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_Abstract—This letter considers the design of a two-stage lead of [L7], as in [17], we first divide the observed azimuth
direction of arrival (DOA) scheme for radar systems. Precigly, angular region on a grid of equally-spaced bins includirgy th
at the first stage a sparse recovery approach is used to obtain antenna mainbeam. Then, we apply the SLIM procedure to
both DOA and complex amplitude estimates of the incoming h timate of th t’ t AOA and litude. Starti
signal. Since the DOA is evaluated on a predefined grid of bins ave an estimate ot the targe ! an_ amplitude. starting
sampling the antenna azimuth mainbeam, at the second staga, from the AOA and complex amplitude estimated by the SLIM,
closed-form complex-valued parabolic interpolation is peormed  the second step consists in using a complex-valued pacaboli
to refine it. By doing so, the angle accuracy is improved, but interpolating function derived through a Least Squares) (LS
at the same time maintaining fixed the overall computational approach to refine the angle estimate. Remarkably, the decon
complexity. Numerical results show the enhancement provied t d ti t on th I tati I' lexi
by the proposed procedure to the initial sparse recovery méiod. stage does notimpact on - € overall computa |ona_ comtglexi

of the procedure due to its closed-form expression. Several
tests are conducted by simulations considering the prabose
procedure with two different complex-valued interpolgtin
functions also in comparison with their real counterpard an
compared to the output given by the SLIM at the first stage.
[. INTRODUCTION The results point out that the proposed procedure is capable

Direction of arrival (DOA) estimation of an incoming signalof €nsuring some accuracy improvements without increasing
is one of key-operation in modern receiving systems. As the computational cost directly related to the grid steg.siz
matter of fact, several methodologies have been developed he letter is organized as follows. The problem is formal-
during the years to properly solve this important issue thi#ed in Sectiorll. In Sectionlll the sparse recovery procedure
spans a wide family of applications in the context of signd$ described, whereas the complex parabolic interpoldtors
processing, viz. from radar to sonar, to wireless communidaOA refinement are detailed in Sectidvi. The effectiveness
tions, etc. This so wide interest has driven many researctidhe proposed procedure is demonstrated by simulations in
in developing algorithms capable of accurately estimatir@?CtionV- F?nally, SectionVI concludes the letter together
the DOA of the signal impinging on the receiving antenndYith some hints for future works.

Among them, of paramount importance are the classic Capon
[1], ESPRIT P], MUSIC, as well as the plethora of works Il. PROBLEM FORMULATION

extending them and that, in general, exploits several kindsp gearch radar with a uniform linear array (ULA) composed
of advanced statistical and signal processing technigles [y  equally-spaced antenna elements is herein considered.
[11]. Additionally, several procedures for DOA estimationrpe radar beampattern illuminates a specific angular region
exploiting the sparse nature of the signal model associai@dy in azimuth) and acquires the signal scattered by difier
with targets/signals in number less than possible soumgiea yange celld. Then, the radar elaborates the signal cell-by-cell
of arrivals (AOAs) in the region of interest have been devisgq gecide for the target presence as well as to estimatettarge

[12-[1€]. Within this latter category, the sparse learning Vi@elocity, DOA, and so on4]. More specifically, the datum of
iterative minimization (SLIM) developed inlf] consists in  he cell under test say € CV*1, is defined as

a regularized minimization algorithm that also appliesian
norm constraint to obtain an accurate estimate of the signal r = as(0;) + 1, (1)

angle, range, and Doppler. Moreover, SLIM is characterized . _
a capability of offering satisfactorily estimation pemnce Nota_tlon. Boldface Iower-Tand upper-case denote vectors and matrices
. . . respectively. The symbolé-)” and (-)T are the transpose and conjugate
with a relatively low computational burden. transpose. Moreove( is the set of complex numbers a@™ *M s the
In this letter, we devise a two-stage procedure aimed Riclidean space of N x M)-dimensional complex matrices (or vectors if
improving the angle estimation accuracy of an incomingaign’. = 1)- Glven a vectora, diag (a) indicates the diagonal matrix whose
.. . - i-th diagonal element is théth entry of a, whereas||a|| is its Euclidean
towards the radar receiving system. Precisely, following t norm. For a random variable, « ~ i [x1,22] means that: is uniformly
distributed in the intervalzy, x2]. Finally, ®{-}, 3{-}, and| - | indicate the
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with ¢ € CV>! the interference term (possibly composed bfpllowing the lead of [ 7], the iterative solution of problem

