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A k–bisection of a bridgeless cubic graph G is a 2–colouring of its vertex 
set such that the colour classes have the same cardinality and all 
connected components in the two subgraphs induced by the colour classes 
(monochromatic components in what follows) have order at most k. Ban 
and Linial conjectured that every bridgeless cubic graph admits a 2–
bisection except for the Petersen graph. A similar problem for the edge set 
of cubic graphs has been studied: Wormald conjectured that every cubic 
graph G with |E(G)| ≡ 0 mod 2 has a 2–edge colouring such that the two 
monochromatic subgraphs are isomorphic linear forests (i.e. a forest whose 
components are paths). Finally, Ando conjectured that every cubic graph 
admits a bisection such that the two induced monochromatic subgraphs are 
isomorphic. In this paper, we give a detailed insight into the conjectures of 
Ban–Linial and  
Wormald and provide evidence of a strong relation of both of them with 
Ando’s conjecture. Furthermore, we also give computational and 
theoretical evidence in their support. As a result, we pose some open 
problems stronger than the above mentioned conjectures. Moreover, we 
prove Ban–Linial’s conjecture for cubic cycle permutation graphs. As a by–
product of studying 2–edge colourings of cubic graphs having linear forests 
as monochromatic components, we also give a negative answer to a 
problem posed by Jackson and Wormald about certain decompositions of 
cubic graphs into linear forests. 
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Abstract

A k–bisection of a bridgeless cubic graph G is a 2–colouring of its vertex set such
that the colour classes have the same cardinality and all connected components
in the two subgraphs induced by the colour classes (monochromatic components
in what follows) have order at most k. Ban and Linial conjectured that every
bridgeless cubic graph admits a 2–bisection except for the Petersen graph. A similar
problem for the edge set of cubic graphs has been studied: Wormald conjectured
that every cubic graph G with |E(G)| ≡ 0 mod 2 has a 2–edge colouring such that
the two monochromatic subgraphs are isomorphic linear forests (i.e. a forest whose
components are paths). Finally, Ando conjectured that every cubic graph admits a
bisection such that the two induced monochromatic subgraphs are isomorphic.

In this paper, we give a detailed insight into the conjectures of Ban–Linial and
Wormald and provide evidence of a strong relation of both of them with Ando’s
conjecture. Furthermore, we also give computational and theoretical evidence in
their support. As a result, we pose some open problems stronger than the above
mentioned conjectures. Moreover, we prove Ban–Linial’s conjecture for cubic cycle
permutation graphs.
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As a by–product of studying 2–edge colourings of cubic graphs having linear
forests as monochromatic components, we also give a negative answer to a problem
posed by Jackson and Wormald about certain decompositions of cubic graphs into
linear forests.

Keywords: colouring: bisection; linear forest; snark; cycle permutation graph; cubic
graph; computation.

1 Introduction

All graphs considered in this paper are finite and simple (without loops or multiple edges).
Most of our terminology is standard; for further definitions and notation not explicitly
stated in the paper, please refer to [9].

A bisection of a cubic graph G = (V,E) is a partition of its vertex set V into two
disjoint subsets (B,W) of the same cardinality. Several times in the rest of the paper, we
will identify a bisection of G with the vertex colouring of G with two colours B (black)
and W (white), such that every vertex of B and W has colour B and W , respectively.
Note that the colourings not necessarily have to be proper and in what follows we refer to
a connected component of the subgraphs induced by a colour class as a monochromatic
component. Following this terminology, we define a k–bisection of a graph G as a 2–
colouring c of the vertex set V (G) such that:

(i) |B| = |W| (i.e. it is a bisection), and
(ii) each monochromatic component has at most k vertices.

Note that this is equivalent to the (k + 2)–weak bisections introduced by Esperet,
Tarsi and the fourth author in [16]. Indeed the existence of a k–bisection ((k + 2)–weak
bisection) is a necessary condition for the existence of a nowhere–zero (k + 2)–flow, as
it directly follows from a result by Jaeger [25] stating that every cubic graph G with a
circular nowhere–zero r–flow has a brc–weak bisection (cf. [25] and [16] for more details).

There are several papers in literature considering 2–colourings of regular graphs which
satisfy condition (ii), but not necessarily condition (i), see [4, 7, 22, 28]. In particular, it is
easy to see that every cubic graph has a 2–colouring where all monochromatic connected
components are of order at most 2, but, in general, such a colouring does not satisfy
condition (i) and so it is not a 2–bisection. Thus, the existence of a 2–bisection in a cubic
graph is not guaranteed. For instance, the Petersen graph does not admit a 2–bisection.
However, the Petersen graph is an exception since it is the unique known bridgeless cubic
graph without a 2–bisection. This led Ban and Linial to pose the following:

Conjecture 1.1 (Ban–Linial [6]) Every bridgeless cubic graph admits a 2–bisection,
except for the Petersen graph.
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Generally speaking, Ban–Linial’s Conjecture asks for a 2–vertex colouring of a cubic
graph with certain restrictions on the induced monochromatic components. These re-
strictions deal with the order of the monochromatic components, hence they also have
consequences on the structure of the admissible components. In particular, it is easy to
prove that the two induced monochromatic subgraphs are isomorphic.

A similar problem for the edge set of a cubic graph has been studied. A linear forest
is a forest whose components are paths and a linear partition of a graph G is a partition
of its edge set into linear forests (cf. [24, 18]). Wormald made the following conjecture:

Conjecture 1.2 (Wormald [33]) Let G be a cubic graph with |E(G)| ≡ 0 mod 2 (or
equivalently |V (G)| ≡ 0 mod 4). Then there exists a linear partition of G in two iso-
morphic linear forests.

Note that the statement of Wormald’s Conjecture is equivalent to the statement that
there exists a 2–edge colouring of E(G) such that the two monochromatic subgraphs are
isomorphic linear forests. (In Section 3, we will define such a 2–edge colouring to be
a Wormald colouring). Also in this case we are dealing with a colouring problem, an
edge colouring one this time, with some restrictions on the admissible monochromatic
components. In analogy with the Ban–Linial Conjecture, we will propose a stronger
version of Conjecture 1.2 by adding a restriction on the order of the monochromatic
components (see Problem 5.6).

The main aim of this paper is to give a detailed insight into the two previous conjec-
tures and moreover to provide evidence for the strong relations of both of them with the
following conjecture proposed by Ando [5] in the 90’s.

Conjecture 1.3 (Ando [5]) Every cubic graph admits a bisection such that the two in-
duced monochromatic subgraphs are isomorphic.

The paper is organized as follows. In Section 2, we deal with the Ban–Linial’s Con-
jecture (cf. Conjecture 1.1). First of all, we observe that Ban–Linial’s Conjecture implies
Ando’s Conjecture (cf. Proposition 2.3). Moreover, in Section 2.1, we prove Ban–Linial’s
Conjecture for bridgeless cubic graphs in the special case of cycle permutation graphs. In
Section 3, we show that Ando’s Conjecture is strongly related to a strengthened version
of Wormald colourings (see Proposition 3.5).

We would also like to point out that we can give a positive answer for a lot of in-
stances of Ando’s Conjecture using either 2–bisections or Wormald colourings. We find
it interesting that the few possible exceptions for which the approach with 2–bisections is
not feasible, are in the class of not 3–edge colourable cubic graphs. On the other hand,
all known exceptions for which the approach with our strengthened version of Wormald
colourings is not feasible, are in the class of 3–edge colourable cubic graphs. Note that,
this indicates a promising possibility for a complete proof of Ando’s Conjecture by prov-
ing that a given cubic graph cannot be an exception for both of these two approaches (at
least for a bridgeless cubic graph).
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In Section 4 we present our computational results. It is known that there are infinitely
many counterexamples to Ban–Linial’s Conjecture for 1–connected cubic graphs (see [17])
and in Section 4.1 we produce the complete list of all cubic graphs up to 32 vertices which
do not admit a 2–bisection. In Section 4.2 we show that Ando’s conjecture does not
have any counterexamples with less than 34 vertices and in Section 4.3 we present our
computational results on Wormald’s conjecture.

