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Sintesi della tesi (ITALIANO) 

La presente tesi di dottorato è stata realizzata grazie alla supervisione e collaborazione tra Università degli 

Studi della Basilicata, Politecnico di Bari e l’azienda Master Italy s.r.l. (Conversano, Italia). 

I principali filoni di ricerca approfonditi e discussi nella tesi sono: la sostenibilità in generale e, più 

specificatamente, quella manifatturiera, il paradigma dell’Industria 4.0 legato alla smart (green) 

manufacturing, le tecniche di valutazione dei processi manifatturieri basate sui modelli (model-based) e le 

tecniche di valutazione derivate dall’analisi dei dati (data-driven). Nella tesi, queste tematiche apparentemente 

a sé stanti sono sviluppate in modo tale da dimostrare quanto siano fortemente interconnesse e caratterizzate 

da trasversalità. 

Lo scopo del programma di dottorato è stato quello di implementare e convalidare i modelli di valutazione 

innovativi per esaminare la natura dei processi di produzione e razionalizzare le relazioni e le correlazioni tra 

le varie fasi del processo. Questo modello composito può essere impiegato come strumento nel processo 

decisionale politico sullo sviluppo sostenibile dei processi industriali e sul miglioramento continuo dei processi 

manifatturieri. L'obiettivo generale di questo lavoro di ricerca è proporre tecniche basate su modelli ibridi 

termodinamici del primo e del secondo ordine e quelli basati sui dati e l’apprendimento automatico per il 

monitoraggio in tempo reale delle performance e della sostenibilità manifatturiera. Il modello proposto è testato 

su un caso studio industriale reale attraverso un approccio sistemico: le fasi di individuazione dei requirements, 

l’inventario dei dati (materiali, energetici, geometrici, fisici, economici, sociali, qualitativi, quantitativi), la 

modellazione, l’analisi, la regolazione ad hoc degli algoritmi (tuning), l’implementazione e la validazione, 

sono sviluppate per il processo di pressofusione delle leghe di alluminio di una PMI situata nel sud Italia, 

Master Italy s.r.l., la quale progetta e produce accessori e componenti metallici per gli infissi dal 1986. 

La tesi affronta il tema della sostenibilità dei processi industriali intelligenti a 360 gradi, guardando sia alla 

quantità di risorse impiegate, sia alla qualità del loro utilizzo durante tutto il ciclo di vita del processo di 

produzione. Ai modelli di analisi tradizionali della sostenibilità (come l’analisi del ciclo di vita, LCA), vengono 

integrati metodi basati sul secondo principio della termodinamica (analisi exergetica); a questi vengono inoltre 

affiancati modelli basati sulla tecnologia dell’informazione (big-data analysis). Per ciascun metodo 

implementato singolarmente o in maniera integrata, viene presentata una dettagliata review che ne illustra il 

potenziale. Dopo una descrizione delle metriche utili a qualificare il grado di sostenibilità dei processi 

industriali, viene illustrato il caso studio con la modellazione e analisi dettagliata dei processi, in particolare 

quello della pressofusione delle leghe di alluminio. Dopo la valutazione della sostenibilità dei processi 

produttivi basata sull’approccio model-based si passa all’applicazione in tempo reale delle analisi basate sul 

machine learning in cui si punta all’identificazione di fermi e guasti durante il ciclo produttivo e alla possibilità 

di prevederne l’accadimento con giusto anticipo a partire dai valori dei parametri termodinamici di processo 

raccolti in tempo reale e all’apprendimento automatico. Infine, a dimostrazione della multidisciplinarietà e la 

trasversalità di tali tematiche, la tesi propone l’applicazione dei modelli integrati su alcuni casi studio quali i 

processi di deposizione laser e la riqualificazione del patrimonio edilizio esistente, sempre in chiave 

sostenibile.  

Il lavoro di tesi presenta interessanti spunti derivanti dall’applicazione di un approccio ibrido alla valutazione 

di sostenibilità dei processi produttivi, combinando insieme analisi exergetica e valutazione del ciclo di vita. 

Il tema proposto è assolutamente attuale e pertinente agli sviluppi più recenti inerenti la sostenibilità in ambito 

industriale, coniugando approcci classici model-based con approcci innovativi basati sulla raccolta di big data 

e sulla loro analisi con le più adatte metodologie di machine learning La tesi presenta una applicazione molto 

promettente delle metodiche di machine learning a dati raccolti in tempo reale allo scopo di individuare 

eventuali problemi alla linea di produzione partendo da metriche di sostenibilità derivate dall’analisi exergetica 

e dall’analisi del ciclo di vita. Come tale, presenta indubbiamente un avanzamento rispetto alle conoscenze 

pregresse ed illustrate nello stato dell’arte introduttivo. Infatti, le aziende manifatturiere che ad oggi 

implementano strategie di business basati su modelli smart e tecnologie abilitanti hanno un valore maggiore 

sul mercato globale in termini di qualità, personalizzazione, flessibilità e sostenibilità. 



Summary of the thesis (ENGLISH) 

This doctoral thesis is the result of the supervision and collaboration of the University of Basilicata, the 

Polytechnic of Bari, and the enterprise Master Italy s.r.l. 

The main research lines explored and discussed in the thesis are: sustainability in general and, more 

specifically, manufacturing sustainability, the Industry 4.0 paradigm linked to smart (green) manufacturing, 

model-based assessment techniques of manufacturing processes, and data-driven analysis methodologies. 

These seemingly unrelated topics are handled throughout the thesis in such a way that it reveal how strongly 

interwoven and characterised by transversality they are. 

The goal of the PhD programme was to design and validate innovative assessment models in order to 

investigate the nature of manufacturing processes and rationalize the relationships and correlations between 

the different stages of the process. This composite model may be utilized as a tool in political decision-making 

about the long-term development of industrial processes and the continuous improvement of manufacturing 

processes. The overarching goal of this research is to provide strategies for real-time monitoring of 

manufacturing performance and sustainability based on hybrid thermodynamic models of the first and second 

order, as well as those based on data and machine learning. The proposed model is tested on a real industrial 

case study using a systemic approach: the phases of identifying the requirements, data inventory (materials, 

energetic, geometric, physical, economic, social, qualitative, quantitative), modelling, analysis, ad hoc 

algorithm adjustment (tuning), implementation, and validation are developed for the aluminium alloy die-

casting processes of Master Italy s.r.l., a southern Italian SME which designs and produces the accessories and 

metal components for windows since 1986. 

The thesis digs in the topic of the sustainability of smart industrial processes from each and every perspective, 

including both the quantity and quality of resources used throughout the manufacturing process's life cycle. 

Traditional sustainability analysis models (such as life cycle analysis, LCA) are combined with approaches 

based on the second law of thermodynamics (exergetic analysis); they are then complemented by models based 

on information technology (big-data analysis). A full analysis of the potential of each strategy, whether 

executed alone or in combination, is provided. Following a summary of the metrics relevant for determining 

the degree of sustainability of industrial processes, the case study is demonstrated using modelling and 

extensive analysis of the processes, namely aluminium alloy die casting. After assessing the sustainability of 

production processes using a model-based approach, we move on to the real-time application of machine 

learning analyses with the goal of identifying downtime and failures during the production cycle and predicting 

their occurrence well in advance using real-time process thermodynamic parameter values and automatic 

learning. Finally, the thesis suggests the use of integrated models on various case studies, such as laser 

deposition processes and the renovation of existing buildings, to demonstrate the multidisciplinarity and 

transversality of these issues. 

