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Abstract: Satellite data have been widely utilized for flood detection and mapping tasks, and in
recent years, there has been a growing interest in using Synthetic Aperture Radar (SAR) data due
to the increased availability of recent missions with enhanced temporal resolution. This capability,
when combined with the inherent advantages of SAR technology over optical sensors, such as spatial
resolution and independence from weather conditions, allows for timely and accurate information on
flood event dynamics. In this study, we present an innovative automated approach, SAR-RST-FLOOD,
for mapping flooded areas using SAR data. Based on a multi-temporal analysis of Sentinel 1 data,
such an approach would allow for robust and automatic identification of flooded areas. To assess
its reliability and accuracy, we analyzed five case studies in areas where floods caused significant
damage. Performance metrics, such as overall (OA), user (UA), and producer (PA) accuracy, as well
as the Kappa index (K), were used to evaluate the methodology by considering several reference flood
maps. The results demonstrate a user accuracy exceeding 0.78 for each test map when compared to
the observed flood data. Additionally, the overall accuracy values surpassed 0.96, and the kappa
index values exceeded 0.78 when compared to the mapping processes from observed data or other
reference datasets from the Copernicus Emergency Management System. Considering these results
and the fact that the proposed approach has been implemented within the Google Earth Engine
framework, its potential for global-scale applications is evident.

Keywords: Sentinel 1; SAR-RST-FLOOD; flood mapping and monitoring; Google Earth Engine;
CEMS; multi-temporal

1. Introduction

Floods are the most frequent and costly natural hazard worldwide, causing fatalities
and significant economic damage in both rural and urban environments [1]. According to
the Emergency Events Database, floods were the most common natural hazards in 2022,
with 176 large events occurring worldwide, approximately 8000 deaths, and more than
57 million people affected [2]. Unfortunately, global temperature increases are generating
widespread shifts in weather systems, making events such as floods more frequent, intense,
and unpredictable [3]. The timely detection and monitoring of flood-prone areas are crucial
for effective disaster management and response [4]. In recent years, remote sensing (RS)
technologies have emerged as powerful tools for flood monitoring, with Synthetic Aperture
Radar (SAR) at the forefront [5].

SAR imagery has indeed proven to be a powerful and effective approach for flood
mapping [6–8]. Unlike optical sensors, SAR can penetrate clouds, rain, and vegetation,
providing all-weather and all-day imaging capabilities [9], thus allowing for the detection
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and characterization (extent, dynamics, and severity) of flooded areas at high spatial
resolution [10–13].

The main limitation, especially in the past, of using SAR data for flood detection and
monitoring purposes, namely their low temporal resolution, has been recently addressed
by the implementation of several constellations of satellites sharing the same payload
and orbit with a phase shift that allows for at least half of the temporal resolution when
two satellites are present [14]. An example of such a constellation is represented by the
Sentinel-1A (S-1A) and Sentinel-1B (S-1AB) satellites, which belong to the European Space
Agency (ESA) Copernicus program and are equipped with a SAR system operating in
the C-band (5.6 GHz) [15]. Each SAR has a spatial resolution of 10 m, while the nominal
temporal resolution of each of the two S1 satellites is 12 days, which is reduced to six days
when the two satellites are working together. This resolution increases at higher latitudes
and over Europe, which are sampled more frequently than other locations in the world [14].

Various approaches have been employed for flood mapping using SAR imagery [8,10–21].
One commonly employed method is image differencing, which involves comparing pre- and
post-flood SAR images to identify changes in the backscattering characteristics [12,13,16].
This approach was recently used by Hung and Jin [22], who analyzed multi-temporal
Sentinel 1 data and highlighted the relevance of temporal analysis for effectively detecting
and mapping floods. However, it is important to note that flood-affected pixels may
exhibit signals similar to other features, such as high-altitude regions or shadows [18].
Thresholding is another approach in which a threshold value is set to distinguish between
flooded and non-flooded areas based on the SAR image intensity values. Pixels above the
threshold are classified as flooded, while those below are classified as non-flooded. This
technique was recently applied to the historical Sentinel 1 data by Uddin et al. [23] for
rapid flood mapping. However, this method has limitations when it comes to detecting
water through dense vegetation [18]. Machine learning and data fusion techniques have
been employed for flood mapping using Sentinel-1 data. Hitouri et al. [24] used training
algorithms to classify flooded and non-flooded areas based on a combination of SAR data,
ancillary data, and historical flood information. Another study by Gebrehiwot et al. [25]
presented a method for flood extent mapping using an ensemble CNN model, further
illustrating the use of advanced machine-learning techniques for flood detection. However,
training these models requires large amounts of labelled data, which can be difficult
to obtain.