Finally, in Section 5, as a by–product of our study of 2–edge colourings of cubic
graphs having linear forests as monochromatic components, we obtain a negative answer
(cf. Theorem 5.3) to a problem about linear arboricity posed by Jackson and Wormald
in [24] (cf. also [32]). Recall that the linear arboricity of a graph G is the minimum
number of forests whose connected components are paths of length at most k required
to partition the edge set of a given graph G (cf. Section 5 for details). Moreover, we
conclude the paper posing new problems and conjectures on this topic.

2 Ban–Linial Conjecture

We recall that a 2–bisection is a bisection (B,W ) such that the connected components
in the two induced subgraphs G[B] and G[W ] have order at most two. That is: every
induced subgraph is a union of isolated vertices and isolated edges.

In [6], Ban and Linial posed Conjecture 1.1 and proved Theorem 2.1 for cubic graphs.
Note that the original formulation is in terms of external bisections, which are indeed
equivalent to 2–bisections for cubic graphs.

Theorem 2.1 [6, Proposition 7] Every 3–edge colourable cubic graph admits a 2–
bisection.

A stronger version of this last theorem is proven in [17] by Esperet, Tarsi and the fourth
author in terms of (k+2)–weak bisections (equivalent to k–bisections). In particular, they
prove the following:

Theorem 2.2 [17] If a bridgeless cubic graph G does not admit a 2–bisection, then it has
circular flow number at least 5.

Because of Theorem 2.2, a possible counterexample to Conjecture 1.1 has to be in the
class of bridgeless cubic graphs with circular flow number at least 5 (exactly 5 if Tutte’s
famous conjecture is true). An important subclass of bridgeless cubic graphs which are not
3–edge colourable is the class of snarks (i.e. a subclass of not 3–edge colourable graphs with
additional restrictions on the girth and connectivity). There is a vast literature on snarks
and their properties – see, e.g., [2, 3, 12, 26, 27, 30]. Snarks are especially interesting as
they are often smallest possible counterexamples for conjectures: for many graph theory
conjectures it can be proven that if the conjecture is false, the smallest counterexample
must be a snark. The interested reader might find more information about snarks in,
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e.g., [23] or [34]. Very few snarks with circular flow number 5 are known (see [30], [17]
and [3]) and no snark without a 2–bisection, other than the Petersen graph, has been
found until now.

Conjecture 1.1 is strongly related to Ando’s Conjecture (i.e. Conjecture 1.3) and the
following holds:

Proposition 2.3 Let G be a bridgeless cubic graph. If G is a counterexample for Ando’s
Conjecture, then it is also a counterexample for the Ban–Linial Conjecture.

Proof An easy counting argument shows that the number of isolated edges (vertices) in
G[B] and G[W ] is the same for every 2–bisection (B,W ) of G. Thus every 2–bisection
is a bisection with isomorphic parts. Moreover, it is not hard to prove that the Petersen
graph P is not a counterexample for Ando’s Conjecture (see Figure 1(b) and 1(c)).

The previous proposition implies that every cubic graph with a 2–bisection is not a
counterexample for Ando’s Conjecture. Not all cubic graphs admit a 2–bisection: next to
the Petersen graph, an infinite family of 1–connected examples is known [16]. However, it
is proven in [16] that every (not necessarily bridgeless) cubic graph admits a 3–bisection.
It is not hard to prove that the Petersen graph has no 3–bisection with isomorphic parts
(see Figure 1(a)), so there is no chance to prove in general that every cubic graph has a
3–bisection with isomorphic parts.

a) b) c)

Figure 1: a) A 3–bisection of P ; b) and c) Bisections of P with isomorphic parts

In Section 2.1 we focus our attention on bridgeless cubic graphs. In particular, we
consider a natural generalization of the Petersen graph, namely cycle permutation graphs,
and we verify the Ban–Linial Conjecture (and by Proposition 2.3 also Ando’s Conjecture)
for all members of this infinite family. Note that infinitely many of them are not 3–edge
colourable and several authors (see for instance [12] and [21]) refer to a member of this
subclass as a permutation snark. Observe that we also prove the Ban–Linial Conjecture
in the special case of claw–free cubic graphs in [1].

In Section 2.2 we consider the analogous relation between 2–bisections and bisections
with isomorphic parts for the class of 1–connected cubic graphs. An infinite family of
1–connected cubic graphs which do not admit a 2–bisection is known [16] and it could
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be that a member of this family might be a counterexample for Ando’s Conjecture. In
Proposition 2.13 we prove that this is not the case by constructing a bisection with
isomorphic parts for all of these graphs. Using a computer program, we also construct
all (1–connected) cubic graphs of order at most 32 without a 2–bisection and we verify
that none of them is a counterexample for Ando’s Conjecture. The reader should refer to
Section 4 for more details about these computational results.

Finally, in Section 2.3 we propose a stronger version of Ando’s Conjecture which we
will relate to Conjecture 1.2 in Section 3.

2.1 2–bisections of cycle permutation graphs

In this section we will introduce cycle permutation graphs and prove that every such
graph has a 2–bisection, except the Petersen graph.

Given a graph G with n vertices labelled 0, 1, . . . , n − 1, n ≥ 4, and a permutation
α ∈ Sn, the symmetric group on the n symbols {0, 1, . . . , n − 1}. The α–permutation
graph of G, Pα(G) consists of two disjoint copies of G, G1 and G2 along with the n edges
obtained by joining i in G1 with α(i) in G2, for i = 0, 1, . . . , n − 1. If the graph G is
an n–cycle labeled 0, 1, 2, . . . , n − 1 where i is joined to i + 1 and i − 1 (modn) then
Pα(G) is called a cycle permutation graph and will be denoted C(n, α). So, equivalently,
a cycle permutation graph is a cubic graph consisting of two n–cycles C1 and C2, labeled
0, . . . , n− 1 and such that i in C1 is adjacent to p(i) in C2, for some permutation p ∈ Sn
(where Sn denotes the symmetric group on {0, 1, . . . , n− 1}).

Permutation graphs were first introduced by Chartrand and Harary in 1967 [15], and
cycle permutation graphs were given this name in [29], but can also be found in [31]
and other references. Clearly, the Petersen graph is the cycle permutation graph P =
C(5, (1, 4, 2, 3)) and generalised Petersen graphs are cycle permutation graphs as well.

Let G = C(n, p) be a cycle permutation graph, for some permutation p ∈ Sn, hav-
ing cycles C1 (external) and C2 (internal). We will use the notation p(i) = pi for all
i ∈ {0, . . . , n − 1}, as long as subindices are clear, but sometimes we will keep p(i) to
avoid triple or quadruple subindices and/or use extra parenthesis to avoid confusion.
Throughout the paper, we assume that p0 = 0 and we fix the following labelling on the
vertices of G. Here and along the rest of the paper all indices are taken modulo n.

• the vertices of the cycle C1 are u0, . . . , un−1 with uiui+1 ∈ E(G)
• the vertices of the cycle C2 are v0, . . . , vn−1 with vivi+1 ∈ E(G)
• the edges given by the permutation p are viupi (see Figure 2).

Moreover, we always consider the class representatives in {0, . . . , n − 1}. For every
p ∈ Sn, we denote by p−1 the inverse of p and by p̄ the permutation such that p̄i = n− pi
modulo n, for all i.

Proposition 2.4 The graphs C(n, p), C(n, p−1) and C(n, p̄) are isomorphic.

6
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u4 u3

u2

u1

u0

u6

u5

v0

v2

v4

v1v6

v3

v5

p =

(
0 1 2 3 4 5 6
0 3 1 5 2 6 4

)

Figure 2: Labelling for a cycle permutation graph.

Proof The isomorphism between C(n, p) and C(n, p−1) is easily obtained by switching
the roles of C1 and C2. Moreover, C(n, p̄) is obtained from C(n, p) by labeling C1 in
counterclockwise order.

Proposition 2.5 Let G = C(n, p) be a cycle permutation graph. If n is even, then G
admits a 2–bisection.

Proof For an even n, we can alternately colour the edges of C1 and C2 with two colours
and the edges not in C1 or C2 with a third colour, then the graph G is 3–edge colourable,
and by Theorem 2.1 G admits a 2–bisection.