The thesis reveals fascinating findings derived from the use of a hybrid method to assessing the sustainability 

of manufacturing processes, combining exergetic analysis with life cycle assessment. The proposed theme is 

completely current and relevant to the most recent developments in the field of industrial sustainability, 

combining traditional model-based approaches with innovative approaches based on the collection of big data 

and its analysis using the most appropriate machine learning methodologies. Furthermore, the thesis 

demonstrates a highly promising application of machine learning approaches to real-time data collected in 

order to identify any fault source in the manufacturing line beginning with sustainability measures generated 

from exergetic analysis and life cycle analysis. As such, it unquestionably represents an advancement above 

earlier information depicted in the initial state of the art. In actuality, manufacturing companies that implement 

business strategies based on smart models and key enabling technologies today have a higher market value in 

terms of quality, customisation, flexibility, and sustainability. 
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Nomenclature/Glossary 
 

Symbols 

A area [m2]  

c specific heat [J/kg K] 

C1 first phase injection course [mm] 

C2 second phase injection course [mm] 

CC third phase injection course  [mm] 

d diameter [mm] 

d Euclidean distance for k-means  

DI nondimensional Dunn index   

∂ nondimensional Carnot factor  

 specific exergy [J/kg] 

E entropy in decision trees  

Ex exergy [J] 
 

exergy flow  [W] 

f function  

FC clamping force [kN] 

FR nondimensional renewability factor  

ϕ feature mapping  

ϕ(x) sigmoid activation function  

GHG Greenhouse Gas emission [CO2eq] 

GWP Global Warming Potential [kgCO2eq] 

h optimal margin classifier  
 

specific enthalpy [J/kg] 
 enthalpy flow rate [W] 

IF nondimensional Impact Factor  

K gaussian kernel  

L hinge loss  

λ thermal conductivity [W/m K] 
 

mass flow rate [kg/s] 

P probability  

PF final pression [bar] 

PM multiplication pressure [bar] 

PS specific pressure [bar] 

Π extropy [J/K] 

q centroid  
 

heat transfer rate [W] 

r exergy to energy ratio [MJeq/MJ] 

R correlation coefficient  

ρ density [kg/dm3] 
 

softmax activation function  
 

specific entropy [J/kg K] 

S entropy [J/K] 

SM mould thickness [mm] 

S(tx) system scenario at transformation x  

T temperature [K] 

T1 first phase injection time [ms] 

ṁ 

Eẋ 

h 

Ḣ 

Q̇ 

s 

ē 

σ(z) 
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T2 second phase injection time [ms] 

T3 solidification time [ms] 

TC time cycle [s] 

TM multiplication time [ms] 

U thermal transmittance [W/m2 K] 

V volume [m3] 

VA speed casting doses [m/s] 

V1 first phase injection speed [m/s] 

V2 second phase injection speed [m/s] 

X input variable  
 

workflow rate [W] 

Y output variable  
 

exergy efficiency [%] 

 nondimensional technology obsolescence index  

 nondimensional life cycle quality index  

ω distance between the support vector and the line  

   

Acronyms 

AI Artificial Intelligence  

AM Additive Manufacturing  

AR Augmented Reality  

AUC Area Under the Curve  

BRI Building Related Illness   

CAD Computer Aided Design  

CEENE Cumulative Exergy Extracted from Natural Environment   

CERA Cumulative Energy Requirements Analysis  

CExC Cumulative Exergy Consumption   

CExD Cumulative Exergy Demand  

CF Characterization Factor  

CNC Computerized Numerical Control  

COP Coefficient of Performance  

COPD Chronic Obstructive Pulmonary Disease  

CPS Cyber Physical System  

CV Cross-Validation  

DALY Disability-Adjusted Life Year  

DED Direct Energy Deposition   

DExA Demand of Exergy Accumulated   

DLMD Direct Laser Metal Deposition  

DNN Deep Neural Networks  

EA Exergy/Exergetic Analysis  

ECEC Ecological Cumulative Exergy Consumption  

EEA Extended Exergy Accounting   

EESI Extended Exergy Sustainability Index   

ELCA Exergetic Life Cycle Assessment   

ELCD European Reference Life-Cycle Database  

ELR Environmental Loading Ratio   

EPC Electricity Production Cost  

EPD Environmental Product Declaration  

ERP Enterprise Resource Planning  

Ẇ 

η 
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ESR Exergy Structure Ratio  

ETL Extract-Transform-Load  

EU European Union  

ExIO Exergy based Input - Output   

ExROI Exergetic Return of Investment  

EYR Environmental Yield Ratio  

FN False Negative  

FoF Fabric of Future  

FP False Positive  

FR Renewability Factor  

FU Functional Unit  

GDP Gross Domestic Product  

GPU Graphic Processing Unit  

GUI Graphical User Interface  

GWP Global Warming Potential  

HSH Healthy Sustainable Home  

I4.0 Industry 4.0  

I5.0 Industry 5.0  

IAQ Indoor Air Quality   

ICE Internal Combustion Engine  

ICEC Industrial Cumulative Exergy Consumption  

ICT Information and Communication Technology  

IDEA Institute for Democracy and Electoral Assistance  

IoE Internet of Everything  

IoT Internet of Things  

IoS Internet of Services  

IPCC Intergovernmental Panel on Climate Change  

JRC Joint Research Center  

K-NN K-Nearest Neighbour  

KDD Knowledge Discovery Database  

KET Key Enabling Technology  

LCA Life Cycle Assessment  

LCEA Life Cycle Exergy Analysis  

LCI Life Cycle Inventory  

LCIA Life Cycle Impact Assessment  

LDA Latent Dirichlet Allocation  

MaaS Manufacturing-as-a-Service   

MAE Mean Absolute Error  

MES Manufacturing Executions System  

MFA Material Flow Analysis  

ML Machine Learning  

MPP Massive Parallel Processing  

MRL Minimum Risk Level  

MSE Mean Squared Error  

OEE Overall Equipment Effectiveness  

OLE Overall Labour Effectiveness  

OLS Ordinary Least Squares  

PaaS Product-as-a-Service   

PCA Principal Component Analysis  



 

IV 

PHM Prognostic Health Management  

PLC Programmable Logic Controller  

PPD Dynamic Payback Period  

PPP Public Private Partnerships  

PVC Poly Vinyl Chloride  

R&D Research and Development  

REPA Resource and Environmental Profile Analysis  

RMSE Root Mean Squared Error  

ROC Receiver Operating Characteristic  

SBS Sick Building Syndrome   

SCADA Supervisory Control and Data Acquisition  

SDG Sustainable Development Goal  

SECR Social Exergy Conversion Rate   

SETAC Society of Environmental Toxicology and Chemistry  

SME Small and Medium Enterprise  

SPECO Specific Exergy Costing  

SVD Support Vector Decision  

SVM Support Vector Machine  

SVR Support Vector Regressor  

TBL Triple-Bottom-Line  

TCExL Total Cumulative Exergy Loss   

TE Thermoeconomics  

TEC Thermo Ecological Cost  

TN True Negative  

TP True Positive  

UEV Unit Emergy Value  

UN United Nations  

VOC Volatile Organic Compound  

VSL Value of Statistical Life  

WHO World Health Organization   

WSS Within Sum of Squares  

   

Subscripts and Superscripts  

0 dead state  

a product/process a  

al aluminium  

b product/process b  

c number of total enthalpy flows  

ch chemical  

d number of total workflows  

e equilibrium  

eco ecological  

eq equivalent  

g general  

i state point at the inlet of system/sub-system  

k number of total mass flows  

l liquid  

loss flow rate loss during the sub-processes  

m melting  



 

