. 
Specifically, wildfires shape the following: the removal of accumulated 
fuels, the control of insects and diseases (He et al., 2021), the settlement 
of seedbeds, and the release of seeds from “serotinous” cones (Goubitz 
et al., 2002). 

The most Mediterranean species (e.g., Pinus halepensis Mill.) exhibit 
an excellent ability to adapt to fire disturbances, as they possess a suit of 
post-fire recovery strategies (traits). The strategies include post-fire 
recruitment (serotiny; fire-stimulated germination), resprouting (Pau-
sas et al., 2018; Viana-Soto et al., 2020) from underground storage or-
gans, and either fire resistance (thick bark) or fire promotion (i.e., resin 
content and water retention) (Keeley et al., 2011). 

Considering the information above, there is a double link between 
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plants and fire: by acting as fuel, plants determine the frequency at 
which fires occur. Specifically, the occurrence of fires drives the pres-
ence of fire-prone species (e.g., resprouters and seeders), thus plant 
availability and fire occurrence influence each other. However, these 
connections might vary due to pre- and post-fire site environmental 
conditions, affecting the extent of post-fire recovery (Fernández-Gui-
suraga et al., 2023). The pre-fire state of vegetation can shape the dy-
namics of post-fire vegetation recovery; since it is related to the high tree 
density and seed availability (Broncano et al., 2005; Pausas et al., 2004; 
Nioti et al., 2015). Additionally, fire severity is also an important vari-
able in the prediction of post-fire vegetation recovery and succession, as 
it represents the combined influence of fire characteristics and imme-
diate post-fire effects on the local environment (Shvetsov et al., 2019; 
Chen et al., 2011). 

Climate variability is one of the main determinants of post-fire re-
covery (Harvey et al., 2016). The establishment and recruitment of 
plants are generally higher under favourable post-fire climate condi-
tions, (e.g., high precipitation and soil moisture) (Pausas and Bradstock, 
2007). Conversely, increases in the intensity and frequency of climate 
anomalies, such as warmer and drier conditions recorded within Medi-
terranean forests (Rita et al., 2020), can reduce the reproductive po-
tential of forests, resulting in slower post-fire recovery processes, 
especially for resprouting species (Pratt et al., 2014; Pausas et al., 2016). 
According to Batllori et al., 2019, an extreme drought year followed by 
one or two large fire events promotes a shift in dominance when the 
composition of the vegetation is concerned; this shift is manifested as a 
transition from resprouter- to seeder dominance. Consequently, in the 
future, climate change could impact the post-fire responses of species, 
potentially eroding the resilience of Mediterranean forests and driving 
shrublands tipping point (Baudena et al., 2020). However, it is difficult 
to generalize the vegetation recovery dynamics (Pickell et al., 2016). 
This is because these dynamics are driven by an interaction of multiple 
factors, such as plant regeneration strategies, fire characteristics, envi-
ronmental filters, and post-fire climate variability (Pérez-Cabello et al., 
2021). 

Recently, innovative methodologies based on remote sensing (RS) 
data have been developed and proposed as feasible approaches to assess 
the driving factors of post-fire vegetation recovery. Most of these efforts 
were rooted in the use of high-moderate resolution satellite images, such 
as those obtained from Landsat imagery (NASA-USGS) (Wulder et al., 
2022). Due to their wide spatiotemporal coverage, these images were 
useful in the analysis of post-fire recovery patterns through pre- and 
post-fire time series at regional scales (Bright et al., 2019; Chen et al., 
2011; Fernández-García et al., 2018; Meng et al., 2015; Nolè et al., 
2022). The availability of open-access high-performance computing 
such as Google Earth Engine (GEE) (Gorelick et al., 2017), facilitates the 
processing of large geospatial datasets over long time series (Long et al., 
2019). According to Hirschmugl et al. (2017), time series analysis can be 
used to effectively monitor forest disturbances and their associated re-
covery processes through an analysis of spectral variations in the forest 
cover (Röder et al., 2008). Such spectral variations of post-fire vegeta-
tion recovery are assessed through spectral indices such as Normalized 
Difference Vegetation Index (NDVI) (Rouse et al., 1974) and Normalized 
Burn Ratio (NBR) (García and Caselles, 1991). The NDVI is highly sen-
sitive to greenness and photosynthetic activity; therefore, it could be 
considered a proxy for green biomass and pre- and post-fire vegetation 
conditions at different landscape levels. For instance, Chu et al. (2017) 
used NDVI as a proxy for pre-fire vegetation conditions to assess its 
importance in forest recovery post-disturbance, whereas Fernández--
García et al. (2018) assessed the post-fire vegetation greenness of 
Mediterranean pine ecosystems using NDVI Landsat imagery. Recent 
studies have used NBR as a proxy for the assessment of vegetation re-
covery; this is because it showed a lower sensitivity to early post-fire 
greening, making it more suitable than NDVI for characterizing vege-
tation structure, moisture, shadowing, and preventing rapid post-fire 
invasion by herbaceous species especially in the characterization of 

mid- and long-term- post-fire patterns (Bright et al., 2019; Meng et al., 
2014; Schroeder et al., 2011). Overall, new metrics based on NBR pre- 
and post-fire have been designed. For example, Kennedy et al. (2012) 
developed the Recovery Indicator (RI) that was readapted by White 
et al. (2017) to assess post-disturbance vegetation recovery (i.e., wildfire 
and harvest) in Canadian forests. More recently, Frazier et al. (2018), 
proposed a modified version of RI, namely, the Relative Recovery In-
dicator (RRI), to assess spectral post-fire recovery in boreal forests. 
These spectral metrics are sensitive to different vegetation conditions, 
making them suitable for the characterization of mid- long-term re-
covery patterns of forest ecosystems (Nolè et al., 2022). 

To date, many studies have assessed post-fire vegetation recovery 
dynamics and the influence of environmental factors. For example, it has 
been shown that the recovery of vegetation in the Mediterranean region 
is mainly driven by fire severity, topography, post-fire climate, and 
vegetation cover types (Röder et al., 2008). Fire severity and post-fire 
climatic conditions appear to have a strong effect on the mid- and 
long-term vegetation recovery of pine forests (Viana-Soto et al., 2020). 
However, Fernández-García et al. (2018) showed that the recovery of 
the pine forest ecosystems in the other Mediterranean contexts could be 
explained by the pre-fire conditions. Field-based studies conducted in 
Mediterranean forests (i.e., Pinus halepensis Mill., Quercus ilex L.) have 
shown that structural variables before the fire (e.g., high tree density) 
greatly impact vegetation recovery (Pausas et al., 2004). Few remote 
sensing studies in Mediterranean and other boreal forests revealed that 
tree density was an important predictor for post-fire vegetation patterns 
(Chu et al., 2017; João et al., 2018). Although the dynamics of vegeta-
tion recovery and its drivers have been studied under different ecolog-
ical contexts (Fernández-Manso et al., 2016; Martín-Alcón and Coll, 
2016; Viana-Soto et al., 2020), few study have focused on these dy-
namics across different vegetation stands of the Mediterranean. Such an 
approach would be important for gaining a deep understanding of forest 
dynamics, facilitating the creation and implementation of robust 
management-linked solutions. 