The main purpose of this section is to prove the existence of a 2–bisection for every
cycle permutation graph, except for the Petersen graph (see Theorem 2.12). By Proposi-
tion 2.5, from now on, we can assume that n is odd. Furthermore, if |pi − pi+1| = 1 for
some i, then G is Hamiltonian, and thus 3–edge colourable and hence admits a 2–bisection
(by Theorem 2.1). Thus, we can also assume that |pi − pi+1| > 1 for all i. Finally, since
n is odd, p1 and p̄1 have different parity, hence we can select p such that p1 is even. We
summarize all previous observations in the following remark:

Remark 2.6 To prove the existence of a 2–bisection for every cycle permutation graph,
it is sufficient to prove it for all cycle permutation graphs C(n, p) such that: n odd, p1
even and |pi − pi+1| > 1 for all i.

Let P be a path in a graph G, and let x, y ∈ V (P ). We denote by P (x, y) the subpath
of P between x and y. Let C be a cycle in a graph G, and let x, y, z ∈ V (C). We
denote by C(x, z, y) and C(x, ẑ, y) the (x, y)–path in C containing z and not containing
z, respectively.

Now, we furnish a sufficient (but in general not necessary) condition to have a 2–
bisection of G = C(n, p). More precisely, we will prove that such a condition guarantees
the existence of a particular 2–bisection for G = C(n, p) which satisfies all of the following
further properties:

7

Page 8 of 31

John Wiley & Sons

Journal of Graph Theory

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

• The cycle C1 is alternately black and white, except for two consecutive white ver-
tices, say ar and ar+1;
• The cycle C2 is alternately black and white, except for two consecutive black vertices,

say bs and bs+1;
• ar+1bs ∈ E(G).

Note that the selection of arar+1 and bsbs+1 uniquely induces the entire 2–colouring,
which is indeed a bisection. In order for such a 2–colouring to have monochromatic
components of order at most two, it is enough to find the following good configuration
in G.

Definition 2.7 Let G = C(n, p) be a cycle permutation graph with external cy-
cle C1 and internal cycle C2. A good configuration in G is a set of six vertices
{ar, ar+1, a, bs, bs+1, b} ∈ V (G) such that: ar, ar+1, a ∈ V (C1); bs, bs+1, b ∈ V (C2);
arar+1, arb, ar+1bs, abs+1, bsbs+1 ∈ E(G); and the paths C1(a, âr, ar+1) (and so also

C1(a, âr+1, ar)) and C2(b, b̂s+1, bs) (and so also C2(b, b̂s, bs+1)) are both of even length (see
Figure 3).

ar+1 a

b bs bs+1
C2

C1

Even

}
}Even

ar

Figure 3: A good configuration

Proposition 2.8 Let G = C(n, p) be a cycle permutation graph, with n odd. If G has a
good configuration, then it admits a 2–bisection.

Proof Let {ar, ar+1, a, bs, bs+1, b} be a good configuration of G. Set the vertex colour of
ar, ar+1 and a white; the vertex colour of bs, bs+1 and b black; and all other vertices of
G, alternately black and white in C1 and C2. Note that such alternation is possible and
uniquely determined by the previous choices, because the C1(ar+1, âr, a), C1(a, âr+1, ar),

C2(b, b̂s+1, bs) and C2(bs+1, b̂s, b) are all of even length. All neighbours of the white vertices
ar, ar+1 are black, and those of the black vertices bs, bs+1 are white. Moreover, if some edge
between vertices of C1 and C2 is monochromatic, by the alternation of colours in those
cycles, all of its neighbours will be of the opposite colour. Hence, the monochromatic
components have order at most two, that is the 2–colouring is a 2–bisection of C(n, p).
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Lemma 2.9 Let G = C(n, p) be a cycle permutation graph, with n odd. If there exists
an index i such that pi+1− pi ≡ 1 mod 2 (lower indices taken modulo n), then G admits
a 2–bisection.

Proof Recall that we are assuming that p1 is even, hence p1 − p0 = p1 is even. First
consider that there is an index i such that pi+1 − pi is odd. Let t be the smallest such
index.

In order to find a good configuration in G, we consider the path vt−1vtvt+1 in C2

and their neighbours upt−1 ,upt and upt+1 in C1, i.e. vt−1upt−1 , vtupt , vt+1upt+1 ∈ E(G),
upt−1 , upt , upt+1 ∈ V (C1).

Set P = C1(upt−1 , upt , upt+1). We have that |P (upt−1 , upt)| is even (because pt − pt−1
is even) and |P (upt , upt+1)| is odd (because pt+1 − pt is odd) and greater that 1 (because
|pi+1 − pi| > 1 for all i ∈ {0, . . . , n − 1}). Let u be the neighbour of upt in P (upt , upt+1),
v be the neighbour of u in C2 and denote by Q the path C2(vt+1, vt, v). There are two
cases:

Case 1 - Q ODD: Let bs+1 = vt−1, bs = vt, b = v, ar = u, ar+1 = upt and

a = upt−1 . Then, C2(b, b̂s+1, bs) and C1(a, âr+1, ar) are both even and we have the desired
good configuration.

Case 2 - Q EVEN: Let bs = vt, bs+1 = vt+1, b = v, ar+1 = upt , ar = u and

a = upt+1 . Then, C2(b, b̂s+1, bs) and C1(a, âr, ar+1) are both even and we have the desired
good configuration.

In both cases we have a good configuration, then, by Proposition 2.8, G admits a
2–bisection.

Now, we can focus our attention on the corresponding set of differences for the inverse
permutation p−1. But first, we collect a list of properties that we are going to implicitly
use in the following proofs.

Remark 2.10 (i) Let G = C(n, p) be a cycle permutation graph with n odd and pi+1−pi
even for all i. Then, given two consecutive vertices of the inner cycle vi, vi+1 ∈ C2,
we have that for viupi , vi+1upi+1

∈ E(G), the path (upiu(pi)+1u(pi)+2 . . . up(i+1)
) has

even length.
(ii) Let G = C(n, p) be a cycle permutation graph with n odd and p−1i+1 − p−1i odd for

all i. Then, given two consecutive vertices of the outer cycle upi , u(pi)+1 ∈ C1, we
have that for upivi, upi+1

vp−1((pi)+1) ∈ E(G), the path (vivi+1 . . . vp−1((pi)+1)) has odd
length.

Recall that if two consecutive vertices of one of the two cycles C1 and C2 have the same
colour, then we need that their neighbours in the other cycle have the opposite colour.

Lemma 2.11 Let G = C(n, p), n odd, be a cycle permutation graph. If pi+1 − pi is
even for all i and there exists an index t such that p−1t+1 − p−1t is even, then G admits a
2–bisection.

9
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Proof Again, we make use of Proposition 2.8. Hence, we must only prove the existence of
a good configuration. Consider the vertices ut, ut+1 in C1 and their neighbours vp−1

t
,vp−1

t+1
in

C2, respectively. Denote by v the vertex adjacent to vp−1
t

in C2 but not in the (vp−1
t
, vp−1

t+1
)–

path of C2 of even length. Finally, denote by u the neighbour of v in C1. The (u, ut)–path
in C2 of even length does not contain ut+1 because of the assumption that pi+1 − pi is
even for all i. Let bs = vp−1

t
, bs+1 = v, b = vp−1

t+1
, ar = ut, ar+1 = ut+1 and a = u. Then,

by our assumption on p and p−1, C2(b, b̂s+1, bs) and C1(a, âr+1, ar) are both even and we
have the desired good configuration.

In view of the previous lemma, from now on, we consider a cycle permutation graph
C(n, p) with n odd, pi+1 − pi even for all i and p−1i+1 − p−1i odd for all i. Note that the
Petersen graph lies within this class.

Recall that a Generalised Petersen Graph GP (n, k), for 2 ≤ 2k < n, is a simple
cubic graph with vertex set V (GP (n, k)) = {u0, . . . , un−1, v0, . . . , vn−1} and edge set
E(GP (n, k)) = {uiui+1, uivi, vivi+k : i ∈ {0, . . . , n − 1}} (where all indices are taken
modulo n).

Even though it is not hard to check that some cycle permutation graphs do not admit
a good configuration (e.g. the Generalised Petersen Graph GP (9, 2)), we prove in the
following theorem that all of them, except for the Petersen graph, admit a 2–bisection.