V 

n net use  

nd global  

nr non-renewable  

o state point at the outlet of system/sub-system  

p number of total heat transfer flows  

r renewable  

res resource  

tot total  

th thermal  

y years or number of energy flows for CexD  

 

 

KEYWORDS: data-driven approach; exergy; I4.0; integration modelling; life cycle assessment; model-

based approach; smart manufacturing; sustainability assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

INTRODUCTION 

The shift to sustainability is becoming increasingly important in manufacturing, particularly in resource and 

energy-intensive industries. Furthermore, the Industry 4.0 (I4.0) paradigm gives up new prospects for 

sustainable growth. In recent years, the subject of sustainability in industrial contexts has taken an essential 

point on the legislative agendas of many governments and in public opinion, with the latter becoming 

increasingly sensitive to companies’ commitment to this problem (Misopoulos et al., 2018). For this reason, 

manufacturers have included new sustainability routes into their production processes and raised the amount 

of communication about these practices to consumers and stakeholders. I4.0 technology have made production 

processes more efficient and less impactful for manufacturing companies (Hong et al., 2019), moving from 

centralised to decentralised production. To make things even better, the new I4.0 management and data 

collecting technologies, which are able to gather timely process data, can assist companies in reviewing the 

sustainable measures adopted. However, the company’s value creation strategy must be considered as part of 

this sustainable transformation process, which is assisted by the I4.0 paradigm. Implementing sustainability is 

generally a complicated process that involves a medium-long-term strategic vision and efficient 

communication between senior management and operational business divisions, as well as between the 

company and its stakeholders in order to be effective (García-Muiña et al., 2020). 

Manufacturers are joining the massive digital transition and are working to implement I4.0 innovations. I4.0 

is a series of different innovations, Internet of Everything (IoE), Cyber-physical Systems (CPS), Digital Twin, 

and Smart Factories, that work together to build the next wave of production plants. This movement seeks to 

turn factories into “smart factories” that have to be flexible, decentralized, and integrated in order to reach 

greater level of automation and versatility (Kusiak, 2018). 

Data is a key enabler in smart manufacturing (Siddiqa et al., 2016). However, data in its native format is not 

particularly useful for providing knowledge. This data must be transformed into something more meaningful, 

which is normally achieved in steps. 

According to McKinsey and Company, 86% of companies surveyed felt that the data and analytics program 

was only partially effective in meeting its primary goal. They also discovered that the main technical challenge 

impeding success is data management (McKinsey and Company, 2016). 

The aim of the doctoral program is to implement and validate innovative assessment models to examine the 

nature of as-is manufacturing processes and rationalize the relationships and correlations between the various 

phases of the process. The dual strategy of top-down research and bottom-up experimentation must guarantee 

that models-based become a tool and a guide for the development of ad hoc measurement and monitoring 

systems. The structured data provided will be processed (potentially in real-time) using a data-driven 

methodology and machine learning techniques to deliver more precise and sophisticated information than the 

ones that a single operator could manage alone, only with his expertise. In complex systems such as 

manufacturing processes, data-driven modelling methodologies enable the integration of parameters from 

several domains (e.g., product, process, and logistics) into models that would be impossible to design using 

purely mathematical theoretical models. 

In order to achieve this goal, a functional model that can integrate and analyse large sets of heterogeneous data, 

that is, data with different characteristics such as different time scales, discrete data and continuous data, data 

derived from different technological or physical phenomena, will be required (Montáns et al., 2019). This 

model must be capable of producing analytical results with scientific, physical, and technical importance, as 

well as serving as a tool in policy decision-making on the sustainable development of industrial processes. 

There are two kinds of models: quantitative models and empirical models. The quantitative model is made up 

of an integration of linear models of the first order and non-linear models of the second order. Specifically, the 

Life Cycle Assessment (LCA) is characterized by a logic additive consumption of resources, based on the 

principle of mass and energy conservation, and the exergetic analysis (EA) takes into account not only the 

typical quantitative allocations of a linear model such as LCA, but also the quality of resource use, yielding a 

more accurate and faithful vision of sustainability and production performance (Selicati and Cardinale, 2020). 
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The models based on thermodynamic analysis of manufacturing technologies are based on the study of discrete 

and continuous variables and represent an interesting and entertaining advanced element for maximizing the 

sustainability and performance of the individual process and, thus for the synergistic implementation of the 

entire manufacturing process. The EA technique is the gold standard for industrial sustainability. With a 

holistic view but a broader context, the goal of decreasing Exergy Losses promotes the maximizing of the 

intelligent use of resources within the manufacturing process (Abadias Llamas et al., 2019). The second-law 

thermodynamics assessment of energy has the benefit of being applicable to natural resources, fuels, and 

products using a standard measuring scale. It is applicable to individual processes, industries, and entire 

national economies. It provides a solid foundation for evaluating the impact of policy actions aimed at 

increasing energy, resource, and climate efficiency. 

The company test case on which process modelling, analysis, tuning, testing, and validation are performed is 

for an SME in southern Italy. Master Italy is a company that is designing and manufacturing accessories and 

components for aluminium window frames since 1986. It follows that the most important process to investigate 

is definitely the die-casting aluminium alloys. The project entitled "Smart Energetic Manufacturing: Master 

Twin” has the ultimate goal of researching innovative and sustainable solutions for the efficiency of industrial 

manufacturing processes within the I4.0 and Smart Manufacturing paradigm, starting from the laws of 

thermodynamics, up to an integrated Cyber Physical System (CPS). Master Italy is an extremely dynamic and 

constantly developing SME. Although it has management platforms for production and quality control, the 

human influence (of operators) on all processes is still very strong. 

'Increasing performance processes' usually refers to the practice of lowering energy consumption and materials, 

waste, the speed of the time cycle, and the ideal relationship between good and discarded pieces. However, the 

proposed model, which analyses the state variables used, enables to interpret the processes in the logic of 

product and process optimization and thus recognize the end of the interpretation of operational reality via the 

Key Enabling Technologies (KETs) of I.40, obtaining a true predictive production. The definition of 

innovation is precisely the achievement of an automatic continuous improvement. The models that define this 

paradigm must be consistent in their analytical formulation, empirical relationships, discrete and continuous 

analysis, and probabilistic analysis (Wynn and Clarkson, 2018). 

The question is whether, given enough data, machine learning algorithms generated from the data-driven 

method may provide additional insight into process parameters or combinations of process variables useful in 

forecasting casting quality or performance metrics from production process data. The industry requires 

technology capable of detecting patterns that are too fine for humans to identify. The capacity of machine 

learning algorithms to discover patterns and correlations between inputs and outputs for high-dimensional 

datasets is a critical feature The data from the casting process is multidimensional, with various inputs like as 

temperatures, velocities, pressures, timings, and chemical composition. More dimensions can be added 

(Blondheim, 2021), but having too many adds confusing noise to the data. There is a need to start studying the 

data that the sector is now gathering and determine which metrics are important and which are not. Experts 

believe that adopting machine learning into automation is critical for organizations to maintain and improve 

their competitiveness (Wang et al., 2018). However, in real-world applications, this will take time. One issue 

is that gathering the necessary data might be difficult, owing to the associated costs in both collecting data in 

production systems and manually preparing it for training purposes (the definition of training data known as 

labelling). The data might also be noisy, i.e. not exact enough. Another reason is that incorrect predictions may 

arise, resulting in system faults. This might have serious consequences, such as equipment damage, full failure, 

or, worse, danger to individuals engaged in the manufacturing process. As a result, a number of needs that are 

crucial for incorporating machine learning into automation technologies have recently arisen. 

