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Filtered integration rules for finite weighted Hilbert transforms II
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Abstract

This paper is the continuation of a previous work where the authors have introduced a new class of
quadrature rules for evaluating the finite Hilbert transform. Such rules are product type formulae based
on the filtered de la Vallée Poussin (shortly VP) type approximation. Here, we focus on some particular
cases of interest in applications and show that further results can be obtained in such special cases. In
particular, we consider an optimal choice of the quadrature nodes for which explicit formulae of the
quadrature weights are given and sharper error estimates are stated.

1 Introduction
The Hilbert Transform (HT) appears in many mathematical models of applied sciences with different variants (see, e.g., [18, 19,
22, 27] and the references therein). Here we deal with the finite HT defined as follows

Hg(t) :=

∫ 1

−1

g(x)
x − t

d x = lim
ε→0

∫

|x−t|≥ε

g(x)
x − t

d x , −1< t < 1. (1)

In particular, we focus on the case in which the integrand g can be written as the following product

g(x) = f (x)u(x), |x | ≤ 1,

where u is a Jacobi weight as follows

u(x) = vα,β (x) := (1− x)α(1+ x)β , with
§

0< |α|, |β |< 1 and
σ := α+ β ∈ {−1,0,+1}, (2)

and f is a continuous function on (−1, 1) such that

lim
x→+1

f (x)u(x) = 0 if α > 0, and lim
x→−1

f (x)u(x) = 0 if β > 0.

We recall that such kind of integrand and, in particular, the conditions in (2) on the Jacobi exponents, are usual in Cauchy
Singular Integral Equations (see, e.g. [2, 6, 17, 25, 26, 34]) where it is commonly set

u(x) =
u+(x)
u−(x)

, with
§

u+(x) := (1− x)max{α,0}(1+ x)max{β ,0},
u−(x) := (1− x)max{−α,0}(1+ x)max{−β ,0}.

(3)

Moreover, denoting by En( f )v the error of best uniform weighted approximation of f in the space Pn of algebraic polynomials of
degree at most n, namely

En( f )v := inf
P∈Pn
∥( f − P)v∥∞, (4)

it is well known that the previous assumptions on f ensure that

lim
n→+∞

En( f )u+ = 0

and the rate of convergence is characterized by the degree of smoothness of f .
The first result we are going to state concerns the mapping properties of the HT operator Hu : f →Hu f where we set

Hu f (t) :=

∫ 1

−1

f (x)
x − t

u(x)d x , −1< t < 1, (5)
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and the integral is intended in the Cauchy principal value sense.
Improving previous results in [20, 21], we state the boundedness of Hu in a couple of Besov type spaces characterized by the

same degree of smoothness. We refer the reader to the next section for all technical details. Here we point out that our result
ensures for Hu f the same degree of smoothness of f , i.e. we get

En( f )u+ =O(n−r) =⇒ En(Hu f )u− =O(n−r), ∀r > 0. (6)

As far as the numerical computation of the HT is concerned, there exists a wide literature on the quadrature rules for Hu f (see,
e.g., [3, 4, 5, 8, 9, 13, 16, 28, 29]). In particular, in [30] the authors have recently proposed a new class of product integration
rules (VP-rules) that offer some advantages with respect to other quadrature rules based on the same system of nodes. In general,
given a Jacobi weight w and a pair of integers 0< m< n, the corresponding VP-rule takes the following form [30, Section 4]

Hu
n,m(w, f , t) =

n+m−1
∑

j=0

ρm
n, j(w, f )Qu

j (w, t), −1< t < 1, (7)

with

Qu
j (w, t) :=

∫ 1

−1

p j(w, x)

x − t
u(x)d x , (8)

ρm
n, j(w, f ) := µm

n, j

n
∑

k=1

λw
n,k p j(w, xw

n,k) f (x
w
n,k), (9)

where p j(w, x), j ∈ N0, denotes the Jacobi orthonormal polynomial of degree j corresponding to w and having positive leading
coefficient, xw

n,k, k = 1, ..n, are the zeros of pn(w, x),

λw
n,k :=

�

n−1
∑

j=0

[p j(w, xw
n,k)]

2

�−1

, k = 1,2, . . . , n, (10)

are the Christoffel numbers related to w and

µm
n, j :=











1, if j = 0, . . . , n−m,

n+m− j
2m

, if n−m< j < n+m,
(11)

are filter coefficients of de la Vallée Poussin type (see, e.g. [38]).
Note that for a fixed number n of nodes, VP rules may differ by the choice of the Jacobi weight w and/or of the additional

parameter m. As n→ +∞ and the ratio m/n remains bounded in a compact subinterval of (0, 1), the sufficient conditions on w
are known (see [30, Th. 4.2 and Th. 3.1]) to ensure that the quadrature error

Eu
n,m(w, f , t) :=
�

�

�Hu f (t)−Hu
n,m(w, f , t)
�

�

� , −1< t < 1, (12)

converges to zero uniformly w.r.t. t belonging to any compact interval I ⊂ (−1, 1). In particular, this is true choosing w= u with
u as in (2) and we focus on such case in the present paper.

