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Abstract: We study heat rectification in composition-graded nanowires, with nonlocal and nonlinear
effects taken into account in a generalized Guyer-Krumhansl equation. Using a thermal conductivity
dependent on composition and temperature, the heat equation is solved. Introducing a non-vanishing
heat supply (as for instance, a lateral radiative heat supply), we explore the conditions under which
either nonlocal or nonlinear effects or both contribute to heat rectification and how they may be
controlled by means of the external radiative flux. The corresponding rectification coefficients are
calculated as well, and the physical conditions under which the system becomes a thermal diode are
pointed out.

Keywords: heat rectification; graded materials; composition-dependent thermal conductivity;
nonlinear Guyer-Krumhansl equation

1. Introduction

Heat transport theory is currently experiencing a true revolution since new phe-
nomenologies, due to miniaturization, have been discovered [1,2]. The new phenomena
depend on the relationship between the mean free path of the heat carriers `, and the
characteristic dimension of the conductor L, expressed by the Knudsen number Kn = `/ L.
In classical heat conduction theory `/ L � 1. However, Kn can be incremented by a
reduction of L, as in miniaturization technology. In the last few decades, nanosystems
have been widely applied in such a technology. The word nanosystem means a systems
with at least one dimension at the nanoscale. They provide an interesting avenue to obtain
highly performing devices, for example, by making nanocomposites, adding nanoparticles
to a bulk material, or using one-dimensional nanostructures. Currently, the research on
nanotechnology involves the preparation of different types of nanomaterials and the analy-
sis of their properties for applications in medical technology, microelectronics, aerospace,
energy production and management, and biotechnology [3–7]. The main reason of such a
wide field of application is that recent industrial techniques allow to modify the properties
of nanomaterials in order to adapt them for several applications.

The system considered here is a rigid nanowire of length L, with composition varying
along its length. More precisely, we consider a silicon-germanium alloy, which will be
denoted by Sic Ge1−c, with the stoichiometric variable c dependent of the position x of
the points of the system, and such that c(0) = 0 and c(L) = 1. Thus, for x = 0 we have
pure germanium, and for x = L we have pure silicon. In the intermediate points, namely
for x ∈ [0, L], the composition c depends on the function c(x), which is determined while
manufacturing the material. The easiest situation, which will be considered in the present
paper, is the linear dependency on x, namely c = x/ L. Different graduation laws have
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been analyzed in Ref. [8]. Among the many practical applications of Sic Ge1−c alloys,
of particular interest in micro/nano-electronics is the heat rectification, namely, the fact
that the same temperature gradient but acting in opposite directions on a given system
yields different values of the corresponding heat flux [9].

In Figure 1 it is sketched a Sic Ge1−c nanowire, of length L, with the difference in
temperatures Th−Tc (Th hottest temperature, Tc coldest temperature) at its ends.

Figure 1. Sketch of a Sic Ge1−c nanowire, of length L, with the difference in temperature Th −Tc at
its ends.

Thermal rectification is an asymmetric process in which the thermal properties of the
material along a specific axis depend on the direction of the temperature gradient or the
heat current. Thus, modern designs for thermal rectification are based on the different
temperature dependences of the thermal conductivities of different bulk materials that
are used. Meanwhile, there are several experimental and theoretical studies attempting to
understand the thermal rectification mechanisms. In fact, an improved understanding of
how thermal rectification is achieved is useful in the development of devices such as thermal
transistors, thermal logic circuits, and thermal diodes, which are utilized in micro/nano-
electronic cooling as well as in thermal memory and computations. Several mechanisms for
thermal rectification, including surface roughness/flatness at material contacts, a thermal
potential barrier between material contacts, and adifference in temperature dependence of
thermal conductivity between dissimilar materials at a contact, have been discovered [10].
A promising field of research in heat rectification regards the design and realization of
thermal diodes, namely, devices whose thermal resistance for heat flow in one direction is
extremely stronger than that for heat flow in the opposite direction. In more detail, when a
thermal diode’s terminal is hotter than a second terminal, heat flows easily from the first
to the second, but when the second terminal is hotter than the first, a negligible quantity
of heat flows from the second to the first. In practice, when the diode’s first terminal is
at a higher temperature than the second terminal, heat is allowed to flow freely from the
first terminal to the second terminal. In contrast, when the diode’s second terminal is at a
higher temperature as compared with the first terminal, heat flow from the second terminal
to the first one is strongly reduced [11].