This work introduces the SAR-Based Robust Satellite Technique-FLOOD (SAR-RST-
FLOOD), a novel approach that utilizes SAR data to enable the accurate and timely detection
of flooded areas. RST-FLOOD has been successfully applied to optical sensors data, such
as those acquired by the Advanced Very High Resolution Radiometer (AVHRR), Moderate
Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer
Suite (VIIRS), to detect and monitor flood events by exploiting the typical behavior of
water in the visible–near-infrared spectral region [26–28]. It is a multi-temporal approach
aimed at the preliminary characterization of the investigated signal at the pixel level in
unperturbed conditions, and then the identification of any signal transient as statistical
deviation from these “normal” conditions [29]. In this study, the RST algorithm was applied
for the first time to SAR data, particularly to backscattered signals, to identify flooded
areas. One of the key advantages of the RST approach is its robustness against various
environmental factors such as vegetation, topography, and weather conditions. On the
other hand, one of the main limitations that has hampered the application of RST to SAR
data so far is the computational effort, in terms of both data storage and processing, needed
to analyze long-term series of backscatter signals over large areas.

In this study, we addressed this issue by leveraging the remarkable capabilities of
the Google Earth Engine (GEE) cloud-based geospatial processing platform [30], which
allowed us to implement our methodology in a streamlined and efficient manner. GEE
revolutionizes the field of geospatial analysis by offering an intuitive and user-friendly
interface, allowing us to explore and process data with ease while obtaining results at
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both regional and global scales [30–33]. One of the key advantages of GEE is its ability to
handle massive datasets, thereby facilitating informed decision-making and comprehensive
analysis [26]. A remarkable feature of GEE is its vast geospatial data repository, which
includes constantly updated Sentinel-1 GRD (“Ground Range Detected”) data [14]. The
availability of analysis-ready SAR datasets in GEE has greatly simplified the complex SAR
pre-processing procedures, opening new avenues for SAR-based geospatial analysis.

SAR-RST-FLOOD was implemented in GEE, allowing us to develop an automatic
method that can be applied anywhere. To validate the effectiveness of the proposed
algorithm, extensive experimental evaluations were conducted using Sentinel-1 SAR data
from different satellite missions, including the Copernicus Emergency Management System
(CEMS) Mapping database [34]. The results demonstrate that the algorithm is highly
accurate in detecting flooded areas and can provide timely information to aid disaster
response and management efforts.

2. Materials

Several data were used in this study to implement the proposed methodology and
assess its performance. A comprehensive list of the considered data, together with their
main characteristics, is presented in Table 1, and their description is provided in the
following subsections.

Table 1. List of data used.

Datasets Raw Data Spatial Resolution Source of Data

SAR-image Sentinel 1(GRD) 10 m Copernicus
Hydrosheds Based on SRTM 90 m USGS
MERIT Hydro Based on G1WBM, GSWO, and OSM 90 m NASA
GSW Global surface water 30 m JRC
DEM Digital elevation map 10 m Grass site
TIF files Ground data Shapefile (.shp) CEMS
Maps Reference maps 60 m/30 m/10 m CEMS

2.1. GEE Data and Derived Products

In this study, we used various freely available datasets from Google Earth Engine to
enhance the research. Specifically, we analyzed data from the Sentinel-1 satellite mission,
which has already been used for diverse Earth observation applications, including flood
detection [35,36]. For our research, we employed the Interferometric Wide Swath (IW) mode
of the S-1 mission, utilizing the VH polarizations (vertical–horizontal), which are more
sensitive to changes on the land surface [37]. The IW mode provides extensive coverage and
high-resolution imagery, making it suitable for flood detection and mapping [38]. The use
of Sentinel-1 data, with its wide coverage, high-resolution imagery with a 10 m resolution,
and frequent temporal updates, enabled us to conduct robust flood detection and mapping
in the investigated study areas.

Moreover, we employed the HydroSHEDS Digital Elevation Model (DEM) to mask
pixels representing steep land surfaces [39]. The inclusion of topographic information
through the DEM allowed us to refine the flood mapping process and focus on areas where
flooding is more likely to occur, enhancing the reliability of our results. We also relied on the
JRC Global Surface Water (GSW) Mapping Layers dataset, which provides comprehensive
maps of surface water location and temporal distribution from 1984 to 2020 [40]. This
dataset also offers valuable statistics on the extent and changes of water surfaces over
time. By leveraging this dataset and incorporating seasonality information, we aimed to
accurately delineate and analyze the distribution of permanent and semi-permanent water
bodies, contributing to a better understanding of global surface water dynamics. Finally,
we used the MERIT Hydro dataset [41] to obtain a global flow direction map at a high
resolution of 3 arcsec.
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2.2. Reference Flood Data/Maps

To validate our flood detection methodology, we collected reference flood data from
the Copernicus Emergency Management Service [34]. The reference data consisted of
various types of information, including ground data on floods in TIF format and maps
generated using ESRI World Imagery, COSMO-SkyMed, Radarsat-2, and other satellite
images, including Sentinel ones. The flood maps in the TIF file provided precise geographic
boundaries of the flooded areas, allowing for an accurate comparison and evaluation of the
flood detection results. These shapefiles contain detailed information on the extent and
location of the flood-affected areas. Where this information is not available, flood maps
produced using other satellite images provided a visual representation of the events. These
maps have often been produced by studying Sentinel 1 images, and where possible, we
considered the same data to compare results.