From the computational point of view, thanks to a result in [34], in this case we have an analytic expression of the functions
Qu

j (u, t) that hence can be computed more efficiently. Regarding the role of the parameter m and the numerical advantages of VP
rules, we refer the reader to [30, Section 5] that also includes the case under consideration.

The main novelty of this paper concerns the theoretical estimates of the quadrature error. Regarding this, we recall that the
results in [30] yield

En( f )u+ =O(n−r) =⇒ sup
|t|≤1

Eu
n,m(w, f , t)u−(t) =O(n−r log n), ∀r > 0, (13)

but no estimate is given in the case of less regular functions that satisfy a Dini type condition. Here we fill this gap and state
that the quadrature error, similarly to En( f )u+ , satisfies a Jackson type estimate involving the Ditzian–Totik weighted main part
modulus of smoothness of f . As a consequence, we succeed in eliminating the log n factor in (13) and obtain the quadrature
error converges to zero with the same rate of the error of best polynomial approximation of f , namely

En( f )u+ =O(n−r) =⇒ sup
|t|≤1

Eu
n,m(w, f , t)u−(t) =O(n−r), ∀r > 0. (14)

The produced error estimates can be useful, for instance, in the numerical solution of Cauchy singular integral equations.
The outline of the paper is the following: Section 2 deals with mapping properties of Hilbert transform, Section 3 concerns

the computational details of the proposed VP rule and Section 4 contains the new error estimates.
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2 Mapping properties in Besov type spaces with uniform norms
For any Jacobi weight v with nonnegative exponents, we denote by C0

v the space of all locally continuous functions on [−1,1]
(i.e. continuous in any compact interval I ⊆ (−1,1)) satisfying

lim
x→±1

f (x)v(x) = 0, if v(±1) = 0.

Equipped with the norm
∥ f ∥C0

v
:= ∥ f v∥∞ = max

x∈[−1,1]
| f (x)|v(x),

this is a Banach space characterized as follows (see for instance [23])

f ∈ C0
v ⇐⇒ lim

n→∞
En( f )v = 0, (15)

where En( f )v is the error of best approximation of f ∈ C0
v in the space Pn (cf. (4)).

We focus on the case that such error converges to zero sufficiently fast to have, for some r ≥ 0, that

∞
∑

n=1

(n+ 1)r−1En( f )v <∞. (16)

For any r ≥ 0, functions f satisfying (16) belong to the Besov type space Br(v) that is a Banach space with norm

∥ f ∥Br (v) := ∥ f v∥∞ +
∞
∑

n=1

(n+ 1)r−1En( f )v , r ≥ 0. (17)

These spaces have been firstly introduced in [12] for r > 0 and in [21] when r = 0. In particular, we recall that for all r ≥ 0,
Br(v) is compactly embedded in C0

v . Moreover, 0≤ r1 < r2 implies that Br2
(v) is compactly embedded in Br1

(v) [17, 20].
Now, let us study the mapping properties of the operator Hu : f →Hu f , with u as in (2), in the previous spaces with weight

v = u± as defined in (3).
In the following, it is useful to observe that for any Jacobi weight u as in (2), only one of the cases below can occur















Case 1: u= va,−a with 0< a < 1
Case 2: u= v−a,a with 0< a < 1
Case 3: u= va,1−a with 0< a < 1
Case 4: u= v−a,a−1 with 0< a < 1

(18)

and, consequently, for any 0< a < 1, the weights u± defined in (3) are the following

u+ =











va,0 in Case 1
v0,a in Case 2
u in Case 3
1 in Case 4

u− =











v0,a in Case 1
va,0 in Case 2
1 in Case 3
u in Case 4

(19)

Moreover, in the sequel we denote by C a positive constant that may have different values at different occurrences, and we write
C ̸= C(n, f , . . .) to mean that C > 0 is independent of n, f , . . ..

It is known that the map Hu : C0
u+
→ C0

u−
cannot be bounded, but it becomes bounded if we restrict the domain to Besov type

subspaces. More precisely, we have the following ( cf. [21, Th. 3.1] and [30, Th. 2.3]).

Theorem 2.1. Let u = vα,β be a Jacobi weight satisfying (2) and let u± be defined by (3). For all t ∈ (−1, 1) and any f ∈ B0(u+), we
have

|Hu f (t)|u−(t)≤ C
�

| f (t)|u+(t) + ∥ f ∥B0(u+)

�

, C ̸= C( f , t). (20)

In particular, this result implies the map Hu : Br(u+)→ C0
u−

is a bounded map for all r ≥ 0. Here we state the following
stronger result

Theorem 2.2. Let u and u± be Jacobi weights as in (2) and (3), respectively. For all r > 0, the map Hu : Br(u+) → Br(u−) is
bounded, i.e. for any f ∈ Br(u+) we have

∥Hu f ∥Br (u−) ≤ C∥ f ∥Br (u+), C ̸= C( f ). (21)

Proof of Theorem 2.2
Let us assume u is one of the weights in (18) and consider the operator Du defined as follows

Du f (t) := AIu f (t) + BHu f (t), −1< t < 1, (22)

where Iu f (t) := f (t)u(t) and, according to (18), we set

A := cos(πa) B :=
sin(πa)
π
·
§

−1 in Cases 1 and 3,
+1 in Cases 2 and 4. (23)
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We recall that the boundedness of the map Du : Br(u+)→ Br(u−), r > 0, has been already proved in [24] for the cases 1 and 2,
and in [10] for the cases 3 and 4. More precisely, by [24, (3.8) and (4.28)] and [10, (3.17) and (4.7)] we have

∥Du f ∥Br (u−) ≤ C∥ f ∥Br (u+), C ̸= C( f ), ∀r > 0.