In this study, we assessed the post-fire vegetation recovery rates 
according to varying fire severity, burnt area, pre-fire vegetation, and 
post-fire climate conditions across several Mediterranean forest stands. 
Specifically, we aimed to:  

i. investigate post-fire recovery patterns over the period 2002 - 2021 
using NBR-based indicators derived from Landsat, in five Mediter-
ranean forest types (Mediterranean pine, holm and deciduous oak 
forests, sclerophyllous vegetation, and thermophilous shrublands) 
affected by wildfires; 

ii. assess the impact of pre- and post-fire environmental and vegeta-
tional variables, and fire traits (e.g., fire severity, burnt area) on post- 
fire vegetation recovery processes in different forest types. 

2. Material and methods 

2.1. Study area and Wildfire’s database 

In terms of the study area, we chose a region in southern Italy (the 
Basilicata administrative district, hereinafter Basilicata) (Fig. 1). Basi-
licata was chosen because it accurately represents a wide spectrum of 
Mediterranean forests i.e., with vegetation and climates (e.g. ranging 
from the thermo-Mediterranean to the oro-Mediterranean climate) 
(Mancino et al., 2014; Quézel, 1976). 

Generally, in the studied region fires ignite during the dry summer 
season (June to August). This season is characterised by little to no rain, 
low humidity, and high temperatures. Recently, according to the 
regional fire prevention plan 2021–2023 (Regione Basilicata, 2021), the 
increasing duration and intensity of extreme weather events (e.g., heat 
waves, and drought spells) has driven the extension of the fire risk 
period (June - September) and an increase of forest burned area. 

Information on wildfires that occurred during the 2004 - 2016 period 
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within regional forest stands was extracted from the Basilicata fire 
dataset (https://rsdi.regione.basilicata.it/incendi/) (Fig. 1). 

To analyze short- to mid-term post-fire vegetation recovery patterns, 
forest stands reported in the Regional Forest map at the 1:10 000 scale 
(Costantini et al., 2006) were clipped using fire polygons (Fig. 2), and 
classified as per the following categories: Deciduous oak forests (DOF), 
Holm oak forests (HOF), Mediterranean pine forests (MPF), Scle-
rophyllous vegetation (SV), and Thermophilous shrublands (TS) 
(Table 1). 

2.2. Assessing post-fire vegetation recovery and response variables 

For each wildfire that occurred during 2004 - 2016, in the several 
forest categories, the short-term (i.e., five years) post-fire vegetation 
recovery was assessed based on the annual temporal series of Normal-
ized Burn Ratio (NBR), using a seven-year temporal window spanning 
two years before and five years after the fire event for all the considered 
time-spans. Overall, we analysed the NBR temporal series from 2002 to 
2021. 

The NBR was then calculated from the annual time series Landsat 7 
Level 2, Collection 2, Surface Reflectance Tier 1 (https://www.usgs. 
gov/media/files/landsat-4–7-collection-2-level-2-science-product-guid 
e) images after cloud masking, using the JavaScript-based cloud 
computing platform, Google Earth Engine (GEE). Then, for each wild-
fire, an annual composite image was obtained from all the scenes in each 
annual period, beginning from the first day of the year and continuing to 
the last day of the year. Landsat 7 C02 T1 L2 dataset contains the 
atmospherically corrected surface reflectance and land surface temper-
ature data derived from Landsat 7 ETM+ sensor and contains 4 visible (i. 
e., blue, green, and red) and near-infrared (VNIR) bands, 2 short-wave 
infrared (SWIR-1 and SWIR-2) bands processed to orthorectified sur-
face reflectance, and one thermal infrared (TIR) band processed to 
orthorectified brightness temperature. The product includes cloud, 
shadow, water, and snow mask produced using the CFMask algorithm 
(Foga et al., 2017). 

According to the period analysed, in this context, only Landsat 7 was 
used due to its difference in spectral range in infrared bandwidth (NIR 

and SWIR) with Landsat 8 sensor. Although the overall reliability of 
Landsat sensors harmonization (Roy et al., 2016), infrared-based in-
dicators such as NBR tested on the vegetation of the study area by 
Mancino et al. (2020), showed a poor correlation between the two 
sensors, highlighting the existence of a non-linear component between 
the two sensors also related to different classes and levels of vegetation 
cover. In this regard, the harmonization between ETM+ and OLI sensors 
was tested within Google Earth Engine but gave overestimated values of 
the indices. 

Consequently, the dataset was pre-processed using the Gap-Filling 
algorithm (USGS, 2004) to fill the data gap created by the Scan Line 
Corrector (SLC) in each image after May 31, 2003. 

The NBR was calculated as follows: 

NBR =
(ρNIR − ρSWIR2)

(ρNIR + ρSWIR2)
(1)  

where ρNIR and ρSWIR2 represent the surface reflectance in the near- 
infrared and short-wave infrared regions of the Landsat 7 SR bands 
SR_B4 and SR_B7, respectively the NBR spectral metric was used to es-
timate the Relative Recovery Indicator (RRI). 

Post-fire vegetation spectral recovery for each burned area was 
assessed using NBR-based RRI (Frazier et al., 2018). 

The RRI, was calculated using a two-year NBR pre- and five-year NBR 
post-disturbance window (7 years): 

RRI =
ARI

ΔNBRdist
(2)  

where ARI is the absolute recovery indicator and ΔNBRdist is the change 
in NBR due to fire disturbance, calculated as the difference between the 
average value of NBR in the two years before fire occurrence (NBRpre-fire) 
and NBR value in the year when the disturbance occurred (NBRy0). 