3. Test Cases

Five different test cases were analyzed in this work to be representative of a wider
range of conditions, considering the main features of the involved areas/rivers, as well
as the events dynamic and damage. In addition, reference information was available for
all these events, making them suitable for our analysis. The main information on the
investigated events is reported in Table 2, where we also indicate the information of the
S1 image processed to produce the results. It is clear that more data (before, during, and
after the event) could have been used to better describe the dynamics of the events in the
multi-temporal domain; however, this kind of analysis is beyond the scope of this paper.

A brief description of each event, the localization of which is shown in Figure 1, is
presented below.
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Table 2. Characteristics of the Sentinel-1 SAR images used in the study areas.

Study Areas Event Date Image Mission Identifier Date of Acquisition Acquisition Mode

Spain (Zaragoza) 10 December 2021 After Flood Sentinel-1A 16 December 2021 Descending
Spain (Tudela) 12 April 2018 After Flood Sentinel-1A 13 April 2018 Descending

Spain (Zaragoza) 2 February 2015 During Flood Sentinel-1A 2 February 2015 Descending
UK (Selby) 27 December 2015 After Flood Sentinel-1A 29 December 2015 Descending
Italy (Sesia) 3 October 2020 During flood Sentinel-1A 3 October 2020 Descending

3.1. Ouse River—England 2015

A severe storm affected the norther area of England on 27 December 2015. This storm
brought heavy rainfall, with a 24 h total of 168 mm, affecting various areas such as York and
Selby in the Yorkshire region [42]. The Ouse River and the Calder and Aire Rivers in West
Yorkshire experienced significant flooding (Figure 1), affecting several cities, including
Bradford and Leeds. The impact was substantial, with 7574 homes in northern England
losing power at 08:00 on December 27. Notably, approximately 5500 of these homes were
in the town of Rochdale in Greater Manchester, where a major electricity substation was
flooded [43].

3.2. Sesia River—Italy 2020

The second study area focuses on the Sesia River, situated in the northern part of
Italy. In October 2020, the area experienced an exceptionally severe meteorological event.
Regional and National Civil Protection authorities responded by issuing red and orange
alerts, respectively [44].

The northern and western parts of the Piedmont region were particularly affected with
significant damage. Heavy rainfall has led to the overflow of multiple rivers and subsequent
flooding of numerous areas [45]. In particular, the Sesia River experienced a breach that
resulted in road closures, bridge collapses, and the submergence of various regions.

3.3. Ebro River—Spain (2015, 2018, 2021)

In recent years, several events have affected the Ebro River in Spain (2015, 2018, and
2021). The river stretches 930 km (approximately 580 miles) from the Cantabria Mountains
to the Mediterranean Sea, playing a crucial role in the surrounding areas and the whole
of Spain.

In February 2015, the Ebro River experienced major flooding in the Zaragoza region.
The river flow rate reached an impressive 2400 cubic meters (84,700 cubic feet) per sec-
ond during this event. The swollen river cut through Zaragoza, affecting approximately
700,000 people and submerging large areas of nearby farmland [46].

In April 2018, the Ebro River threatened the city of Tudela. Due to snowmelt in river
catchment areas and a period of heavy rain, the river’s rising waters prompted authorities
to issue an orange alert at the second-highest level on the Spanish scale [39]. The water
level reached over five meters before gradually receding [47]. It is worth noting that the
water level was lower than that recorded in 2015 only because of the measures taken to
improve the safety of the populations closest to the channel after the 2015 event [48].

Another flood affected Zaragoza in December 2021. This flood was triggered by
heavy rainfall and rapid snowmelt over a 72 h period, leading to extensive damage and
disruption in the upper and middle Ebro River basin that runs through Zaragoza. Spain’s
Meteorological Agency (AEMET) reported that on 10 December, the Arga River in Pam-
plona reached 4.80 m, whereas the Ebro River in Castejón reached 7.94 m by 11 December.
Flooding along the Ebro later affected areas of the Aragon region, including the capital
Zaragoza, where the river reached 5.52 m on 14 December 2021 [49]. Areas along the
river in the city were flooded, and the Spanish Red Cross reported that patients from a
hospital in the city were evacuated [49]. Unfortunately, these floods highlight the increasing
frequency of such events in Spain due to climate change. Authorities continue to monitor
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and take precautionary measures to mitigate the impact of future floods in Zaragoza and
its surrounding areas.