Theorem 2.12 Let G = C(n, p) be a cycle permutation graph, which is not the Petersen
graph. Then G admits a 2–bisection.

Proof By Lemma 2.5 we can assume that n is odd. By Lemma 2.9 we can assume that p
satisfies pi+1 − pi even for all i. Finally, by Lemma 2.11 we can assume that p−1 satisfies
p−1i+1 − p−1i odd for all i.

First of all, we consider the Generalised Petersen graph G = GP (n, n−1
2

). If n = 5 we
have the Petersen graph. If n > 5, G is 3–edge colourable (see [14]) and by Theorem 2.1,
G admits a 2–bisection.

Hence, we can assume that p satisfies all previous conditions, but it is not GP (n, n−1
2

).

Let x, y ∈ V (G) be such that:

Without loss of generality, we may assume that i = 0, i.e. x = vp−1(1) and y = vp−1(0) =
v0, so u0y, u1x ∈ E(G). Now, we describe a 2–bisection of G. Let c : V (G) −→ {B,W}
be a 2–colouring such that

• c(u0) = c(u1) := W ;
• c(ui) := W if i is odd;
• c(ui) := B if i is even (6= 0);
• c(x) = c(y) := B.

We need to describe the 2–colouring c on the rest of the inner cycle, in such a way
that c is a 2–bisection.

10
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Since the inner cycle C2 is odd, the vertices x and y divide C2 into two paths, one of
even length, say P1, and one of odd length, say P2. Let x0 and y0 be the neighbours of x
and y in P1; and let x1 and y1 be the neighbours of x and y in P2, respectively.

Since pi+1−pi is even and p−1i+1−p−1i is odd, for all i, we have that the vertex uh ∈ C1,
with uhy1 ∈ E(G), is such that h is even. Then y1 is adjacent to a black vertex of C1.
Analogously, the vertex uk ∈ C1, with ukx1 ∈ E(G), is such that k is even, hence also
x1 is adjacent to a black vertex in C1. Since x1 has two black neighbours (x and uk), we
must set c(x1) := W . Similarly, c(y1) := W .

Now consider x0ul, y0um ∈ E(G), with ul, um ∈ C1. Then, again by pi+1 − pi even for
all i, l and m are both odd, which implies that c(ul) = c(um) = W have been set.

Since the number of white vertices in C1 is one more that the number of black vertices,
we need the opposite situation in C2. We will obtain this condition in two different ways
according to necessity: Type (I), where c(x0) = c(y0) = W , there are two consecutive
black vertices somewhere in P2 and the rest is alternating; and Type (II), where c(x0) =
c(y0) = B, there are two consecutive white vertices somewhere in P2 and the rest is
alternating, except for the edges xx0 and yy0 which have both ends black (see Figure 4).

x0

x
x1 y1

of Type II y0

y

2-coloring of C2

x0

x
x1 y1

of Type I y0

y

2-coloring of C2

u1 u0

uhuk

u1

uk uh

u0

Figure 4: Type I and Type II colouring of C2

Since the C2(x1, x̂, y1)–path is odd, then there is an even number of vertices between
x1 and y1 in this path, say x2, . . . , xt, yt, . . . y2.

Now, we can complete the 2–colouring c in order to obtain a 2–bisection.

Trivial case: there is no vertex between x1 and y1. Then x1, y1 are two consecutive
white vertices in C2, so we set c(x0) = c(y0) = B and complete c as a Type II colouring.

General case: If the two neighbours of x2 and y2 in C1 have both the same colour
of x1 and y1, i.e. white, then we must set c(x2) = c(y2) = B to avoid monochromatic
components of order larger than two. Otherwise, we can colour either c(x2) = W or
c(y2) = W , obtaining two consecutive white vertices (either x1x2 or y1y2) and we can
complete c as a Type II colouring.

We repeat the process by looking at the neighbours of x3, y3 in C1, and so on. At
each step, either the colouring of xi and yi is uniquely determined, or we can obtain two
consecutive vertices of the same colour. If these two vertices are white, we complete c as
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a Type II colouring; if these two consecutive vertices are black, we complete c as a Type
I colouring.

Finally, if the colouring of all vertices x2, . . . , xt, yt, . . . y2 is forced, then xt and yt share
the same colour; we complete the colouring c as a Type I or a Type II colouring according
to the colour of xt and yt. This completes the proof.

To conclude this section, we would like to remark that a direct proof of Ando’s Con-
jecture for cycle permutation graphs is much easier. If we do not care about the order of
connected components, then we can consider the bisection B = V (C1) and W = V (C2)
and it is clear that such a bisection has isomorphic parts.

2.2 1–connected cubic graphs

In the previous sections, we have discussed the problem of constructing bisections of cubic
graphs with isomorphic parts. In particular, we have observed that a 2–bisection is always
a bisection with isomorphic parts (see Proposition 2.3). As mentioned before, only one
example of bridgeless cubic graph without a 2–bisection is known (i.e. the Petersen graph).
On the other hand, an infinite family of 1–connected cubic graphs with no 2–bisection is
constructed in [16]. In this section, we prove that all members of this family (and also of
a similar one) admit a 3–bisection with isomorphic parts.

First of all, we present the family of examples constructed in [16]: take the module Lh
(h ≥ 0) depicted in Figure 5. Note that L0 is K3,3 with on edge subdivided with a new
vertex.

h copies

Figure 5: The module Lh

Let Tijk be the graph obtained by taking Li, Lj and Lk and adding a new vertex
adjacent to the three vertices of degree 2.

It is proved in [16] that Tijk does not admit a 2–bisection for all possible non–negative
values of i, j and k.

Proposition 2.13 For any i, j, k ≥ 0, the graph Tijk admits a 3–bisection with isomor-
phic parts.

Proof The basic step is the 3–bisection of the graph T000 depicted in Figure 6. The proof
proceeds by showing that if we replace the three copies of the module L0 with copies of
Li, Lj and Lk, for arbitrary non–negative values of i,j and k, then we can still obtain a
3–bisection with isomorphic parts.
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Figure 6: A 3–bisection of T000 with isomorphic parts

1) Replace the central copy of L0 in T000 with a copy of Li coloured as in Figure 7:
the bisection of the graph obtained still has isomorphic parts since we only add isolated

Figure 7

vertices in each monochromatic subgraph.

2) Replace the copy of L0 on the right with a copy of Lj coloured as in Figure 8:
the bisection of the graph obtained still has isomorphic parts since we replace an isolated

Figure 8

vertex with a path of length one in each part and we add the same number of isolated
vertices in each of them.

3) Replace the copy of L0 on the left with a copy of Lk coloured as in Figure 9 according
to the parity of k: in both cases the bisection of the graph obtained still has isomorphic
parts. If k is even, we add the same number of paths of length one in each part, if k is
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if k even if k odd

Figure 9

odd we replace a path of length one with a path of length two in each part and we add
the same number of isolated vertices in each of them.

We would like to stress that if we substitute the central vertex of Tijk with a copy of
K3,3 minus a vertex, then we have another infinite family of graphs without a 2–bisection.
All previous arguments can be easily extended to prove that each member of this further
family admits a 3–bisection with isomorphic parts.

Furthermore, all 1–connected graphs of order at most 32 without a 2–bisection are
presented in Section 4. None of them is a counterexample for Ando’s Conjecture.

2.3 Strong Ando Conjecture

We conclude this section with some properties of bisections with isomorphic parts that will
allow us to state a strengthening of Ando’s conjecture that will be discussed in Section 3.

Recall that, as was remarked at the beginning of this section, in all 2–bisections the two
isomorphic parts are obviously linear forests, since the connected components are either
isolated vertices or isolated edges. Moreover, we have verified that all known graphs
without a 2–bisection admit a 3–bisection with isomorphic parts which are linear forests
(this is not trivial since a connected component of order 3 could be a 3–cycle) except
the Petersen graph (see Proposition 2.13 and Observation 4.3). Finally, note that the
Petersen graph admits a 4–bisection with isomorphic parts which are linear forests (see
Figure 1(c)).

In the following remark, we summarize all of these facts:

Remark 2.14 (i) In all 2–bisections the two monochromatic induced subgraphs are
isomorphic and they are obviously linear forests;

(ii) All known graphs without a 2–bisection admit a 3–bisection with isomorphic parts
which are linear forests, except the Petersen graph;

(iii) The Petersen graph admits a 4–bisection with isomorphic parts which are linear
forests.