In Eq. (3) ARI was calculated as follows: 

ARI = Max
(
NBRy+5,NBRy+4

)
− NBRy0 (3)  

where Max(NBRy+5, NBRy+4) is the maximum of NBR values four and 
five years after the disturbance, and NBRy0 is the NBR value in the year 

Fig. 1. Map of burned areas in Basilicata Region from 2004 to 2016 (https://rsdi.regione.basilicata.it/incendi/). The study area is indicated in red on the inset map, 
within the context of the South Italy. The red color shows burned areas. 
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when the disturbance occurred. Therefore, the RRI metric compares the 
spectral recovery magnitude to the spectral disturbance magnitude 
assessed as ΔNBRdist. 

RRI values vary between 0 and 2, zero means no spectral recovery 
occurred within the post-disturbance period; a value of one indicates 
complete spectral recovery of pre-disturbance vegetation cover (Fig. 4); 
and, values greater than one are reflective of instances in which spectral 
recovery was greater than spectral disturbance (full description of the 
RRI spectral indicator is presented in Frazier et al. (2018)). 

Consequently, in this study, the use of RRI as a response variable 
(Table 2) was expected to account for different pathways of post-fire 
forest succession in the studied region, which can be driven by fire 
severity and environmental conditions in the Mediterranean ecozone. 

2.3. Assessing predicted vegetation recovery drivers 

Five explanatory environmental variables, namely, Relative differ-
enced Normalized Burn Ratio (RdNBR), Burnt area (BrnAREA), pre-fire 
maximum of Normalized Difference Vegetation Index (NDVIpre_Max), 
precipitation (P), and a maximum of temperature (Tmax) were derived to 
model post-fire patterns. These variables (i.e., briefly described in the 
following section) were organized into three groups: fire traits, pre-fire 
vegetation conditions, and post-fire climate conditions (Table 2). 

2.3.1. Fire traits 
Fire severity, fire regime, and fire frequency are important factors 

that alter the structure and composition of post-fire vegetation. The 
spectral degree of fire-induced changes in the vegetation cover was 
investigated by differentiating between NBR pre- and post-fire imagery 
(dNBR) (Parks et al., 2014). Although dNBR provides good performance, 
especially for moderate-low severity areas, relativised forms of severity 
provide a robust measure and classification of fire severity over a broad 
range of fires and vegetation cover types. In this study, the Landsat 7 
Relative dNBR (RdNBR) (Miller et al., 2009) images for each fire patch 
were calculated and used as a proxy for fire severity on the Google Earth 
Engine (GEE) platform. RdNBR was then assessed by dividing dNBR 
(differenced Normalized Burn Ratio) by the square root of the NBR 
pre-fire images. Positive values of RdNBR correspond to severely burned 
sites and represent a decrease in vegetation cover, whereas negative 
values are indicative of an increase in vegetation cover, as for dNBR 
(Key and Benson, 2006). 

Other fire metrics, (e.g., Burnt area (BrnAREA)) were extracted from 
the original fire dataset and used to test the fire size and fire patch 
characteristics of the previously selected wildfire areas, using ArcGis. 
This factor can be representative of residual surviving trees and seed 
availability, which drive the post-fire regeneration of vegetation (Liu, 
2016). 

2.3.2. Pre-fire vegetation conditions 

Pre-fire vegetation metrics such as those related to productivity and 
phenology were used to capture several facets of pre-fire vegetation 

Fig. 2. Locations of the forest burned area within the Basilicata Region. The study area is indicated in red on the inset map, within the context of the South Italy 
(shown in light gray). The red dots indicate the wildfires occurred during the period 2004 - 2016 (https://rsdi.regione.basilicata.it/incendi/) in the forest categories 
(Deciduous oak forests, Holm oak forests, Mediterranean pine forests, sclerophyllous vegetation, and Thermophilous shrublands). 
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conditions (i.e., tree density, tree age, basal area, biomass, and species 
composition) and their usability in the prediction of short- and mid-term 
post-fire vegetation recovery capacity (João et al., 2018). Since NDVI is 
the most widely used RS index to represent vegetation-linked conditions 
and their associated biophysical parameters, it was used as a proxy for 
pre-fire vegetation conditions. The pre-fire maximum NDVI (NDVIpre_-

Max) was calculated based on pre-disturbance Landsat 7 C02 T1 L2 im-
agery for each wildfire, within GEE. 

NDVI was calculated using the reflectance of near-infrared (Band 

SR_B4) and red (Band SR_B3) of Landsat pre-fire images: 

NDVI =
SR B4 − SR B3

SR B4 + SR B3
(4)  

2.3.3. Post-fire climate conditions 
Yearly precipitation and temperature, which were used as a proxies 

of post-fire climate conditions were downloaded for the 2005 - 2021 
period from the TerraClimate dataset (http://www.climatologylab.or 
g/terraclimate.html). 

Post-fire yearly precipitation (P) was summarised, and post-fire 
yearly maximum temperature (Tmax) was calculated as the average of 
the maximum temperature for each wildfire polygon, in the R envi-
ronment (R Core Team, 2020). Specifically, post-fire climate conditions 
were considered to account for the potential effects of climate variability 
on vegetation recovery across different temporal trends. The five-year 
post-fire moving average (i.e., t, t+1, t+2, t+3, t+4) of climate conditions 
(P, Tmax) was then extracted. Specifically, t refers to P and the Tmax of 
one-year post-fire; t+1 refers to 2-year post-fire moving average of P and 
Tmax; t+2 refers to 3-year post-fire moving average of P and Tmax; t+3 
refers to 4-year post-fire moving average of P and Tmax; and t+4 refers to 
5-year post-fire moving average of P and Tmax. 

2.4. Statistical analysis 

RRI differences among five forest classes (i.e., DOF, HOF, MPF, SV, 
and TS) underwent an ANOVA analysis followed by Tukey’s post hoc 
multiple comparisons tests. The RRI linear trends throughout the whole 
time-span period (2002 - 2021) were assessed via Theil–Sen’s slope 
estimator, using the “mblm” R package version 0.12.1 (Komsta, 2019), 
and trend significance (p < 0.05) was tested using non-parametric 
Mann-Kendall tests. 