Rectification of the heat flux has been extensively studied by the authors in [8,9,12–16].
In those papers, the classical Fourier heat-transport equation has been used. It is worth
observing that such an equation was semilinear, i.e., it was linear with respect to the temper-
ature gradient but nonlinear with respect to the dependency of the thermal conductivity on
composition and temperature. Such an equation allows the existence of regular solutions
(see Ref. [15] and Figure 2 therein). In the present research, we go a step further, by apply-
ing a genuinely nonlinear (i.e., nonlinear with respect to the heat flux) Guyer-Krumhansl
equation, in order to investigate the effects of the nonlinearity of the heat equation with
respect to the heat flux too. Furthermore, the consequences of the presence in the heat
equation of some nonlocal terms, i.e., some quantities that depend on the long-distance
interactions of the heat carriers, are explored as well. In Ref. [16] we have proved that,
in the case of thermoelastic systems such as silicon thin films and graphene ribbons, heat
rectification can be tuned by applying an external mechanical stress. This seems to be an
important property, allowing a further control of the rectification properties beyond the
one due to the varying composition. Indeed, although composition is a precious tool for



Nanomaterials 2023, 13, 1442 3 of 14

controlling rectification, it cannot be changed once the system has been manufactured.
The external stress, instead, can be changed and adapted to the different needs.

Here we consider a different way to control the rectification of the heat flux, namely,
by heating the internal points of the body by a heat source ρr, with ρ as the mass density.
Coleman and Noll, in their celebrated article on the thermodynamics of elastic materials [17],
call r “density of absorbed radiation”, and claim that r(x, t) is “the heat supply per unit
mass and unit time absorbed by the material and furnished by radiation from the external
world”. One of the possibilities for obtaining such an additional heat supply is to put the
system in a radiation field [18]. At the nanoscale, radiative heat can be supplied to the
system by placing it in an electromagnetic radiation generator. Figure 2 schematizes a
nanowire of length L immersed in a field of thermal radiation.

Figure 2. Sketch of a nanowire of length L immersed in a field of thermal radiation.

The system under consideration is a composition-graded Sic Ge1−c wire, of length
L = 100 nm (nanowire) and L = 3 mm. In this way, we can investigate the differences in
the physical behavior of the systems due to their different lengths (size effects). It is worth
noticing that such a choice is based on the experimental data at our disposal, which have
been obtained for systems of length L = 100 nm, and L = 3 mm [19,20].

Under the hypothesis that a radiative heat supply per unit of volume and time is
provided to the internal points of the system, we explore heat rectification by:

(1) applying a direct heat flux qd on the Ge side at temperature Th (hottest T), and obtain-
ing the corresponding temperature Tc (coldest T) at the Si side (direct situation);

(2) applying different values of the reverse heat flux on the Si side at the highest tempera-
ture Th until finding the value qr (reverse heat flux) for which the temperature at the
Ge side is the lowest temperature Tc previously obtained for qd (reverse situation);

(3) calculating the rectification coefficient as R ≡ qr/qd.

In the direct and reverse processes, the radiative heat supply is the same along the
system. If R < 1, we may conclude that the difference in temperature Th−Tc applied from
silicon to germanium produces a heat flux that is smaller with respect to that produced
by the same difference in temperature applied from germanium to silicon. If, instead,
R > 1, we may conclude that the difference in temperature Th−Tc applied from silicon
to germanium produces a heat flux that is greater with respect to that produced by the
same difference in temperature applied from germanium to silicon. In particular, if R ' 0,
then the difference in temperature Th−Tc does not produce heat flow from silicon to
germanium, i.e., heat can only flow from germanium to silicon. Such a property allows
the design of the so-called thermal diodes, whose thermal resistance for heat flow in one
direction is extremely stronger than that for heat flow in the opposite direction. The result
of our exploration is that, in principle, both nonlocal and nonlinear effects may influence
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the rectification of the heat flux, and such an influence depends on the strength of the direct
heat flux qd. The paper runs as follows.

In Section 2, we discuss the main features of nonlocal and nonlinear heat transport at
the nanoscale and illustrate the different governing equations for the heat flux.

In Section 3, we present the physical model for a one-dimensional system and point
out the conditions under which one of the following situations may occur: (1) only nonlocal
effects are present; (2) both nonlocal and nonlinear effects are present; (3) neither nonlocal
nor nonlinear effects are present.

