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Abstract—This letter considers the design of a two-stage
direction of arrival (DOA) scheme for radar systems. Precisely,
at the first stage a sparse recovery approach is used to obtain
both DOA and complex amplitude estimates of the incoming
signal. Since the DOA is evaluated on a predefined grid of bins
sampling the antenna azimuth mainbeam, at the second stage,a
closed-form complex-valued parabolic interpolation is performed
to refine it. By doing so, the angle accuracy is improved, but
at the same time maintaining fixed the overall computational
complexity. Numerical results show the enhancement provided
by the proposed procedure to the initial sparse recovery method.

Index Terms—DOA estimation, radar, complex-valued
parabolic interpolation, sparse recovery.

I. I NTRODUCTION

Direction of arrival (DOA) estimation of an incoming signal
is one of key-operation in modern receiving systems. As a
matter of fact, several methodologies have been developed
during the years to properly solve this important issue that
spans a wide family of applications in the context of signal
processing, viz. from radar to sonar, to wireless communica-
tions, etc. This so wide interest has driven many researches
in developing algorithms capable of accurately estimating
the DOA of the signal impinging on the receiving antenna.
Among them, of paramount importance are the classic Capon
[1], ESPRIT [2], MUSIC, as well as the plethora of works
extending them and that, in general, exploits several kinds
of advanced statistical and signal processing techniques [3]–
[11]. Additionally, several procedures for DOA estimation
exploiting the sparse nature of the signal model associated
with targets/signals in number less than possible sources angle
of arrivals (AOAs) in the region of interest have been devised
[12]–[16]. Within this latter category, the sparse learning via
iterative minimization (SLIM) developed in [12] consists in
a regularized minimization algorithm that also applies anlq-
norm constraint to obtain an accurate estimate of the signal
angle, range, and Doppler. Moreover, SLIM is characterizedby
a capability of offering satisfactorily estimation performance
with a relatively low computational burden.

In this letter, we devise a two-stage procedure aimed at
improving the angle estimation accuracy of an incoming signal
towards the radar receiving system. Precisely, following the
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lead of [12], as in [17], we first divide the observed azimuth
angular region on a grid of equally-spaced bins including the
antenna mainbeam. Then, we apply the SLIM procedure to
have an estimate of the target AOA and amplitude. Starting
from the AOA and complex amplitude estimated by the SLIM,
the second step consists in using a complex-valued parabolic
interpolating function derived through a Least Squares (LS)
approach to refine the angle estimate. Remarkably, the second
stage does not impact on the overall computational complexity
of the procedure due to its closed-form expression. Several
tests are conducted by simulations considering the proposed
procedure with two different complex-valued interpolating
functions also in comparison with their real counterpart and
compared to the output given by the SLIM at the first stage.
The results point out that the proposed procedure is capable
of ensuring some accuracy improvements without increasing
the computational cost directly related to the grid step size.

The letter is organized as follows. The problem is formal-
ized in SectionII . In SectionIII the sparse recovery procedure
is described, whereas the complex parabolic interpolatorsfor
DOA refinement are detailed in SectionIV. The effectiveness
of the proposed procedure is demonstrated by simulations in
SectionV. Finally, SectionVI concludes the letter together
with some hints for future works.1

II. PROBLEM FORMULATION

A search radar with a uniform linear array (ULA) composed
by N equally-spaced antenna elements is herein considered.
The radar beampattern illuminates a specific angular region
(say in azimuth) and acquires the signal scattered by different
range cells2. Then, the radar elaborates the signal cell-by-cell
to decide for the target presence as well as to estimate target
velocity, DOA, and so on [4]. More specifically, the datum of
the cell under test, sayr ∈ CN×1, is defined as

r = αs(θt) + i, (1)

1Notation: Boldface lower- and upper-case denote vectors and matrices,
respectively. The symbols(·)T and (·)† are the transpose and conjugate
transpose. Moreover,C is the set of complex numbers andCN×M is the
Euclidean space of(N × M)-dimensional complex matrices (or vectors if
M = 1). Given a vectora, diag (a) indicates the diagonal matrix whose
i-th diagonal element is thei-th entry of a, whereas‖a‖ is its Euclidean
norm. For a random variablex, x ∼ U [x1, x2] means thatx is uniformly
distributed in the interval[x1, x2]. Finally, ℜ{·}, ℑ{·}, and | · | indicate the
real part, imaginary part and modulus of a complex number, respectively.