A Linear Mixed Effect Model (LMM) was fitted using the ‘nlme’ 
package (Pinheiro et al., 2021) in R environment v.4.0.0 (R Core Team, 
2020) to assess the effect of fire severity (RdNBR), burnt areas 
(BrnAREA), and pre-fire vegetation conditions (NDVIpre_Max) (centered 
and scaled fixed factors), on the vegetation response variable (RRI). The 
forest cover classes were included as a random factor. The random-effect 
structure of the model was then optimized, to test whether including 
extra random-effect terms (i.e., random slopes) for forest cover classes 
improved the fit of the model. Different random structures were 
compared through a Likelihood Ratio Test (LRT), which approximately 
follows a chi-square distribution (Zuur et al., 2009). When comparing 
models that varied in their random structure but had no fixed effects, 
these models were fit using restricted maximum likelihood (REML) to 
prevent biased estimators for the variance terms. Finally, models were 
refitted with REML to estimate model parameters. Marginal and con-
ditional R2 scores (Nakagawa et al., 2013) were calculated to examine 
the variation explained by models using the “r.squaredGLMM” function 
in the “MuMIn” package. The residual diagnosis was performed to check 
the validity of the model assumptions (normality and homoscedasticity 
of residuals). 

To quantify the proportion of variance explained by fixed and 
random terms, a full partitioning of variance into three components was 
calculated using the r2mlm function from the “r2mlm” (Shaw et al., 
2022) R package: variance attributable to fixed predictors, variance 
attributable to random intercept variation, and unexplained residual 
variance. 

The contribution of fixed effects to the variance of dependent vari-
ables was computed using the function “partR2” in the R package 
“partR2” (Stoffel et al., 2021). The recommended number of 1000 
parametric bootstrap iterations, was used to determine the 95% confi-
dence intervals of estimates. 

The residual variance of vegetation response (RRI), unexplained by 
the previous model, was correlated with post-fire climate conditions, 
using LMM again. Specifically, five Linear Mixed Effect Models (i.e., Mt, 

Table 1 
Description of five forest categories (DOF, HOF, MPF, SV, TS) included in this 
study.  

Forest Type Species Forest classes – Basilicata 
Regional Forest Atlas ( 
Costantini et al., 2006) 

Area (ha)

Deciduous oak 
forests (DOF) 

Quercus cerris 
L., Quercus 
pubescens 
Willd., Quercus 
frainetto Ten. 

115–116–117–118–119–120 184032,8 

Holm oak forests 
(HOF) 

aQuercus ilex 
L. 

130 12699,5 

Mediterranean 
pine forests 
(MPF) 

Pinus 
halepensis 
Mill., Pinus 
pinea L., Pinus 
pinaster Aiton. 

127–128–129 19383,8 

Sclerophyllous 
vegetation 
(SV) 

bQuercus ilex 
L., Phillyrea 
latifolia L. 
Pistacia 
lentiscus L., 
Salvia 
rosmarinus L. 

131–132–133–134–135 33841 

Thermophilous 
shrublands 
(TS) 

Prunus L., 
Crataegus L., 
Juniperus L. 

124–125–126 24589,3 

Note: In the table, Quercus ilex L. is specified in two different categories: Holm 
oak forests (HOF) and Sclerophyllous vegetation (SV). HOF include the arboreal 
holm oak (aQuercus ilex L.) characterizing the high Mediterranean maquis, 
widespread on the rugged slopes and within mixed forests with other broad- 
leaved trees, but sometimes also along the coast. SV includes shrubby Holm 
oak (bQuercus ilex L.) with other sclerophyllous species (Phyllyrea latifolia L., 
Pistacia lentiscus L., Salvia rosmarinus L.) as reported in the table. 

Table 2 
List of response and explanatory variables used in the Linear Mixed Model 
(LMM) analysis.  

Variable 
Group 

Indicator Description Units 

Response variables 

Post-fire 
forest 
recovery 

Relative Recovery 
Indicator (RRI) 

A proxy for post-fire 
vegetation recovery 

Values 
between 
0 and 2 

Explanatory variables 

Fire traits RdNBR A proxy for fire severity Values 
between − 2 
and 2 

BrnAREA Burnt patches area (ha) 
Pre-Fire 

vegetation 
condition 

NDVIpre_Max A proxy for productivity 
and phenological 
processes pre-fire 

Values 
between − 1 
and 1 

Post-fire 
climate 
conditions 

Precipitation (P) Mean of precipitation 
following fire event (0–5 
years observations) 

(mm) 

Temperature_max 
(Tmax) 

Mean of maximum 
temperature following 
fire event (0–5 years 
observations) 

(◦C)  
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Mt+1, Mt+2, Mt+3, and Mt+4) were applied to assess the relationship 
between the residuals of the fitted RRI model and precipitation (P) and 
maximum temperature (Tmax), using as a random factor the forest cover 
classes. Marginal and conditional R2 scores, repeatability of the R2, and 
the contribution of fixed effects to the variance of dependent variables 
were calculated following the procedure described above. 

3. Results 

3.1. Post-fire vegetation recovery patterns 

The analysis of five-year post-fire vegetation recovery for each 
Mediterranean burned forest class (i.e., MPF, SV, DOF, TS, and HOF) 
based on NBR-indicator patterns derived from Landsat, showed an 
average RRI value below one for all the analysed forest categories 
(Figs. 3f and 4). Such a low value could be indicative of an incomplete 
recovery within the five years after fire disturbances, with the lowest 
recorded values for DOF and TS forest classes (Figs. 3c and 3d). As 
shown in panels a, b, c, d, and e of Fig. 3, RRI decreases monotonically 
across the 2004 - 2016 period, with no-significant trends across all forest 
classes. However, by observing individual forest classes among fire 
years, the difference in the RRI trends became apparent. Specifically, 
MPF and TS decreased whereas SV, DOF, and HOF forest classes 
increased. MPF seemed to be comparable with SV patterns, peaking in 
recent years after a fire disturbance (2012 - 2016); on the other hand, 
DOF and TS showed the lowest spectral recovery, especially for fires that 

occurred during 2012 - 2016. The RRI pattern of HOF was constant 
compared to those of the other forest classes. 

3.2. Assessing drivers for post-fire vegetation recovery monitoring 

Based on the previous section, the RRI at five years after fire 
disturbance, exhibits great suitability as a proxy for short- and mid-term 
vegetation recovery for different forest stands (i.e., MPF, SV, DOF, TS, 
and HOF). Consequently, using a Linear Mixed Model (LMM), the RRI 
was selected as a vegetation recovery response variable that could be 
driven by predictors such as fire severity, burnt area, and environmental 
conditions. 

The LMM (RRI~ RdNBR + BA + NDVIpre_Max) with 331 observations 
used as input, explained a modest proportion of the variability (ca. 18%) 
among forest classes (i.e., MPF, SV, DOF, TS, and HOF) (Fig. 5c). 

