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Abstract. We consider the model of random evolution on the real line
consisting in a Brownian motion perturbed by alternating jumps. We
give the probability density of the process and pinpoint a connection
with the limit density of a telegraph process subject to alternating jumps.
We study the first-crossing-time probability in two special cases, in the
presence of a constant upper boundary.
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1 Introduction

In certain biological contexts some phenomena can be viewed as subject to
streams of perturbations of various nature and at different scales. We consider
systems which evolve according to the Brownian motion and are subject to per-
turbations driven by suitable stochastic processes. Usually such perturbations
produce abrupt changes on the state of the process and can be described by
jumps. These phenomena can be often modeled as the superposition of Brown-
ian motion and a pure jump process.

Numerous examples of random motions perturbed by jumps arise in the bi-
ological literature. For instance Berg and Brown [1] described the motion of
microorganisms performed as gradual or abrupt changes in direction. Moreover,
a general framework for the dispersal of cell or organisms is provided in Oth-
mer et al. [10], where a position jump process is proposed to describe a motion
consisting of sequence of alternative pauses and jumps. See also the general
mechanistic movement-model framework employed for biological populations by
Lutscher et al. [8]. Furthermore we recall the paper by Garcia et al. [7], where
Brownian-type hopping motions of various Daphnia species are studied in detail.

In neuronal modeling framework the Brownian motion process describes the
dynamics of the membrane potential in an integrate-and-fire model. This is char-
acterized by the superposition of downward and upward jumps that correspond
respectively to the effect of excitatory and inhibitory pulses in a neuronal network
(see, for instance, Sacerdote and Sirovich [12] and [13], and references therein).

R. Moreno-Dı́az et al. (Eds.): EUROCAST 2013, Part I, LNCS 8111, pp. 53–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



54 A. Di Crescenzo, A. Iuliano, and B. Martinucci

A further model is provided by the description of mechanisms of acto-myosin
interaction, that is responsible for the force generation during muscle contraction.
In this context the rising phase dynamics can be viewed as the superposition of
a Brownian motion and a jump process (see, e.g. Buonocore et al. [3] and [4]).

Stimulated by the need to give formal and analytical tools to describe biolog-
ical phenomena perturbed by dichotomous streams, in this paper we study some
features of a Brownian motion perturbed by jumps driven by an alternating re-
newal process. In Section 2 we provide the probability law, mean and variance
of such stochastic process, and notice a connection with the jump-telegraph pro-
cess. Section 3 is devoted to the first-crossing-time problem through a constant
boundary. We study the probability that the first-crossing time occurs before or
at the occurrence of the first jump.

2 Brownian Motion Perturbed by Alternating Jumps

Let {W (t), t > 0} be a Wiener process with drift µ ∈ R and infinitesimal variance
σ2, with σ > 0. We consider a particle moving on the real line according to W (t),
and perturbed by alternating jumps driven by a Poisson process {N(t), t > 0}
with parameter λ > 0. Assume that N(t) is independent of W (t). The jumps
have constant size α > 0, and are directed forward and backward alternately.
Moreover, the sequence of jumps is regulated by a Bernoulli random variable B,
such as at the k-th event of N(t) the particle performs a displacement (−1)k+Bα,
for k = 1, 2, 3, . . ., with B independent of processes W (t) and N(t). Hence, if
B = 1 (with probability p) then the first jump is forward and thus the sequence
of jumps is α,−α,α,−α, . . ., whereas if B = 0 (with probability 1 − p) the
sequence of jumps is −α,α,−α,α, . . ..

Let us consider the stochastic process {X(t), t > 0}, where

X(t) = W (t) + α

N(t)∑

k=1

(−1)k+B, t > 0. (1)

According to the above assumptions, X(t) gives the position of the particle at
time t. A sample-path of X(t) is shown in Figure 1, where the first jump is
upward. For x ∈ R and t > 0 let the probability density of X(t) be denoted as

fX(x, t) =
∂

∂x
P {X(t) ≤ x} . (2)

Hereafter we express the density (2) as a time-varying mixture of three Gaussian
densities. It involves the following probabilities, for t > 0:

πo(t) = P {N(t) odd} =
+∞∑

n=0

e−λt(λt)2n+1

(2n + 1)!
= e−λt sinh(λt) =

1− e−2λt

2
,

πe(t) = P {N(t) even} =
+∞∑

n=0

e−λt(λt)2n

(2n)!
= e−λt cosh(λt) =

1 + e−2λt

2
,

(3)
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Fig. 1. A simulated sample-path of X(t), for µ = 0, σ = 2, α = 2.5 and λ = 1

and the Gaussian probability density of process W (t), given by

fW (x, t) :=
1√

2πσ2t
exp

{
− (x− µt)2

2σ2t

}
, x ∈ R, t > 0. (4)