2It is worth recalling that in radar contexts the monopulse technique is
widely used to perform angular measurement. The interestedreader could
refer to references [18]–[21] on this challenging method as well as its
implementations in scenarios of practical interest.
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with i ∈ CN×1 the interference term (possibly composed by
clutter, jamming, and noise) modeled as a zero-mean complex
Gaussian random vector with unknown covariance matrix
M ∈ CN×N , α the complex amplitude accounting from
channel propagation effects, target reflectivity, and antenna
beampattern shape. Moreover,θt is the AOA of the target (typ-
ically assumed equal to the antenna pointing direction), and
s(θ) = [1, exp{jπ sin(θ)}, . . . , exp{j(N − 1)π sin(θ)}]T ∈
CN×1 is the nominal steering vector, having set the separa-
tion between antenna’s elements equal to one-half the radar
operating wavelength.

Now, to properly estimate the DOA of the detected target,
we first consider a method based upon a sparse recovery
method. Then, we apply a specific quadratic interpolating
function to refine this estimation. More precisely, as in [17],
we divide the observed angular region inNa azimuth bins
separated by∆θ assuming the target returns contained in this
specific region (including the antenna mainbeam). Therefore,
indicating with θm, m = 1, . . . , Na, them-th azimuth angle,
the signal from the cell under test can be cast as

r =

Na∑

m=1

αms(θm) + i = Sα+ i, (2)

with S = [s(θ1), · · · , s(θNa
)] ∈ CN×Na the steering dictio-

nary matrix andα = [α1, · · · , αNa
]T ∈ CNa×1 the amplitude

vector whose entries are the target responses. Note that,α has
nonzero entry in correspondence of target’s AOA, thereforeit
can be seen as a sparse vector that can be evaluated using
the SLIM devised in [12]. Interestingly, the grid spacing∆θ

allows to manage the trade-off between the angular and am-
plitude estimation accuracy. In fact, the estimation accuracy of
α increases as∆θ increases, but with a consequent reduction
in the angular estimation accuracy [12], [22]. This motivates
our choice of first set∆θ to a wide value to accurately
estimatingα and then refining the estimation ofθt by means
of a parabolic interpolation.

III. SLIM ALGORITHM FOR DOA ESTIMATION

In this section the sparse recovery algorithm SLIM of
[12] for recovering sparse signals in Gaussian interference is
described. To this end, we first assume that the interference
covariance matrixM is known and exploits the same sparsity
promoting prior probability density function (pdf) ofα as in
[12], the estimate ofα in the context of maximum a posteriori
(MAP) can be stated as

α̂ = argmin
α

{∥∥∥M−1/2 (r − Sα)
∥∥∥
2

+

Na∑

m=1

2

q
(|αm|q − 1)

}
,

(3)
whereq is a parameter aimed at controlling the sparsity ofα.

It is now worth to recall that the interference covariance
matrix M is unknown in practical contexts and needs to
be substituted by a proper estimate, sayM̂ , obtained from
training data, resorting to a-priori information, or exploiting
shrinkage or diagonal loaded structures [23]–[27]. Therefore,

following the lead of [12], the iterative solution of problem
(3) is given by

α
(i+1) =

[
S

†
M̂

−1
S +

(
P̃

(i)
)−1

]−1

S
†
M̂

−1
r, (4)

where

P̃
(i)

= diag
([

|α
(i)
1 |2−q, . . . , |α

(i)
Na

|2−q
])

. (5)

The iterative procedure (4) is initialized with the unconstrained
maximum likelihood (ML) estimate [23] of the m-th entry of
α

α(0)
m =

s
†(θm)M̂

−1
r

s†(θm)M̂
−1

s(θm)
, m = 1, · · · , Na. (6)

Finally, the parameterq is automatically selected exploiting
the Bayesian information criterion (BIC) as in [12], [17].

IV. DOA REFINEMENT BASED ON PARABOLIC

INTERPOLATION

This section describes the proposed refinement procedure
of the estimated DOA of a sparse signal recovered with the
SLIM given in SectionIII . The starting point is the estimated
amplitude vectorα together with the corresponding angle
locations, that are the points on the considered search grid
spaced by∆θ. Since the target DOA is the angle associated
with the maximum of the modulus ofα values, it can be
refined properly interpolating the values inα contained. More
precisely, the interpolation is performed on three points of
the available vector, viz., the maximum and its two adjacent
values. Figure1 depicts an example of the magnitude of the
α values of a target as a function of the corresponding angles
θ together with the representation of the real-valued parabolic
interpolation.
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Figure 1. Magnitude of theα values of a target with the real-valued parabolic
interpolation.