On the other hand, Iu : Br(u+)→ Br(u−), r > 0, is a bounded map too, since by using [30, Lemma 2.1] and the identity uu− = u+,
we have

∥Iu f ∥Br (u−) ≤ C∥(Iu f )u−∥Br
= ∥ f u+∥Br

≤ C∥ f ∥Br (u+), C ̸= C( f ), ∀r > 0,

where we used Br to denote Br(v0,0).
Hence the statement follows by taking into account that by (22) we have

Hu f (t) = −
A
B
Iu f (t) +

1
B
Du f (t), −1< t < 1. (24)

□

3 The proposed VP rule
For the numerical approximation of Hu f (t), we recall that in [30] the quadrature rule (7)–(9) has been obtained by replacing f
with the following polynomial

V m
n (w, f , x) :=

n
∑

k=1

f (xw
n,k)Φ

m
n,k(w, x), x ∈ [−1,1], (25)

where, using the notation previously introduced, we have

Φm
n,k(w, x) := λw

n,k

n+m−1
∑

j=0

µm
n, j p j(w, x)p j(w, xw

n,k), x ∈ [−1,1]. (26)

The polynomial V m
n (w, f , x) is known as filtered VP polynomial of f corresponding to the Jacobi weight w and the degree–

parameters n, m ∈ N with m< n. It comes from a generalization of trigonometric de la Vallée Poussin means and is a near-best
polynomial approximation of f w.r.t. uniform (suitably weighted) norms. For more details on its properties, we refer the reader
to [7, 31, 32, 33, 36, 37].

The HT of the VP polynomial, namely Hu[V m
n (w, f )](t) can be written in the form (7) that evidences the elements ρm

n, j(w, f )
(given by (9)) that are independent of t and therefore calculable only once for several t. The main difficulty lies in the computation
of the functions Q j(w, t) defined in (8) as the HT of the Jacobi polynomial p j(w). Regarding these functions, we recall the
following result has been deduced from the three-term recurrence relation (see, e.g.,[35])

b j+1p j+1(w, x) = (x − a j)p j(w, x)− b j p j−1(w, x), j = 0, 1, . . . , (27)

where we set pk(w, x) = 0 for any k < 0 and for w= vγ,δ it is

p0(w, x) =

�

∫ 1

−1

w(x)d x

�− 1
2

=
�

2γ+δ+1 Γ (γ+ 1)Γ (δ+ 1)
Γ (γ+δ+ 2)

�− 1
2

, (28)

and

a0 =
δ− γ
γ+δ+ 2

, b0 = 0,

a1 =
δ2 − γ2

(2+ γ+δ)(4+ γ+δ)
, b1 =

√

√ 4(1+ γ)(1+δ)
(2+ γ+δ)2(3+ γ+δ)

,

a j =
δ2 − γ2

(2 j + γ+δ)(2 j + γ+δ+ 2)
, b j =

√

√ 4 j( j + γ)( j +δ)( j + γ+δ)
(2 j + γ+δ)2(2 j + γ+δ+ 1)(2 j + γ+δ− 1)

, j ≥ 2.

(29)

Proposition 3.1. [30, Proposition 4.1] For all Jacobi weights u= vα,β and w= vγ,δ, and any t ∈ (−1,1), the functions Q j(t) :=
Qu

j (w, t) defined in (8) satisfy the following three-term recurrence relation

Q j+1(t) = (A j t + B j)Q j(t)− C jQ j−1(t) + Dj , j = 0, 1, . . . , (30)

where the starting values are given by

Q−1(t) = 0, Q0(t) = p0(w, t)

∫ 1

−1

u(x)
x − t

d t, (31)

and, for all j ≥ 0, the coefficients are defined by means of the coefficients in (29), as follows

A j =
1

b j+1
, B j = −

a j

b j+1
, C j =

b j

b j+1
, Dj =

1
b j+1

∫ 1

−1

p j(w, x)u(x)d x .
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Now let us focus on the case w= u with u given by (2) or, equivalently, by (18).
The first aspect we underline concerns the computation of the starting value Q0(t) in Proposition 3.1 that, according to

formula (31), involves the HT of the weight function u. We recall that for general Jacobi weights u = vα,β with α,β > −1 s.t.
α+ β ̸= −1 we have (see e.g. [15, p.290])

∫ 1

−1

u(x)
x − t

d t = u(t)π cot(πα)−
2α+βΓ (α)Γ (β + 1)
Γ (α+ β + 1) 2F1

�

−α− β , 1; 1−α;
1− t

2

�

, (32)

where, as usual, Γ denotes the Gamma function, and 2F1 the Hypergeometric function [15]. On the other hand, according to the
analysis in [14], the computation by (32) becomes unstable for α "close" to 0 or 1. However, this problem can be overcome if
u= vα,β satisfies (2) since in this special case we have (see e.g. [5, p. 49])

∫ 1

−1

u(x)
x − t

d t = u(t)π cot(πα)−



















0 if α+ β = −1,
π

sin(πα)
if α+ β = 0,

π(1+ t − 2α)
sin(πα)

if α+ β = +1.