Proposition 1. For x ∈ R, t > 0, the probability density of X(t) is:

fX(x, t) = πe(t) fW (x, t) + πo(t) [p fW (x− α, t) + (1 − p)fW (x + α, t)] . (5)

Moreover, mean and variance of process (1) are, for t > 0,

E[X(t)] = µt + πo(t)(2p− 1)α, V ar[X(t)] = σ2t. (6)

Remark 1. It is worthwhile noting that when p = 1/2, µ = 0 and in the limit as
λ → +∞, the density (5) tends to the function g1(x, t) given in Proposition 4.3 of
Di Crescenzo and Martinucci [5], which is the limit density of a telegraph process
subject to deterministic jumps occurring at velocity reversals. This confirms
that under suitable scaling assumptions the density of the Wiener process with
alternating jumps is the limit of the density of a telegraph process subject to
the same kind of jumps, this being in agreement to analogous results holding in
the absence of jumps (see Orsingher [9]).

3 First-Crossing-Time Problem

In this section we consider the first-crossing-time problem of process X(t) through
a constant boundary. We aim to determine the first-crossing-time probability in
two different cases, i.e. when the first passage of X(t) through the boundary
occurs (i) before the first jump, or (ii) at the occurrence of first jump.

Let Jk be the random time in which the moving particle performs the k-th
jump, with k = 1, 2, . . .. We denote by

TX
β = inf{t > 0 : X(t) > β}, X(0) = 0 a.s., (7)



56 A. Di Crescenzo, A. Iuliano, and B. Martinucci

the first-crossing time of process X(t) through the upper boundary β > 0, so
that the first crossing occurs from below. In the following, we aim to investigate
the probability that the first-crossing time of X(t) through β occurs

(i) before the first jump takes place, i.e. P [TX
β < J1],

(ii) at the occurrence of the first jump, i.e. P [TX
β = J1].

The case TX
β > J1 will be the object of a subsequent investigation.

Proposition 2. For β > 0, λ > 0, µ ∈ R and σ > 0 we have

P [TX
β < J1] = exp

{
− β

σ2

[√
µ2 + 2λσ2 − µ

]}
. (8)

Proof. Under the given assumptions, since J1 has exponential distribution with
parameter λ, we get

P [TX
β < J1] = E[P [TX

β < J1|TX
β ]] = E[e−λTX

β ].

Hence, recalling that the probability density of (7) is given by (cf. Eq. 2.0.2, p.
223, of Borodin and Salminen [2])

fTX
β

(t) =
β√

2πσ2t3
exp

{
− (β − µt)2

2σ2t

}
, t > 0,

rearranging the terms we have

P [TX
β < J1] =

∫ +∞

0
e−λtfTX

β
(t) dt

= eβµ/σ
2
∫ +∞

0
e
−
(
λ+ µ2

2σ2

)
t β√

2πσ2t3
e−β2/(2σ2t) dt.

Recalling Eq. (28) of § 4.5 of Erdélyi et al. [6] we thus obtain

P [TX
β < J1] = eβµ/σ

2

e
−
√

2β2

σ2

(
λ+ µ2

2σ2

)

,

so that Eq. (8) immediately follows.

From Eq. (8) we note that P [TX
β < J1] is increasing in µ and σ, whereas it is

decreasing in β and λ. Figure 2 shows some plots of such probability.

Proposition 3. For β > 0, 0 < p < 1, λ > 0, µ ∈ R and σ > 0 we have

P [TX
β = J1] =






p e
β(µ−γ)

σ2

{
e−

αµ

σ2

[
cosh (αγσ2 ) + µ

γ sinh (αγσ2 )
]
− 1

}
, 0 < α ≤ β,

p
{
1− e

β(µ−γ)

σ2 −
(
1− µ

γ

)
e−

α(γ+µ)

σ2 e
βµ
σ2 sinh (βγσ2 )

}
, α ≥ β,

(9)
where we have set γ =

√
µ2 + 2λσ2.
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Fig. 2. Probability (8) for −5 ≤ µ ≤ 20, when λ = 1, σ = 1 and β = 0.5, 1, 2, 4, 8 (from
top to bottom, left plot) and for 0 ≤ λ ≤ 8, when β = 2, µ = 1 and σ = 0.5, 1, 1.5, 2, 2.5
(from bottom to top, right plot)

Proof. By conditioning on the instant of the first jump and exploiting the prop-
erties of the first-crossing times we have