This gives rise to the following natural question:

Problem 2.15 Does every cubic graph admit a bisection with isomorphic parts and with
the additional property that these parts are linear forests?
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To approach this problem, first of all, we observe that we can assume that both parts
have maximum degree two.

Proposition 2.16 Let G be a cubic graph admitting a bisection with isomorphic parts.
Then G admits a bisection with isomorphic parts having maximum degree 2.

Proof Take a bisection with isomorphic parts and with the minimum number of vertices
of degree 3 in each induced monochromatic subgraph. Suppose that there exist two
vertices of G of degree 3, each one from a monochromatic isomorphic part, say v1 and
v2 (i.e. two corresponding vertices following the isomorphism between the black and the
white monochromatic part). Then, we can obtain a bisection with isomorphic parts and
a lower number of vertices of degree 3 by recolouring v1 and v2 with the opposite colour,
which is a contradiction.

Proposition 2.16 and Remark 2.14 lead us to state the following strong version of
Ando’s Conjecture:

Conjecture 2.17 (Strong Ando Conjecture) Every cubic graph admits a k–bisection
such that the two induced subgraphs are isomorphic linear forests.

We are curious about the optimal value of k in the previous conjecture and we leave
it as an open problem. At this stage, we only remark that k = 3 is always sufficient in all
known examples, except for the Petersen graph where we need k = 4.

Problem 2.18 Does every cubic graph admit a 4–bisection such that the two induced
subgraphs are isomorphic linear forests?

3 Strong Wormald (edge) colourings vs Strong Ando

(vertex) colourings

In this section, as mentioned in the Introduction, we develop a second and different
approach introducing the concept of (Strong) Wormald Colouring, to present further
evidence in support of Ando’s Conjecture 1.3, and its stronger version (Conjecture 3.4).

In the Introduction, we have stated a Conjecture by Wormald (cf. Conjecture 1.2) in
terms of isomorphic linear forests (i.e. let G be a cubic graph with |V (G)| ≡ 0 mod 4.
Then, there exists a linear partition of G in two isomorphic linear forests). Note that,
in other words, Conjecture 1.2 states that there exists a 2–edge colouring of G, cE :
E(G) −→ {B,W} such that both monochromatic subgraphs are linear forests and they are
isomorphic. We define such a colouring cE to be a Wormald colouring.

Analogously, we can restate Ando’s Conjecture (cf. Conjecture 1.3) in terms of colour-
ings as follows:
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Conjecture 3.1 (Restatement of Ando’s conjecture [5]) A cubic graph G admits a
2–vertex colouring of G, cV : V (G) −→ {B,W}, such that the monochromatic induced
subgraphs are isomorphic.

From now on, a 2–colouring of G, cV : V (G) −→ {B,W}, such that the monochro-
matic induced subgraphs are isomorphic will be called an Ando colouring. Trivially, in
order to have isomorphic monochromatic induced subgraphs such a 2–colouring is a bi-
section.

It seems immediately clear that there should be a link between a Wormald Colouring
of the edges of a cubic graph G and an Ando Colouring of the vertices of G. In order to
establish a strong connection between the two problems, we need to strengthen some of
the previous definitions. In particular, we need to exclude an induced path of length one
(i.e. a path with one edge and two vertices) in a Wormald Colouring.

Definition 3.2 Let G be a cubic graph with |V (G)| ≡ 0 mod 4. A Strong Wormald
Colouring is an edge colouring cE : E(G) −→ {B,W} of G such that the monochromatic
induced subgraphs are isomorphic linear forests with paths of length at least 2.

Finally, we define a Strong Ando Colouring as an Ando Colouring such that the
monochromatic induced subgraphs are not only isomorphic but also linear forests. More
precisely:

Definition 3.3 Let G be a cubic graph. A Strong Ando Colouring is a vertex colour-
ing cV : V (G) −→ {B,W} of G such that the monochromatic induced subgraphs are
isomorphic linear forests.

Obviously, a Strong Ando Colouring is an Ando Colouring. Moreover, we can restate
Conjecture 2.17 in terms of colouring, as follows:

Conjecture 3.4 (Strong Ando Conjecture (Colouring Version)) Every cubic
graph admits a Strong Ando Colouring.

The idea of introducing the concept of a Strong Wormald Colouring is mainly due to
the following proposition.

Proposition 3.5 Let G be a cubic graph graph with |V (G)| ≡ 0 mod 4 admitting a
Strong Wormald Colouring. Then, G admits a Strong Ando Colouring (and thus an
Ando Colouring).

Proof Let cE : E(G) −→ {B,W} be a Strong Wormald Colouring. We construct a
Strong Ando Colouring as follows:

cV (v) :=

{
B if v is incident with two black edges of cE
W if v is incident with two white edges of cE
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The vertex colouring cV (v) is indeed a Strong Ando Colouring: every connected compo-
nent of a monochromatic induced subgraph is a path, since it is obtained starting from a
path of the induced linear forests of the Strong Wormald Colouring by removing the two
final edges. Hence, the two monochromatic induced subgraphs are linear forests, and the
previous argument implicitly proves that they are also isomorphic.

As far as we know, Wormald’s Conjecture (i.e. every cubic graph of order 0 (mod 4)
has a Wormald Colouring) is open and we have no counterexamples for the Strong Ando
Conjecture (i.e. every cubic graph has a Strong Ando Colouring, and so also an Ando
Colouring). What happens if we consider Strong Wormald Colourings instead? Is it
true that every cubic graphs of order congruent to 0 (mod 4) has a Strong Wormald
Colouring? The answer is negative in general, and we will construct an infinite family
of graphs without a Strong Wormald Colouring. The family of these examples seems to
represent a very thin subclass of the class of all cubic graphs and, even if they do not
admit a Strong Wormald Colouring, all of them admit a 2–bisection and hence a Strong
Ando Colouring.

Firstly, in order to study such a family and to have an efficient procedure to obtain
graphs without a Strong Wormald Colouring, we characterize bisections which arise from
a Strong Wormald Colouring.

Let G be a cubic graph such that |V (G)| ≡ 0 mod 4. Let cE : E(G) −→ {B,W}
be a Strong Wormald Colouring. Let cV : V (G) −→ {B,W} be the vertex colouring
induced by cE as described in the proof of Proposition 3.5. Let G′ be the graph obtained
from G by removing all edges with two ends of the same colour in cV . In other words,
G′ = (V (G′), E(G′)) where V (G′) = V (G) and E(G′) = {xy ∈ E(G) : cV (x) 6= cV (y)} =
{xy ∈ E(G) : xy is a leaf in a monochromatic path of cE}.

Lemma 3.6 Each connected component of G′ is bipartite and isomorphic to a tree plus
an edge.

Proof Since all edges with ends of the same colour in cV were removed from G, the graph
G′ is obviously bipartite with bipartition cV . Consider the following orientation of G′:
e ∈ E(G′) is oriented away from the vertex having in cV the same colour as e in cE.

This orientation cannot produce a vertex of in–degree larger that 1 in G′: take a vertex
v, the colour in cE of an inner edge in v is opposite to the colour of v in cV , and we can
have only one edge of such a colour incident to v by definition of cV .

Since we do not have in–degree 2 at any vertex, every path of G′ is oriented and
every cycle C in G′ is oriented (and even, since G′ is bipartite). Furthermore, every edge
incident to a vertex of C, and not in C, is directed away from C. Then, every path leaving
C cannot come back to C. For the same reason, we cannot have two cycles in the same
connected component of G′. Then, we have proved that if a connected component of G′

has a cycle, then it is the unique cycle in such a component, in other words it is a tree
plus an edge.
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Finally, we observe that a connected component cannot be acyclic (i.e. a tree). Each
leaf is oriented towards its vertex of degree 1 by definition of cV and cE, then a path which
contains two leaves cannot be oriented, a contradiction.

Hence, a connected component of G′ is bipartite and it contains exactly one cycle.

Now, we prove that every bisection having the properties described in previous propo-
sitions arises from a Strong Wormald Colouring.