This study discusses some of the techniques that can be used to construct a method that can assist with greater 

control over the die-casting process while also adding benefit to the production process. This, in fact, could 

improve data-driven decision-making policies. The aim is to provide a system that can convert a large volume 

of data into knowledge that can be used by plant operators in particular. As a result, in keeping with the goals 

of the current Industry 5.0 (I5.0) model (European Commission, 2021a, p. 0), this work focuses on and 
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encourages both the automation aspect as well as the human learning process. Furthermore, since the workflow 

starts with data collection from a completely or partially automated process, data processing is dependent on 

the details of a precisely defined use case. As a result, domain knowledge, or the experience of field operators, 

is still critical. 

The work is structured as follows: the first section investigates the connection between the concepts of 

sustainability, I4.0, and Smart Manufacturing. A reference to the upcoming I5.0 paradigm is made. In the 

second section discusses the model-based approach (specifically Life Cycle Assessment, Exergetic Analysis, 

and hybrid methods of them), as well as the difficulties of integrating such models through a systemic view of 

the problem, and the data-driven approach, with a focus on big-data and the most common Machine Learning 

techniques to process and extract knowledge from them. The section concludes with a consideration of the 

Research Gaps that characterize both methods. The third section contains a state-of-the-art on performance 

metrics, which are used to understand the findings of the analysis as well as to evaluate the models developed 

qualitatively and quantitatively. The fourth section covers the whole test case, from the operational context 

through the implementation of both model-based and data-driven approaches, as well as a discussion of the 

outcomes of the analyses and tests performed. The fifth section is a synthesis of different applications that 

highlight the transversality and multidisciplinarity of the knowledge acquired during the PhD program. Finally, 

the overall conclusions bring the dissertation to a close. 
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1. IN THE ERA OF INDUSTRY 4.0, WHAT DOES IT MEAN TO BE SUSTAINABLE? 

Sustainability has had many definitions over the years from a broad variety of disciplines. We utilize the 

intergenerational philosophy based on meeting the needs of current generations without compromising the 

ability of future generations to meet theirs (WCED, 1987). We also rely on the multidimensional concept of 

the triple-bottom-line (TBL) (Elkington, 1998), depicted with his main features in Figure 1.1. The three main 

pillars of TBL are economic, environmental, and social dimensions. We also link sustainability to the United 

Nations Sustainable Development Goals (SDGs) (United Nations, 2015). 

 
Figure 1.1 - Three pillars of sustainability concept (TBL) 

While it describes a noble goal, this concept of sustainable development gives no instruction on how to 

accomplish it. Furthermore, a plethora of concepts, processes, standards, and metrics have been created to 

assist organisations in approaching sustainability (Lozano, 2008; Seliger et al., 2011), yet what “sustainability 

is” is indeed open to debate (Clifton and Amran, 2011; Eslami et al., 2020). 

1.1. I4.0 AND SMART MANUFACTURING 

The German government coined the term "I4.0" (I4.0) in 2011 to describe a set of technological changes in 

manufacturing systems brought about by automation and ICT (Information and Communication 

Technologies), such as Cyber-Physical Systems, Internet of Things, Simulation and Modelling, Big Data 

Analytics, Augmented Reality, Additive Manufacturing, Robotics, Cloud Computing, and now Blockchain. It 

aims to assist in the incorporation and merging of autonomous devices, humans, physical objects, and 

processes through operational stages in order to create various forms of digital data, functional, and high agility 

value chains throughout the entire life cycle of a product, process, or activity (Tay et al., 2018). To that purpose, 

(Liao et al., 2013) conducted a complete systematic literature review of I4.0 in all of its aspects, with 224 

publications out of 346 prospective ones proceeding to the data collecting stage for qualitative and quantitative 

analysis. Smart manufacturing is also focused on the product, in fact another statement worthy of note is that 

date from (Doyle-Kent and Kopacek, 2020) about the product made by this new industrial time in history: 

production will be automated, digital, and data driven, not only agile and lean. Products will be of exceedingly 

high quality and more reasonably priced. These items must be of the highest quality, and the supply chain must 

be optimized to facilitate manufacture. 

The I4.0 paradigm is performed in three dimensions (Vaidya et al., 2018):  

Horizontal integration across the full network of value production. It refers to the integration of numerous IT 

systems utilized in various phases of manufacturing and business planning processes, involving the interchange 

of goods, resources, and information; 
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End-to-end digital integration across the whole product life cycle. It enables the incorporation of smart business 

processes throughout the supply chain, including the production floor and CPS services. Intelligent cross-

linking and digitalization include the use of an end-to-end solution based on ICT integrated in the cloud; 

Vertical integration and networked manufacturing systems. It refers to the integration of various IT systems at 

the company's many hierarchical levels during the production process, from product development to 

manufacture, logistics, and sales. 

A collection of essential principles of the I4.0 paradigm that lead to smartness follows (Lasi et al., 2014; 

Hermann et al., 2016):  

a) automation of repetitive activities, implying that employees must concentrate on innovative, inventive, and 

communicative tasks. It is required to halt manufacturing in order for production to stay continuous. It 

entails outfitting each machine or assembly line with a system that supports them. Each worker must be 

able to cease the production process as soon as the support-aided system detects an anomalous status; 

b) decentralization, as the capacity of enterprises, operations department, and even equipment to make 

decisions on their own rather than relying on a centralized computer system of a decision-making body. 

This idea promotes quicker decision-making and more flexibility. It is an ideal organizational structure for 

meeting the increased demand for highly customized services; 

c) real-time data acquisition, processing and communication, as big data technologies improve organizations' 

capacity to operate in real time. The big data collected from plants about machines, equipment, and 

products, as well as customer data collected from various sources such as social media, direct selling points, 

and data received from suppliers, when analysed in real-time, changes the way decisions are made and has 

an impact on the industry's profitability; 

d) virtualization, referring to the process of generating a virtual duplicate of the physical system. Process 

monitoring and machine-to-machine communication are aided by virtualization. The sensor data is 

integrated to these simulation-based virtual models. The virtualization aids in warning the human of system 

malfunctions and improves safety requirements; 

e) modularity, referring to modular manufacturing systems that can be easily customized by changing and 

extending specific components. System flexibility allows for capacity adjustments in the event of seasonal 

variations or changes in product increase in output. Modularity also allows for the simulation of multiple 

manufacturing processes, such as product design, production planning, production and production 

engineering, and services, as separate processes and then tightly integrating them to provide 

interchangeability; 

f) flexibility, Ad hoc networking based on CPS allows for the dynamic setting of many elements of business 

operations such as quality, time, risk, resilience, price, and sustainability. This allows for ongoing material 

and supply chain optimization. It also implies that engineering processes can be made more flexible, 

manufacturing processes can be modified, momentary shortages (due to supply concerns, for example) may 

be compensated for, and massive increases in output can be accomplished in a short period of time; 

g) agility, as a company dynamic capability that enables it to manage change and uncertainty in the 

environment. There are two kinds of agility (Mrugalska and Ahmed, 2021): facility agility and flexibility 

agility. The capacity of a production facility or shop floor to handle any unpredictable change in product 

manufacturing preference is characterized as facility agility. While agility refers to the organizational 

competence required to work on many tasks at the same time. Smart manufacturing, cyber-physical 

systems, big data and analytics, cloud computing, and IoT enable businesses to improve their agility in both 

value and supply chains; 

h) efficiency, providing the greatest feasible output of products from a given volume of resources (resource 

productivity) and utilizing the fewest resources possible to produce a certain outcome (resource efficiency). 

