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Effect of an axial pre-load on the flexural
vibrations of viscoelastic beams

Elena Pierro

Abstract
Polymers are ultra-versatile materials that adapt to a myriad of applications, as they can be designed appropriately for

specific needs. The realization of new compounds, however, requires the appropriate experimental characterizations, also

from the mechanical point of view, which is typically carried out by analyzing the vibrations of beams, but which still have

some unclear aspects, with respect to the well-known dynamics of elastic beams. To address this shortcoming, the paper

deals with the theoretical modeling of a viscoelastic beam dynamics and pursues the elucidation of underlying how the

flexural vibrations may be affected when an axial pre-load, compressive or tensile, is applied. The analytical model presented

is able to shed light on a peculiar behavior, which is strongly related to the frequency-dependent damping induced by

viscoelasticity. By considering as an example a real polymer, that is, a synthetic rubber, it is disclosed that an axial pre-load, in

certain conditions, may enhance or suppress the oscillatory counterpart of a resonance peak of the beam, depending on

both the frequency distribution of the complex modulus and the length of the beam. The analytical model is assessed by

a finite element model, and it turns out to be an essential tool for understanding the dynamics of viscoelastic beams, typically

exploited to experimentally characterize polymeric materials, and which could vary enormously simply through the

application of constraints and ensued pre-loads.
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1. Introduction

The new forthcoming technology challenges seem to be
oriented toward the use of ultralight, extremely resistant,
active, and super smart materials, substantially able to face
with increasingly innovative shapes (Chaudhary et al., 2021),
demands for adaptative features based on operating con-
ditions (Terwagne et al., 2014), more in general with
self-healing properties (Wang and Urban, 2020), and eco-
sustainable (Ahmed, 2021). Of particular interest, more re-
cently, are all those systems that aim to exploit the properties
of soft materials, taking inspiration from biological systems,
which offer countless performances, but that are also com-
plex and therefore difficult to replicate. For example, soft
actuators (Li et al., 2022) received great attention, since they
can improve their performance through appropriate pro-
gramming, and find applicability in the field of soft robotics
(Cianchetti et al., 2018), which seem to show excellent re-
sults in terms of durability and reliability in the biomedical
applications, and can transit reversibly between different
liquids and solids, as they switch between different loco-
motive modes (Hu et al., 2018). These latest research trends
are also part of the recently introduced concept of physical
intelligence, which in the near future will allow intelligent

machines to be able to move autonomously in various
conditions of the real world (Sitti, 2021). As wemove toward
these scenarios, already widely present in our daily life in
a vast range of applications, from the automotive to the
medical field, it will no longer be possible to use materials
“fixed” in their nominal design conditions, as they will need
to be replaced bymaterials in constant movement and change
(Martins, 2021; Rothemund et al., 2021).

1.1. The role of polymers

At the moment, polymers are between the favored materials
and best suited to these circumstances, since they can be
designed to serve a specific purpose, with properly tuned
physical properties (Brinson and Brinson, 2015), such as
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stiffness and damping. For this reason, they are the subject
of intensive study in many engineering fields, especially for
what regards their mechanical properties, which are deeply
conditioned by viscoelasticity, as recently shown in the field
of contact mechanics (Carbone and Pierro, 2012a, 2012b,
2013; Carbone et al., 2011). In Ref. Pierro et al. (2020), it
has been highlighted that, in particular, the viscoelastic
modulus, which exhibits a complex behavior in the fre-
quency domain, is capable of making the adhesion between
two surfaces extremely tough or quite weak, depending on
how the imaginary part of the viscoelastic modulus is
distributed in frequency. Whether polymers are employed
individually or combined with other materials (e.g., in the
case of composites), it is of fundamental importance to
suitably characterize them from a mechanical point of view
(Wang et al., 2017), for all the aforementioned applications.
In fact, numerical and theoretical predictions of the dy-
namics rather than the tribological behavior of structures
made of such materials are based on their viscoelastic re-
sponse to external stresses, which depends on both fre-
quency and temperature, and is governed by the following
stress–strain relationship (Christensen, 1982)

σðx, tÞ ¼
Zt
�∞

Gðt � τÞ _εðx, τÞ dτ (1)

where _εðtÞ is the time derivative of the strain, σðtÞ is the
stress, and Gðt � τÞ is the time-dependent relaxation
function, usually characterized in the Laplace domain,
through the viscoelastic modulus EðsÞ ¼ sGðsÞ.

