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Abstract: The constitutive error based approach is applied for the analysis of
lossy transmission lines in the time domain. Explicit and implicit time integration
techniques are introduced and compared, with reference to a canonical examples. The
extension of these techniques to the solution of 3D field problems is outlined.

Introduction

The interest for the simulation of lossy transmission lines has recently increased,
due to the growing importance of the studies on the performance of fast chip to chip
interconnections [1].

In this paper we discuss the extension of the constitutive error based approach
[2] to the solution of lossy transmission lines in the time domain. This extension,
although quite straightforward, at least in principle, is of interest for several reasons. It
represents an interesting alternative for the numerical simulation of fast
interconnections in the frame of the analysis of nonlinear circuits, due to its
peculiarities; specifically, this technique is based on the numerical minimisation of an
error functional, giving, as an additional outcome, global and local error estimates, also
useful for time and space discretization adaptive refinements. Moreover, since the
mathematical structure is substantially the same as the one-dimensional Maxwell
equations, it sheds also some light on the main aspects of the method when applied in a
more general context.

In this paper, after a description of the numerical formulation, explicit and
implicit time integration techniques are introduced and compared, with reference to a
canonical examples. The extension of these techniques to the solution of 3D field
problems is finally outlined.

Numerical formulation

We refer to the classic circuit model of the transmission lines, whose elementary
cell is shown in fig. 1. Having introduced nodal voltages v(x, t) and mesh currents i(x,
t), the Kirchhoff laws are identically satisfied for any choice of these variables. As a
consequence, the error is localized in the constitutive equations at every elementary
circuit branch. In particular we have:

V(x+AX, t)-v(x, t)=r Ax i(x, t) + 1 AX%:_ (D

i(x+Ax, t)-i(x, )= g Ax v(x+Ax, t) + C Ax% (2)
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Fig. 1. Elementary cell of a transmission line
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Of course, the constitutive error at the two terminations of the line should also be
considered.

We notice that this approach has been already introduced for solving the full set
of Maxwell equations [2]; in that case, having defined the vector potentials

t

A=-jEdt F= J' H dt (5)
0 0 s
then the fields
E=-0A/0t, H=0F/dt, B=B +VxA, D=D +VxF (6)

automnatically satisfy Maxwell equations and the initial conditions for arbitrary values
of Aand F.

In analogy, although not strictly necessary for the analysis of the transmission
lines, we introduce the nodal flux ¢(x, t) and the mesh charge q(x, t) such as v=0¢/dt,

i=dq/ot.

Then we proceed to definition of a local error functional A(x, t)20 with strict
inequality for flux and charge estimates which do not satisfy the constitutive equations:
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A possible definition is:



A=ALR + Acg 9)
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In this way, the problem can be reduced to searching for the two functions ¢(x, t) and
q(x, t) which minimize a global error functional A defined as

A= JOTJODX(x,t)dxdt (12)

where D is the length of the line and (0, T) is the time interval of interest.

The functions ¢(x, t) and q(x, t) are approximated by using standard finite
element shape functions N;(x) as

o(x, )=2 Di(t) Ni(x) (13)
q(x, =2 Qi(t) Ni(x) (14)

Partitioning the interval of interest into a number of time steps (t,t,,), in which
we assume linear variation, the solution at each time step (i.e. the set of coefficients -,
at t,,,) is obtained via minimization of an error Ay defined as

tk+1 D
Ax = j J;) A(x,t)dxdt (15)

ty

In this way, the following set of equations for @y,; = { P;i(ti+1) } and Qus1 = { Qi(tis1) }
is obtained under minimization of (15)
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that in the linear case yields
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The solution matrix is then symmetric with respect to the @ and the Q solutions. In

. . . . . . . lk+l
addition, using the 8-method, i.e. approximating the time integral | A(x,t)dt as
tk

A(x,tg)At with At=ty, -t and tg=Bt,,; +(1- O)ty, it is possible to have the splitting of
the system of equations. In fact, for a suitable choice of the non-dimensional
coefficients [op g/ocg=(1/At + 8/tcg)/ (1/At + 8/T R), Tcg=c/g, T g=)/1], the
unknown vectors ®y;; and Qy,; can be obtained as the solutions of two
independent systems of equations, since in this case

PA, J [ A, JT
= =[0 18
[a¢k+lan+l an+la¢k+l [ ] 8

This splitting is however different from solving two separate problems for ® and Q
in (0,T) because in our case each vector at t,,,; depends on both vectors at t,.