No strong multi-collinearity among predictors (i.e., BrnAREA, 
RdNBR, and NDVIpre_Max) was found. The results of LMM-based analysis 
showed no-significant effect of the fire traits (i.e., RdNBR and BA), 
whereas it showed that NDVIpre_Max could be used to characterize post- 
fire recovery trends (RRI) (Table 3, Fig. 5a). 

A pre-fire vegetation indicator, namely, NDVIpre_Max appeared to be 
significantly and negatively correlated with RRI, notably for DOF and SV 
classes. 

Such results were explained better on the right panel, where the RRI 
trend was positive in the SV sites. This indicates that vegetation in SV 
sites recovered at a high pre-fire vegetation conditions value 

Fig. 3. Temporal variability of the average Relative Recovery Indicator (RRI) for different forest classes (Deciduous oak forests, Holm oak forests, Mediterranean 
pine forests, Sclerophyllous vegetation, and Thermophilous shrublands) over the 2004 - 2016 period. Theil–Sen’s slope coefficients are reported, where missing 
asterisks denote no statistical significance at p<0.05 (*) (panels a, b, c, d, e). Panel f) shows the boxplot of the distribution of the RRI over the whole-time span (2004 - 
2016) for different forest classes. Each box represents the 75th to 25th percentiles, the bold line shows the median, upper and lower marks are the largest to smallest 
observation values which are less than or equal to the upper and lower quartiles plus 1.5 times the length of the interquartile range. Circles outside the lower-upper 
mark range represent outliers. Different letters mean statistical significance for p<0.05. 
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Fig. 4. Relative Recovery Indicator (RRI) calculated for the wildfires occurred during the period 2004 − 2016 in the forest categories (Deciduous oak forests, Holm 
oak forests, Mediterranean pine forests, Sclerophyllous vegetation, and Thermophilous shrublands). The insets show the RRI maps of some wildfires that occurred in 
the Deciduous oak forests, Mediterranean pine forests and Sclerophyllous vegetations in 2007, 2008, 2013, 2014 and 2016. The RRI values vary between 0 (light 
green) and 2 (dark green), zero means no spectral recovery, a value of one indicates complete spectral recovery, and values greater than one more spectral recovery 
than spectral forest disturbance. 

Fig. 5. On left (a), the beta weights (BW) and confidence interval of the estimates of the linear mixed model (LMM) of the Relative Recovery Indicator (RRI). Points 
represent the standardized slope of linear trends (β), the gray bars are 95% confidence intervals of the linear trend estimates. Center (b), estimated of the random 
intercept and confidence interval of the from the fitted model. Right (c), the relative variance decomposition for the RRI representing the proportion of variance 
explained by fixed factors (dark gray), the proportion of variance explained by random factors (light gray), and the proportion of unexplained variance (white). 
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(NDVIpre_Max). In contrast, a negative trend in DOF sites was found, 
explaining slow vegetation recovery at high pre-fire vegetation condi-
tions (NDVIpre_Max). While the trend of RRI with NDVIpre_Max was not 
significantly different among HOF, MPF, and TS forest classes (Fig. 5b). 

Furthermore, the residual variance unexplained (R2Marginal) by the 
model (LMM) (ca. 80%) of the vegetation response variable (RRI) 
(Fig. 5c, right panel), was correlated to the post-fire climate conditions 
using five Linear mixed models (LMM) (Mt, Mt+1, Mt+2, Mt+3, Mt+4). 
Five yearly (t, t+1, t+2, t+3, t+4) precipitation (P) and maximum tem-
perature (Tmax) were comprehensively analysed with post-fire vegeta-
tion patterns, for each random forest class (Fig. 6A). 

As shown in Fig. 6A, both yearly P and Tmax displayed a significant 
correlation with the residual variance (R2 Marginal) of RRI. LMM 
models of individual climate parameters showed that Tmax was best at 
explaining the variability of RRI, first highlighting an increase after one 
year followed by a consequent decline of post-fire vegetation patterns 
over four years after fires. While five-year post-fire vegetation recovery 
(RRI) compared with P showed a constant trend that increased slightly 
due to the high precipitation (Fig. 6B). 

4. Discussion 

Post-fire vegetation patterns were analysed using LTS NBR-based 
metric (RRI) and related fire characteristics, pre-fire vegetation, and 
post-fire climate conditions to elucidate vegetation recovery of 331 
wildfire events (2004 - 2016) that occurred in the forests of the study 
area. None of the analysed burnt patches recovered within the five years 
from fire disturbance, showing RRI values below the threshold (RRI<1) 
of complete spectral recovery (Fig. 3). In the observed ecosystems, two 
main traits-groups of species were identified, according to the post-fire 
recovery strategies: seeder species (e.g., MPF) that are able to produce 
massive post-fire seed dispersal; and resprouting species (e.g., DOF) 
which exhibits a large-scale recovery of most of its burned individuals 
(Rodrigo et al., 2007). The rapidity of these processes could be reflective 
of the evolutionary adaptations of Mediterranean vegetation to fire 
exposure and the low competition for sunlight, nutrient availability, and 
reduced water losses by transpiration that are observed after a fire 
disturbance (Cerdà and Doerr, 2005; Meneses, 2021). However, the 
pattern observed by the studied Mediterranean species may be widely 
variable due to the influence of local abiotic factors such as topographic 
or climate conditions. Specifically, RRI decreases over the post-fire 
period for most forest classes, showing a marked decrease in recent 
years (2012 - 2016) among the burned stands covered by resprouting 
species such as Deciduous oak forests and Thermophilous shrublands 
(Figs. 3c and 3d). This result is apparently in contrast with the known 
post-fire recovery strategies of this vegetation. When mixed Mediterra-
nean ecosystems are concerned, specifically those with deciduous 
hardwood oaks (resprouters) are generally able to regenerate more 
rapidly than coniferous species (seeders) (e.g., Pinus). As confirmed 
through field observations conducted within the Mediterranean 
pine-oak ecosystem, oak started to regenerate vigorously one year after 
a fire disturbance (Vasilakos et al., 2018). The same applies for the 
Thermophilous shrublands class, which mainly consists of resprouter 
species that are highly adapted to the wildfires of the Mediterranean 
(Broncano et al., 2005). 