In Section 4, for a composition graded alloy of length L = 100 nm, and L = 3 mm,
at T = 300 K, we calculate the rectification coefficient when some of the situations pointed
out in Section 3 occur. The temperature profiles are calculated as well. The results are
discussed in light of the material properties and the value of the direct heat flux.

In Section 5, concluding remarks, together with a discussion on possible developments
of the present research, are pointed out.

In Appendix A, starting from the experimental data in [19,20], we obtain a mathemati-
cal representation of the thermal conductivity as a function of composition and temperature,
in a neighborhood of three reference temperatures, namely, T = 300 K, T = 400 K and
T = 500 K.

2. Nonlocal and Nonlinear Heat Transport at Nanoscale

The classical Fourier’s law [21]

q = −λ∇T, (1)

where q is the heat flux, λ the thermal conductivity, and T the temperature, is valid when
`/ L� 1, namely, for `� L. When the mean free path of the heat carriers is comparable
to the characteristic dimension of the conductor, i.e., Kn ' 1, more complicated transport
laws for the heat flux are necessary [22,23].

Nowadays, there is a current interest in phonon hydrodynamics, a mesoscopic ap-
proach to heat-conduction where the heat carriers are regarded as a fluid, whose hydrody-
namic equations of motion describe the transport of heat [24].

The phonon hydrodynamics leads to the Guyer-Krumhansl transport equation for the
heat flux q, i.e.,

τR
∂q
∂t

+ q = −λ∇T+`2
(
∇2q + 2∇∇ · q

)
, (2)

where τR is the relaxation time due to the resistive (quasi-momentum not conserved) scatter-
ing of phonons in the bulk. Moreover, the thermal conductivity λ = $cvτRv2/3, where $ is
the mass density, cv the specific heat per unit mass at constant volume, and v is the average
of the phonons’ speed, is constant [25–27]. Phonon hydrodynamics comes from kinetic
theory, which is able to keep up with the pace of current macroscopic searches [24], and is
compatible with generalized formulations thermodynamics beyond local-equilibrium.

Phonons are quasi-particles generated by the crystal oscillations, following the Bose-
Einstein statistics. Indeed, there are two modes of vibration of atoms in crystals, namely,
longitudinal vibrations and transversal vibrations. In the longitudinal mode, the displace-
ment of atoms from their positions of equilibrium coincides with the propagation direction
of the wave. In transversal mode, instead, atoms move perpendicularly to the propagation
of the wave. The average phonon speed v is due to both vibration modes of the crystal
lattice. For instance, in crystalline silicon, the polarization vectors computed in [28] are
generally neither parallel nor perpendicular to the wave vector, and only few phonon
modes are distinctively longitudinal or transversal.

Moving through the crystal lattice, phonons undergo two different types of scatter-
ing [29]: (i) normal scattering, conserving the phonon momentum; (ii) resistive scattering,
in which the phonon momentum is not conserved. The frequencies νN and νR of normal
and resistive phonon scatterings determine the characteristic relaxation times τN = 1

νN
and
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τR = 1
νR

. It is worth noticing that the relaxation time of normal scatterings is related to

the mean free path of phonons by the relation ` =
√

9
5

κτN
cv

. When ` ' L, as it happens at
nanoscale, phonons can interact with other phonons or with the elements of the crystal
lattice in any point of the conductor, i.e., they undergo nonlocal interactions. For that
reason, the last term in Equation (2) is said to be representative of nonlocal effects.

When both relaxation times are not negligible, we face the heat equation (2). Since
Equation (2) is parabolic, propagation of thermal disturbances is not possible. Heat waves
take over, in fact, when νR remains finite while νN grows to infinity, letting τN tend to
zero. For vanishing τN , i.e., for vanishing `, Equation (2) reduces to the Maxwell-Cattaneo
hyperbolic equation [30]

τR
∂q
∂t

+ q = −λ∇T, (3)

which, in turn, yields the classical Fourier law in the absence of relaxation effects.
Since τR, λ and ` are supposed to be constants, Equation (2) is linear. As a conse-

quence, it does not take into account the non-linear effects, which instead are usual at
the micro/nanoscale. In fact, at very small scales, even small differences in temperature
may produce strong gradients, so that the second-order terms that contain the product
of the gradient of the heat flux with another gradient or with the heat flux itself are no
longer negligible. Extensions of Equation (2) to the non-linear regime can be obtained
within the frame of Extended Irreversible Thermodynamics (EIT) [22–24,27,31] by using
the first 4 equations of the system of phonon hydrodynamics and letting the heat flux and
its first-order gradient to enter the state space [31,32].