Theorem 3.7 Let G be a cubic graph graph with |V (G)| ≡ 0 mod 4. The graph G
admits a Strong Wormald Colouring if and only if G admits a Strong Ando Colouring
such that each connected component of the bipartite subgraph G′ of G, obtained by removing
all edges of G with ends of the same colour, is isomorphic to a tree plus an edge.

Proof Let cV be a Strong Ando Colouring of G with the additional property that each
connected component in the bipartite subgraph G′ of G, obtained by removing all edges
of G with ends of the same colour, is isomorphic to a tree plus an edge.

We want to reconstruct a Strong Wormald Colouring cE starting from cV :
for all edges xy having both ends of the same colour in cV . We set

cE(xy) :=

{
B if cV (x) = cV (y) = B
W if cV (x) = cV (y) = W

Now we must define cE on the remaining edges of G, which are exactly the edges of G′.
Consider a connected component of G′: it has a unique even cycle C, so colour the edges
of C alternately black and white. Now, colour the remaining edges following the rule that
a black vertex must have two black incident edges (and the same for white vertices). The
colouring cE is uniquely determined up to the colour of each even cycle in G′. (Then we

have 2# even cycles in G′ different edge colourings).

Finally, we have to prove that cE is indeed a Strong Wormald Colouring.

E(G) = E(G′) ∪ E(G′′)

where E(G′) are the edges of G with ends of opposite colours in cV , and E(G′′) are the
edges with ends of the same colour in cV . The graph G′′ is the union of two isomorphic
linear forests FB and FW , since cV is a Strong Ando Colouring.

Now we show how a path (x0, x1, . . . , xl) of length ` ≥ 0 in FB (and an analogous
result holds for FW ) corresponds to a path of length `+ 2 in G.

All vertices xi : i = 0, . . . , l are black in cV , since they belong to FB. Moreover, their
neighbours in G are all white vertices in cV by definition of FB. Possible inner vertices of
the path are all vertices of degree one in G′ and so, by definition of cE all edges incident
with the path in these vertices are white. Moreover, the two ends of the path, x0 and xl,
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are vertices of degree two in G′. Exactly one of the two edges incident with them in G′

is black in cE and these two black edges are isolated edges in G′ because their ends not
in the path are white. Hence, the linear forests induced by cE are obtained by the linear
forests induced by cV by adding two edges at the ends of each path. This implies that
the two linear forests are isomorphic and have length at least 2.

Therefore, cE is a Strong Wormald Colouring and this proves the theorem.

Note that Theorem 3.7 not only has a relevance from a theoretical point of view, but
as will be explained in Section 4.3, it also permits to design a more efficient algorithm to
search for Strong Wormald Colourings.

We conclude this section with an example of a reconstruction of a Strong Wormald
Colouring of the prism with 12 vertices starting from a suitable Strong Ando Colouring.
Figure 10 shows a Strong Ando Colouring on the left, an edge colouring of the bipartite
subgraph G′ with all connected components isomorphic to a tree plus an edge in the
center, and the Strong Wormald Colouring on the right.

Figure 10: The reconstruction of a Strong Wormald Colouring obtained following the proof of
Theorem 3.7

3.1 Cubic Graphs with no Strong Wormald Colouring

According to Conjecture 1.2 every cubic graph of order a multiple of four admits a
Wormald Colouring. In previous section, we have defined a Strong Wormald Colour-
ing as a Wormald Colouring of the edges of a cubic graph which avoids paths of length
one. We have also observed that cubic graphs with a Strong Wormald Colouring cannot
be counterexamples for Ando’s Conjecture. Hence, the next natural step is the search of
cubic graphs (of order a multiple of four) without a Strong Wormald Colouring. We have
completed an exhaustive search for cubic graphs without a Strong Wormald Colouring up
to 28 vertices (see Section 4.3 for a description of the algorithm and graph counts) and
were able to find such graphs: the smallest one is the graph with 16 vertices at the top
of Figure 11. However, at least for the 2-connected case, we have found very few exam-
ples of cubic graphs without a Strong Wormald Colouring and they share some common
features. In particular, note that all 2-connected examples admit a 3–edge colouring and
hence they admit a 2–bisection and an Ando Colouring as well.
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In Figure 11, we propose a compact description of all 2–connected cubic graphs without
a Strong Wormald Colouring up to 28 vertices. All of them represent several copies
of the complete bipartite graph K3,3 of order 6 with some edges/vertices removed. In
particular, the subgraphs Ei and Vi (i = 1, 2) are obtained by removing i edges and
vertices, respectively, from a copy of K3,3.

=

=

=

=

E1

V1

V2

E2

E1

E1

E1

E1 V2 V2 E1

V1 V1

V1V1

E1 V2
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E1
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E1

V1V1

V1V1

V1 V1
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V2 E2

V2
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V2
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V1

V1

V2

E1

V1

E1

V1

V1

E1

V1

V1 V1

V1

E1

|V |= 20

|V |= 24

|V |= 28

V1 V1

E1

|V |= 16

Figure 11: A complete list of all 2–connected cubic graphs without a Strong Wormald Colour-
ing of order at most 28

To conclude this section, we show how we can generalize some of the examples from
Figure 11 in order to obtain an infinite family of graphs without a Strong Wormald
Colouring. First of all, we observe that a Strong Wormald Colouring induces, up to
symmetry, only two different types of edge colourings of the subgraph E1. We will call
these two induced colourings type α and type β colourings (see Figure 12). In particular,
we represent in Figure 12 a colouring of type α and two symmetric colourings of type β.
We denote by βl and βr a colouring of type β where the pending edge which belongs to
a path having another edge in the copy of E1 is on the left or on the right, respectively.

α βr βl

Figure 12: Different types of colourings of E1

Now, we construct the infinite family of cubic graphs Gk, k ≥ 1 (see Figure 13). The
graph G1 has 28 vertices and so it appears also in Figure 11. The graph Gk is obtained
starting from G1 by replacing the two copies of E1 with 2k consecutive copies of E1.

Proposition 3.8 For every k ≥ 1, the graph Gk does not admit a Strong Wormald
Colouring.
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E1 E1

V1 V1

E1

E1

E1

2k copies of E1

Figure 13: The graph Gk

Proof We argue by induction on k. We need to consider the second member of the family,
G2, as base case. The graph G2 has 40 vertices and we have directly checked it does not
admit a Strong Wormald Colouring using a computer algorithm (see Section 4.3 for details
of the algorithm). Now, we assume that Gk, k ≥ 2, has no Strong Wormald Colouring
and we prove it for Gk+1. By contradiction, suppose that Gk+1 admits a Strong Wormald
Colouring. Since k ≥ 2, then 2(k + 1) ≥ 6, that is: we have at least 6 consecutive copies
of E1 in Gk+1.

Assume that one of them, say E, is of type α. Since the two pending edges of E
cannot be in a path of length one, the copy on the left of E is of type βr and the one on
the right of type βl. More in general, repeating the same argument, all copies on the left
of E are of type βr and all copies on the right of E are of type βl. Since we have at least
six copies of E1, either we have three consecutive copies of βr or three consecutive copies
of βl. Anyway, we can remove the last two of these three consecutive copies in order to
obtain a graph isomorphic to Gk. Moreover, there is exactly one path of length two, one
path of length three and one path of length five in each monochromatic component of the
two removed copies of E1. Then, the two monochromatic subgraphs are still isomorphic
in Gk and all paths are still of length at least two, hence the graph Gk inherits a Strong
Wormald Colouring, a contradiction.

Therefore, assume no copy of E1 is of type α. On the right of a copy of type βr must
be another copy of type βr, and the same holds for copies of type βl. Hence, since we have
at least six copies of E1, we have three consecutive copies of type βr or three consecutive
copies of type βl, anyway we obtain a contradiction by the same argument used above.

Finally, note that Gk is a 3-edge-colourable (bipartite) graph for every k. Hence, Gk

admits a 2–bisection and by Proposition 2.3 is not a counterexample for Ando’s Conjec-
ture.

3.2 Strong Wormald Colouring of cubic graphs: |V | ≡ 2 (mod 4)

The discussion of previous section creates an evident connection between Wormald’s Con-
jecture and (Strong) Ando’s Conjecture, but it also leaves a large gap between them.
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Indeed, Wormald’s Conjecture is only for cubic graphs of order a multiple of four while
(Strong) Ando’s Conjecture is stated for all cubic graphs. The purpose of this section
is to fill this gap by defining a Strong Wormald Colouring for cubic graphs of order 2
(mod 4).