1.2. Viscoelastic modulus characterization

It is therefore quite evident that when polymers are em-
ployed, it is extremely important to know in detail the vis-
coelastic modulus and its trend as a function of both time and
frequency. For this purpose, there is an awesome quantity of
research devoted to the experimental characterization of this
quantity, from the widespread dynamic mechanical analysis
(DMA) technique (Rasa, 2014), which still presents some
problems and uncertainties, to the investigation of the dy-
namics of beam-like structures (Caracciolo et al., 2004;
Cortes and Elejabarrieta, 2007). In the context of this latter
experimental approach, some progress has recently been
made, as in Ref. Pierro and Carbone (2021), where the vi-
brational response of a suspended beam impacted with
a hammer has been exploited to retrieve the complex
modulus, increasing the frequency range of interest by
varying the length of the beam. The technique is reliable,
accurate, and in good agreement with the DMA. The
breakthrough of the proposed technique is related to the
analytical model presented, which is able to accurately take
into account, in the vibrational response of the beam, the
correct frequency trend of the viscoelastic modulus, by
varying the number of relaxation times to achieve a good

theoretical–experimental fit. However, previous theoretical
studies, focused on the dynamics of viscoelastic beam and
plates (Garcia-Barruetabeña et al., 2012; Gupta and Khanna,
2007; Inman, 1989), lacked a specific analysis capable of
linking the eigenvalues and the significant physical param-
eters to the analytical response of such continuous systems, as
done, for example, in Ref. Adhikari (2005), for a single-
degree-of-freedom non-viscously damped oscillator. To ad-
dress this shortcoming, in Ref. Pierro (2020), some new
characteristic maps related to the nature of the eigenvalues of
a viscoelastic beam have been presented, with the aim to
elucidate the influence of the material properties and of some
geometrical characteristics on the overall beam dynamics.
Interestingly, from this study, it resulted that by properly
selecting the beam length, for a chosen viscoelasticmaterial, it
is possible to suppress or enhance one resonance peak ormore
peaks simultaneously. This outcome is of crucial concern for
the experimental characterizations of viscoelastic materials, as
the one presented in Pierro and Carbone (2021), since it can
help in accurately interpreting the resonances when shifted
with different beam lengths.

1.3. Contribute of the presented research

Even if the experimental technique for the viscoelastic
modulus characterization based on beams appears to be
promising for its simplicity, easy realization, and accuracy,
it is necessary to understand how it is possible to increase
the frequency range of analysis, still limited in comparison
to the one of the DMA. Certainly, the variation of the length
of the beam proposed in Pierro and Carbone (2021) already
meets this requirement, thanks to the shift in frequency of
the response and of the resonance peaks, but it is not yet
completely exhaustive. Among the several possibilities to ob-
serve a further shift of the response spectrum of the beam in the
frequency domain, and therefore to enlarge the frequency range
of interest in the experimental characterization of the viscoelastic
modulus, onemay (i) change the surrounding temperature or (ii)
apply an axial compressive/tractive pre-load to the beam. It is
known (Cheli and Diana, 2015), indeed, that when an elastic
beam is subjected to a static pre-load, its resonances move
toward higher or lower frequencies, in case of an applied traction
or compression, respectively. Many studies have been also
carried outwhich investigate the effects of some dynamical axial
pre-loads on both the flexural (Shih andYeh, 2005) and the axial
(Ebrahimi-Mamaghani et al., 2021) responses of the viscoelastic
beams. However, to the author’s knowledge, there are no
specific studies in the literature that analyze how the transversal
response of the viscoelastic beam changes in frequency because
of static axial actions, with particular reference to the possible
enhancement or suppression of one or more resonances.
Controlling or even suppressing one or more resonance peaks in
beam-like structures, indeed, is becoming an increasingly at-
tractive research topic, especially in the very recent context of
meta-materials (Hua et al., 2021; Zhang et al., 2022), forwhich it
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is still necessary to continue studying several aspects, such as the
contribution of the viscoelasticity of the polymeric materials
typically employed. Starting from the previously presented
theoretical study (Pierro, 2020) on the viscoelastic beams, the
main motivation of this paper is therefore to get new insights on
the nature of the eigenvalues, and consequently of the resonance
peaks, when a tractive and a compressive pre-load are applied. A
viscoelastic material with two relaxation times is considered,
since it is always possible to divide the frequency spectrum
under analysis in several intervals, thus allowing to decrease the
number of the predominant relaxation times in such intervals
(Figure 8 in Ref. Pierro (2019)). The results presented are
validated by means of a finite element model (FEM) analysis
and represent a step forward for the in-depth knowledge of
polymeric materials, for the purpose of the possible control of
their dynamic response, as well as to provide a useful tool to
increase the frequency range in the experimental character-
izations of the mechanical properties based on beams.

The paper is organized as follows: (i) in section 2, the
dynamic response of the viscoelastic beam is obtained,
including the presence of an axial static load; (ii) in section
3, the eigenvalues of the beam are calculated, and the
dynamic response is written as a function of the ei-
genvalues; and (iii) in section 4, the results of both the
analytical and the numerical models are shown, and a dis-
cussion on the impact of these results in the context of
polymer research is presented.