4. The RST Approach

The RST algorithm is an automatic multi-temporal change-detection method that has
been extensively tested for detecting various environmental hazards [29,50]. The method
is based on the preliminary identification of “normal” (i.e., unperturbed) values of the
investigated signal that should be compared with the signal at hand for the detection of any
significant, from a statistical point of view, anomalies. Such an analysis is performed at the
pixel level and requires the preliminary generation of a homogeneous long-term satellite
database. Homogeneity in the spatial domain is ensured by always considering the same
area (and pixels), whereas homogeneity in the temporal domain is ensured by collecting
data belonging to the same calendar month and acquired at the same time of day (or in the
same orbit). The change detection step is performed by implementing the Absolutely Local
Index of Change of Environment (ALICE) index (1), as in the following [50]:

⊗V(x, y, t) =
V(x, y, t)− µV(x, y)

σV(x, y)
(1)

where V(x,y,t) is the signal measured at time t for each pixel (x,y) of the analyzed satel-
lite scene, and µV(x,y) and σV(x,y) represent the temporal mean and standard deviation,
respectively, which are computed by processing the above-mentioned homogeneous multi-
temporal dataset of the collected satellite data [29]. The Alice index, by its inherent design,
is intended to be a standardized variable that exhibits Gaussian behavior, with a mean
close to 0 and a standard deviation close to 1. Consequently, a higher absolute value of the
index indicates a lower probability of its occurrence [50].

In its first implementation on SAR data, performed in this work, the signal under
investigation is the backscatter measured by Sentinel 1, with the prescriptions for the
used data indicated as follows. It is worth mentioning that the backscatter intensities are
influenced by the characteristics of the surface, including its roughness, composition, and
presence of water. In the absence of flooded areas, these characteristics can be considered
constant if the same pixel is viewed with the same geometry during the same period of the
year. Therefore, in the absence of any other perturbations, signal anomalies, if detected, can
be related to the presence of flooded areas. Considering the incidence angle, its similarity
along the temporal series accounts for shadowing and layover effects, enabling accurate
differentiation between flooded and non-flooded regions [51]. As already mentioned, the
RST approach implementation requires computational capability to increase on the basis
of the spatiotemporal and resolution of the investigated data, as well as on the length of
the historical series analyzed. These factors, together with the limited accessibility of radar
data, have prevented the application of RST to raw SAR data. This study represents the
first attempt to analyze a historical series of backscatter values following RST prescriptions
and exploit its inherent advantages.

5. The Methodology

The workflow followed in this study was implemented using the Google Earth En-
gine platform and deploying the JavaScript programming language. The workflow was
divided into five stages (Figure 2), described in the following, to ensure a systematic and
comprehensive approach to flood detection (Figure 2).
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5.1. Sentinel-1 Data Selection and Pre-Processing

The main features of the used Sentinel-1A and 1B have already been mentioned. By
exploiting the GEE platform, IW GRD scenes with VH polarization were selected for the
areas under investigation. Temporal selection was performed by focusing on the month/s
of event/s analyzed in a multi-temporal framework. To ensure the reliability of our results,
we implemented a filtering process to exclude poor-quality images from the collection. This
step was crucial to avoid potential inaccuracies and inconsistencies in the data used in the
analysis. A total of 475 images stratified based on the calendar month of event occurrence
were analyzed.

Several pre-processing steps were automatically executed within the GEE platform to
enhance SAR image quality. These steps include thermal noise removal, data calibration,
multi-looking, and range Doppler terrain correction. However, to further improve SAR
data quality, additional pre-processing steps are necessary. The Committee on Earth
Observation Society (CEOS) Analysis-Ready-Data for Land (CARD4L) recommends several
supplementary pre-processing techniques, including border noise removal, speckle filtering,
and radiometric terrain correction [52]. For speckle filtering, we employed the Refined Lee
filter [53], which was originally introduced by [54], and we used this filter at a kernel size
of 7 × 7. To address the influence of topography on SAR backscatter, we implemented
radiometric terrain correction based on the approach proposed by Hoekman and Reiche [55],
as implemented by [56,57]. This approach incorporates an angular-based correction that
considers the angular relationships between the SAR image and terrain geometry. We
utilized the SRTM dataset at a resolution of 1 arc-second (30 m), which is readily available
in GEE [58]. The latter was replaced by our DEM with a higher resolution of 10 m, where it
was available. The primary objectives of these pre-processing steps are to mask and exclude
pixels located in the active layover and shadow areas of the image [55,59]. Following the
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completion of the pre-processing steps, we converted the output to a logarithmic scale of
dB. This conversion facilitates clearer visualization and enhances image interpretability.

5.2. RST Methodology Implementation

The historical series of S1-GRD images with VH polarization was used as the input to
implement the RST methodology. As described above, such an activity encompasses two
main steps: (i) the identification of the expected values at the pixel level (i.e., temporal mean
and standard deviation) for the investigated signal (i.e., the backscattering σ0); (ii) and
the ALICE index computation for all the S1 images useful to characterize the analyzed
flood events.