The original Wormald Conjecture is not stated for cubic graphs of order not a multiple
of four since they have an odd number of edges, thus the two monochromatic parts cannot
have the same number of edges and hence they cannot be isomorphic.

We would like to give a definition of Strong Wormald Colouring for cubic graphs with
an odd number of edges such that the existence of such a colouring implies the existence
of a Strong Ando Colouring as we did previously. Moreover, we would like to have a
definition that is satisfied by a large fraction of cubic graphs as it happens in the case of
an even number of edges.

Our very simple idea is to consider an edge colouring of all edges of the graph except
one, with an additional property on the uncoloured edge. The presence of this additional
property will be exactly what we need to construct a Strong Ando Colouring starting
from this edge colouring.

Definition 3.9 Let G be a cubic graph of order 2 (mod 4) and let xy ∈ E(G) be an
edge of G. A Strong Wormald Colouring of G is an edge colouring cE : E(G)−{xy} −→
{B,W} of G such that the monochromatic induced subgraphs are isomorphic linear forests
with paths of length at least 2, and, moreover, the vertex x is incident to two white edges
and the vertex y is incident to two black edges.

This definition of Strong Wormald Colouring allows to state the analogous of Propo-
sition 3.5. We omit the proof since it proceeds exactly like the proof of Proposition 3.5
for order 0 (mod 4).

Proposition 3.10 Let G be a cubic graph graph with |V (G)| ≡ 2 mod 4 admitting a
Strong Wormald Colouring. Then, G admits a Strong Ando Colouring (and so an Ando
Colouring).

Moreover, we have also obtained the following characterization which is similar to the
case 0 (mod 4) of bisections arising from a Strong Wormald Colouring (cf. Theorem 3.7).

Theorem 3.11 Let G be a cubic graph graph with |V (G)| ≡ 2 mod 4. The graph G
admits a Strong Wormald Colouring if and only if G admits a Strong Ando Colouring such
that each connected component in the bipartite subgraph G′ of G, obtained by removing all
edges of G with ends of the same colour, is isomorphic to a tree plus an edge except for
one that is a tree.

The proof is analogous to the proof of Theorem 3.7. The unique difference is the
connected component which is isomorphic to a tree, but this fact easily follows due to the
presence of the uncoloured edge.
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So far, we have followed exactly the same idea of the case of order 0 (mod 4): we have
defined a Strong Wormald Colouring, we have proved that the existence of such an edge
colouring implies the existence of a (Strong) Ando Colouring and we have shown a char-
acterization in terms of bisections of the graphs admitting a Strong Wormald Colouring.

Note that a large amount of cubic graphs seem to have a Strong Wormald Colouring.
Indeed, the possibility of choosing the edge xy produces a better result than in the case
0 (mod 4). In particular, using a computer program, we have checked all cubic graphs
having at most 22 vertices of order 2 (mod 4) and all of them admit a Strong Wormald
Colouring (see Section 4.3 for details).

We leave the existence of a cubic graph of order 2 (mod 4) without a Strong Wormald
Colouring as an open problem.

Problem 3.12 Does every cubic graph of order 2 (mod 4) have a Strong Wormald
Colouring?

Note that, by Proposition 3.10, a positive answer to Problem 3.12 would imply (Strong)
Ando’s conjecture for all cubic graphs of order order 2 (mod 4).

4 Computational Results

In this section we present our computational results. These results also give evidence to
support the correctness of the conjectures which were introduced in the previous sections.
More specifically, in Section 4.1 we present our computational results on the conjecuture
of Ban and Linial, in Section 4.2 on Ando’s conjecture and finally in Section 4.3 on
Wormald’s conjecture.

We wrote programs for testing each of these conjectures or open problems. The source
code of these programs can be downloaded from [19].

In each case, we used the generator for cubic graphs snarkhunter [13, 11] to generate
all cubic graphs up to a given number of vertices and then applied our programs for testing
the conjectures on the generated graphs. In each case we went as far as computationally
feasible.

4.1 Computational results on the Ban–Linial Conjecture

We wrote a program for testing if a given graph has a 2–bisection. We generated all cubic
graphs up to 32 vertices and then tested which of these graphs do not admit a 2–bisection.
This yielded the following observation.

Observation 4.1 There are exactly 34 graphs among the cubic graphs with at most 32
vertices which do not admit a 2–bisection. All of these graphs, except the Petersen graph,
have connectivity 1.
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So this implies that the smallest counterexample to the Ban–Linial Conjecture must
have at least 34 vertices. The counts of the graphs from Observation 4.1 can be found in
Table 1.

The graphs from Observation 4.1 can also be downloaded and inspected in the database
of interesting graphs from the House of Graphs [10] by searching for the keywords “no
2–bisection”.

Order # no 2–bisection
0− 8 0

10 1
12− 20 0

22 1
24 1
26 3
28 5
30 9
32 14

Table 1: Number of cubic graphs which do not admit a 2–bisection.

Recall from Theorem 2.1 that Ban and Linial have proven that every 3–edge colourable
cubic graph admits a 2–bisection. Recall that snarks (as mentioned earlier) are an im-
portant subclass of bridgeless not 3–edge colourable cubic graphs and in [12] Brinkmann,
Hägglund, Markström and the second author have determined all snarks up to 36 vertices.
We now also tested which snarks of order 34 and 36 admit a 2–bisection, which led to the
following observation.

Observation 4.2 The Petersen graph is the only snark up to 36 vertices which does not
admit a 2–bisection.

So this provides further evidence to support the correctness of Conjecture 1.1.

4.2 Computational results on Ando’s Conjecture

Recall that an easy counting argument shows that every 2–bisection is a bisection with
isomorphic parts. So a possible counterexample to Ando’s conjecture must be a graph
that does not have a 2–bisection.

We extended our program to test (the strong version of) Ando’s conjecture and applied
it to the list of all cubic graphs up to 32 vertices of Observation 4.1 which do not have a
2–bisection. This led to the following observation.

Observation 4.3 All 34 graphs of Observation 4.1 (i.e. all cubic graphs which do not
admit a 2–bisection up to 32 vertices), except the Petersen graph, have a 3–bisection such
that the two isomorphic induced monochromatic graphs are linear forests. The Petersen
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graph has no such bisection, but does admit a 4–bisection such that the two isomorphic
induced monochromatic graphs are linear forests.

So this implies the following:

Corollary 4.4 The Strong version of Ando’s conjecture (i.e. Conjecture 2.17) (and thus
also Ando’s original conjecture) does not have any counterexamples with less than 34
vertices.

4.3 Computational results on Wormald’s Conjecture

In this section we describe our algorithm to test if a cubic graph admits a Strong Wormald
Colouring and our results obtained by applying it to the complete lists of cubic graphs.

We implemented an algorithm which tries to find a Strong Wormald Colouring directly
by edge colouring the graphs (see later), but it turns out that an algorithm which con-
structs bisections based on Theorem 3.7 and Theorem 3.11 is more efficient. The latter
algorithm works as follows.

For every cubic graph G, we compute all bisections of G until a bisection is found which
admits a Strong Wormald Colouring. A bisection leads to a Strong Wormald Colouring if
and only if the following conditions (1),(3),(4) are fulfilled. We add a further condition, i.e.
Condition (2), which is obviously weaker than Condition (3), but it is added for efficiency
reasons. In particular, the four conditions are listed and executed in this order to obtain
a better computational performance.

1. Both monochromatic induced subgraphs are linear forests;
2. Let denote by (l0, . . . , lt) the vector of lengths of the paths in one of the monochro-

matic subgraphs. Then for both monochromatic subgraphs, the following must hold:∑
i

(li + 2) = b |E(G)|
2
c.

3. The two induced monochromatic subgraphs are isomorphic;
4. Consider the subgraph of G obtained by removing from G all edges with two ends

in the same class of the bisection. If |V (G)| ≡ 0 (mod 4), then in each connected
component of this subgraph, the number of vertices of this component needs to
be equal to its number of edges (in other words it must be a tree + an edge).
If |V (G)| ≡ 2 (mod 4), then in each connected component of this subgraph, the
number of vertices of this component needs to be equal to its number of edges (in
other words it must be a tree + an edge), except for one component one that must
be a tree.