2. Flexural vibrations of the tensioned
beam

In this section, the analytical formulation to derive the
equations which governs the flexural vibrations of an ax-
ially pre-loaded viscoelastic beam is presented. For this
scope, a homogenous beam with rectangular cross section is
considered (Figure 1(a)), where L is the length of the beam,
and W and H are the width and the thickness of the beam
cross section, respectively, which are supposed to follow the
slenderness condition, that is, L � W and L � H . More-
over, it is assumed that the beam always undergoes bending
in a plane of symmetry and that the sections perpendicular
to the axis remain plane during the motion. Since the study
presented in this paper will be centered on the first reso-
nances of the beam, which are not influenced by the shear
deformations, the Bernoulli theory of transversal vibrations
is exploited to describe the beam dynamics. This choice
entails that the small displacements condition along the
z-axis, that is, juðx, tÞj � L, needs to be satisfied.

The beam is supposed to be simply supported on both ex-
tremities, with an axial pre-loadP applied at x ¼ L (Figure 1(b)).
It is possible to prove, through simple calculations (see, for
example, Ref. Cheli and Diana (2015), Section 3.3.1), that the
effect of the static axial action P is introduced in the general
equation of motion bymeans of the termP∂2uðx, tÞ=∂x2. In the

case of a beam with viscoelastic properties, the equation of
motion is therefore (Inman, 1996; Pierro, 2020)

Jxz

Zt
�∞

Eðt � τÞ ∂
4uðx, τÞ
∂x4

dτ þ μ
∂2uðx, tÞ

∂t2
� P

∂2uðx, tÞ
∂x2

¼ f ðx, tÞ
(2)

where μ ¼ ρA, ρ is the bulk density of the material, A ¼ WH
is the cross section area, Jxz ¼ ð1=12ÞWH3 is the moment of
inertia, and f ðx, tÞ is the generic forcing term. Any other
damping terms may be added to equation (2) (Banks and
Inman, 1991), such as the viscous and the hysteretic ones, but
the presented analysis is only focused on the damping effect
that comes from viscoelasticity. In order to solve equation (2),
the associated homogeneous problem is firstly considered

Jxz

Zt
�∞

Eðt � τÞ uxxxxðx, τÞ dτ þ μuttðx, tÞ � Puxxðx, tÞ ¼ 0

(3)

together with the boundary conditions of the simply sup-
ported beam (Figure 1(b))

uð0, tÞ ¼ 0
uxxð0, tÞ ¼ 0
uðL, tÞ ¼ 0

uxxðL, tÞ ¼ 0

(4)

having posed uxðx, tÞ ¼ ∂uðx, tÞ=∂x, utðx, tÞ ¼ ∂uðx, tÞ=∂t.
The solution of equation (3) can be easily found in the Laplace
domain, with initial conditions equal to zero, so that the ei-
genfunctions fðx, sÞ can be calculated solving the equation

fxxxxðxÞ � PeqfxxðxÞ � β4eqðsÞfðxÞ ¼ 0 (5)

with the boundary conditions

fð0Þ ¼ 0
fxxð0Þ ¼ 0
fðLÞ ¼ 0
fxxðLÞ ¼ 0

(6)

having defined

β4eqðsÞ ¼ � μs2

JxzEðsÞ (7)

Peq ¼ P

JxzEðsÞ (8)

From the characteristic equation associated to equation (5)

λ4ðxÞ � Peqλ
2ðxÞ � β4eqðsÞ ¼ 0 (9)
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one obtains the roots

λ2a ¼
Peq �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
eq þ 4β4eqðsÞ

q
2

λ2b ¼
Peq þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
eq þ 4β4eqðsÞ

q
2

(10)

from which

λ1, 2 ¼ ±
ffiffiffiffi
λ2a

q
λ3, 4 ¼ ±

ffiffiffiffi
λ2b

q (11)

Finally, the solution of equation (5) can be written as

fðx, sÞ ¼ W1sin½γ1x� þW2cos½γ1x� þW3sinh½γ2x�
þW4cosh½γ2x�

(12)

where

γ1 ¼
ffiffiffiffiffiffiffiffi
�λ2a

q
γ2 ¼

ffiffiffiffi
λ2b

q (13)

By forcing to zero the determinant of the system matrix
obtained from equation (6), one has the equation

sinðγ1LÞ ¼ 0 (14)

which gives us same solutions γ1nL ¼ nπ (Inman, 1996) of
the elastic case. By substituting γ21 ¼ �λ2a ¼ nπ=L in
equation (9), the following equation can be derived