As far as the boundary conditions are considered, it is convenient to enforce
them explicitly if voltage or current are prescribed, i.e. if there is an independent
generator. However, care must be taken when doing this. For instance, with the choice
of the elementary cell made in Fig. 1, the connection of the right end to an independent
voltage generator may cause numerical troubles because of the parallel with the
capacitor of the elementary cell; dual problems may be caused by the insertion of an
independent current generator at the left end. If instead the line end is connected to an
impedance, then it is convenient to insert the error in the boundary condition into the
error functional, otherwise the symmetry of the system can be lost.

Using the 6-method and selecting the coefficients a; g and oy g as indicated in
the previous section, we obtain the splitting of the system of equations. In particular the

i-th row of the system of equations for @y, , A®y,;=b, contains only three nonzero
coefficients:

Aii1 =k02%<N’;IN'> + (1+k20)<N;.|N;> (19)
Aji =k102<N";N’;> + (1+k20)<N;N;> (20)
Ajiq1 = k192<N’iN’i+1> + (1+k20)<N;Nj, 1> 21)

D
where U’=dU/dx, < UV >= JU(x)V(x)dx, kj and k; are constants that depend on the
0

parameters of the line.

We notice that even assuming 6=0 the solution of a linear system is generally
required. This solution is straightforward due to the tridiagonal form of the matrix.
However, taking into account the analogy with the electromagnetic field analysis, it is

interesting to see in which case we may have an explicit expression for ®y,;. For 6=0
the off-diagonal terms are A;; j=<N;N;> and A; ;1= <N;N;,;>. These terms are non
zero if the space-integrals are computed analytically or using Gauss rule. Instead they
disappear when using the trapezoidal rule within each finite element in space. In fact
the product of two different shape functions is zero at all nodes.



This treatment, similar to the “mass lumping” [3], might seem to be promising
especially for field applications. However, at least in this form, it does not work for an
ideal transmission line (r=0, g=0). In fact, performing Von Neumann stability analysis
we found the algorithm unconditionally unstable, i.e. unstable for any time and space
discretizations.

Results

We analyzed a transmission line with the following parameters: D = 1 m,
r=105Qm1, g =105Qm",1=107Hm-!, ¢ = 1.11 10-19Fm-L. The right end is open
whereas the left end is connected to a voltage generator in series with a resistance of 1
Q. The applied voltage is e(t)=Eosin(2nt/To) in (0,To/2) with e(t)=0 for t>To/2 with
To=3ns. For this line the losses are negligible, Ro=(1/c)-1/2=30Q and
vp=(Ic)12=3 108 ms-1.

Fig. 2 shows the results obtained with 8=1/2, Cou=v,At/Ax=0.1 and different
values of Ax, the step size (i.e. the lenght of the elementary cell).

Fig. 3 shows the correlation between analytic and constitutive errors. The
analytic error is defined as A;=[o gAvZ/1+0cgAi%/c] ToRo/Eo 2.

Numerical calculations have also been carried out with Ax=D/100 and 6=0 to
explore the stability properties. With Gauss integration in space, the numerical method

results to be unstable for At>3.3 10-11 (Cou=0.01), whereas the explicit scheme with

lumping (trapezoidal rule) diverges for any At. The numerical stability obtained in case
of Gauss integration for lower values of the time step can probably be ascribed to the

nonzero values of rand g (r = 104 Qm-l, g = 104 Q-1m-D.

Conclusions

The constitutive error based approach has been applied to the analysis of the
transmission lines in the time domain, taking into account the strict analogy with the
electromagnetic field problems.

The explicit time integration with lumping is unstable. Therefore it cannot be

applied as it is. The 6-method is not very expensive for the transmission lines since the
inversion of a tridiagonal matrix is straightforward. On the other hand leapfrog scheme
or higher order methods should be introduced in view of an efficient solution of the 3D
Maxwell equations in the time domain.
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Voltage and current constitutive error
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Fig.2 Results obtained with 6=1/2, Cou=v,At/Ax=0.1 and different values of Ax at t=1.999
ns: (a) Voltage and current as a function of x, with Ax=0.01 m; (b) A, Air, AcGas a
function of x, with Ax=0.01 m; (c) Voltage and current as a function of x, with
Ax=0.001 m; (d) A, ALR, Acg as a function of x, with Ax=0.001 m.
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Fig. 3 Correlation between analytic and constitutive errors. The analytic error is defined as.
Aa=[og gAVH1+0GAIZ/c] ToRo/Eo 2: (a) Ax=0.01 m; (b) Ax=0.001 m.