(33)

Consequently, we can say that when α is close to 0 or 1 the starting value Q0(t) in Proposition 3.2 (and hence the whole
quadrature) results to be more accurate and easier to compute if we can use formula (33) instead of the general formula (32).
The different performance of these formulae is highlighted by the following experiment concerning with the VP rule for computing

Hu f (t) =

∫ 1

−1

sin(x)
x − t

u(x)d x , u= vα,1−α

where 0< α < 1 is closer and closer to 1. In Table 1, for increasing values of n, we report the maximum of the quadrature errors
in (12) attained for t ∈ {−0.9, −0.8, −0.7, .....0.9} by fixing w= u and computing Q0 by means of formula (32) ( eV P gen

n in the
table) or by means of (33) (eV P spec

n in the table).

α= 0.99 α= 0.999 α= 0.99999

n eV P gen
n eV P spec

n n eV P gen
n eV P spec

n n eV P gen
n eV P spec

n
11 7.73e-11 7.71e-11 11 2.66e-10 7.86e-11 11 4.13e-07 9.49e-11
31 1.86e-13 3.66e-14 31 1.87e-10 3.00e-13 31 4.13e-07 2.61e-11
51 1.50e-13 9.55e-14 51 1.87e-10 3.96e-13 51 3.44e-07 2.74e-11
71 1.90e-13 4.65e-14 71 1.20e-10 2.49e-13 71 4.13e-07 1.64e-11
91 5.16e-13 3.49e-13 91 1.87e-10 2.39e-13 91 4.13e-07 2.74e-11

111 2.44e-13 1.19e-13 111 1.87e-10 2.75e-13 111 4.13e-07 2.74e-11

Table 1: Test on the accurate computation of Q0

For α = 0.99, eventhough the errors attained by means of (33) seem to show a little loss of accuracy as n increases, the
results are little bit better than those attained by implementing the rule with (32). For α = 0.999 and α = 0.99999, both methods
saturate, but the results attained by (33) are much better than those by (32), providing 3 more digits at least.

Regarding the computation of functions Q j(t) with j > 0, we note that if we choose w= u then also the recurrence relation
(30) is simplified since we have Dj = 0, ∀ j ≥ 1 due to the orthogonality of the polynomial system {pn(u)}n.

We remark that, in the general case, the coefficients {Dj} j=1,..,n+m−1 can be exactly computed by means of the Gauss-Jacobi rule
based on the weight u and M := ⌊ n+m+1

2 ⌋ nodes. This requires at least 2(n+m)2 long operations leaving apart the additional cost
in computing the needed quadrature nodes and weights. Hence the choice w = u certainly implies a saving in the computation of
the functions {Q j} j using (30).

Moreover, whenever w= u with u as in (2), we also have a different approach to computing these functions. Indeed, in such
special cases, they are explicitly known [34] as specified by the following proposition.

Proposition 3.2. If w= u= vα,β holds with 0< |α|, |β |< 1 and σ = (α+ β) ∈ {−1,0,1}, then the functions Qu
j (w, t) defined in

(8) are given by the following formula

Qu
j (w, t) = π cot(πα)p j(u, t)u(t)−

π

sin(πα)
p j+σ(u

−1, t), |t|< 1, j ≥ 0, (34)

where it is agreed that pk(u−1, t) = 0 in the case k < 0.

Proof of Proposition 3.2. Let u= vα,β be one of the weights in (18), where we set

a =
§

α in Cases 1 and 3,
−α in Cases 2 and 4.

By (8) and (22)–(24), we get

Qu
j (u, t) =Hu[p j(u)](t) = −

A
B

u(t)p j(u, t) +
1
B
Du[p j(u)](t),
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where, according to (23) we note that

−
A
B
= π cot(πα), and

1
B
= −

π

sin(πα)
.

Hence, the statement follows recalling that by [34, Th. 9.9, Th. 9.14] (see also [24, (4.7)] and [10, (3.9) and (3.10)]) we have

Du[p j(u)] = p j+σ(u
−1), ∀ j ≥ 0. (35)

□

We conclude the section by giving a different expression of the VP rule (7) when the hypotheses of Proposition 3.2 are
satisfied. More precisely, we observe that by collecting formulae (7), (9) and (34), and recalling the definition of VP polynomial
given by (25)–(26), for all u= vα,β as in (2), we get

Hu
n,m(u, f , t) = π cot(πα)u(t)V m

n (u, f , t)−
π

sin(πα)
Ṽ m

n (u, f , t), (36)

where we set

Ṽ m
n (u, f , t) :=

n
∑

k=1

λu
n,kh(t, xu

n,k) f (x
u
n,k), n> m, (37)

and

h(t, x) :=
n+m−1
∑

j=0

µm
n, j p j+σ(u

−1, t)p j(u, x), −1≤ t, x ≤ 1, (38)

being σ = α+ β and µm
n, j defined by (11).