�nπ
L

�2

þ Peq
nπ
L

� β4eqðsÞ ¼ 0 (15)

from which it is possible to calculate the complex conjugate
eigenvalues sn corresponding to the nth mode and the real
poles sk related to the material viscoelasticity (Pierro, 2020).
Furthermore, the values γ1n allow to determine the ei-
genfunctions fnðxÞ

fnðxÞ ¼ sinðγ1nxÞ (16)

that can be employed to get the general solution of equation
(2), through the decomposition (Inman, 1989)

uðx, tÞ ¼
Xþ∞

n¼1

fnðxÞ qnðtÞ (17)

Figure 1. The viscoelastic beam under investigation, of length L and rectangular cross section with area A ¼ WH (a), which is simply

supported at both the extremities and axially pre-loaded (b).
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By following the same calculations shown in Ref. Pierro
(2020), and by observing that

fnxxðxÞ ¼ �γ21nsin½γ1x� ¼ �γ21nfnðxÞ
fnxxxxðxÞ ¼ γ41nsin½γ1x� ¼ γ41nfnðxÞ

(18)

it is straightforward to derive the projected equation of
motion on the function fmðxÞ of the basis

μ€qnðtÞ þ Jxzγ
4
1n

Zt
�∞

Eðt � τÞ qnðτÞ dτ þ γ21nPqnðtÞ ¼ fnðtÞ

(19)

where fnðtÞ ¼ 1
L

R L
0 f ðx, tÞfnðxÞ dx is the projected forcing

term. By considering the Laplace transform of equation
(19), with initial conditions equal to zero, and forcing term
equal to the Dirac delta of constant amplitude F0, in both the
time and the spatial domains (i.e.,
f ðx, tÞ ¼ F0δðx� xf Þ δðt � t0Þ), it is possible to obtain the
system response

Uðx, sÞ ¼ F0

Xþ∞

n¼1

fnðxÞfn

�
xf
�

μs2 þ γ21nP þ Jxzγ41nEðsÞ
(20)

which clearly depends on the axial pre-load P.

3. Viscoelastic model—system eigenvalues

In order to determine the most important parameters which
affect the system dynamics, some non-dimensional quantities
will be defined. For this purpose, the general natural frequency
of the transverse motions of a narrow, homogenous beamwith
a bending stiffness E0Jxz and density ρ is considered

ωn ¼
�cn
L

�2

ffiffiffiffiffiffiffiffiffiffi
E0Jxz
ρA

s
(21)

It should be noticed that equation (21) is always valid,
regardless of the boundary conditions (Thomson and
Dahleh, 1997), whereas the coefficient cn depends on the
specific boundary conditions. In particular, the first natural
frequency is ω1 ¼ α2δ1, where δ1 ¼ c21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0A=ðρJxzÞ

p
, and

α ¼ Rg=L is the dimensionless beam length, with Rg ¼ffiffiffiffiffiffiffiffiffiffiffi
Jxz=A

p
being the radius of gyration. In the case of

a rectangular beam cross section, one has α ¼ H=ð ffiffiffiffiffi
12

p
LÞ

and δ1 ¼ ðc21=HÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12E0=ρ

p
. It is so possible to define the

non-dimensional eigenvalue s ¼ s=δ1, and in particular one
has, for the nth mode, ω2

n ¼ E0β
4
nJxz=μ ¼ rnE0 and

δn ¼ c2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0A=ðρJxzÞ

p
, where rn ¼ ðβnÞ4Jxz=μ.

Among the several constitutive models available in
literature, generally exploited to describe the stress–strain
relation in equation (1), in this study, the generalized
Maxwell model is utilized, which considers a spring and k
Maxwell elements connected in parallel. The viscoelastic
modulus EðsÞ in the Laplace domain, in particular, is
represented by the following discrete function

EðsÞ ¼ E0 þ
X
k

Ek
sτk

1þ sτk
(22)

where E0 is the elastic modulus of the material at zero-
frequency, and τk and Ek are the relaxation time and the
elastic modulus, respectively, of the generic spring-element
in the generalized linear viscoelastic model (Christensen,
1982). The number of relaxation times τk typically required
to well convey the complex modulus in a wide frequency
range can be of the order of a few tens. However, it has been
recently shown that (Pierro, 2019, 2020; Pierro and Carbone,
2021), in a narrow frequency range, for example, around
a resonance peak, even just two relaxation times are adequate
for a very good representation of the modulus in that specific
range. Since the present study focuses on the analysis of
some first peaks, considered individually, and since the
system is linear, the viscoelastic modulus will be represented
just through two relaxation times τ1 and τ2. The corre-
sponding complex function equation (22), with k ¼ 2, can be
therefore substituted in equation (15), and the fourth-order
characteristic equation, for each nth mode, can be written

s4 þ
X3

j¼0

ajs
j ¼ 0 (23)