We tested which of the cubic graphs of order 0 (mod 4) do not have a Strong Wormald
Colouring. This led to the following observation.

Observation 4.5 There are exactly 131 graphs without a Strong Wormald Colouring
among the cubic graphs of order 0 (mod 4) and at most 28 vertices.
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The graph counts and the connectivity statistics of the graphs from Observation 4.5
can be found in Table 2. All 2–connected examples are presented in Figure 11 from
Section 3. The graphs from Observation 4.5 can also be downloaded and inspected in
the database of interesting graphs from the House of Graphs [10] by searching for the
keywords “no strong Wormald colouring”.

Order Conn. 1 Conn. 2 Conn. 3 Total
4 0 0 0 0
8 0 0 0 0
12 0 0 0 0
16 1 1 1 3
20 20 3 1 24
24 18 1 0 19
28 72 12 1 85

Table 2: Number of cubic graphs of order 0 (mod 4) up to 28 vertices which do not admit a
strong Wormald Colouring. Conn. k lists the counts of the graphs with connectivity k.

We also implemented a second independent algorithm to test if a given graph has
a Strong Wormald Colouring by edge colouring the graph. We also executed this edge
colouring algorithm on all cubic graphs with 0 (mod 4) vertices up to 24 vertices and this
yielded exactly the same results as in Table 2.

We also verified that the 131 graphs from Observation 4.5 without a Strong Wormald
Colouring are not counterexamples to the original conjecture of Wormald, that is: they
admit a Wormald Colouring. So we can state the following:

Corollary 4.6 Wormald’s Conjecture (i.e. Conjecture 1.2) does not have any counterex-
amples with less than 32 vertices.

We also investigated Strong Wormald Colourings for graphs of order 2 (mod 4). This
led to the following observation.

Observation 4.7 Every cubic graph of order 2 (mod 4) and at most 22 vertices admits
a Strong Wormald Colouring (and hence a (Strong) Ando Colouring).

Also here the results from Observation 4.7 were independently obtained and confirmed
by the bisections algorithm described above and by the algorithm which edge colours the
graph.

5 A related problem on linear arboricity

As a by–product of our study of 2–edge colourings of cubic graphs having linear forests
as monochromatic components, we obtain a negative answer to a problem about linear

26

Page 27 of 31

John Wiley & Sons

Journal of Graph Theory

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

arboricity posed by Jackson and Wormald in [24] (cf. also [32]). Furthermore, we also
pose new problems and conjectures on this topic.

The k–linear arboricity of a graph G, introduced by Habib and Péroche [20], is the
minimum number of k–linear forests (forests whose connected components are paths of
length at most k) required to partition the edge set of G, and it is denoted by lak(G).
Bermond et al. [8] conjectured that la5(G) = 2 for every cubic graph G; in other words
that the edge set of a cubic graph can be partitioned into two k–linear forests for all
k ≥ 5. The conjecture is proven by Thomassen in [32].

In the same paper, Thomassen remarks that 5 cannot be replaced by 4 because of the
two cubic graphs of order 6, but up until now it was unknown if there exists a graph with
at least eight vertices for which 5 cannot be replaced by 4.

In fact, Jackson and Wormald explicitly ask in [24] if is it true that every cubic graph
of order at least eight can be decomposed in two 4–linear forests.

Problem 5.1 (Jackson and Wormald [24]) Is it true that la4(G) = 2 for all cubic
graphs G with at least eight vertices?

We give in Theorem 5.3 a negative answer to this question by showing that the Hea-
wood graph (see Figure 14) cannot be decomposed in two k–linear forests for k < 5. We
also computationally show that the two cubic graphs of order 6 and the Heawood graph
are the only graphs with this property up to at least 28 vertices (cf. Observation 5.4).

Lemma 5.2 Let G be a cubic graph. Consider a decomposition of G in two linear forests.
Then, the average length of a path in the decomposition is three.

Proof An internal vertex of a path is a vertex of degree 2 in the path. Similarly, an
external vertex is a vertex of degree 1 in the path. Observe that every vertex of G is
internal in one linear forest and external in the other one. Since the number of paths
in the decomposition is |V (G)|/2 (every path has exactly two external vertices), their

average length is 2|E(G)
|V (G)| = 3.

Recall that the Heawood graph H is the point/line incidence graph of the Fano plane
PG(2, 2) which is bipartite, 3–regular, 3–arc transitive and has girth 6 and diameter 3.

Theorem 5.3 Let H be the Heawood graph. Then, la4(H) > 2.

Proof First of all, note that H cannot have a decomposition in two 3–linear forests.
Indeed, by Lemma 5.2, if the two linear forests have all paths of length at most three,
then they have all paths of length exactly three. Moreover, since all paths have the same
length, the number of paths in each forest is the same. A contradiction, since we have an
even number of paths with three edges, but H has 21 edges, which is not a multiple of 6.
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P

e

Figure 14: The partial 2–edge colouring of Heawood graph in the proof of Theorem 5.3

Now, suppose that H has a decomposition in two 4–linear forests, say F1 and F2, and
by the previous observation we can assume that at least one of them has a path of length
4, say P ∈ F1. Consider the two external vertices of P , say u and v. The vertices u
and v are both internal vertices in F2. Since P has even length, u and v are in the same
bipartition class. Moreover, H has diameter 3, then u and v are at distance 2, and the
four edges in F2 which are incident to them are all distinct and form a path of length 4
(they cannot induce a 4–cycle since H has girth 6). Now, we can consider the external
vertices of this new path of length 4 and we iterate the process. One can easily verify
that we obtain a 2–edge colouring of E(H) except for an edge, say e. Since H is 3–arc
transitive, the edge colouring is, up to symmetries, independent by the choice of the first
path P (see Figure 14). There is no way to colour the missing edge e so that we have two
linear forests, so the assertion follows.

We also wrote a program to test if a cubic graph can be decomposed in two 4–linear
forests. The source code of this program can be downloaded from [19]. Using the generator
for cubic graphs snarkhunter [13, 11], we generated all cubic graphs up to 28 vertices and
then tested which of these graphs cannot be decomposed in two 4–linear forests. This led
to the following observation:

Observation 5.4 The two cubic graphs of order 6 and the Heawood graph are the only
cubic graphs up to at least 28 vertices which cannot be decomposed in two 4–linear forests.

Following the flavour of what we have discussed in previous sections and, particularly,
about Wormald’s Conjecture, we wonder how we have to modify Thomassen’s result if we
require to have two linear forests which are also isomorphic. Obviously, this makes only
sense if we consider cubic graphs of order 0 (mod 4). We have extended our program to
take this into account and surprisingly, it turns out that we do not need paths of length
more than four for all graphs of order at most 24:

Observation 5.5 Every cubic graph with |V | ≡ 0 (mod 4) with at most 24 vertices has

28

Page 29 of 31

John Wiley & Sons

Journal of Graph Theory

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

a decomposition in two isomorphic 4–linear forests.

We leave the following strengthened version of Wormald’s Conjecture as an open
problem:

Problem 5.6 Does every cubic graph with |V | ≡ 0 (mod 4) have a decomposition in two
isomorphic 4–linear forests?

Another interesting and related open question posed by Jackson and Wormald in [24]
is the following:

Problem 5.7 (Jackson and Wormald [24]) Does every cubic graph have a 2–edge
colouring such that each monochromatic connected component has at most four edges?

Note that a connected component is not necessarily a path here, so the Heawood
graph is not necessarily a counterexample in this case. Indeed, we can obtain such a valid
2–edge colouring of the Heawood graph by arbitrarily assigning a colour to the edge e in
Figure 14.

Furthermore, the two cubic graphs on 6 vertices admit a 2–edge colouring such that
each monochromatic connected component has at most four edges. In particular, the
bipartite cubic graph on 6 vertices admits, up to symmetry, only one 2–edge colouring
with all monochromatic connected component having at most four edges, and exactly one
of these connected components has precisely four edges.

Hence, it follows that we cannot have three as un upper bound in the previous prob-
lem and, from Observation 5.4, that the smallest counterexample must have at least 30
vertices.
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