In Figure 3, two examples of the ten maps (one temporal mean map plus one standard
deviation map for five events) produced in the first step are shown. These maps refer to
the two outputs produced for analyzing the Zaragozza Ebro River event (December 2021).
They were obtained by analyzing at the pixel levels all S1 GRD IW data collected in the
calendar month of December from 2014 to 2023. Similar maps, which are not shown for the
sake of brevity, were produced for all other events.

Using these maps as reference signals, the ALICE maps for all images in Table 2 were
computed, highlighting values higher than two, whose probability of occurrence was less
than 3% for inherent construction [29,50]. These maps were used as inputs in the next step
to produce the final flood maps.
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5.3. Post-Processing

To enhance the quality of the flood extent layer and reduce the number of false
positives, we used additional datasets and applied post-processing steps. First, we used
the global surface water dataset (GSW) [40] to distinguish between permanent and semi-
permanent water bodies. This dataset provides comprehensive maps of surface water
location and temporal distribution and offers valuable statistics on the extent and changes
in water surfaces over time. To identify areas with permanent or semi-permanent water
bodies, we used the seasonality band within the dataset. This band provides information
on seasonality, ranging from 0 to 12 months, allowing us to effectively mask out areas with
consistent water presence throughout the year. By leveraging this dataset and incorporating
seasonality information, we aimed to accurately delineate and analyze the distribution of
permanent and semi-permanent water bodies, contributing to a better understanding of
global surface water dynamics.

We then employed topographic filtering techniques based on the elevation data from
the DEM obtained from the HydroSHEDS dataset [39]. By setting a threshold slope per-
centage, we identified areas where the slope exceeded a certain value. These steep areas
were considered unsuitable for flooding because water naturally flows away from them.
By filtering these incorrectly flooded pixels, we aimed to improve the accuracy of our flood
detection analysis. The inclusion of topographic information through the DEM allowed us
to refine the flood mapping process and focus on areas where flooding is more likely to
occur, enhancing the reliability of our results.

Additionally, we used information provided by the MERIT hydro dataset [41]. To
detect permanent water bodies, we focused on the “wet” band, where land areas are
represented by 0 and permanent water bodies by 1. Furthermore, using this dataset, we
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implemented a 2 km buffer to specifically highlight rivers while eliminating any false
positive water detections. This approach allowed us to accurately identify and visualize
river networks while ensuring the exclusion of non-river water features.

5.4. Validation

The final step of this study involved validating the processed flood extent maps gener-
ated in previous stages. The accuracy of the SAR-RST-FLOOD approach was assessed using
various methods and a range of reference datasets, including reliable flood information
from CEMS.

We assessed the accuracy of the flood maps by comparing them with the same Sentinel-
1 imagery taken on the same date using another approach, such as the automatic threshold
method provided by the CEMS. In cases where we were unable to find a Sentinel 1 image
for the same date, we assessed the accuracy of the flood maps by comparing them with
different types of images, including ESRI World Imagery, COSMO-SkyMed, Radarsat-2,
and other satellite images, and then with the provided ground truth information regarding
floods in the TIF files containing flood extents. Through these rigorous validation processes,
we aimed to ensure the reliability and precision of the flood mapping results obtained
using the SAR-RST-FLOOD approach.

The agreement between the two mapping approaches was assessed using a confusion
matrix that served as a concise summary of the classification model predictions, indicating
the numbers of correct and incorrect predictions. By analyzing the values in the confusion
matrix, various metrics were calculated to assess the agreement between the two mapping
approaches ([18], such as the user’s (UA), producer’s (PA) and overall accuracy (OA), as
well as the Kappa index (K), as described in the following.

UAf =
A

A + B
(2)

UAnf =
D

C + D
(3)

PAf =
A

A + C
(4)

PAnf =
D

B + D
(5)

OA =
A + D

A + B + C + D
(6)

K =

A+D
A+B+C+D − (A+B)(A+C)+(C+D)(B+D)

(A+B+C+D)2

1 − (A+B)(A+C)+(C+D)(B+D)

(A+B+C+D)2

(7)

where A is the number of pixels considered flooded by both the RST and the reference
map, B and C are the “False” negative or positive RST detection (considering the reference
map as the true), and D represents the pixels that were not recognized as flooded by both
methods. In Equations (2) and (4), f is for “flooded”, whereas in Equations (3) and (5), nf is
for “not flooded”.