Formula (36) will be used in the next section.

4 Quadrature error estimates
In this section we are going to analyze the error function in (12) when w= u and (2) holds. In this case we adopt the following
simplified notation:

Hm
n f (t) :=Hu

n,m(u, f , t), Eu
n,m f (t) := Eu

n,m(u, f , t),

V m
n f (t) := V m

n (u, f , t), Ṽ m
n f (t) := Ṽ m

n (u, f , t).

Moreover, we use the notation m≈ n to mean that there exist two fixed constants c2 ≥ c1 > 1 independent of m, n ∈ N, such that

c1m≤ n≤ c2m. (39)

Note that this condition ensures that as the number of nodes n→∞, also m and n−m tend to∞ with the same order. If m≈ n
in [30] the authors proved that for all f ∈ B0(u+) one has

lim
n→+∞

Eu
n,m f (t)u−(t) = 0, uniformly w.r.t. t ∈ [−1, 1]. (40)

Moreover, the convergence rate depends on two components: the pointwise approximation provided by the VP polynomial of f
at the specific t ∈ (−1, 1), and the degree of smoothness of f . More precisely, we have the following

Theorem 4.1. [30, Corollary 4.3] Let u= u+/u− be Jacobi weights as in (2), (3). For all m≈ n, any f ∈ Br(u+), r > 0, and each
t ∈ (−1,1), we have

Eu
n,m f (t)u−(t)≤ C

�

� f (t)− V m
n f (t)
�

�u+(t) + C
log n

nr
∥ f ∥Br (u+), C ̸= C(n, f , t). (41)

As regards the first addendum in (41), we recall that V m
n f is a near–best polynomial approximation of f in C0

u+
, i.e. [36]

En+m−1( f )u+ ≤ ∥( f − V m
n f )u+∥∞ ≤ CEn−m( f )u+ , C ̸= C(n, m, f ), (42)

holds for all f ∈ C0
u+

and any m≈ n. In particular, since the condition (39) implies that, as n→ +∞, also (n±m)→ +∞, we
get ∥( f − V m

n f )u+∥∞→ 0 at the same rate of En( f )u+ . The latter can be characterized by the following main part modulus of
smoothness introduced in [11] by Z. Ditzian and V. Totik

Ωk
ϕ
( f ,τ)v := sup

0<h≤τ
∥v∆k

hϕ f ∥L∞[−1+2h2k2 ,1−2h2k2],

where

∆k
hϕ( f , x) :=

k
∑

i=0

(−1)i
�

k
i

�

f
�

x +
kh
2
ϕ(x)− ihϕ(x)
�

, ϕ(x) :=
p

1− x2.
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More precisely, we recall that for n sufficiently large and τ sufficiently small, the following Jackson and Stechkin type inequalities
hold for all f ∈ B0(u+) and any k ∈ N [11, Th. 8.2.1]

En( f )u+ ≤ C
∫

1
n

0

Ωk
ϕ
( f ,τ)u+
τ

dτ, C ̸= C(n, f ), (43)

Ωk
ϕ
( f ,τ)u+ ≤ Cτk

[1/τ]
∑

n=0

(n+ 1)k−1En( f )u+ , C ̸= C( f ,τ). (44)

These inequalities imply the Besov norm can be equivalently expressed in the following form [12, Th. 3.1]

∥ f ∥Br (u+) ∼ ∥ f u+∥∞ +
∫ 1

0

Ωk
ϕ
( f ,τ)u+
τr+1

dτ, k > r > 0, (45)

and in particular, for all (sufficiently large) n ∈ N, we have

En( f )u+ ≤ C
∥ f ∥Br (u+)

nr
, ∀ f ∈ Br(u+), r > 0, C ̸= C(n, f ). (46)

Hence, by (42), for any t ∈ (−1, 1) and m≈ n sufficiently large, we deduce the first addendum in (41) can be bounded analogously
to (43) and (46), namely

�

� f (t)− V m
n f (t)
�

�u+(t) ≤ C
∫

1
n

0

Ωk
ϕ
( f ,τ)u+
τ

dτ, ∀ f ∈ B0(u+), (47)

�

� f (t)− V m
n f (t)
�

�u+(t) ≤ C
∥ f ∥Br (u+)

nr
, ∀ f ∈ Br(u+), r > 0, (48)

hold with C ̸= C(n, f , t).
Nevertheless, in the case f ∈ Br(u+) with r > 0, the estimate (41) does not ensure the same optimal behavior for the

quadrature error Eu
n,m, due to the presence of the logarithmic factor in the second addend to the right hand side of (41). Moreover,

in the case we only know that f ∈ B0(u+), Theorem 4.1 gives no input on the behavior of the quadrature error. Here we fill these
gaps with the following

Theorem 4.2. For all Jacobi weights u = u+/u− as in (2), (3), for any m≈ n with n ∈ N sufficiently large, for each f ∈ B0(u+) and
for all t ∈ (−1,1), we have

Eu
n,m f (t)u−(t)≤ C

�

� f (t)− V m
n f (t)
�

�u+(t) + C
∫

1
n

0

Ωk
ϕ
( f ,τ)u+
τ

dτ, (49)

where C ̸= C(n, f , t).