where

a0 ¼ α4Δ2
n

1

θ1θ2
þ α2ΔnP

θ1θ2

a1 ¼
�
1

θ2
þ 1

θ1
þ γ1
θ2

þ γ2
θ1

�
α4Δ2

n þ
α2ΔnP

θ2
þ α2ΔnP

θ1

a2 ¼
�

1

θ1θ2
þ α4Δ2

n þ α4Δ2
nγ1 þ α4Δ2

nγ2

�
þ α2ΔnP

a3 ¼
�
1

θ1
þ 1

θ2

�
(24)

having defined the non-dimensional axial pre-load
P ¼ P=ðc21E0AÞ, the non-dimensional groups γ1 ¼ E1=E0,
γ2 ¼ E2=E0, θ1 ¼ δ1τ1, θ2 ¼ τ2δ1, and being Δn ¼ δn=δ1.
For the quartic equation (23), the following discriminant
DðnÞ (Lazard, 1988; Rees, 1922) can be defined

DðnÞ ¼ 256a30 � 192a3a1a
2
0 � 128a22a

2
0 þ 144a2a

2
1a0 � 27a41 þ 144a23a2a

2
0 � 6a23a

2
1a0 � 80a3a

2
2a1a0

þ18a3a2a
3
1 þ 16a42a0 � 4a32a

2
1 � 27a43a

2
0 þ 18a33a2a1a0 � 4a33a

3
1 � 4a23a

3
2a0 þ a23a

2
2a

2
1

(25)

Pierro 5



which plays a fundamental role in the general dynamics
of the beam, since it influences the nature of the roots of
equation (23). Two of the four roots, in particular, are
always real and are related to an overdamped motion. The
other two roots can be (i) complex conjugate, representing
the oscillatory contribute to the nth mode in the beam
dynamics, or (ii) both real, meaning that the nth mode is not
oscillatory. Finally, the acceleration of a generic beam
cross section Aðx, sÞ ¼ s2Uðx, sÞ can be written as
a function of the non-dimensional parameters defined
above

A
�
x, s

�
¼ F0

Xþ∞

n¼1

s2
�
1þ θ1s

��
1þ θ2s

�
φnðxÞ φn

�
xf
�

μθ1θ2

�
s4 þP3

j¼0
ajsj

�

(26)

4. Results

The main results deriving from the theoretical analysis
presented in this paper will be shown below. For the scope,
the viscoelastic beam considered in Figure 1 is studied when
oscillating in the xz-plane, having a rectangular cross
section with fixed thickness H ¼ 1½cm�. The beam length L
is considered varying by means of the parameter α ¼ Rg=L,
keeping Rg ¼ H=

ffiffiffiffiffi
12

p
constant. Regarding the material of

the beam, it should be observed that the investigation here
presented focuses the attention on the peculiarity of poly-
mers to be “materials in continuous change,” meaning that
they see the elastic constants Ek and the relaxation times τk
deeply changing under some operational conditions, for
example, with the environmental temperature. In this per-
spective, a sensitive study, based on a fully characterized
self-adhesive synthetic rubber (Ref. Rouleau et al. (2015),
has been carried out, by varying the aforementioned con-
stants. The elastic modulus has been pretty well fitted by
means of equation (2) in Pierro (2020) (which here cor-
responds to equation (22)), with two relaxation times, in the
frequency range 0� 10½rad=s�. In this range, in particolar, it
is possible to oberve the first resonance of a beam made of
this material and with length ~L ¼ 50½cm�, that is,
~α ¼ Rg=~L ¼ 0:0058, here considered as reference. The
parameters obtained from the fitting procedure are shown in
Table 1, where δ1 ¼ 72�103 for the considered boundary
conditions.

In order to evaluate the effect of an axial pre-load applied
to the beam, on the first flexural mode ðn ¼ 1Þ, the nature of
the four roots of equation (23) is analyzed by plotting in
Figure 2 the discriminant Dð1Þ (equation (25)) as a region
map, obtained by varying the parameter values ðα, PÞ, for
θ1 ¼ θ1, θ2 ¼ θ2, γ1 ¼ γ1, and γ2 ¼ γ2.

In the areas where Dð1Þ is positive, the first peak is
suppressed, but it is clear that, for the considered geometry

ðα ¼ ~αÞ and material, there is no tensile load which de-
termines such condition. Even if some shaded areas with
Dð1Þ> 0 exist for compressive pre-loads, they are not
worthy of attention, as they correspond to loads greater than
Euler’s critical load Pcr ¼ �E0Jxzπ2=L2 (Timoshenko and
Gere, 1961), which is plotted in the non-dimensional form
PcrðαÞ ¼ Pcr=ðc21E0AÞ in Figure 2 (red curve), as a function
of the parameter α, thus delimiting the region of instability
(yellow shaded area). Having a map of this type allows us to
understand, therefore, if the application of an axial pre-load
can in some way enhance or reduce the dynamic response of
the beam, at a certain resonant frequency, as will be shown
later.