6. Results

Flood mapping was conducted for each investigated flood event, serving as a valuable
tool for assessing our approach. In the following subsections we provide regional-scale
flood maps, offering both an overview and a detailed perspective of the five study areas.
In each map, in addition to the involved river/s and its/their main flow direction (black
arrow), the SAR-RST-FLOOD and reference data outputs are plotted in different colors.
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6.1. Ouse River—England 2015

The CEMS system was activated for this event on 28 December 2015 [60]. We consid-
ered the flood delineation map generated by analyzing a RADARSAT image acquired on
29 December 2015 as reference data for this case study. The flood map was generated by
CEMS using a semi-automatic approach with an estimated geometric accuracy of 10 m [60].
This reference map was then compared with the SAR-RST-FLOOD map computed on the
same date (Figure 4).
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The user accuracy value was 0.64, the produced accuracy was 0.98, and the Kappa
index reached 0.77 (Table 3). From the image (Figure 4), it is evident that the proposed
approach was able to detect more flooded pixels than those achieved by applying the
threshold method to the RADARSAT image. Such a discrepancy, whose reliability cannot
be assessed in the absence of ground data, is mostly related to the difference between the
two used methods. In any case, the high Paf value indicates the good reliability of the
RST approach.

Table 3. Confusion matrix for the Ouse River event (29 December 2015).

Event 1: England Flood 27 December 2015 Reference Data Accuracy Matrix

Flood Not Flooded UAf UAnf PAf PAnf K

RST-SAR-FLOOD
Flood 681,574 306,425

0.64 0.92 0.98 0.72 0.77Not Flooded 39,209 10,312,432

6.2. Sesia River—Italy 2020

The CEMS system was activated for this event on 4 October 2020 [61]. The first
estimate product generated by analyzing a Sentinel 2 image acquired on 3 October 2020
was considered the reference data for this case study. The flood map was generated using
CEMS from an image by means of visual interpretation, with an estimated geometric
accuracy (RMSE) of 7.5 m [61]. The SAR-RST-FLOOD map (Figure 5) was produced by
considering the Sentinel 1 image collected on the same date.
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The user accuracy was relatively lower at 0.58, in contrast to other parameters, such
as UAnf (0.92), PAf (0.98), and K (0.68) (Table 4). One factor contributing to the lower
UAf is the inherent lack of direct comparability between the SAR and Sentinel 2 maps.
This disparity arises because the SAR maps undergo topographic correction, allowing the
detection of flood areas in vegetated zones that are undetectable by Sentinel 2. In addition,
the method used for assessing flooded extension on the reference data may have added
some uncertainty.

Table 4. Confusion matrix for Sesia River event (3 October 2020).

Event 2: Italy Inundation 3 October 2020 Reference Data Accuracy Matrix

Flood Not Flooded UAf UAnf PAf PAnf K

RST-SAR-FLOOD
Flood 340,879 148,082

0.58 0.95 0.96 0.97 0.68Not Flooded 23,669 4,672,132

6.3. Ebro River—(Zaragoza) Spain 2015

The CEMS system was activated for this event on 2 February 2015 [62]. For this
case study, we considered a flood delineation map generated by analyzing a Sentinel 1
image acquired on 3 February 2015. The flood map was produced by CEMS using a semi-
automatic approach, also considering visual interpretation, with an estimated geometric
accuracy (RMSE) of 15 m and a thematic accuracy of 85% [62]. The SAR-RST-FLOOD map
was produced using the same Sentinel 1 image (Figure 6).

The user accuracy reached 0.76, Paf reached 0.98, and the Kappa index reached 0.84
(Table 5). This notable accuracy is related to the similarity between the maps (Figure 6),
and both were corrected topographically. In addition, in this case, the visual analysis of the
two images shows some discrepancies between the two outputs, which cannot be better
investigated in the absence of a ground truth.
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Table 5. Confusion matrix for Ebro River (Zaragozza) event (3 February 2015).

Event 3: Zaragoza Inundation 2 February 2015 Reference Data Accuracy Matrix

Flood Not Flooded UAf UAnf PAf PAnf K

RST-SAR-FLOOD
Flood 237,392 71,737

0.76 0.97 0.98 0.81 0.84Not Flooded 10,921 2,540,721

6.4. Ebro River—(Tudela) Spain 2018

The CEMS system was activated for this event on 13 April 2018 [63]. The flood
delineation map generated by using a semi-automatic approach for the COSMO-SkyMed
images acquired on 13 April 2018 at 17:45:11 UTC and 17:45:16 UTC) and by means of visual
interpretation due to the poor radiometric quality of the COSMO-SkyMed data acquired
on 13 April 2018 at 18:09:16 UTC and 18:09:21 UTC was considered as the reference data
for this case study. The estimated geometric accuracy was 5 m [63]. The flood extension
analysis involved a comparison between this map and the SAR-RST-Flood one generated
by analyzing a Sentinel 1 image acquired on 13 April 2018 (Figure 7).

UAf exceeded 0.94, indicating reasonably accurate flood extent mapping, the PAf
value was 0.69 and K was 0.84 (Table 6). The two outputs (Figure 7) appear to be very
similar, indicating the high reliability of the RST approach.