Thus, the low recovery trends observed in our study during 2012 - 
2021 for the more resilient forest stands such as DOF and TS, can be 
attributed to the drier and warmer conditions recorded in the study area 
in recent years (2012 - 2017) (Coluzzi et al., 2020). This condition 
greatly contributed to the unusually large number of wildfires (Regione 
Basilicata, 2021). This result confirms that an increase in the frequency 
and intensity of fires within the Mediterranean, as a result of more 
extended and severe seasonal droughts (Stephens et al., 2013), can drive 
the adaptive strategies exhibited by species, culminating in the loss of 
ecological integrity in the forests of interest (Viana-Soto et al., 2020). 
However, there are other mechanisms governing plant responses to fire 
disturbance; these mechanisms are linked to onsite factors such as fire 
severity, pre-fire vegetation, and post-fire climate conditions (Shvetsov 
et al., 2019). 

Results highlighted the pre-fire vegetation condition (NDVIpre_Max) as 
the most important factor in explaining a significant variation of vege-
tation RRI recovery patterns, particularly for SV and DOF. The strengths 
of NDVI as a proxy of productivity, seasonality, phenology, and green-
ness, and its suitability in the assessment of tree-cover density have been 
documented in recent studies (João et al., 2018; Keersmaecker et al., 
2014). Chu et al. (2017), testing the multiple predictors of post-fire re-
covery in the boreal forests, showed that NDVI, used as a pre-fire factor, 
was positively correlated with post-fire Larch regeneration; the rapid 
recovery was then attributed to the high pre-fire basal area, which was 
shown to be related to the seed and seedling densities (Talucci et al., 
2020). A higher pre-fire NDVI thus results in higher seed productivity 
and the availability of a bank of roots and stumps for resprouting during 
vegetation recovery (Pausas et al., 2004). The positive trend of SV 
vegetation recovery (RRI) in our study, suggests that the pre-disturbance 
optimal productivity and the high tree density may be suitable for pre-
dicting post-fire vegetation recovery; this finding is congruent with that 

Table 3 
Linear mixed-effects models summary statistics. Fit of the Relative Recovery 
Indicator (RRI) linear trend over the 2004–2016 period, with forest cover classes 
as fixed effect dummy coded) - Bold values represent statistical significance at 
p<0.05. Est, estimates; CI, standardized confidence interval of the estimates; 
asterisk (*) denote interaction term; sigma-squared (σ2), within-group variance; 
ICC. Intra Class Correlation; N, number of levels of the random variable; Obs.: 
number of observations; R2m= marginal R-square (proportion of variance 
explained by fixed factors); R2c = conditional R-square (proportion of variance 
explained by fixed and random factors).   

RRI 

Predictors Estimates CI p 

(Intercept) 0.11 -0.17 – 0.38 0.453 
BrnAREA 0.01 -0.09 – 0.11 0.867 
RdNBR -0.02 -0.12 – 0.09 0.768 
NDVIpre_Max -0.24 -0.36 – -0.12 <0.001 

Random Effects 

σ2 0.86 
ICC 0.08 
N–LEV 5 
Observations 331 
R2m/R2c 0.058 / 0.137  

Fig. 6. Estimated marginal R-squared of the relationship between residuals of 
the fitted RRI (Relative Recovery Indicator) linear mixed model (LMM) with 
five LMM (Mt, Mt+1, Mt+2, Mt+3, Mt+4) of post-fire climate (precipitation and 
temperature) conditions. On the left, the marginal r-square of the relationship 
of the residual of the RRI model with the post-fire climate conditions (Tem-
perature and Precipitation at the year t and t+1, t+2, t+3, t+4). On the right, the 
marginal r-square of the relationship of the residual of the RRI model with the 
post-fire climate conditions (Temperature and Precipitation separately at the 
year t and t+1, t+2, t+3, t+4). 
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of Broncano et al. (2005), who showed the reliability of high pre-fire tree 
density within the context of predicting the post-fire vegetation recovery 
of SV species (e.g., Quercus ilex L.). Furthermore, Walker et al. (2021) 
also concluded that higher pre-fire cover density increases natural 
post-fire recruitment, which creates conditions that are conducive to 
seedling recruitment and establishment. 

However, pre-fire vegetation can be related to fuel-load variability, 
which yields fire events of varying intensities (Whitman et al., 2018) 
that consequently influence post-fire regeneration (Nioti et al., 2015). In 
this study, fire severity (RdNBR) and burnt areas (BrnAREA) explained 
no significant pattern of RRI (Table 3, Fig. 5a), proving that they are not 
good predictors in monitoring vegetation recovery processes. The results 
suggest that fire severity may have a negative effect on recovery only in 
the first year after the fire. As confirmed by field observations conducted 
within the Chapparal shrublands ecosystem, fire severity effects are 
mostly short-lived, i.e., by the second year they are greatly diminished 
(Kelley et al., 2008). On the other hand, the success of post-fire vege-
tation recovery based on pre-fire vegetation conditions (e.g., stand 
density and pre-fire basal area) may also depend on the microclimate (e. 
g., moisture availability) (Littlefield, 2019) and soil properties that 
persist after fires (Fernández-García et al., 2019). 

In contrast to the positive trend between RRI and NDVIpre_Max 
observed for SV, the RRI of DOF displayed a negative trend compared to 
its high pre-fire condition; this is reflective of the slow recovery of DOF, 
which could be related to the post-fire weather conditions. Pausas and 
Bradstock (2007) also showed that no recruitment of most Mediterra-
nean obligate resprouter species occurs after fire when the fitness of 
their traits (resprouting) is changed along disturbance gradients (e.g., 
drought condition). Although resprouting species can take advantage of 
existing root systems in stressful conditions (Bussotti and Pollastrini, 
2020; Davis et al., 2018), there are some metabolic costs, such as higher 
allocation of biomass to the roots and a longer time to reach sexual 
maturity (Liu et al., 2015). Consequently, intense droughts occurring in 
the year after a fire event can yield a great reduction in vegetation 
recruitment. 

Even though we evaluated multiple factors related to fire and envi-
ronmental conditions that affect the patterns of post-fire forest succes-
sion in the Mediterranean forest classes, these factors only accounted for 
ca. 18% of the variance in forest recovery explained by the models. This 
is probably due to the limited number of fires studied and the number of 
parameters that were considered. Many other parameters, such as 
climate conditions (João et al., 2018; Hao et al., 2022), unstudied in the 
first LMM model, may also have a strong direct or indirect effect on 
post-fire recovery trends, therefore, their inclusion could have greatly 
impacted our findings. 

Consequently, we deepened the analysis by assessing the unex-
plained residual variance (R2Marginal= ca. 80%) of RRI from the model 
(LMM Fig. 5) with yearly precipitation (P) and maximum temperature 
(Tmax) used as a proxies of post-fire climate conditions. 