It enables case-by-case optimization of manufacturing processes across the whole value chain. Furthermore, 

rather than needing to halt production, systems may be constantly optimized throughout production in terms 

of resource and energy usage, as well as emissions reduction; 
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i) interoperability, as the capacity to execute the same activity even after switching machines and equipment 

from various manufacturers creating a trustworthy environment by connecting numerous networks in a 

production line; 

j) service orientation, as the entities in the production system are all interconnected, making the establishment 

of the product-service system easier. Because of the flexibility and agility gained as a result of service 

orientation, companies can adjust to market changes more rapidly. This enables the businesses' many 

stakeholders to collaborate and co-create value for their customers. It refers to Manufacturing-as-a-Service 

(MaaS) and Product-as-a-Service (PaaS) concepts (Kusiak, 2020). 

I4.0 is now supported in all fields, not only manufacturing. Examples include logistics, construction, 

transportation, medical and surgery, food production, home automation, and so on, as well as cell phones and 

watches in our daily lives. 

While it is difficult for researchers to settle on the appropriate and cohesive notion of I4.0 and its related 

supporting technologies, the research affirms that the large network of useable and open to everyone sensors, 

as well as Cloud Computing, is at the heart of this paradigm. 

It is clear that the driving ideas of I4.0 were first focused on boosting efficiency and profitability rather than 

proposing answers to the environmental concerns created by manufacturing.  

The associated benefits are numerous (Kiel et al., 2017), including reduced pollution and environmental 

dangers, as well as improved financial performance as a result of new overseas market opportunities. In reality, 

an environmentally conscious firm would be able to gain environmental certification, as well as the 

corresponding rise in status. I4.0 would be a step forward in the creation of more competitive manufacturing 

value. This phase is primarily characterized in contemporary literature as a dedication to the environmental 

element of sustainability. The distribution of services, such as products, supplies, electricity, and power, may 

be made more efficient by utilizing smart cross-linked value creation modules (Stock et al., 2018). To yet, the 

qualitative assessment of the potential for long-term value creation in I4.0 has not been addressed in a 

systematic and formal approach (Kamble et al., 2018). 

(Bonilla et al., 2018) undertook an intriguing prospective study on both positive and negative cause-effects 

that all of the elements of I4.0 would bring in the short and long term in the manufacturing area, using the ideal 

point of sustainability as a threshold. In general, the trends of long-term environmental consequences as a 

result of I4.0 implementation are stage-dependent, with the tendency being negative during the deployment 

stage and positive during the operating stage. In the long run, and to summarize ideas, smart manufacturing 

would bring some positive aspects on environmental sustainability (Selicati and Cardinale, 2021a), such as :  

• Creating significant effects on sustainability throughout the entire supply chain;  

• Increasing the productivity with cost reductions; 

• Inventory reductions through real-time smart inventory management and traceability; 

• Real-time supply chain optimization & supplier’s integration that will enhance the development of a 

circular economy. 

• Decentralization of the collection of goods and services; 

• Development of strategies and goods that take into account customers' lifestyles; 

• Acquisition of new ecological market awareness; 

• Achievement of shorter production time cycles; 

• Processing an amount of production calibrated to predicted needs, without further depletions; 

• Monitoring and control of CO2 emissions. 

In the Figure 1.2 below it is schematized the context that turns around the I4.0 paradigm 
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Figure 1.2 - I4.0 context (Ghobakhloo and Fathi, 2021) 

Within the I4.0 paradigm, let us briefly describe the key enabling technologies (KETs) of I4.0, as depicted in 

Figure 1.3:  

Internet of Things (IoT) (Brous et al., 2020). This technology allows companies to connect several remote 

devices utilizing sensors and microprocessors driven by software systems capable of relaying data across 

networks. In this regard, it is necessary to emphasize that such devices are internal to production machines and 

that they can be built even after the latter has been completed, owing to the idea that, in the era of I4.0, any 

physical entity has the potential of being smart with the intention of sharing information on its own state and 

the state of the world in which it is located. The Internet of Services (IoS) is related with the strategic use of 

the Web and a novel method of generating demand via the materialization of the PaaS business model. 

Currently, manufacturers of commercial products are attempting to establish a clear relationship with 

customers and strengthen their strategic advantage by providing complementary services and generating new 

revenue streams, and IoS is providing the necessary technical infrastructure. 

Big Data Analytics (Belhadi et al., 2019) refers to a new wave of technologies and architectures that enable 

enterprises to economically extract value by detecting, collecting, and analysing massive amounts of data. Big 

data analytics helps modern businesses to extract more value from the huge volumes of data they currently 

have by predicting what will happen next and determining what actions should be done to obtain the best 

results. It eventually leads to Artificial Intelligence (AI). 

Cybersecurity (Junior et al., 2021). I4.0 requires access to the environment in order to facilitate integration of 

various processes. While it is critical to re-establish communication methods in order to exchange information, 

it is also critical to monitor this sharing in order to secure data flows. Companies require cybersecurity 

measures to better safeguard a device or a device collection in terms of knowledge exchange and data privacy. 

Blockchain (Khanfar et al., 2021). Often referred to as distributed ledger technology, it serves as the foundation 

for cryptocurrencies such as Bitcoin and Ethereum, although its capabilities extend well beyond that. 

Blockchain is permanent, decentralized, and redefines trust by enabling open, secure, efficient, and timely 

public or private solutions. 

Augmented reality (AR) (Posada et al., 2015). Virtual reality is being touted as one of the most revolutionary 

uses in I4.0 using 3D modelling, CAD, and projection technologies. A three-dimensional model capable of 
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housing a human operator is mentioned, with the purpose of evaluating the process in order to enhance it 

throughout the design and commissioning phases, as well as to assist worker training. In the case of Augmented 

Reality, however, mention is made to the concept of leveraging unique viewers to gain additional information 

about the object merely by framing it. In I4.0, this notion translates into the possibility of gaining access to 

automated and intelligent product logistics, which aids in finding them in the production and tracking order 

enforcement in real time. This approach allows for the testing of items from an aesthetic and functional 

standpoint, as well as the simulation of their placement in the reference environment. 

Robotics and Advanced Manufacturing Solutions (Matheson et al., 2019). One of the primary triggers is and 

should be robots, which are viewed as human operators' collaborators. Such technologies have the potential to 

improve production processes and boost the productivity of organizations who adopt them. Human 

engagement in operations involving interactions between automatic and manual systems aids integrated and 

automated techniques. Throughout this example, robots are true interactive gadgets capable of sharing 

knowledge with other devices and humans while remaining autonomous and configuring paths based on the 

output flow's demands. 

Additive manufacturing (Hernández Korner et al., 2020). It is a technique that can print a product by adding 

material after starting with a computer drawing (assisted by a CAD) of the thing to be manufactured. To 

construct any shape, the nozzle may melt tiny layers of powder and put one layer of material, either plastic or 

metal, on top of another. The great potential of this advancement is thus the ability to travel directly from the 

digitally codified concept to the product without having to go through intermediary steps, so making way for 

new business models where pieces may be produced on demand.  

Simulation and modelling techniques (Bárkányi et al., 2021). Simulation is a term that alludes to the notion of 

a digital twin, which is defined as a mathematical model capable of modelling a process, product, or service 

in order to conduct an analysis and use predictive performance strategies. This is the development of an actual 

process model in order to collect useful knowledge that may help businesses cut production costs, improve the 

efficiency of the end product, and shorten time-to-market. Simulation and modelling would be necessary in 

smart factories to use real-time data to mimic the actual environment in a simulated model that may include 

computers, products, and humans. 

 

Figure 1.3 - I4.0 KETs 
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1.2. SUSTAINABLE SMART MANUFACTURING 

In contrast to the linear model of industrial economics, in which a resource is used and the remainder is 

discarded, the circular economic system undermines the vision of mass consumerism through new inputs. 