Table 1. Viscoelastic parameters of a self-adhesive rubber

(Rouleau et al., 2015), obtained by the fitting procedure shown in

Ref. Pierro (2020).

Viscoelastic constants

E0 ¼ 4:46�105 ½Pa�
E1 ¼ 3:25�106 ½Pa�
E2 ¼ 1:63�105 ½Pa�
τ1 ¼ 0:0314 ½s�
τ2 ¼ 0:314 ½s�
γ1 ¼ E1=E0 ¼ 7:287

γ2 ¼ E2=E0 ¼ 0:36547

θ1 ¼ δ1τ1 ¼ 2260:8

θ2 ¼ δ1τ2 ¼ 22608

Figure 2. The region map for the first natural frequency n ¼ 1,

for θ1 ¼ θ1, θ2 ¼ θ2, γ1 ¼ γ1, and γ2 ¼ γ2. For Dð1Þ> 0, the first

peak is suppressed. No tensile loads determine such condition,

while for compressive loads, the shaded areas are almost on the

left of the static Euler’s critical loads calculated for every value of α
(red solid line), which is the area of instability.
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It is now interesting to understand if any variation of the
viscoelastic modulus, due to (i) a change in the composition
of the internal material compound or (ii) a surrounding
temperature variation, with a consequent shift of the
complex modulus in the frequency domain, may somehow
affect the nature of the roots, for one or more reso-
nance peaks. The first condition is studied by considering,
for example, the change of the constant E1, that is, by
varying the parameter γ1, as shown in Figure 3, where the
viscoelastic modulus EðωÞ is plotted, in terms of the
real part Re½EðωÞ� (Figure 3(a)) and the function tanδ ¼
Im½EðωÞ�=Re½EðωÞ� (Figure 3(b)), for different values of γ1.

It is possible to observe that by increasing γ1, both the
real part and the damping contribute, represented by the
function tanδ, tend to increase. The influence of the working
temperature change, which determines a frequency shift of
both the real part and the imaginary part of the complex
modulus EðωÞ, is analyzed by varying the first relaxation

time τ1, that is, by changing the parameter θ1. In Figure 4, in
fact, one can see that an increase of θ1 just determines a shift
of both the real part Re½EðωÞ� (Figure 4(a)) and the function
tanδ (Figure 4(b)), toward lower frequencies, without af-
fecting the amount of both the damping, represented by the
function tanδ and the real part of the complex modulus.

Focusing the attention again on the first flexural mode
(n ¼ 1), the region map of the discriminant Dð1Þ is plotted
in Figure 5(a), for the same numerical values used in
Figure 2, except for γ1, which is now considered equal to
γ1 ¼ 5γ1.

It is clear that in this case, the shaded areas, corre-
sponding to the condition Dð1Þ> 0, hence to the first peak
suppression, regard also the positive tractive loads. This
circumstance can be better highlighted by representing
the system response in two points, A and B, for α ¼ ~α,
without pre-tension P ¼ 0 (point A) and for a tractive
pre-load P ¼ 2�10�4 (point B). In Figure 5(b), the

Figure 3. The viscoelastic modulus EðωÞ, as real part Re½EðωÞ� (a), and the function tanδ (b), for θ1 ¼ θ1, θ2 ¼ θ2, and γ2 ¼ γ2, and for
γ1 ¼ 0:5γ1 (solid lines), γ1 ¼ γ1 (dashed lines), and γ1 ¼ 5γ1 (dot dashed lines).

Figure 4. The viscoelastic modulus EðωÞ, as real part Re½EðωÞ� (a), and the function tanδ (b), for θ2 ¼ θ2, γ1 ¼ γ1, and γ2 ¼ γ2, and for
θ1 ¼ 0:9θ1 (solid lines), θ1 ¼ θ1 (dashed lines), and θ1 ¼ 1:1θ1 (dot dashed lines).
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acceleration modulus jAðx, ωÞj (equation (26)), evalu-
ated at the beam section x ¼ xf ¼ x ¼ 0:4~L, and for
θ1 ¼ θ1, θ2 ¼ θ2 , γ1 ¼ 5γ1, and γ2 ¼ γ2, is shown for the
two points of Figure 5(a), A and B. It is quite clear that
the beam presents a first mode suppression, when-
no axial load is applied (point A, black solid line). How-
ever, when the beam is pre-loaded through a tensile load
P ¼ 2�10�4 (point B, black dashed line), which corresponds
to a force P@ 1½N�, the first mode becomes again oscillatory,
and a peak close to 10½rad=s� is well visible. These results
highlight the usefulness of the proposed maps, which make it
possible to predict whether the response of the beam can be
amplified or reduced, simply by applying a slight axial pre-
load. The practical implications of this result fall within the
contexts of the experimental characterization of viscoelastic
materials, that is, where the absence of a peak can lead to
misinterpreting the nature of the material itself, or more in
general where systems made of beams are pre-loaded, and the
impact of this action on the dynamic response should be
suitably predicted.