Before giving the proof, let us analyze some consequences of this result.
We remark that, by virtue of (45), Theorem 4.2 ensures that (41) continues to hold if the log n factor is removed, namely if

the hypotheses of Theorem 4.1 are satisfied then we have

Eu
n,m f (t)u−(t)≤ C

�

� f (t)− V m
n f (t)
�

�u+(t) + C
∥ f ∥Br (u+)

nr
, C ̸= C(n, f , t).

Moreover, recalling (47), (48), under the assumption of Theorem 4.2 we get the quadrature error satisfies

Eu
n,m f (t)u−(t) ≤ C

∫
1
n

0

Ωk
ϕ
( f ,τ)u+
τ

dτ, ∀ f ∈ B0(u+), C ̸= C(n, f , t), (50)

Eu
n,m f (t)u−(t) ≤ C

∥ f ∥Br (u+)

nr
, ∀ f ∈ Br(u+), r > 0, C ̸= C(n, f , t). (51)

Taking into account that these estimates are analogous to (43) and (46), we conclude Theorem 4.2 guarantees that, as m≈ n→
+∞, the quadrature error converges to zero with the same rate of the error of best approximation En( f )u+ , i.e. (14) holds.

In order to prove Theorem 4.2, we premise the following Lemma:

Lemma 4.3. Let u= vα,β satisfies (2) and let u± be given by (3). For all m≈ n, any t ∈ (−1,1) and each f ∈ C0
u+

, we have


u−Ṽ m
n f




∞ ≤ C max
1≤k≤n
| f (xk)|u+(xk), C ̸= C(n, f ), (52)

where Ṽ m
n f (t) is defined by (37) and {xk = xu

n,k : k = 1, .., n} is the set of the zeros of pn(u, x).
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Proof of Lemma 4.3
First of all we note that Ṽ m

n f (t) is a polynomial of degree at most (n+m− 1) with m≈ n. Hence by Remez type inequality
[11, (8.1.4)], we get

∥u−Ṽ m
n f ∥∞ ≤ C max

|t|≤1− C
n2

u−(t)|Ṽ m
n f (t)|, C ̸= C(n, f ).

On the other hand, using the definition (37) and setting for brevity xk := xu
n,k and λk := λu

n,k, for any |t| ≤ 1− C
n2 we have

�

�Ṽ m
n f (t)
�

�u−(t) =

�

�

�

�

�

n
∑

k=1

λkh(t, xk) f (xk)

�

�

�

�

�

u−(t)

≤
n
∑

k=1

λk |h(t, xk) f (xk)|u−(t)

≤
�

max
1≤k≤n
| f (xk)|u+(xk)
�

n
∑

k=1

λk
|h(t, xk)|
u+(xk)

u−(t).

Thus, in order to obtain (52) it remains to prove that

S(t) := u−(t)
n
∑

k=1

λk
|h(t, xk)|
u+(xk)

≤ C, ∀|t| ≤ 1−
C
n2

, (53)

where here and in the following, by C we always intend constants satisfying C ̸= C(n, t, k, f ).
Now, we suppose that

x0 := −1< x1 < x2 < . . .< xn < xn+1 := 1,

and setting ∆xk := xk+1 − xk, we recall that [1]

λk ∼ u(xk)∆xk, and ∆xk ∼

Æ

1− x2
k

n
, k = 1, . . . , n,

where by A∼ B we mean that C−1B ≤ A≤ CB holds.
Consequently, since u= u+/u−, we have

S(t)≤ Cu−(t)
n
∑

k=1

|h(t, xk)|
u−(xk)

∆xk. (54)

In order to estimate such sum, we consider different cases corresponding to the different positions of the nodes xk w.r.t. |t| ≤ 1− C
n2

(arbitrarily fixed). As a consequence the sum at the right–hand side in (54) will be divided in several parts and the proof of (53)
will be given at the end of all examined cases.

Case I: |t − xk| ≤ C
p

1−|t|
n

In this case, recalling that |t| ≤ 1− C
n2 , it can be easily proved that

(1± t)∼ (1± xk). (55)

Moreover, we recall that for any Jacobi weight v the following estimate holds true [1]

|pn(v, t)| ≤
C
p

v(t) 4p1− t2
, ∀|t| ≤ 1−

C
n2

. (56)

Hence, by using (56) in (38) and taking into account (55) we get

|h(t, xk)| ≤ C
n

p

u−1(t)u(xk)
4
Æ

(1− t2)(1− x2
k)
≤ C

n
p

1− t2
.