Reuse and recycling are good places to start avoiding wasting a lot of resources and thus reduce the negative 

externalities on the environment (Stahel, 2016). Contamination, pollution, and conflicts over supply control 

have all been prevalent throughout the history of industrialization. All manufacturing processes reduce the 

availability of future resources, resulting in a reduction in future production capacity. To protect tomorrow, 

we must pay attention to the proper use and application of what we have today (WCED, 1987).  

Technology and its evolution are having an ever-increasing impact on our world in the social, economic, and 

environmental dimensions. This paragraph will provide an overview of the current phenomenon, as well as 

examples of the changes it has caused. Many aspects of the industrial and economic fields have changed as a 

result of the fourth industrial revolution, such as the creation of new production models, new organizational 

forms of work, and, as a result, an evolution of the professional figures involved. The potential for 

manufacturing unemployment as a result of the trend to replace workers with machines is one of the nerve 

centres affecting the already underway I5.0 (Longo et al., 2020), along with the various approaches with which 

the European Union and its members are dealing with changes. The shift in the relationship between business 

and consumer on one hand, and consumer and product on the other, as new technologies enable greater product 

customization. Innovations are changing the way we think about products, characterizing them with 

technologies that aim to simplify the consumer’s life while also protecting the environment. One of the 

difficulties that smart production is facing is efficiently managing the trade-off between profitability and 

sustainability (Lao et al., 2014). 

The term “smart industry” refers to a new concept of intelligent industry. This characteristic has come to life 

and joined entrepreneurship in recent years as a result of new, more cautious, and efficient technologies. The 

concept of intelligent industry is closely related to the sustainability and sustainable development with which 

the company must deal, as well as technology and process efficiency (Ellen MacArthur Foundation, 2017). 

The industry takes advantage of the benefits that technological progress provides. 

The Internet of Things enables innovation in industrial processes by interconnecting processes, using 

intelligent machines, collecting, storing, and sharing data (big data and cloud), and transforming them into 

smart, intelligent ones. There is “smart production” through interactions between machine and human, “smart 

services” through integrated systems aimed solely at customer needs to which they should respond as 

efficiently as possible, and “smart energy” which focuses on consumption, monitoring cycles of use, and waste 

of energy resources. The new intelligent entrepreneurship will strive to maximize results by meticulously 

controlling every variable in its value chain, achieving a balance of economic results and sustainability through 

efficiency (Youssef et al., 2017). 

The new industrial progress 4.0 calls for the centralization of information, its preservation, and its application 

as a starting point for new programming. The intelligent industry employs machines that learn on their own 

and improve their performance by collecting, analysing, and using data as a foundation for learning and 

implementing their activities. Digitization is a critical tool for industrial responsibility. Interactivity is a 

significant development line in the design of new intelligent production processes, where the workflow is 

facilitated toward clean, effective, but most importantly efficient, and sustainable enforcement (Stock and 

Seliger, 2016). The 2030 Agenda, a plan of action signed by the governments of the 193 UN member countries 

in September 2015, includes 17 Sustainable Development Goals (SDGs) addressing people, the planet, and 

prosperity (Rosa, 2017). It is appropriate, according to point 9.5 of the 2030 Agenda: “Enhance scientific 

research, upgrade the technological capabilities of industrial sectors in all countries, in particular developing 

countries, including, by 2030, encouraging innovation and substantially increasing the number of research and 

development workers per 1 million people and public and private research and development spending”. The 

new Smart Industry is aimed squarely at achieving these goals. The 2030 Agenda identifies the guidelines for 

addressing the problem of unsustainable development, which has received far too much attention in the past 
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(e.g., UN conferences in Stockholm in 1972, Rio de Janeiro in 1992, and Johannesburg in 2002), but has yet 

to yield implementation directives and deadlines. The integrated solutions agreed upon at previous summits 

are now being directed toward the targets to which they can respond, owing to the new technological-industrial 

progress we are witnessing. In terms of innovation, the combination of circular economy goals and I4.0 appears 

to provide excellent answers. Goal 12 in particular aims to ensure “sustainable production and consumption 

patterns”. Consumption and sustainable production are aimed at doing more and better with less, increasing 

the benefits in terms of well-being derived from economic activities while reducing necessary resources, 

degradation, and pollution throughout the production cycle, thereby promoting the improvement of life quality. 

In this regard, technology has the potential to make a significant contribution to this change. The equipment 

of I4.0 enables the strict control of production cycles, with optimal use of each production source. As a result, 

the model of planned obsolescence has become unbalanced, forcing the transition from the old to the new. 

Furthermore, reusing is possible thanks to many technologies designed for the new Industry model. To enhance 

production while preserving environmental, economic, and social sustainability, manufacturers have access to 

a wide range of information and learning techniques. This is not the first time that data analysis has been used 

to enhance goods and processes, though. Instead of people being unable to interpret huge volumes of data and 

computers being better at analysing large amounts of data, big data analytics in manufacturing allows 

practitioners to extract inherent knowledge utilizing this current approach based on computer analysis 

techniques. Horizontal integration also allows to create a sustainable industrial environment (Ejsmont et al., 

2020), in addition the pull concept is used in the smart factory’s logistics, which ensures that raw materials or 

semi-finished manufacturing materials are demanded on request (Waibel et al., 2017). There are numerous 

research papers in the literature that link sustainability to the I4.0 paradigm. Process and information flow 

integration is one of them (Carvalho et al., 2018). 

It should be noted that the approach to sustainability convergence in I4.0 is changing. Indeed, I4.0 began by 

concentrating solely on increasing efficiency and productivity in order to maximize profits and 

competitiveness. Since now, even with the many obstacles that this sector faces, such as the unification of 

laws, corporate protocols, the competition for trained labour, and the introduction of a compliant regulatory 

system, the current technological transition has centred on manufacturing rather than an environmentally 

friendly framework (Rajnai and Kocsis, 2018).    

(Ghobakhloo, 2020) clarified the relationships between various sustainability functions of I4.0 in order to 

understand the opportunities for sustainability provided by the digitalization. 

(Vrchota et al., 2020) in their extensive review concluded that I4.0 technologies are an auxiliary tool for 

achieving sustainability in all three dimensions, environmental, economic, and social. Furthermore, the most 

important enabling technologies for achieving high levels of sustainability are identified. (Müller and Hopf, 

2017) suggest a concept focusing on the TBL, which is a model that includes the problems and opportunities 

involved with the implementation of I4.0. (Oláh et al., 2020) have deepened the link between I4.0 and 

sustainability from a different perspective: they have not evaluated the usefulness of enabling technologies in 

the development of sustainable manufacturing, but they have observed how these technologies can have a 

negative impact on environmental sustainability due to the immeasurable use of non-renewable resources and 

pollution. Another method for assessing the relationship between I4.0 and sustainability is the one used by 

(Bai et al., 2020) who tested the enabling technologies as well as their intended application using an evaluation 

scheme focused on the triple-bottom-line principle. Another interesting contribution is provided by (Kamble 

et al., 2018) who, following a special review, have proposed a personal Sustainable I4.0 framework that relates 

the KETs to the sustainable outcomes for the sustainable manufacturing decision-making policies in 

accordance with the foundation principles of I4.0. 