To better understand the influence of the parameters γ1
and θ1 on the nature of the system roots, and in particular the
behavior of the viscoelastic beam at its first natural fre-
quency, the discriminant Dð1Þ is shown as a function of the
pre-tension P, at the fixed beam length α ¼ ~α, for different
values of γ1 (Figure 6) and θ1 (Figure 7).

For the particular case considered, in terms of geo-
metrical and material properties, and hence beam length, it

is quite evident in Figure 6, again, that an increase of γ1, that
is, for γ1 ¼ 5γ1, the first resonance is also suppressed in
absence of pre-load, and that tensile pre-loads could re-
habilitate the oscillatory motion of the beam at its first
natural frequency. On the contrary, the motion is always
oscillatory for any variation of θ1, as shown in Figure 7,
except for slight compressive loads, up to Euler’s critical
load Pcrðα ¼ ~αÞ@ � 0:33.

Figure 5. The region map corresponding to the first natural frequency n ¼ 1, for θ1 ¼ θ1, θ2 ¼ θ2, γ1 ¼ 5γ1, and γ2 ¼ γ2. The
discriminant is positive for tractive pre-loads (e.g., point B), while the peak suppression may occur in absence of pre-loads (e.g., point A).

The static Euler’s critical load is represented (red solid line) (a). The acceleration modulus jAðx, ωÞj is plotted in frequency for P ¼ 0

(point A) and P ¼ 2�10�4 (point B) (b).

Figure 6. The discriminant Dð1Þ as a function of the non-

dimensional pre-load P, for α ¼ ~α, θ1 ¼ θ1, θ2 ¼ θ2, and

γ2 ¼ γ2, and for different values of γ1, that is, γ1 ¼ 0:5γ1 (solid line),
γ1 ¼ γ1 (dashed line), and γ1 ¼ 5γ1 (dot dashed line). The red line

corresponds to Euler’s critical load.
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As a consequence of what is shown in Figures 6 and 7, it
is important to understand that a certain viscoelastic system,
such as the beam under examination, can undergo a drastic
variation in its dynamics, through the simultaneous action
of an axial pre-load and a variation of the viscoelastic
properties of the material of which the system is made.
These variations, in particular, can be related to a change in
the working temperature, a very frequent circumstance in all
those systems made of polymeric materials, subject to

significant thermal excursions during their operational
conditions (e.g., wind turbines (Tefera et al., 2022)).

5. Finite element model simulation and
final remarks

The beam under investigation, of length ~L ¼ 50½cm�, that is,
~α ¼ 0:0058, and material properties reported in Table 1, has
been modeled in Abaqus (2018) by means of 6400 solid
linear hexahedron element type (C3D8). The boundary
conditions have been applied at the two extremities, at the
middle plane of the beam, to simulate the simply supported
BC. A constant force in the frequency domain, with unit
amplitude, has been applied at the beam section xf ¼ 0:4~L,
where the beam acceleration has been calculated
(x ¼ xf ¼ 0:4~L), through the steady-state dynamics mod-
ule. In Figure 8, the acceleration modulus jAðx, ωÞj is
plotted near the first natural frequency, for θ1 ¼ θ1, θ2 ¼ θ2,
γ1 ¼ γ1, and γ2 ¼ γ2, when no static pre-load is applied
(Figure 8(a)), and in presence of a tractive pre-load P ¼
2�10�4 (Figure 8(b)), for both the models, numerical (solid
lines) and analytical (dashed lines).

The agreement between the two models is well estab-
lished, and the considerable increase of the acceleration
amplitude due to the application of a tensile load
(Figure 8(b)) is quite congruent with the region map shown
in Figure 2, which foresees a low peak in the absence of pre-
load, because we are close to the area with a positive
discriminantDð1Þ> 0. In the case of applied pre-load, on the

Figure 8. The acceleration modulus jAðx, ωÞj, in the section x ¼ xf ¼ 0:4~L, for P ¼ 0 (a) and for P ¼ 2�10�4 (b). In both the cases,

a good agreement has been achieved, between the FEM analysis (solid lines) and the theoretical model (dashed lines).