clutter, jamming, and noise) modeled as a zero-mean comp(&xis given by

Gaussian random vector with unknown covariance matrix o

M € CN*N, o the complex amplitude accounting from ali+D) — [STM_IS+ (13(1)) }

channel propagation effects, target reflectivity, and ramae

beampattern shape. Moreov@rjs the AOA of the target (typ- where

ically assumed equal to the antenna pointing directiong, an _ () ) (i) 12— (@) 2

s(0) = [1,exp{jmsin(d)},...,exp{j(N — D)rsin(®)}]” € P =diag ([Ial 779 o, | qD (5)

CN>1 is the nominal steering vector, having set the separa;

tion between antenna’s elements equal to one-half the rajlg'

operating wavelength. o
Now, to properly estimate the DOA of the detected target,

we first consider a method based upon a sparse recovery ozﬁn — ,

method. Then, we apply a specific quadratic interpolating st (0m) M s(6m)

function to refine this estimation. More precisely, as In][  Finally, the parametey is automatically selected exploiting

separated byAd assuming the target returns contained in this

specific region (including the antenna mainbeam). Theegfor
indicating with8,,,, m = 1,..., N,, the m-th azimuth angle,
the signal from the cell under test can be cast as

1
SN 'y, (4)

I iterative procedurel is initialized with the unconstrained
maximum likelihood (ML) estimateZ[d] of the m-th entry of

0 _ sT(Hm)M_lr

mzla"'vNa- (6)

IV. DOA REFINEMENT BASED ON PARABOLIC
INTERPOLATION

This section describes the proposed refinement procedure

Na ) ) of the estimated DOA of a sparse signal recovered with the
r=> ans(On)+i=Sa+i, (2)  SLIM given in Sectionlll. The starting point is the estimated
m=1 amplitude vectora together with the corresponding angle

with S = [s(61), - , s(6x.)] € C¥*Ne the steering dictio- Iocat|0dni, tAh;tSqre thterzl p;)|ntstog(;2e_ c;)hn3|dere|d searc_h tggd
nary matrix ande = [ay, - - ,an,]T € CNa>1 the amplitude spaced byau. since the targe IS the angle associate

vector whose entries are the target responses. NoteciHzds W't.h the maximum of th? modulus af .values,- it can be
refined properly interpolating the valuesancontained. More

nonzero entry in correspondence of target’s AOA, therefiore ) " o= .
glsely, the interpolation is performed on three poirts o

can be seen as a sparse vector that can be evaluated u%[ﬁ ; ) . . .
the“available vector, viz., the maximum and its two adjacent

the SLIM devised in [7]. Interestingly, the grid spacing\d . . :
allows to manage thgzt]rade-off be?wyeen thge ang;)ular 2nd a\r/r?—lues‘ Figurel depicts an example of the magnitude of the

plitude estimation accuracy. In fact, the estimation aacyiof a values of a target as a functi_on of the corresponding.angles
« increases a4 increases, but with a consequent reductio% together with the representation of the real-valued paiabo

in the angular estimation accuracyZ, [27]. This motivates interpolation.
our choice of first setAd to a wide value to accurately

estimatinga: and then refining the estimation 6f by means

of a parabolic interpolation. Io) .

IIl. SLIM ALGORITHM FOR DOA ESTIMATION

amplitude

In this section the sparse recovery algorithm SLIM of : \
[17] for recovering sparse signals in Gaussian interference is to | \
described. To this end, we first assume that the interference s
covariance matri¥Vf is known and exploits the same sparsity P P a—
promoting prior probability density function (pdf) ef as in oectemel
[17], the estimate ok in the context of maximum a posteriorigigyre 1. Magnitude of the values of a target with the real-valued parabolic
(MAP) can be stated as interpolation.