From this brief literature examination, it is clear that most of the authors are confident about the fact that there 

is an important and positive relationship between the application of I4.0 and its environmental benefits so that 

companies tend to adopt this technology more given its benefits and regardless of the company size and 

industry sector.  
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I4.0 is an excellent option for long-term manufacturing sustainability. The architecture necessitates massive 

amounts of data processing, retrieval, and examination on cloud computing. As an optimal starting point, 

practitioners suggest Starting with a historical data approach to training the experience provided by ERP, MES, 

PLC systems and then also integrate sensing, actuation, and specific levels of real-time tracking and regulation. 

Predictive analytics and automation are viewed as vital technologies needed for sustainable manufacturing in 

R&D (de Sousa Jabbour et al., 2018; Ren et al., 2019). 

If all goes as planned, such positive prospects may be capitalized on and be profitable in the long run. Enhanced 

production effectiveness is directly proportional to enhanced sustainability (Tiwari and Khan, 2020).The 

choice of Long Run is no accident. Considering a hypothetical life cycle of an I4.0 application, it is useful to 

split the design part, the installation of the equipment, which undoubtedly have a negative impact on 

sustainability, and the operating part, in which technologies are now ridden and become in effect Tools for the 

efficiency of process performance, both at the quality and sustainability points. 

The challenges and opportunities associated with implementing I4.0 are, however, for the moment unknown, 

as environmental sustainability technologies associated with this sector have not been adequately explored, 

because new technologies still exist; thus, gaps exist in the way in which we can integrate effective use of 

scarce resources, raw materials and other resources.   

 

1.3. THE DAWN OF INDUSTRY 5.0 PARADIGM 

Despite the fact that the Industry 4.0 Paradigm is still being deployed, particularly for small company realities, 

the notion of Industry 5.0 (I5.0) has been proposed since last year. 

This notion arose from a question that began when all contingent technologies to the I4.0 phenomena 

threatened the function and utility of human inside the smart factory: are we certain that the human will 

continue to play a valuable role within the industrial value chain? The wave of change in industry will have 

long-reaching consequences that will extend well beyond the technical changes on the production floor. A 

revolutionized industry will also have a disruptive effect on society. This is especially true for industrial 

workers, whose jobs may be altered or even endangered. However, no matter how advanced technology 

becomes, people will always play a critical role. To function, data analysis necessitates the use of human skills 

and interpretation in order to make intelligent decisions at the end of the analysis. Companies must strike the 

proper balance between self-organizing and autonomous systems and the human capital they already have. 

Humans are then reintroduced into the spiral in this new paradigm, boosting their collaboration with intelligent 

machines to the point of working side by side on the production floor. I5.0 may provide the best of both worlds, 

combining the well-known benefits of robots with improved cognitive skills of humans in areas such as critical 

thinking. Production lines may become even smarter in this more complex environment, with people able to 

oversee far greater degrees of product customisation. That's an interesting concept in industries as diverse as 

automotive, consumer electronics, and jewellery, or even for items like craft beer, where subtle labelling 

touches may result in increased customer appeal. From the first industrial revolution to the current day, the 

significance of humans in industry, particularly in manufacturing, has been emphasized (i.e., the Taylorism in 

USA (Taylor, 2003)). The I5.0 paradigm is essentially an extension of the I4.0 paradigm, with a concentration 

on automation and robotics: Multi Robot Systems are made up of cooperative, industrial, mobile, and 

humanoid intelligent robots that work together to perform basic functions. Collaborative robots are not 

intended to replace people, but rather to assist them (Durakbasa and Gençyılmaz, 2021). It is a description of 

a human-centered system. There are those who speak of I4.0 Joint to Society 5.0 (Polat and Erkollar, 2020). 

The Figure 1.4 depicts a comparison of I4.0 enabling technologies and their advancements with the 

introduction of I5.0. 
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Figure 1.4 - Improved principles and technology as a result of the I5.0 paradigm revolution (Hibbert, 2020) 

It is undeniable that the operator who will interact with the robot must be suitably skilled, say digitally 

competent, to adapt to a highly automated, ever changing workplace; he must be an expert in mechatronics, so 

that the figure of man is still useful in the smart factories, it will have to take the role that according to the i5.0 

will be defined as "Robocollaborator " or" Coboter" (Doyle-Kent and Kopacek, 2021). Education is crucial in 

this regard. This new operator falls between a traditional operator and one who has some mechatronic 

competence. Furthermore, due of the significant advancement in this subject, they should be taught on a yearly 

basis. This, in turn, entails significant costs for the company (much more to SMEs), which will be required to 

implement continuous updating courses for all employees. Based on what has been discussed, the initial pillars 

of the I5.0 paradigm that can be counted will be: Organization (management), Technology (cobots), People 

(coboters), and Tasks (job specification). Considering factors from a social standpoint, greater automation has 

resulted in higher worker safety as the I4.0 production environment has substantially improved. Ergonomically 

built workstations enhance working conditions. Collaboration increases when consistent data is available. 

Resource optimization, such as more energy-efficient machinery operation, also improves environmental 

protection. 

The European Commission also spoke out over the I5.0 paradigm (European Commission, 2021a): “I5.0 

provides a vison of industry that aims beyond efficiency and productivity as the sole goals, and reinforces the 

role and the contribution of industry to society. It places the wellbeing of the worker at the centre of the 

production process and uses new technologies to provide prosperity beyond jobs and growth while respecting 

the production limits of the planet. It complements the existing I4.0 approach by specifically putting research 

and innovation at the service of the transition to a sustainable, human-centric and resilient European industry”.  

In fact, these are the three keywords, and Figure 1.5 schematizes them. For industry to become the provider of 

true prosperity, the definition of its true purpose must include social, environmental and societal considerations. 

This includes responsible innovation, not only or primarily aimed at increasing cost-efficiency or maximising profit, 

but also at increasing prosperity for all involved: investors, workers, consumers, society, and the environment (Xu 

et al., 2021). As already stated, a human-centric strategy places essential human demands and interests at the centre 
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of the manufacturing process. Instead of asking what we can accomplish with new technology, we ask what it can 

do for us. Rather than asking workers in the industry to adapt their abilities to the demands of quickly expanding 

technology, we want to utilize technology to adapt the production process to the needs of the workers, such as 

guiding and training them. It also entails ensuring that the use of new technology does not jeopardize employees' 

fundamental rights, such as the right to privacy, autonomy, and human dignity. This description clearly reports the 

fundamental definition of sustainability; in particular, the factory of the future (already one of the I4.0 paradigm's 

pillars) must be sustainable: generate circular manufacturing systems for reusing, repurposing, and recycling natural 

resources, reducing waste and environmental effect. Lastly, a resilient industry refers to the requirement to improve 

industrial production's robustness, equipping it better against interruptions and ensuring it can offer and sustain key 

infrastructure in times of crisis; it should be balanced by building sufficiently robust strategic value chains, adaptive 

manufacturing capacity, and flexible processes, particularly in value chains that support essential human needs such 

as healthcare or security.  

 

 

Figure 1.5 - The fundamental elements upon which the notion of Industry 5.0 is centred 

 

 

However, such an approach must take into account society's diverse perceptions of values and requirements, as 

assessing and quantifying environmental and, especially, social worth remains problematic. 

When life sciences technologies are coupled with engineering and computer technology disciplines, a more 

systematic innovation strategy that combines multiple views and takes a holistic view of complete ecosystems is 

required. Furthermore, the systems created will be very sophisticated, interconnected, and interdependent, as well 

as dealing with heterogeneous data sets. Economic goals such as productivity and competitiveness must not be 

overlooked, but must be established within the context of agreed-upon ecological and social objectives. This may 
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be accomplished through economic models that place a premium on the development of ecological and social value, 

as well as through legislative incentives. 