Table 6. Confusion matrix for Ebro River (Tudela) event (13 April 2018).

Event 4: Tudela Inundation 13 April 2018 Reference Data Accuracy Matrix

Flood Not Flooded UAf UAnf PAf PAnf K

RST-SAR-FLOOD
Flood 23,728 6963

0.94 0.95 0.69 0.76 0.75Not Flooded 1102 253,972
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6.5. Ebro River—Zaragoza, Spain 2021

The CEMS system was activated for this event on 10 December 2021 [64]. The flood
delineation map generated by analyzing RADARSAT 3 data acquired on 15 December 2021
was considered as the reference data for this case study. The flood map was generated by
CEMS using a semi-automatic approach, with an estimated geometric accuracy (RMSE) of
20 m [64]. This reference map was compared with the SAR-RST-FLOOD map computed by
investigating the Sentinel 1 image acquired on 16 December 2021.

UAf exceeded 0.97, indicating accurate flood extent mapping; the PAf value was 0.87
and K was 0.87 (Table 7). A high level of agreement was found between the two maps
(Figure 8) despite the high level of vegetation surrounding the river.
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Table 7. Confusion matrix for the Ebro River (Zaragozza) event (16 December 2021).

Event 5: Zaragoza Inundation 10 December 2021 Reference Data Accuracy Matrix

Flood Not Flooded UAf UAnf PAf PAnf K

RST-SAR-FLOOD
Flood 360,790 147,090

0.97 0.95 0.87 0.90 0.87Not Flooded 24,790 4,762,093

7. Discussion

SAR data have been largely used for flood detection purposes owing to their capability
to provide detailed all-day and all-weather information. The Copernicus program, as
well as the Cosmo Sky Med mission [65] have facilitated the acquisition of data with
good temporal resolution, owing to the presence of several satellites sharing the same
payload. One residual limitation related to the intensive computational tasks related to
the pre-processing of SAR data, especially when long-term series are analyzed, has been
recently faced thanks to the availability of advanced computing platforms, such as Google
Earth Engine.

In this study, GEE has facilitated the implementation of a multi-temporal approach,
RST-FLOOD, on a historical series of S1 data to map different flooding events that have
occurred in Europe in recent years. Among the dozen events available, whose analysis
would have clearly not been feasible and out of the scope of the study, we selected five flood
episodes representative of a wider range of characteristics in terms of the area affected,
precipitation, and damage. Moreover, detailed reference data were available for these
events, making them useful in terms of assessing the accuracy of the proposed method-
ology. To this end, in the absence of in situ data, we used other maps and information
made available by the Copernicus Emergency Mapping System. In any case, it is worth
saying that accurate ground measurements of flood extent are difficult to obtain because
of meteorological and safety conditions [66], and they are usually collected with a time
delay with respect to satellite acquisition, which could lead to misclassification due to flood
dynamics [18]. Therefore, using remote sensing data/products as reference maps, such
as those provided by the CEMS, still represents a viable alternative [14,17,18,67], even if
also these products may lack accuracy depending on the quality and sensitivity of the
considered data and method of analysis.

The obtained results, when compared with CEMS maps/information, indicate the
feasibility of the proposed approach. In more detail, considering all the analyzed events
together, a Kappa index value of 0.78 and an overall accuracy of 0.96 were found, suggesting
the good reliability of the method. Similar confirmations arose from the analysis of the
Uaf and Paf mean values, equal to 0.78 and 0.90, respectively. Such good results have been
obtained notwithstanding several issues typically affecting the accuracy of flood disaster
information [18], such as the high heterogeneity (spatial resolution, date of acquisition,
etc.) of the considered reference maps, ranging from S1 images to S2, RADARSAT, and
ground data, as well as the methods used for detecting flooded pixels. In any case, other
events should be investigated in the future to further confirm such results. Owing to its
implementation within the GEE platform, where all other ancillary data used to increase
the quality of the results are also present, the proposed approach can be easily applied
on a global scale and can provide crucial information for remote areas characterized
by the presence of ungauged and/or poorly instrumented basins. In these areas, as
well as for those where a violent and/or extreme event, such as a flood, can destroy
the ground monitoring system, satellite data can represent the only source of information
available [68]. Furthermore, the processing of dense SAR time series is performed in
a short time, allowing for the rapid production of results. The technique is completely
automatic and unsupervised and does not require a preliminary selection of a baseline or
human support.