A different approach, also inspired by kinetic theory, consists in introducing a scalar in-
ternal variable that plays the role of a semiempirical nonequilibrium temperature [23,33,34],
whose gradient is proportional to the heat flux. Such a temperature can be defined within
the frame of the Maxwell approach to kinetic theory, beyond the hypothesis of local equi-
librium. In such a way, the Guyer-Krumhansl equation is obtained by postulating a partial
differential equation for the semiempirical temperature.

The easiest extension of the Guyer-Krumhansl equation to nonlinear regimes takes the
form [23]

τR
∂q
∂t

+ q = −λ∇T+µq · ∇q + `2
(
∇2q + 2∇∇ · q

)
, (4)

where µ = 2τR/$cv T.
In the present paper, we use Equation (4), which includes the genuinely nonlinear

term µq · ∇q and the nonlocal term `2(∇2q + 2∇∇ · q
)
, to describe the consequences

of nonlinear and nonlocal effects on the heat flux rectification. To achieve that task, we
compare the order of magnitude of the last two terms in the right-hand side of Equation (4),
depending on the order of magnitude of the direct heat flux and of the radiative heat supply.

3. The Physical Model

Here we consider a one-dimensional rigid heat conductor in the steady state. Further-
more, Equation (4) becomes

q = −λ T,x +µqq,x + 3`2q,xx, (5)

wherein x is the spatial coordinate of the points of of the conductor, and f,x ≡ ∂ f /∂x.
Equation (5) is coupled with the local energy balance , which in the steady state reads

q,x = r, (6)

with r as the external rate of energy provided to the system. For the sake of concision, since
the system is rigid, we have included the mass density in r which, from now on, denotes the
energy per unit volume and unit time. Here and in the following, we suppose r 6= 0. Such
an hypothesis is fundamental in our investigation because of the following motivations:
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• r allows the tuning of the heat-flux rectification;
• by Equations (5) and (6) it follows that the nonlinear and nonlocal terms in Equation (5)

are present if, and only if, r 6= 0, otherwise, q is constant along the system, and the
second and third terms of Equation (5) vanish.

From the physical point of view, r 6= 0 means that the nanowire under consideration
is heated in two different ways, namely, by:

1. heating its interior points by a given heat supply per unit volume and time;
2. applying a direct or reverse heat flux on its boundary.

The thermal conductivity will be assumed to depend on composition and temperature,
while for the material parameters µ and `2 we will use their constant values at T = 300 K
(room temperature).

To proceed further, we make the approximations q,x ' q/L and q,xx ' q/L2, with L as
the length of the conductor. Thus, the coupling of Equations (5) and (6) yields

q
[
1− µr− 3(`2/ L2)

]
= −λ T,x . (7)

Equation (7) takes the form of the classical Fourier law if the effective thermal conduc-

tivity λe f f ≡ λ/
[
1− µr− 3(`2/L2)

]
is introduced. Such a conductivity makes physical

sense if, and only if, the additional constraint 1− µr− 3(`2/L2) > 0 holds.
The material parameters µ = 2τR/$cv T and Kn = `/ L (Knudsen number) entering

Equation (7) are chosen as follows.
We use the experimental data in Ref. [24], Tables 1.1 and 1.2 therein, for the volumetric

heat capacity Cv, the thermal conductivity λ, and the phonon mean speed v for bulk Si and
bulk Ge at room temperature (300 K).

Furthermore, the phonon mean free paths can be calculated through the relation
` = 3λ/Cvv. It yields `Si = 8.05× 10−8 m, and `Ge = 5.83× 10−8 m.

It seems important to wonder if the value of `Si calculated through this procedure is in
accordance with the results obtained in [35], wherein it is proved that phonons with mean
free paths smaller than 1 micron considerably contribute to heat transport. To answer that
question, we note that the value of λSi used for calculating `Si is 128.03 W / m K. On the
other hand, from Figure 6 in ref. [35], it can be seen that the phonons with mean free
path in the interval 100–300 nm produce a differential thermal conductivity smaller than
25 W / m K, while the phonons with mean free path in the interval 50–100 nm produce
a differential thermal conductivity between 50 W / m K and 105 W / m K, which is close
to that used for our calculation. Thus, we conclude that the value of `Si obtained in the
present paper is acceptable and in accordance with the results in [35].