A. Real-valued parabolic interpolation

The simplest case considers as interpolating function the
real-valued parabola whose peak position is located at

θp = θi +∆θδR (7)

with

δR =
|αi+1| − |αi−1|

4|αi| − 2|αi+1| − 2|αi−1|
. (8)
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B. Least Squares complex-valued parabolic interpolation

Herein, the interpolating function is a complex-valued
parabola given by

α = aθ2 + bθ + c (9)

with α, a, b, c ∈ C andθ ∈ R. It is should be now underlined
that, even if the meaning of peak is naturally defined in the
real domain, it could be generalized abstracting this concept
to the complex field. Therefore, similarly to the real-valued
case, the peak position can be found solving a LS problem,
whose solution is given by

θp = θi +∆θδLS (10)

with

δLS = ℜ

{
αi+1 − αi−1

4αi − 2αi+1 − 2αi−1

}
. (11)

The proof for finding this solution is given in AppendixA.

C. Complex-valued parabolic interpolation by Jacobsen

This case refers also to a complex-valued interpolating
parabola whose solution has been provided by Jacobsen in
[28], [29] for accurate frequency estimating of a tone affected
by noise by means of the Discrete Fourier Transform (DFT).
Again, the peak position can be found by the following relation

θp = θi +∆θδJ (12)

with

δJ = ℜ

{
αi+1 − αi−1

2αi − αi+1 − αi−1

}
. (13)

V. PERFORMANCE ANALYSES

This section is devoted at analyzing the performance of the
proposed procedure aimed at providing a fine estimate of the
DOA of a sparse recovered signal. To this end, the considered
performance metric is the root mean square error (RMSE)
of the estimated angle, that, due to the lack of a closed-form
expression, is estimated throughMc = 103 independent Monte
Carlo experiments, that is

RMSE=

√√√√ 1

Mc

Mc∑

i=1

∣∣∣θ̂i − θt

∣∣∣
2

, (14)

where θ̂i is the AOA estimate at thei-th trial andθt is the
actual target DOA modeled asθt ∼ U [5.4◦, 5.6◦]. Simulations
are conducted with reference to a radar system comprising
N = 8 elements. Moreover, the interference scenario shares a
Gaussian-shaped covariance, that is

M(n,m) = ρ|n−m|2 , n,m = 1, . . . , N, (15)

with ρ = 0.99 the correlation coefficient of interference.
Finally, the parameterq for the SLIM is discretized over a
grid equal to{0.01, 0.1, 0.2, . . . , 1}, whereas the SLIM itself
is stopped afterNiter = 25 iterations.

The first case study considers the nominal pointing direction
of the array at0◦. In addition, the considered dictionary
includes approximately the 3 dB beamwidth of the antenna

beampattern, viz.[−8◦, 8◦], with a discretization grid com-
prising Na = 9 points equally spaced by∆θ = 2◦, as
depicted in Figure2(a). Analogously, the second case study
herein analyzed shares the same parameter settings as the first,
except for the discretization grid composed byNa = 17 points
equally separated by∆θ = 1◦, as in Figure2(b).
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Figure 2. Beampattern discretization with a)Na = 9 (∆θ = 2◦) and b)
Na = 17 (∆θ = 1◦).

Fig. 3 plots the RMSE of the estimated angle computed
through (14) versus signal to interference plus noise ratio
(SINR) defined as

SINR= |α|2s†M−1
s. (16)

The curves are related to the proposed method that is the LS
complex-valued parabolic interpolation (called LS-SLIM), also
in comparison with the complex-valued parabolic interpola-
tion by Jacobsen (briefly indicated with J-SLIM), the real-
valued parabola (referred to as R-SLIM), and the standard
SLIM. Moreover, the deterministic CRLB for a ULA with
a target embedded in colored interference is also plotted as
performance benchmark [30], [31]. As the curves show, all
the interpolating methods are capable of ensuring satisfactory
performance improving the quality obtained by the SLIM.
However, the LS-SLIM gives the best results together with
the R-SLIM overcoming the J-SLIM for high SINR values.
Moreover, as expected the evidence is that the all refinements
suffer the poor SLIM estimates under low SINR regimes.
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Figure 3. RMSE of the estimated angle forNa = 9 (∆θ = 2◦) and θt ∼
U [5.4◦, 5.6◦].