Consequently, setting

S1(t) := u−(t)
∑

k:|t−xk |≤
p

1−|t|
n

|h(t, xk)|
u−(xk)

∆xk,

we have
S1(t)≤ C

n
p

1− t2

∑

k:|t−xk |≤
p

1−|t|
n

∆xk ≤ C. (57)

Case II: |t − xk| ≥ C
p

1−|t|
n

Starting from (38) and using the Abel transformation

N
∑

r=0

Ar Br = AN

N
∑

r=0

Br −
N−1
∑

r=0

(Ar+1 − Ar)
r
∑

j=0

B j ,

Dolomites Research Notes on Approximation ISSN 2035-6803



Occorsio · Russo · Themistoclakis 101

with N = n+m− 1, Ar = µm
n,r and Br = pr+σ(u−1, t)pr(u, x), by (11) we easily get

h(t, x) =
1

2m

n+m−1
∑

r=n−m

�

r
∑

j=0

p j+σ(u
−1, t)p j(u, x)

�

. (58)

On the other hand, for all t ̸= x , using the recurrence relation of Jacobi polynomials (27)–(29) and proceeding as in the proof of
Darboux’s formula, taking into account that (2) holds, by simple calculations (see, e.g., [24, pp. 83–84]) we get

r
∑

j=0

p j+σ(u
−1, t)p j(u, x) = br+1

pr+1(u, x)pr+σ(u−1, t)− pr(u, x)pr+σ+1(u−1, t)
x − t

−
sin(πα)
π

1
x − t

,

where br+1 is given by (29) taking γ= α and δ = β .
Thus we have the following equivalent form of the kernel in (58)

h(t, x) = g(t, x)−
sin(πα)
π

1
x − t

, t ̸= x , (59)

where, for all t ̸= x , we set

g(t, x) :=
1

2m

n+m−1
∑

r=n−m

�

br+1
pr+1(u, x)pr+σ(u−1, t)− pr(u, x)pr+σ+1(u−1, t)

x − t

�

.

A pointwise estimate of such function can be obtained by using the asymptotic formula (see e.g. [35, Theorem 8.21.13])

pr(v
γ,δ, cosθ ) = γr v−

γ
2−

1
4 ,− δ2 −

1
4 (cosθ )
�

cos(rθ +ρ) +
O(1)
r sinθ

�

,
C
r
≤ θ ≤ π−

C
r

, r ∈ N, (60)

where ρ := (2γ+2δ+1)θ
2 − π2 (γ+

1
2 ), and γr :=
Ç

(2r+γ+δ+1)Γ (r+1)Γ (r+γ+δ+1)
πrΓ (r+γ+1)Γ (r+δ+1) .

For the sake of brevity we omit the details, but following the same lines of the proof of [24, Lemma 5.2] (see also [10,
Proposition 5.3]), since u= vα,β , we get

|g(t, x)| ≤ C
v−

α
2 −

1
4 ,− β2 −

1
4 (x)v

α
2 −

1
4 , β2 −

1
4 (t)

n|t − x |







1−|t|
|x−t| , if x ∈ A,

1, if x ∈ B,
(61)

where

A :=

�

x :
C
p

1− |t|
n

≤ |t − x | ≤
1− |t|

2

�

, B :=
§

x : |t − x | ≥
1− |t|

2

ª

.

In the sequel, we are going to use (61) in order to estimate the following sums

S2(t) := u−(t)
∑

k: xk∈A

|g(t, xk)|
u−(xk)

∆xk,

S3(t) := u−(t)
∑

k: xk∈B

|g(t, xk)|
u−(xk)

∆xk.

Regarding the sum S2, applying (61), taking into account that (55) holds for xk ∈ A too, and using (1− t2)∼ 1− |t|, we get

S2(t) ≤
C
n

∑

k: xk∈A

1− |t|
(t − xk)2

p
1− t2

∆xk ≤ C
p

1− |t|
n

∑

k: xk∈A

∆xk

(xk − t)2

≤ C
p

1− |t|
n

∫

y∈A

d y
(y − t)2

≤ C. (62)

Now let us estimate the sum S3. Note that from (61) we deduce

S3(t) ≤
C
n

v
|α|
2 −

1
4 , |β |2 −

1
4 (t)
∑

k: xk∈B

v−
|α|
2 −

1
4 ,− |β |2 −

1
4 (xk)

|t − xk|
∆xk. (63)

On the other hand, denoted by d the index of the zero xd closest to t, namely

|xd − t|= min
1≤k≤n
|xk − t|,

it is known that [23, Lemma 4.1.1]
∑

k ̸=d

vγ,δ(xk)
|t − xk|

∆xk ≤ Cvγ,δ(t), −1< γ,δ < 0. (64)
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Since the hypothesis 0< |α|, |β |< 1 ensures γ := − |α|2 −
1
4 and δ := − |β |2 −

1
4 belong to (−1, 0), we note that (64) can be applied

to (63). Hence, the previous estimate continues as follows

S3(t)≤
C
n

v
|α|
2 −

1
4 , |β |2 −

1
4 (t)
∑

k: xk∈B

v−
|α|
2 −

1
4 ,− |β |2 −

1
4 (xk)

|t − xk|
∆xk ≤

C
n
p

1− t2
≤ C, (65)

having used (1− t2)∼ 1− |t| ≥ C
n2 in the last inequality.