Our results show a significant and positive correlation with RRI 
trends in each forest class, pointing to their suitability in explaining the 
variability of post-fire vegetation processes. Specifically, the precipita-
tion (P) induced a slight increase in RRI value one year after the fire 
across all forest classes (i.e., DOF, TS, SV, MPF, and HOF) (Fig. 6B). This 
positive trend, as highlighted by Xofis et al. (2021), suggests that soil 
moisture combined with high precipitation represents a key driver for 
the post-fire recovery of the Mediterranean ecosystem. In the studies by 
Viana-Soto et al. (2017) and Röder et al. (2008), precipitation positively 
influenced the post-fire recovery of the Mediterranean MPF and DOF 
forest classes. Our results show that maximum temperature (Tmax) over 
the post-fire period led to the high variability of vegetation recovery 
patterns in each forest class. Specifically, we observed an increase in the 
temperature after one year of fire and a consequent decline in the last 
period (Fig. 6B). This peak value of maximum temperature (Tmax) fol-
lowed by a drought period, could shift recovery pathways, constraining 
new recruitment and growth. Similar results have been reported by 

Bright et al. (2019) regarding the variation in post-fire NBR vegetation 
patterns explained by post-fire climate anomalies (e.g., maximum tem-
perature). Analysis of trends and post-fire climate parameters conducted 
by Viana-Soto et al. (2020) within Mediterranean pine forests, revealed 
that the stage of recovery slows down when drought periods persist after 
fires. Therefore, a decrease in moisture contents due to seasonal shifts in 
drought and high temperatures probably impacts vegetation recovery 
according to the different pre- and post-fire strategies related to seed 
quality, seedling establishment, and resprouting capacity. In contrast, an 
increase in temperature and post-fire droughts expected in the Medi-
terranean basin (IPCC, 2021), can hinder the recovery-linked processes 
of Mediterranean vegetation. 

The contrast in regeneration niche after fires between resprouters 
and seeders according to the root characteristics suggests that they are 
subjected to different degrees of environmental stress and consequently 
to different evolutionary forces (Vilagrosa et al., 2014; Hislop et al., 
2020). In general, seeder species show a higher resistance to post-fire 
water stress, and less vulnerability to aridity than resprouters (Pausas 
et al., 2016; Pratt et al., 2014). Thus, the slow recovery processes of DOF 
observed herein could be related to the increase in post-fire temperature 
reducing their resprouting capacity due to water-stress cavitation. 
Indeed, the reduction of precipitation makes oak more vulnerable, 
especially in the initial stages of its life cycle, and consequently, severe 
droughts will affect postfire regeneration capacity (Marañón et al., 
2020). A recent study conducted in the Mediterranean forests showed 
that precipitation deficits were associated with changes from Deciduous 
Oak Forests to other land cover types (e.g., forests with xeric species) 
(Acacio et al., 2017). With results congruent with those of Sheffer 
(2012), we found that the intensification of aridity improved the per-
formance of pine in pine-oak ecosystems, whereas it negatively 
impacted the reproductive and resprouting performance of oak. In 
recent decades, even Mediterranean evergreen oak Quercus ilex L. which 
has ecological plasticity greater than of other deciduous oak resprouters 
(Salleo et al., 1990), exhibit signs of drought-induced dieback (Genti-
lesca et al., 2017; Encinas-Valero et al., 2022). In our study, the RRI 
patterns of HOF were more constant than DOF patterns, but during the 
post-disturbance period, plants could be more susceptible to 
drought-induced mortality. Baudena et al. (2020), confirmed that an 
increase in aridity could disrupt the resilience of oak forests. Thus, the 
combination of increasing frequencies of climate anomalies and wild-
fires may drive vegetation transitions in Mediterranean ecosystems, and 
these irreversible trends could occur more abruptly than previously 
predicted (Nolan et al., 2021). Although a slight decrease in temperature 
was observed over the analysis period from fire disturbance, long-term 
observations of similar climate gradients could differentially affect 
vegetation responses depending on water availability. Thus, increasing 
differences in the post-fire recovery capacity of Mediterranean forest 
ecosystems may be expected in the future based on the variability of 
spatiotemporal climatic extremes. 

5. Conclusions 

The relative recovery indicator (RRI), based on Landsat time series 
(LTS) data allowed us to analyze the post-fire regeneration processes of 
multiple Mediterranean forest classes in south Italy. Here, we found that 
none of the forest classes analysed over the whole study period (2002 - 
2021) rapidly recovered within the five years after a fire disturbance. 
The different classes exhibited a lot of variability in terms of their 
recovery-linked capabilities throughout the study period. Differences in 
post-fire recovery magnitude and trends could be related not only to fire- 
adaptive vegetation strategies but also to many mechanisms governing 
plant responses to fire disturbance. The appraisal of environmental and 
site-specific drivers of the recovery processes showed that fire severity 
was not a key determinant of RRI; however, the opposite was found to be 
true within the context of the pre-fire vegetation condition, especially 
regarding the short- and mid-term recovery of Deciduous oak forests and 
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Sclerophyllous vegetation. However, pre-fire condition was shown to 
influence post-fire recovery, which may be hindered by post-fire climate 
conditions, especially within the context of DOF. Maximum temperature 
and precipitation tested with RRI patterns were shown to be good in-
dicators of post-fire vegetation recovery, providing useful insights that 
could be applied towards understanding its variability. High precipita-
tion favours a progressive increase in regeneration, making it a good 
proxy for post-fire moisture contents that facilitate seed germination and 
regrowth of Mediterranean forests. While high temperatures after one 
year of fire can be a proxy for the effects of drought, which have been 
linked to the inhibition of the recovery of resilient stands (e.g., 
resprouters). 

The analysis of RRI with environmental variables effectively 
captured the distribution of vegetation patterns between Mediterranean 
vegetation communities’; this implies that this method may be a sound 
alternative within the context of identifying priority areas for post-fire 
management in practice. However, future research is still needed to 
validate generated LMM models not only across a range of Mediterra-
nean plant communities but also in non-Mediterranean sites. Although 
the basis of LMM models (i.e., using several variables as input) to assess 
post-fire recovery yielded an adequate transferability of performance 
between several burned Mediterranean communities at the regional 
scale, the application of these models to the other regional/national 
Mediterranean communities not considered here will require an 
adequate LMM parameterization to reflect accurately how environ-
mental variables vary in terms of how they affect vegetation recovery 
processes. 
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Stephens, S.L., Agee, J.K., Fulé, P.Z., North, M.P., Romme, W.H., Swetnam, T.W., 
Turner, M.G., 2013. Managing forests and fire in changing climates. Science 342, 
41–42. https://doi.org/10.1126/science.1240294. 