2 Na g
a = argmin M_l/zr—SaH—i— “(lam]?—=1) 3, o )
e {H ( ) mz:; q (lm| ) A. Real-valued parabolic interpolation
) ) ) ) 3) The simplest case considers as interpolating function the
whereq is a parameter aimed at controlling the sparsityxof oo, valued parabola whose peak position is located at
It is now worth to recall that the interference covariance

matrix M is unknown in practical contexts and needs to 0, = 0; + ABog (7)
be substituted by a proper estimate, g8f, obtained from with
training data, resorting to a-priori information, or exitileg

_ [ 5n i | — Jevie1] (®)
shrinkage or diagonal loaded structurés]{{27]. Therefore, R Aovi] = 2]ais| — 2laii1]
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B. Least Sguares complex-valued parabolic interpolation beampattern, viz[—8°,8°], with a discretization grid com-
Herein, the interpolating function is a complex-value@ising N, = 9 points equally spaced bA¢ = 2° as
parabola given by depu_:ted in Figure2(a). Analogously, the second_ case study_
herein analyzed shares the same parameter settings asthe fir
a=al®+bf+c (9)  except for the discretization grid composed/§y = 17 points

with a, a,b,c € C andf € R. It is should be now underlined equally separated bjpd = 1°, as in Figure2(b).

that, even if the meaning of peak is naturally defined in the
real domain, it could be generalized abstracting this cphce

to the complex field. Therefore, similarly to the real-value os
case, the peak position can be found solving a LS proble §os

1

——beampattern ——beampattern
©_discretization ©_discretization

o
o

beampattern
)
o

whose solution is given by Fos o4
6‘1, =0; + Aborg (10) 02 02
. 0 0
with 90 -67.5 -45 225 0 225 45 67.5 90 90 -67.5 -45 225 0 225 45 67.5 90
o i1 — ai—l angle (deg) angle (deg)
ors =N ! . 11
o 4ai — 2ai+1 — 2041'_1 ( ) (a) (b)

The proof for finding this solution is given in Appendix. ]F\ifgmelZ?- (fgamlpg)ﬁem discretization with &), = 9 (A6 = 2°) and b)
"= — 1°).

C. Complex-valued parabolic interpolation by Jacobsen Fig. 3 plots the RMSE of the estimated angle computed
This case refers also to a complex-valued interpolatifgrough (4) versus signal to interference plus noise ratio

parabola whose solution has been provided by JacobsertNR) defined as

[29], [29] for accurate freque_ncy estimatipg of a tone affected SINR= |af2s M~ 1s. (16)

by noise by means of the Discrete Fourier Transform (DFT).

Again, the peak position can be found by the following relati The curves are related to the proposed method that is the LS
complex-valued parabolic interpolation (called LS-SL|Mlso

Op = 0 + A5, (12) in comparison with the complex-valued parabolic interpola
with tion by Jacobsen (briefly indicated with J-SLIM), the real-
5, = %{ Qi1 — OG- } (13) valued parabola (referred to as R-SLIM), and the standard
200 — Qg1 — i1 ) SLIM. Moreover, the deterministic CRLB for a ULA with

a target embedded in colored interference is also plotted as
V. PERFORMANCE ANALYSES performance benchmark3(], [31]. As the curves show, all

This section is devoted at analyzing the performance of tH interpolating methods are capable of ensuring satsfac
proposed procedure aimed at providing a fine estimate of thgfformance improving the quality obtained by the SLIM.
DOA of a sparse recovered signal. To this end, the considefd@Wever, the LS-SLIM gives the best results together with
performance metric is the root mean square error (RMSE)® R-SLIM overcoming the J-SLIM for high SINR values.
of the estimated angle, that, due to the lack of a closed-fofPreover, as expected the evidence is that the all refinesnent
expression, is estimated through. = 10° independent Monte suffer the poor SLIM estimates under low SINR regimes.
Carlo experiments, that is

10

1 &L, 2 R
RMSE= | — |0 —94 : (14)

c*
i=1 102

whered; is the AOA estimate at thé-th trial and 6, is the
actual target DOA modeled @s ~ U/ [5.4°, 5.6°]. Simulations

are conducted with reference to a radar system comprising
N = 8 elements. Moreover, the interference scenario shares a
Gaussian-shaped covariance, that is

RMSE (rad)

10 15 20 25 30 35 40 45
SINR (dB)

M(n,m):p'"fmlz, n,m=1,..., N, (15)

. . . . Figure 3. RMSE of the estimated angle fdf, = 9 (A6 = 2°) and 6; ~
with p = 0.99 the correlation coefficient of interferencey[s.4° 5.6°]