Once the accuracy of the proposed approach in mapping flood events was assessed,
its potential for monitoring purposes was investigated. To this end, we analyzed the last of
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the considered test cases in greater detail, i.e., the Ebro River event that occurred around
Zaragozza in December 2021. Two other S1 images were available after the one of 16
December 2021, already analyzed (Figure 8). The first one was acquired on 17 December
2021 by S1A and the second on 22 December 2021 by S1B. The results of the RST-SAR-
FLOOD application for these two images are shown in Figure 9a,b.
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A clear reduction in the flooded areas is evident in the two maps, especially in the
second one, highlighting the zones most affected by the flood, whose presence was still
evident one week after the first detection. This information, typically acquired when a
meteorological perturbation is still present and hence prevents optical data acquisition,
is fundamental to better manage recovery actions, as well as to delineate clear flooding
scenarios useful for implementing future mitigation activities.

The availability of more images, together with other information acquired remotely or
in situ, such as the measurement of rainfall spatial and temporal variability, is fundamental
for modelling and reconstructing catastrophic flooding events [68]. The integration of
human observations (crowdsourced data) may further help to validate complex flooding
events in data-scarce areas with unavailable gauged records [68–70]. Finally, it should be
stressed that accurate indications about the areas affected by a flood event are fundamental
to developing flood hazard maps that are useful for risk-aware analyses and designs [71].
In this context, the development of probabilistic approaches and stochastic techniques for
flood hazard assessment may improve the definition of flood risk scenarios [71].

The implementation of the proposed methodology was made possible by the concur-
rence of two factors. The European Union’s choice to make all the data collected within
the Copernicus program open and freely available represents an innovative idea that has
allowed for the growing use of these data in the everyday life of each kind of potential
stakeholder, from local regional authorities to the general public [72], as well as the devel-
opment of several downstream applications. This has been facilitated and accelerated by
the development of cloud computing systems, such as GEE, which permits “easy” access to
and processing of these data [33], overcoming one of the main barriers to a more systematic
use of Copernicus data/products [72].

The potential limitations of the RST-SAR-FLOOD method may be represented by a
reduced capability to investigate floods occurring in urban areas, mountainous regions, and
coastal zones, where the discrimination between flooded pixels and others showing similar
characteristics could be more complicated [18]. Another issue of the proposed approach
is represented by the current temporal resolution of Sentinel 1 data. S1B, launched in
April 2016, stopped working on 23 December 2021, soon after the acquisition of the image
analyzed in Figure 9, due to a failure of the electronic power supply to the instruments [54].
The ESA is currently working on the launch of Sentinel-1C as soon as possible to re-establish
the satellites constellation [73]. Until S1C will not be operational, the nominal temporal
resolution of S1 mission will remain 12 days, limiting the capability of such a system in
providing timely information about processes in progress on the surface of the Earth.

8. Conclusions

In this study, the RST-FLOOD method, which has already proven successful in de-
tecting and monitoring flood events using optical data, was applied to Synthetic Aperture
Radar (SAR) data for the first time. Sentinel 1 data, freely provided by the Copernicus pro-
gram, were used for this aim, exploiting the potential of the Google Earth Engine platform.
Five test cases were evaluated by comparing the results of the SAR-RST-FLOOD method
with those provided by the Copernicus Emergency Mapping System. The user accuracy
values ranged from 0.58 to 0.97, with an average value of 0.78, producing accuracy values
from 0.69 to 0.98, with an average value of 0.90, and the K values ranged from 0.68 to 0.87,
with an average value of 0.78.

These satisfactory results, achieved notwithstanding the discrepancies in terms of
spatial resolution, time of acquisition, and method used between the two datasets, indicate
the good performance of the proposed approach. Moreover, they highlight the main
advantage of a multi-temporal approach, such as the one presented here, with respect to
traditional techniques, namely its capability to automatically define local (i.e., at the pixel
level) adaptive thresholds useful for the robust identification of flooded areas, reducing
the occurrence of false detections. In addition, the strong capability of providing useful
information about flood dynamics due to the good temporal resolution provided by the
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S1 constellation, when fully operational, was also demonstrated. Frequently updated and
accurate indications about flood extent during crises are crucial to overcoming the issues
related to the poor accessibility of the areas affected by the event, as well as the potentially
bad functionality of ground monitoring systems.

The high computing potential of the Google Earth Engine platform allows for the rapid
generation of results, making the proposed approach suitable for near real-time activities in
support of disaster monitoring and management activities. Timely and accurate information
about flood extent and evolution is fundamental not only during the emergency phase,
when they can allow for better management of the crisis by decision makers, but also in
the recovery phase, to develop accurate flood hazard maps that are useful for mitigating
the flooding risk for the areas affected by the flood. Considering that the developed
system is already filled with all the information useful for its implementation, its potential
to be applied on a global scale as well as to support the management of ungauged or
remote basins are evident. Local and regional public authorities and institutions can take
advantage of our research by integrating the information provided with those by traditional
approaches to obtain a clearer understanding of the event in progress.

Future analysis will focus on assessing the capability of the SAR-RST-FLOOD approach
to detect floods in urban areas, mountainous regions, and coastal zones, trying to implement
a method that can be applied everywhere with a constant level of accuracy.
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