Once the mean free paths have been calculated, the relaxation times of bulk silicon and
germanium can be calculated as τSi = `Si/vSi = 2.78 × 10−11 s, and
τGe = `Ge/vGe = 3.31 × 10−11 s. Finally, the Matthiessen rule allows to estimate the
relaxation time as

1
τR

=
c

τSi
+

1− c
τGe

.

We make our computation at c = 1/2, so that τ = 1.51× 10−11 s.
For mass density, we use the data in ref. [36], which yield the following expression of

$ as function of the composition

$(c) = (2.329 + 1.746c− 0.499c2)× 103 Kg / m3 .

For c = 1/2 it yields $ = 3.95× 103 Kg / m3. Analogously, for the specific heat cv we
take the function [36],

cv = (0.7 + 0.04c)× 103 J /(Kg K),
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getting so cv = 0.72× 103 J /(Kg K). Thus

µ = 2τ/$cv T = 0.35× 10−19 m3 / W .

For the nonlocal term 3`2/ L2 we use the results in [16], wherein the Knudsen number
Kn = `/ L has been estimated to be Kn = 0.4. Then we get 3 Kn2 = 0.48. In this way,
Equation (7) can be rewritten as

q
[
1− (0.35× 10−19) r− 0.48

]
= −λ T,x . (8)

For given values of q, the value of r is determined by the relation r = q,x ' q/L.
Thus, for q = 1012 W / m2, we get r ' q/ L = 1019 W / m3 and µr ' 0.35. In this

way, the nonlinear term and the nonlocal term in Equation (8) have the same order of
magnitude and both show their effects. The generalized Fourier law Equation (8) becomes
q = −(1/0.17)λT,x.

For q = 1011 W / m2, instead, then µr ' 0.035, and the generalized Fourier law
becomes q = −(1/0.485)λT,x. In such a case, the nonlocal effects are stronger than the
nonlinear ones.

Finally, for q = 1010 W / m2, then µr ' 0.0035, and the generalized Fourier law
becomes q = −(1/0.5165)λT,x. In such a case, the nonlinear effects are still present but
small with respect to the nonlocal ones, which are predominant. The same is true for
q = 109 W / m2, which yields µr ' 0.00035 and q = −(1/0.51965)λT,x.

Thus, we can say that for the system at hand, if the heat flux obeys Equation (5),
the nonlocal effects are always present, while the nonlinear effects are present and have
the same order of magnitude as the nonlocal ones if q = 1012 W / m2; are present but
have a smaller order of magnitude if q = 1011 W / m2; are present but are small if
q = 1010 W / m2 or q = 109 W / m2. Finally, for q ≤ 108 W / m2 the nonlinear effects
can be considered negligible.

It is worth noting that the values q = 1011 W / m2, and q = 1012 W / m2, seem to be
too strong for realizable experiences, so that our numerical experiments will be focused on
values of the heat flux in the range [107 W / m2− 1010 W / m2].

We note that the values q ≥ 1013 W / m2 are not admissible, because in such a case
λe f f < 0. The existence of forbidden values of the heat flux is frequent in the experiments,
and is explained by admitting the existence of the so-called flux limiters [37].

For L = 3 mm and q = 1012 W / m2, we have r ' 1015 W / m3 and µr ' 0.11× 10−4.
Moreover, Kn = 40× 10−9 m /3× 10−3 m ' 13.33× 10−6. Thus, 3 Kn2 ' 5.33× 10−4,
so that both the nonlinear and nonlocal terms in Equation (5) are negligible. The same
conclusion is true if either q = 1011 W / m2, or q = 1010 W / m2. Finally, the forbidden
values of the heat flux [37] are, in such a case, q ≥ 1017 W / m2.

As a conclusion, we can say that for the model at hand, for systems of length L = 100 nm
nonlocal effects are always present, while nonlinear effects are not negligible only for
some values of q. For systems of length L = 3 mm, instead, both nonlinear and nonlocal
effects are always negligible. Hence, the occurrence of nonlocality and nonlinearity can
be regarded as a size effect that manifests itself at the nanoscale and disappears at the
macroscopic scale.

4. Results and Discussion

In the present section, we show the possible consequences of the nonlinearity and
nonlocality of the heat equation on the rectification of the heat current, for physically
acceptable values of q. For a nanowire of length L = 100 nm, in the light of the conclusions
of Section 3, and in order to consider situations that are experimentally realizable, we restrict
our investigation to values of the heat flux in the interval

[
107 W / m2− 1010 W / m2].