Figure 7. The discriminant Dð1Þ as a function of the non-

dimensional pre-load P, for α ¼ ~α, θ2 ¼ θ2, γ1 ¼ γ1, and

γ2 ¼ γ2, and for θ1 ¼ 0:9θ1 (solid line), θ1 ¼ θ1 (dashed line), and

θ1 ¼ 1:1θ1 (dot dashed line). The red line corresponds to Euler’s

critical load.
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other hand, we are very far from the area of the oscillatory
motion suppression, and the peak is particularly enhanced.
Furthermore, in Figure 9, the acceleration modulus
jAðx, ωÞj is shown for the same beam and the same material,
except for the parameter γ1, which is now taken γ1 ¼ 5γ1.
For both the cases, that is, in absence of pre-load
(Figure 9(a)) and in presence of a static tension
P ¼ 2�10�4 (Figure 9(b)), the results coming from the
theoretical model presented in this paper follow pretty well
the curves obtained by the FEM analysis, and the reduced
amplitude of the first peak is again in agreement with what
has been argued about Figure 5. Therefore, the comparison
between the analytical model and the numerical one, the
latter based on solid elements, that is, of a completely
different nature (not as the 1D Euler–Bernoulli beam ele-
ments), has produced perfectly consistent results and de-
finitively confirms the accuracy of the analytical model here
presented.

In conclusion, through the proposed analytical model,
which now takes into account the presence of a static pre-
load acting on the viscoelastic beam, it is possible to fully
evaluate the dynamic response of this kind of system,
which strongly differs from the case of a perfectly elastic
beam, because of viscoelasticity. The enhancement or the
suppression of a resonance peak, which occurs only by
slightly varying an axial pre-load and that, in particular
conditions, can also be involuntary and due to the ef-
fective application of the constraints in the experimental
activities, is strategic in the context of the characterization

of such materials. In the most popular classical techni-
ques, such as the DMA, the accurate positioning of the
constraints on the beam can be decisive in order to retrieve
the correct viscoelastic constants. Furthermore, in the
more recently proposed experimental method (Pierro and
Carbone, 2021), where the resonance peaks are moved in
the frequency spectrum by changing the beam length, with
the aim to increase the range of interest under in-
vestigation, the controlled application of an axial pre-load
may be strategic to further increase the width of the
frequency range. Finally, the study here presented dis-
closes aspects on polymers not highlighted so far, which
further position them among the most versatile and tun-
able materials, crucial for all current and future
applications.

6. Conclusions

In this work, an analytical model has been proposed which
is able to accurately describe the transversal dynamics of
viscoelastic beams, also taking into account the effect of
axial pre-loads. The main purpose is to evaluate how these
pre-loads determine a variation of the nature of the system’s
eigenvalues, and therefore on the type of vibrational motion
of the beam at a certain resonance frequency. Because of the
viscoelasticity, and the related damping distribution on
frequency, the behavior of the beam is not as simple and
predictable as in the case of perfectly elastic beams. By
applying a tensile or a compressive axial pre-load, one may

Figure 9. The acceleration modulus jAðx, ωÞj, in the section x ¼ xf ¼ 0:4~L, this time with γ1 ¼ 5γ1, for P ¼ 0 (a) and for P ¼ 2�10�4

(b). Also in this case, it is possible to ascertain the good agreement between the FEM analysis (solid lines) and the theoretical model

(dashed lines).
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observe the enhancement or the mitigation of a resonance
peak, but this circumstance is incidental to a pivotal geo-
metrical parameter, that is, the beam length. Same ob-
servations have been made through an FEM analysis, which
has provided results perfectly in agreement with those
obtained from the analytical model. This theoretical model
has made it possible to get new insights on how the me-
chanical characteristics of polymers can completely change
the dynamic behavior of a beam. On one hand, these
findings are essential for all experimental applications that
make use of beams to characterize the complex viscoelastic
module, and on the other, they further point out the ver-
satility of polymers and how they increasingly reflect the
perfect peculiarities that are required by the materials of the
future.
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Appendix 1

Nomenclature

List of symbols

A cross section area
Aðx, ωÞ acceleration of the beam in the

frequency domain
DðnÞ discriminant of the nth-mode

E viscoelastic modulus
f force acting on the beam
G relaxation function
H thickness of the beam cross

section
Jxz moment of inertia
L length of the beam
n mode of vibration
P axial pre-load
Rg radius of gyration
s Laplace domain variable
t time domain variable

uðx, tÞ displacements along the z-axis
(time domain)

Uðx, sÞ displacements along the z-axis
(Laplace domain)

W width of the beam cross section
x spatial domain variable
α dimensionless beam length
γk non-dimensional group related to

Ek

δðtÞ Dirac delta function
ε strain

θk non-dimensional group related to
τk

λ root of the characteristic equation
ρ bulk density
σ stress
τ relaxation time
φ system eigenfunctions
ω angular frequency

�xðx, tÞ ¼ ∂ � ðx, tÞ=∂x spatial derivative
�tðx, tÞ ¼ ∂ � ðx, tÞ=∂t time derivative

j � j modulus

Subscripts

f stands for force location
cr denotes the Euler’s critical load

k ¼ 1…n denotes the number of relaxation time
th ¼ 1…n number of mode of vibration
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