To corroborate further the results shown in Fig.3, in Fig. 4,
the boxplots of the estimated angles are reported for different
SINR values and settingθt = 5.5◦. Moreover, subplots refer to
a) LS-SLIM, b) J-SLIM, c) R-SLIM, and d) SLIM. As before
the boxplots demonstrate the effectiveness of the proposed
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approach in refining the DOA estimates provided by the SLIM.
In fact, while the SLIM tends to polarize its estimation on
the value6◦ as the SINR increases (since this value lies on
the discretization grid), the medians of the others are mostly
correctly placed on the true valueθt = 5.5◦ (with the LS
showing the lowest dispersion of values) indicated with the
black star (⋆) in the figures.
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Figure 4. Boxplot versus SINR forNa = 9 (∆θ = 2◦) and θt = 5.5◦.
Subplots refer to a) LS-SLIM, b) J-SLIM, c) R-SLIM, and d) SLIM.

The second case study considers the same scenario as before
but with a denser grid for the computation of the SLIM
with Na = 17 points as depicted in Fig.2(b). The result
of this analysis is displayed in Fig.3 as the RMSE of the
estimated angle vs SINR. Again, from the curves behavior it
can be recognized the effectiveness of the proposed approach
in terms of DOA estimation refinement, observing almost the
same trend of the curves. In fact, it is also worth to observe
that these results do not significantly differ from those of
the first study case. This can be justified by means of the
following considerations. In fact, the SLIM is capable of
accurately estimatingα using wide values of∆θ, even if with
a low accurate AOA. Then, the AOA estimation accuracy is
improved applying the parabolic interpolation (as shown inthe
first test). It is tantamount to observe that, the AOA estimation
accuracy can be also improved by reducing the grid step size
of the SLIM. However, this improvement is paid in terms of
accuracy loss inα estimate as well as in a growth of the
computational complexity of the SLIM that is essentially ruled
by O(NNa) (this is the situation analyzed in the second study
case). By the way, these considerations motivate the use of the
proposed procedure in practical implementations.

VI. CONCLUSION

In this letter, a two-stage procedure aimed at estimating the
AOA of a radar target has been devised. Precisely, the first
stage, exploiting the characteristics of the involved signals,
resorts to a sparse recovery methodology to obtain a first
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Figure 5. RMSE of the estimated angle forNa = 17 (∆θ = 1◦) and
θt ∼ U [5.4◦, 5.6◦].

estimate of the target’s amplitude and AOA. At the next stage,
the estimated AOA is refined using a complex-valued parabolic
interpolation exploring the complex amplitude estimates given
at the previous step. The grand advantage of the proposed
method is the low computational cost due to the fact that it is
possible to use a wide azimuth grid at the first sparse recovery
stage, whose accuracy is then improved with the closed-form
interpolation. Tests on numerical data have emphasized the
effectiveness of the proposed approach in properly refining
the AOA. Possible future works might extend the proposed
framework to 2D (azimuth-elevation) estimation problems as
well as to perform tests on measured data.
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APPENDIX

A. Derivation of the solution (11) though LS

The peak position of the complex parabola of (9) is obtained
setting to zero its first derivative with respect toθ, that is

∂α

∂θ
= 0 → 2aθ + b = 0 (17)

that, sincea andb are complex quantities, (17) can be cast in
the following form

{
2ℜ{a}θ+ ℜ{b} = 0
2ℑ{a}θ+ ℑ{b} = 0

, (18)

that in a more compact matrix form can be written as

2

[
ℜ{a}
ℑ{a}

]
θ = −

[
ℜ{b}
ℑ{b}

]
→ 2aθ = −b. (19)

Equation (19) can be formalized as the following LS problem

θ̂ = argmin
θ

‖2aθ + b‖2, (20)

whose solution is given by

θ̂ = −
1

2

(
a
T
a
)−1

a
T
b = −

1

2

‖a‖‖b‖ cos(φb − φa)

‖a‖2

= −
1

2

‖b‖

‖a‖
ℜ
{
ej(φb−φa)

}
= ℜ

{
−

b

2a

}
,

(21)

having indicated withφa and φb the phase ofa and b,
respectively.
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