Stoffel, M.A., Nakagawa, S., Schielzeth, H., 2021. partR2: partitioning R2 in generalized 
linear mixed models. PeerJ 9, e11414. https://doi.org/10.7717/peerj.11414. 

Talucci, A.C., Forbath, E., Kropp, H., Alexander, H.D., DeMarco, J., Paulson, A.K., 
Zimov, N.S., Zimov, S., Loranty, M.M., 2020. Evaluating post-fire vegetation 
recovery in cajander larch forests in northeastern siberia using UAV derived 
vegetation indices. Remote Sens 12 (2970). https://doi.org/10.3390/rs12182970. 

USGS, 2004. Phase 2 gap-fill algorithm: sLC-off gap-filled products gap-fill algorithm 
methodology. https://www.usgs.gov/media/files/landsat-7-slc-gap-filled-pro 
ducts-phase-two-methodology (accessed 2 October 2015). 

Vasilakos, C., Tsekouras, G.E., Palaiologou, P., Kalabokidis, K., 2018. Neural-network 
time-series analysis of MODIS EVI for post-fire vegetation regrowth. ISPRS Int. J. 
Geo-Inf 7, 420. https://doi.org/10.3390/ijgi7110420. 

Viana-Soto, A., Aguado, I., Martínez, S., 2017. Assessment of post-fire vegetation 
recovery using fire severity and geographical data in the mediterranean Region 
(Spain). Environments 4 (90). https://doi.org/10.3390/environments4040090. 

Viana-Soto, A., Aguado, I., Salas, J., García, M., 2020. Identifying post-fire recovery 
trajectories and driving factors using landsat time series in fire-prone mediterranean 
pine forests. Remote Sens 12, 1499. https://doi.org/10.3390/rs12091499. 

Vilagrosa, A., Hernández, E.I., Luis, V.C., Cochard, H., Pausas, J.G., 2014. Physiological 
differences explain the co-existence of different regeneration strategies in 
Mediterranean ecosystems. New Phytol 201, 1277–1288. https://doi.org/10.1111/ 
nph.12584. 

Walker, X.J., Howard, B.K., Jean, M., Johnstone, J.F., Roland, C., Rogers, B.M., 
Schuur, A.G.E., Solvik, K.K., Mack, M.C., 2021. Impacts of pre-fire conifer density 
and wildfire severity on ecosystem structure and function at the forest-tundra 
ecotone. PLoS ONE 16, e0258558. https://doi.org/10.1371/journal.pone.0258558. 

White, J.C., Wulder, M.A., Hermosilla, T., Coops, N.C., Hobart, G.W., 2017. A nationwide 
annual characterization of 25years of forest disturbance and recovery for Canada 
using Landsat time series. Remote Sens. Environ 194, 303–321. https://doi.org/ 
10.1016/j.rse.2017.03.035. 

Whitman, E., Parisien, M.-A., Thompson, D., Hall, R.J., Skakun, R., Flannigan, M., 2018. 
Variability and drivers of burn severity in the northwestern Canadian boreal forest. 
Ecosphere 9, e02128. https://doi.org/10.1002/ecs2.2128. 

Wulder, M.A., Roy, D.P., Radeloff, V.C., Loveland, T.R., Anderson, M.C., Johnson, D.M., 
Healey, S., Zhu, Z., Scambos, T.A., Pahlevan, N., Hansen, M., Gorelick, N., 
Crawford, C.J., Masek, J.G., Hermosilla, T., White, J.C., Belward, A.S., Schaaf, C., 
Woodcock, C.E., Huntington, J.L., Lymburner, L., Hostert, P., Gao, F., Lyapustin, A., 
Pekel, J.-F., Strobl, P., Cook, B.D., 2022. Fifty years of Landsat science and impacts. 
Remote Sens Environ. 280, 113195 https://doi.org/10.1016/j.rse.2022.113195. 

Xofis, P., Buckley, P.G., Takos, I., Mitchley, J., 2021. Long term post-fire vegetation 
dynamics in north-east mediterranean ecosystems. Case Mount Athos Greece. Fire 4, 
92. https://doi.org/10.3390/fire4040092. 

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects 
Models and Extensions in Ecology With R, 574. Springer, New York.  

M.F. Spatola et al.                                                                                                                                                                                                                              

https://doi.org/10.1093/oxfordjournals.aob.a087932
https://doi.org/10.1093/oxfordjournals.aob.a087932
https://doi.org/10.1038/nclimate3303
https://doi.org/10.1016/j.rse.2011.01.022
https://doi.org/10.3758/s13428-022-01841-4
https://doi.org/10.3758/s13428-022-01841-4
https://doi.org/10.1007/s13595-011-0181-0
https://doi.org/10.1088/1748-9326/ab083d
https://doi.org/10.1126/science.1240294
https://doi.org/10.7717/peerj.11414
https://doi.org/10.3390/rs12182970
https://www.usgs.gov/media/files/landsat-7-slc-gap-filled-products-phase-two-methodology
https://www.usgs.gov/media/files/landsat-7-slc-gap-filled-products-phase-two-methodology
https://doi.org/10.3390/ijgi7110420
https://doi.org/10.3390/environments4040090
https://doi.org/10.3390/rs12091499
https://doi.org/10.1111/nph.12584
https://doi.org/10.1111/nph.12584
https://doi.org/10.1371/journal.pone.0258558
https://doi.org/10.1016/j.rse.2017.03.035
https://doi.org/10.1016/j.rse.2017.03.035
https://doi.org/10.1002/ecs2.2128
https://doi.org/10.1016/j.rse.2022.113195
https://doi.org/10.3390/fire4040092
http://refhub.elsevier.com/S0168-1923(23)00421-5/sbref0094
http://refhub.elsevier.com/S0168-1923(23)00421-5/sbref0094

	Elucidating factors driving post-fire vegetation recovery in the Mediterranean forests using Landsat spectral metrics
	1 Introduction
	2 Material and methods
	2.1 Study area and Wildfire’s database
	2.2 Assessing post-fire vegetation recovery and response variables
	2.3 Assessing predicted vegetation recovery drivers
	2.3.1 Fire traits

	2.3.2 Pre-fire vegetation conditions
	2.3.3 Post-fire climate conditions

	2.4 Statistical analysis

	3 Results
	3.1 Post-fire vegetation recovery patterns
	3.2 Assessing drivers for post-fire vegetation recovery monitoring

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