For q = 107 W / m2, and q = 108 W / m2 the nonlinear effects are too small, and have
been neglected. For q = 109 W / m2, and q = 1010 W / m2, we have taken into account the
nonlinear effects too.
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The temperature profiles are shown in Figure 3, while the corresponding values of the
rectification coefficient and of q, r, µr, qe f f , TH , TC, are shown in Table 1.
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Figure 3. Temperature profiles for different values of the heat flux, at T = 300 K and for L = 100 nm.

Table 1. Rectification coefficient and corresponding values of q, r, µr, qe f f , TH , TC, at T = 300 K in a
Sic Ge1−c nanowire of length L = 100 nm.

q (W/m2) r (W/m3) µr qe f f (W/m2) R TH (K) TC (K)

1× 107 1014 0.35× 10−5 0.52× 107 0.782 300 299.42

1× 108 1015 0.35× 10−4 0.52× 108 0.326 300 297.60

1× 109 1016 0.35× 10−3 0.51965× 109 0.087 300 293.65

1× 1010 1017 0.35× 10−2 0.5165× 1010 0.034 300 275.82

For L = 3 mm we obtained that rectification of the heat flux is present for
q = 104 W / m2. The temperature profile is shown in Figure 4, while the correspond-
ing value of the rectification coefficient and of q, r, µr, qe f f , TH , TC, are shown in Table 2.
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Figure 4. Temperature profile for q = 104, at T = 300 K and for L = 3 mm.
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Table 2. Rectification coefficient and corresponding values of q, r, µr, qe f f , TH , TC, at T = 300 K in a
Sic Ge1−c wire of length L = 3 mm.

q (W/m2) r (W/m3) µr qe f f (W/m2) R TH (K) TC (K)

1× 104 1
3 × 107 0.1155× 10−12 1× 104 0.702 300 298.00

We note that, in such a case, the qualitative behavior is similar to that obtained in
Ref. [8] for thermoelastic solids with c = (x/L)2 (see Figure 5 therein).

For q = 107 W / m2, and q = 108 W / m2, as consequence of nonlocality the direct
heat flux results multiplied by a reduction factorR ≈ 0.52, which changes appreciably the
heat conduction with respect to the case in which the nonlocal effects are not present (see
Ref. [15] and Figure 2 therein for a comparison). The two temperature profiles in Figure 3
have a similar qualitative behavior but different values, determined by the different values
of the applied heat flux (see blue and red lines in Figure 3). Finally, we note that both curves
are regular, which is further evidence of the absence of nonlinear effects.

For q = 109 W / m2 the reduction factor isR ≈ 0.51965. However, the heat flux applied
is 10 or 100 times stronger with respect to the previous cases, so that the temperature profile
changes again (see yellow line in Figure 3).

Finally, for q = 1010 W / m2 the reduction factor is R ≈ 0.5165, while the heat flux
applied is 10 times stronger with respect to the last case. The combination of both these
factors produces a drastic reduction in the values of the temperature (see the violet line in
Figure 3).

The temperature profiles corresponding to the two last cases are nonregular (because
of the nonlinearity of the heat equation) and present different behavior along the conductor.
A very moderate (or moderate) decrease in the first part of the conductor close to the
hottest end, then a strong reduction in a narrow strip of a few nanometers, and finally a
constant value until to the coldest end. In both cases, the temperature drastically decreases
at x ≈ 18 nm, which corresponds to c = 0.18. At x ≈ 20 nm, which corresponds to c = 0.20,
the temperature starts to remain constant. We can regard such a distance as a kind of
penetration depth of the direct heat flux, which beyond this distance is unable to produce
any temperature gradient. On the other hand, in the rigid conductor considered in Ref. [15],
of the same length with the same composition and the same dependency on c of the thermal
conductivity, such a behavior is not present, and the temperature is continuously decreasing
along the conductor (see Figure 2 therein). Thus, we suppose that such a phenomenon
is due to the damping of the heat flux, which produces a temperature gradient only in a
limited part of the conductor, close to the end of application.