P [TX
β = J1] = E[P [TX

β = J1|J1]]
= E[P [β − α ≤W (J−

1 ) < β, TW
β > J−

1 , B = 1|J1]].
(10)

Let us consider the β-avoiding density of process W (t):

f 〈β〉
W (x, t) :=

∂

∂x
P [W (t) ≤ x, TW

β > t]

= fW (x, t) − exp

{
−2µ(β − x)

σ2

}
fW (2β − x, t),

(11)

where fW is the density of W (t), given in (4), and where the last equality follows
from a suitable symmetry property of W (t) (see, for instance, Example 5.4 of
Ricciardi et al. [11]). Due to (10) we thus have

P [TX
β = J1] = p

∫ +∞

0
λe−λt

∫ β

β−α
f 〈β〉
W (x, t) dxdt.

Making use of Eq. (11) after some calculations we get, for γ =
√
µ2 + 2λσ2,

P [TX
β = J1] =

λ p√
µ2 + 2λσ2

∫ β

β−α

[
exp

{
µx− |x|γ

σ2

}

− exp

{
−2µ

σ2
(β − x)

}
exp

{
µx− |x− 2β|γ

σ2

}]
dx. (12)
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Fig. 3. Probability (9) for −10 ≤ µ ≤ 30, when p = 1, λ = 1, σ = 1 and β =
0.5, 1, 2, 4, 8 (from top to bottom near the origin), for α = 0.5 (left plot) and α = 1
(right plot)

Noting that
∫ β

β−α
exp

{
µx− |x|γ

σ2

}
dx

=






(γ+µ)
2λ

[
exp

{
(β−α)(µ−γ)

σ2

}
− exp

{
β(µ−γ)

σ2

}]
, 0 < α ≤ β,

γ
λ −

1
2λ

[
(γ − µ) exp

{
(β−α)(γ+µ)

σ2

}
+ (γ + µ) exp

{
β(µ−γ)

σ2

}]
, α ≥ β,

and
∫ β

β−α
exp

{
−2µ

σ2
(β − x)

}
exp

{
µx− |x− 2β|γ

σ2

}
dx

=
γ − µ

2λ
exp

{
β(µ− γ)

σ2

}[
1− exp

{
−α(µ + γ)

σ2

}]
,

Eq. (9) thus finally follows from Eq. (12).

Remark 2. From Eq. (9) we have:

lim
λ→+∞

P [TX
β = J1] =






0, α < β,
p/2, α = β,
p, α > β,

lim
α→+∞

P [TX
β = J1] = p

{
1− e

β(µ−γ)

σ2

}
,

lim
β→+∞

P [TX
β = J1] = lim

µ→+∞
P [TX

β = J1] = lim
σ→+∞

P [TX
β = J1] = 0.

Moreover,

lim
σ→0

P [TX
β = J1] = P (β−α < µJ1 < β) =






p e−βλ/µ
(
eαλ/µ − 1

)
, µ ≥ 0, α ≤ β,

0, µ ≤ 0, α ≤ β,
p
(
1− e−βλ/µ

)
, µ ≥ 0, α ≥ β,

p
(
1− e−(β−α)λ/µ

)
, µ ≤ 0, α ≥ β.

(13)
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Fig. 4. Probability (9) for 0 ≤ λ ≤ 50, when p = 1, µ = 1, β = 1 and α =
0.5, 0.75, 1, 1.25, 1.5 (from bottom to top), for σ = 1 (left plot) and σ = 2 (right
plot)
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Fig. 5. Probability (9) for 0 ≤ σ ≤ 5, with p = 1, β = 1, λ = 1 and α =
0.5, 0.75, 1, 1.25, 1.5, 1.75 (from bottom to top), for µ = −0.5 (left plot) and µ = 0.1
(right plot)
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Fig. 6. Contour plot of (9) for 0 ≤ σ ≤ 3, p = 1, β = 1, λ = 1, with 0 ≤ α ≤ 1.25,
µ = −0.5 (left plot), and −0.5 ≤ µ ≤ 0.5, α = 0.8 (right plot)
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Various plots of probability (9) are given in Figures 4 and 5, for different
choices of the parameters. In particular, Figure 5 shows that, for some choices
of the involved constants, P [TX

β = J1] attains a maximum for a positive value
of σ. This is of special interest in problems where optimal values of the “noise
parameter” σ are relevant for biological systems in which the maximization of
certain utility functions is significant. The non-monotonic behaviour of proba-
bility (9) with respect to σ is also confirmed by the contour plot of P [TX

β = J1]
given in Figure 6.
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