Proof of (53)
By using (59) and (64), if we start from (54) and apply the estimates (57), (62) and (65), then we obtain (53) as follows

S(t) ≤ S1(t) + u−(t)
∑

k:|t−xk |≥
p

1−|t|
n

|h(t, xk)|
u−(xk)

∆xk

≤ C + Cu−(t)
∑

k:|t−xk |≥
p

1−|t|
n

1
u−(xk)

�

|g(t, xk)|+
1

|xk − t|

�

∆xk

≤ C + CS2(t) + CS3(t) + Cu−(t)
∑

k ̸=d

1
u−(xk)|xk − t|

∆xk ≤ C.

□

Now we are able to state the proof of Theorem 4.2.
Proof of Theorem 4.2.

First of all we note that, by virtue of (40), we have

u−(t)
�

Hu f (t)−Hm
n f (t)
�

= u−(t)
∞
∑

j=0

�

H2 j+1m
2 j+1n

f (t)−H2 j m
2 j n

f (t)
�

, |t|< 1. (66)

Throughout this proof, for brevity, corresponding to any j ≥ 0 we set

N := 2 j n, M := 2 j m and F = f − P∗,

where P∗ ∈ PN−M satisfies

max
x∈IN
| f (x)− P∗(x)|u+(x)≤ CΩs

ϕ

�

f ,
1
N

�

u+

, C ̸= C(N , f ), (67)

with IN := [−1+CN−2, 1− CN−2], C ̸= C(N), and s ∈ N such that s ≤ n. We remark the existence of such a polynomial P∗ follows
from [11, Eq. (8.2.4)] by taking into account that m≈ n.

Recalling that [36]
V M

N P = P, ∀P ∈ PN−M , (68)

we deduce
HuP(t) =Hu[V M

N P](t) = HM
N P(t), |t|< 1, ∀P ∈ PN−M , (69)

and consequently
H2M

2N f (t)−HM
N f (t) = H2M

2N F(t)−HM
N F(t), |t|< 1.

Hence, under the previous setting, we can write (66) as follows

u−(t)
�

Hu f (t)−Hm
n f (t)
�

= u−(t)
∞
∑

j=0

�

H2M
2N F(t)−HM

N F(t)
�

, |t|< 1. (70)

On the other hand, we recall that for all integers n> m> 0, by (36), we have

Hm
n f (t)u−(t) = π cot(πα)u+(t)V

m
n f (t)−

π

sin(πα)
u−(t)Ṽ

m
n f (t), (71)

where the first addendum satisfies
lim

n→ +∞
m≈ n

∥( f − V m
n f )u+∥∞ = 0, ∀ f ∈ C0

u+
. (72)

Summing up, by (70) and (71), we have

u−(t)Eu
n,m f (t) = u−(t)

�

�Hu f (t)−Hm
n f (t)
�

�

= u−(t)

�

�

�

�

�

∞
∑

j=0

�

H2M
2N F(t)−HM

N F(t)
�

�

�

�

�

�

≤ Cu+(t)

�

�

�

�

�

∞
∑

j=0

�

V 2M
2N F(t)− V M

N F(t)
�

�

�

�

�

�

+ C
∞
∑

j=0

u−(t)
�

�Ṽ 2M
2N F(t)− Ṽ M

N F(t)
�

� , (73)
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where C ̸= C(t, n, f ).
On the other hand, from (68) and (72) we deduce

u+(t)

�

�

�

�

�

∞
∑

j=0

�

V 2M
2N F(t)− V M

N F(t)
�

�

�

�

�

�

= u+(t)

�

�

�

�

�

∞
∑

j=0

�

V 2M
2N f (t)− V M

N f (t)
�

�

�

�

�

�

= u+(t)
�

� f (t)− V m
n f (t)
�

� . (74)

Moreover, applying Lemma 4.3 and (67), for any j ≥ 0, we have

u−(t)
�

�Ṽ 2M
2N F(t)− Ṽ M

N F(t)
�

� ≤ u−(t)
�

�Ṽ 2M
2N F(t)
�

�+ u−(t)
�

�Ṽ M
N F(t)
�

�

≤ C max
x∈IN
|F(x)|u+(x)

≤ C Ωs
ϕ

�

f ,
1
N

�

u+

= C Ωs
ϕ

�

f ,
1

2 j n

�

u+

, C ̸= C(n, j, f ),

and using well–known properties of the moduli of smoothness [11], this implies
∞
∑

j=0

u−(t)
�

�Ṽ 2M
2N F(t)− Ṽ M

N F(t)
�

� ≤ C
∞
∑

j=0

Ωk
ϕ

�

f ,
1

2 j n

�

u+

≤ C
∞
∑

j=0

∫
1

2 j n

1
2 j+1n

Ωk
ϕ
( f ,τ)u+
τ

dτ

≤ C
∫

1
n

0

Ωk
ϕ
( f ,τ)u+
τ

dτ. (75)

Thus the statement follows from (73)–(75).
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