5. Conclusions

In ref. [15] we have investigated heat rectification in a nanowire of length L = 100 nm
subjected to a heat flux q = 105 W / m2. We obtained a rectification coefficient R = 2.77.
A comparison with the results in Table 1 shows that the increment of the intensity of the
heat flux, together with the presence of nonlinear and nonlocal effects, gives rise to a
reduction of R. A comparison with the results in [38] confirms such a situation. Therein,
the rectification coefficient for Si1−c Gec alloys has been calculated under the hypothesis
of the validity of the Fourier law. For the composition used in the present paper for the
calculation of the material constants, namely c = 0.5, the authors find R = 1.6, which
is higher with respect to the values found in Section 4. In the same paper, for different
c, values of R ranging up to 3.41 have been obtained. Thus, the drastic reduction of the
rectification coefficient in the present model is evident.

Furthermore, a comparison of the first two lines of Table 1 with the last two lines
of Table 1 shows that nonlinear effects produce a strong reduction of R. In particular,
for q = 109 W / m2 and q = 1010 W / m2, R is very close to zero, so that we conclude that
heat can flow only from germanium to silicon but not from silicon to germanium. Such
a type of system is called a thermal diode. Thus, the present results can provide useful
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information for thermal-diode design. It is worth mentioning that recently the possibility
of using Si / Ge nanowires as thermal diodes has been investigated in [39,40].

On the other hand, the result in Table 2 shows that, although rectification can be
enhanced at the nanoscale, it is present at the macroscale too. Since both nonlinear and
nonlocal effects are negligible for such a system, rectification is due to the varying composi-
tion only.

In future investigations, we aim at analyzing nonlocal and nonlinear effects in the more
usual situation of a system heated on its boundary only. To study non-local effects with
heat given only at the edges, one has to go in two dimensions, by considering, for instance,
one of the following cases:

1. radial heat flux in a cylindrical system;
2. Poiseuille flow in a plane system or along a cylindrical system.

Furthermore, in the light of the results shown in Section 4, it would be interesting to
explore the possibility of tuning the penetration depth of the direct heat flux in order to
determine a zone of the rigid conductor where the temperature is constant.
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Appendix A. Dependency of Thermal Conductivity on Composition and Temperature

As we said above, in the analysis of Equation (7), we suppose that λ depends on
composition and temperature, namely λ = λ(c, T). The present section is devoted to the
determination of such a function. We will proceed in two steps. The first step consists
in obtaining a best-fit curve of the function λ = λ(c) by the experimental values of
thermal conductivity of silicon-germanium alloys as a function of the composition [19,20].
The disposition of such experimental points in the plane (c, λ(c)) is well represented by
the following sum of two exponential functions

λ(c) = Γ1(M, N, P, Q)eMc2+Nc + Γ2(M, N, P, Q)ePc2+Qc, (A1)

with M, N, P, Q independent parameters, and Γ1(M, N, P, Q) and Γ2(M, N, P, Q) regular
functions of them.

In order to determine the best value of M, N, P, Q by a Non Linear Regression
Method (NLRM) [41], we must distinguish between the direct case, in which the heat flux
is directed from Si to Ge, and the reverse case, in which the heat flux is directed from Ge
to Si. Such a distinction is necessary because when the heat flux is directed from Si to Ge
the heat carriers move through a region with a decreasing stoichiometric variable c, while
when the heat flux is directed from Ge to Si, the heat carriers move into a region with
an increasing stoichiometric variable c. Such a situation can be represented by the same
heat flux applied to two different materials, namely, Sic Ge1−c and Gec Si1−c. For the first
material the functions Γ1(M, N, P, Q) and Γ2(M, N, P, Q) are determined by the constraint
λ(0) = λGe and λ(1) = λSi, for the second material by the constraint λ(0) = λSi and
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λ(1) = λGe. In Table A1 are shown the values of thermal conductivity for pure Si and pure
Ge at three reference temperatures. Such values are fundamental to our next computation.

Table A1. Thermal conductivity of pure Si and pure Ge, at T = 300 K, T = 400 K and T = 500 K for
L = 100 nm.

Temperature (K) λSi (Wm−1 K−1) λGe (Wm−1 K−1)

T = 300 43.58 23.52

T = 400 38.16 20.54

T = 500 33.40 18.19

Thus, by the procedure described above, in the direct case we get

λ(c) =
λSi − λGeeP+Q

eM+N − eP+Q eMc2+Nc +
−λSi + λGeeM+N

eM+N − eP+Q ePc2+Qc. (A2)

wherein the material parameters M, N, P, and Q are given in Table A2 below.

Table A2. Values of the parameters in Equation (A2) for a Sic Ge1−c alloy of length L = 100 nm.