Finally, the parameteg for the SLIM is discretized over a

grid equal t0{0.01,0.1,0.2,...,1}, whereas the SLIM itself  To corroborate further the results shown in Rgin Fig. 4,

is stopped aftetV;;.,, = 25 iterations. the boxplots of the estimated angles are reported for @iffer
The first case study considers the nominal pointing diracti®INR values and settingg = 5.5°. Moreover, subplots refer to

of the array at0°. In addition, the considered dictionarya) LS-SLIM, b) J-SLIM, ¢) R-SLIM, and d) SLIM. As before

includes approximately the 3 dB beamwidth of the antentlae boxplots demonstrate the effectiveness of the proposed
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approach in refining the DOA estimates provided by the SLIM. e
In fact, while the SLIM tends to polarize its estimation on Dt
the value6® as the SINR increases (since this value lies on i
the discretization grid), the medians of the others are iynost 107 R

correctly placed on the true valug = 5.5° (with the LS
showing the lowest dispersion of values) indicated with the
black star £) in the figures.

RMSE (rad)

10°

= = 10 15 20 25 30 35 40 45
& ?’ % % SINR (dB)

Figure 5. RMSE of the estimated angle fof, = 17 (A6 = 1°) and
: 0 ~ U [5.4°,5.6°).
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estimate of the target’s amplitude and AOA. At the next stage

15 20 25 30 35 40 15 20 25 30 35 40

SINR (@) SINR (62) the estimated AOA is refined using a complex-valued paraboli
(@) LS-SLIM (b) J-SLIM interpolation exploring the complex amplitude estimatizemy
at the previous step. The grand advantage of the proposed
(=1 ? ? T - Y T Y v x v method is the low computational cost due to the fact that it is
S+ P . possible to use a wide azimuth grid at the first sparse regover

stage, whose accuracy is then improved with the closed-form
interpolation. Tests on numerical data have emphasized the
effectiveness of the proposed approach in properly refining
} the AOA. Possible future works might extend the proposed
T e " 52 Sem framework to 2D (azimuth-elevation) estimation problerss a
(c) R-SLIM (d) SLIM well as to perform tests on measured data.
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Figure 4. Boxplot versus SINR foN, = 9 (Af = 2°) and 0, = 5.5°.

Subplots refer to a) LS-SLIM, b) J-SLIM, ¢) R-SLIM, and d) $LI ACKNOWLEDGMENTS
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but with a denser grid for the computation of the SLIM
with N, = 17 points as depicted in Fig2(b). The result APPENDIX

of this analysis is displayed in Fi@3 as the RMSE of the A Derivation of the solution (11) though LS

estimated angle vs SINR. Again, from the curves behavior it - , .
can be recognized the effectiveness of the proposed approglé:The peak position of the complex parabola @i obtained

in terms of DOA estimation refinement, observing almost the ting to zero its first derivative with respectépthat is
same trend of the curves. In fact, it is also worth to observe da _ 0 — 2a0+b=0 (17)
that these results do not significantly differ from those of 00

the first study case. This can be justified by means of theat, sincex andb are complex quantities1{) can be cast in
following considerations. In fact, the SLIM is capable ofhe following form

accurately estimatingx using wide values ofAf, even if with 2R{a}0 + R{b} = 0

a low accurate AOA. Then, the AOA estimation accuracy is { 23{alf+ 3{b} =0 °
improved applying the parabolic interpolation (as showthim ) . _

first test). It is tantamount to observe that, the AOA estigrat that in @ more compact matrix form can be written as
accuracy can be also improved by reducing the grid step size 9 [&t{a}] - [%{b}
of the SLIM. However, this improvement is paid in terms of S{a}| ™ |S{b}
accuracylloss I estimate as well as n-a growt.h of theEquation (9 can be formalized as the following LS problem
computational complexity of the SLIM that is essentiallyed .

by O(N N,,) (this is the situation analyzed in the second study 0= afgmein 12a0 + b|?, (20)
case). By the way, these considerations motivate the ugesof t S
proposed procedure in practical implementations. whose solution is given by

ho_1 (aTa) " aTb = _Lllalll[]l cos(¢p — ¢a)

(18)

] —~ 2a0=-b. (19)

VI. CONCLUSION 2 2 al? (21)
In this letter, a two-stage procedure aimed at estimatieg th = _EMQ {ej(dvraba)} =R {_i} ,
AOA of a radar target has been devised. Precisely, the first 2|all 2a

stage, exploiting the characteristics of the involved algn having indicated with¢, and ¢, the phase ofa and b,
resorts to a sparse recovery methodology to obtain a firespectively.
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