Temperature (K) M N P Q

T = 300 6.3805 −5.3627 252.5494 −251.9632

T = 400 239.7700 −239.1857 6.3053 −5.2827

T = 500 228.2427 −227.6759 6.2079 −5.1835

In the reverse case, instead, we get

λ(c) =
λGe − λSieP+Q

eM+N − eP+Q eMc2+Nc +
−λGe + λSieM+N

eM+N − eP+Q ePc2+Qc, (A3)

with M, N, P, and Q given in Table A3 below.

Table A3. Values of the parameters in Equation (A3) for a Si1−c Gec alloy of length L = 100 nm.

Temperature (K) M N P Q

T = 300 252.5491 −253.1354 6.3805 −7.3983

T = 400 236.4300 −237.0146 6.3193 −7.3392

T = 500 220.4237 −220.9902 6.2479 −7.2732

As far as the dependency on T is concerned, since we have no experimental data of
λ as function of temperature for Si / Ge nanowires of length L = 100 nm, we look for a
second-order approximation of it, in the neighborhood of the three reference temperatures.
For Γ1(T) and Γ2(T), instead, we take the expressions used in Equations (A2) and (A3).
Thus, for T = 300 K, up to the second order approximation, we get

M(T) = M(300) + a1(T−300) +
1
2

a2(T−300)2.

Furthermore, Table A2 yields
M(300) = 6.3805,

M(400) = 6.3805 + a1(100) + a2(100)2 = 239.7700,
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M(500) = 6.3805 + a1(200) + a2(200)2 = 228.2427.

The linear system above allows us to calculate the coefficients a1 and a2. Moreover,
the same procedure leads to the determination of the coefficients bi, di and ei, i = 1, 2, en-
tering the functions N(T), P(T), and Q(T), respectively. The values of the coefficients,
both for the direct case (Sic Ge1−c) and for the reverse case (Gec Si1−c), are shown in
Tables A4 and A5 below.

Table A4. Coefficients ai, bi, di and ei, for a Sic Ge1−c alloy of length L = 100 nm.

a1 a2 b1 b2

3.5584 −0.0244 −3.5648 0.0245

d1 d2 e1 e2

−3.6931 0.0246 3.6997 −0.0246

Table A5. Coefficients ai, bi, di and ei for a Si1−c Gec alloy of length L = 100 nm.

a1 a2 b1 b2

−0.1617 0.000011 0.1616 −9.64× 10−6

d1 d2 e1 e2

−0.0005 −1.02× 10−6 0.0005 6.9× 10−7

By this procedure, the function λ(c, T) can be calculated up to the second order of
approximation in T.

A similar method can be applied for a Sic Ge1−c alloy of length L = 3 mm. In Tables A6–A10
below, we show the values of the parameters already shown in Tables A1–A5 for a nanowire
of length L = 100 nm.

Table A6. Thermal conductivity (in Wm−1 K−1) of pure Si and pure Ge at T = 300 K, T = 400 K and
T = 500 K for L = 3 mm.

Temperature (K) λSi (Wm−1 K−1) λGe (Wm−1 K−1)

T = 300 K 149.95 77.95

T = 400 K 119.54 59.42

T = 500 K 92.01 48.08

Table A7. Values of the parameters in Equation (A2) for a Sic Ge1−c alloy of length L = 3 mm.

Temperature (K) M N P Q

T = 300 K 4.8706 −3.76 109.4531 −108.9538

T = 400 K 91.8040 −91.3512 4.4159 −3.3127

T = 500 K 80.4957 −80.0740 4.0666 −2.9716

Table A8. Values of the parameters in Equation (A3) for a Si1−c Gec alloy of length L = 3 mm.

Temperature (K) M N P Q

T = 300 K 4.8707 −5.9814 109.4562 −109.9555

T = 400 K 4.4159 −5.5190 91.8040 −92.2568

T = 500 K 80.4998 −80.9215 4.0667 −5.1617
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Table A9. Coefficients ai, bi, di and ei, for a Sic Ge1−c alloy of length L = 3 mm.

a1 a2 b1 b2

1.3605 −0.0098 −1.3702 0.0098

d1 d2 e1 e2

−1.5738 0.0104 1.5829 −0.0105

Table A10. Coefficients ai, bi, di and ei for a Si1−c Gec alloy of length L = 3 mm.

a1 a2 b1 b2

−0.3872 0.0076 0.3839 −0.0075

d1 d2 e1 e2

0.1738 −0.0070 −0.1699 0.0069
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