Apart from terminology and issues originating from complexity or technology concerns, such a notion must 

incorporate society and the majority of the industrial landscape. Customers and whole supply chains, all the way up 

to SMEs, must thus be better connected to guarantee broad-scale application and value development toward 

prosperity. 

For the sake of brevity, and because this thesis does not deal with the emerging I5.0 paradigm, refer back to 

the European Commission's Report (European Commission, 2021b) for further insight, particularly on the 

KETs that characterize this trend. 
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2. MODELS OF ASSESSMENT: STATE OF ART 

Manufacturing systems necessitate effective techniques to modelling the complexity of industrial systems and 

the performance criteria associated with them. Several techniques and tools for modelling complex systems 

have been proposed and developed in the literature. Model-based methods and tools provide a way to use 

models to design and formalize the behaviour of a real physical system; data-driven methods provide a way to 

detect patterns from data, intrinsic and explicit features of a real system; and combined approaches that merge 

models and data to emulate the physical real system with intelligent models (Tidriri et al., 2016). taking into 

account a systemic thinking of manufacturing processes (which characterizes the guideline of the topics 

discussed in this dissertation), Figure 2.1 depicts the relationship between data-driven, stated as a bottom-up 

approach, and model-based, stated as a top-down approach, implemented on the process/machine under study. 

While the first leads to problem solution of the issue from a local to a global scale (e.g., using the invariant 

and automated model), the second begins with a problem description based on the company's needs to answer 

the question "what do we need to meet these requirements?". The two techniques, when integrated and applied 

simultaneously, cross right at the model design phase, when the required model (the automated model) must 

mirror as accurately as possible the physical model that represents the actual behaviour of the process/machine. 

Despite the benefits and promise of hybrid techniques, the biggest limitation is a lack of a general framework 

for hybrid approaches. 

 

Figure 2.1 - Bottom-up (data-driven) approach integration scheme with top-down (model-based) approach 

 

2.1. MODEL-BASED APPROACH 

Model-based has recently garnered a lot of attention in the manufacturing industry. In a manufacturing 

environment, this notion refers to the development of items utilizing a form of digital model from which 

additional outlying actions to manufacture the product may be derived. A model is a depiction of an actual 

thing’s structure, object, operation, or idea. Model-based engineering is a way of putting into action a collection 

of interconnected models that allow for the definition, design, and documentation of a system under 

development. Until recently, most engineering and manufacturing techniques depended on conventional ways 
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of transmitting engineering data and driving production processes, such as hardcopy and digital documents. 

Model-based approach is essentially an application of modelling principles, design, analysis, validation, and 

verification procedures. It provides a comprehensive best value solution for studying and documenting a 

system’s attributes. Models, though not an ideal depiction of a physical system, produce the necessary 

information as well as quick feedback (Frechette, 2011). Fortunately, with the introduction of contemporary 

industrial data handling and powerful engineering programs, it is now possible to accomplish the majority of 

production tasks using data models. Model-based engineering is a modern way of handling production data 

that relies on models rather than traditional papers for all production procedures throughout a product’s life 

cycle. Recently, the manufacturing sector has been focused on addressing the factors related to model 

implementation utilizing computer simulation experiments, in order to close the gap between model definition 

and simulation program (software).  

Models based on thermodynamic analyses, for example, provide a novel and fascinating method for assessing 

and optimizing the sustainability of manufacturing system performances, therefore easing the management of 

smart manufacturing processes. The goal of this study is to provide an understanding of how thermodynamic 

principles may assist improve energy efficiency while also providing methodological support to develop 

towards a smart sustainable process. 

 

2.1.1. Life Cycle Assessment 

The LCA is an objective and reliable methodology to get a comprehensive and holistic approach of assessing 

environmental damage related to the building even when it is used to support decision making for the definition 

of policies strategic in this sector. However, because a detailed LCA study can be costly in terms of economics 

and time, as well as complex to carry out (a significant amount of environmental data must be acquired during 

each phase of the life cycle, as well as knowing in depth both the standardized methodology and the support 

tools such as software and databases), researchers are increasingly developing "Simplified LCA" tools  (Oregi 

et al., 2015) that allow an immediate assessment of the life cycle of the products even by those who are not 

experts (Christiansen, 1997). 

The LCA may be traced back to the early 1960s, with the release of studies on energy loads associated with 

various industrial outputs. During this time, a concept that encompasses the full life cycle, known as 

"Environmental Life Cycle Thinking," began to gain traction. The challenge of raw material and energy 

resource exhaustibility prompted more research in the next decade, with a primary focus on improving energy 

resource management. Between the late 1960s and the early 1970s, there was a gradual shift from analysis that 

focused primarily on energy use to analysis that examined both raw material and energy resource usage. Two 

major publications from this time are "The Limits to Growth" by Meadows et al. in 1972 and "A Blueprint for 

Survival" by Goldsmith et al. in 1972, both of which attempted to forecast the consequences of an increasing 

global population on the demand for raw materials and energy. During this time, the "from cradle to grave" 

concept was also adopted, which quantifies the consumption of resources and the discharge of contaminants 

into the environment throughout the product life cycle. The measurement of resource consumption and 

environmental consequences of goods was established in the United States under the acronym REPA 

(Resource and Environmental Profile Analysis), while in Europe it was known as eco-balance. 

In the late 1970s, the concept of "sustainable development" emerged, and at the same time, the "Handbook of 

Industrial Energy Analysis" by Bounstead and Hancock (1979) was published in Europe, marking a watershed 

moment in the history of LCA methodology in that it was the first document to offer a description of an 

operational nature of the analytical procedure, which is to be considered a fundamental part of the current 

technique (Dealy, 1980). 

The most comprehensive description of LCA was offered by SETAC in its article "Guideline for Life-Cycle 

Assessment: a Code of Practice" (Fava et al., 2014): “A process to evaluate the environmental burdens 

associated with a product, process, or activity by identifying and quantifying energy and materials used and 
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wastes released to the environment; to assess the impact of those energy and material uses and releases to the 

environment; and to identify and evaluate opportunities to effect environmental improvements”. 

At the European level, the European Platform on the Evaluation of the Life Cycle was formed in 2005, 

supervised by the Institute for Environment and Sustainability of the European Commission's JRC (Joint 

Research Center) and the Directorate-General for Environment. 

Among the most significant works of this collaboration is the publishing in 2010 of the ILCD Handbook 

(International Reference Life Cycle Data System) (Chomkhamsri et al., 2011), which promotes the application 

of ISO standards in the field of LCA by exploring many elements of the approach.  

A suitable instrument for detecting key environmental features is expressly stated in the COM 2001/68/EC 

Green Paper and the COM 2003/302/EC on Integrated Product Policy, and is implied, at least indirectly, in the 

European EMAS (1221/2009) and Ecolabel (66/2010) regulations. 

The ISO standards series regulates the LCA. The initial edition of ISO standards was revised several times, 

the most recent in 2006. In reality, the following 14040 series standards are presently the international 

regulatory reference for the production of LCA studies: 

- UNI EN ISO 14040:2006 (“UNI EN ISO 14040,” 2006) Environmental Management - Life Cycle Evaluation 

- Principles and Frameworks, which provides a general framework for the practices, applications, and 

limitations of the LCA, and is aimed at a wide range of potential users and interested parties, even those with 

limited knowledge of life cycle evaluation; 

- UNI EN ISO 14044:2006 (“ISO 14044,” 2006) Environmental management - Life cycle evaluation - 

Requirements and guidelines, which was developed for the preparation, management, and critical assessment 

of the life cycle and serves as the primary support for the actual execution of an LCA research. 

Furthermore, the two technical studies stated below are available to support the UNI EN ISO 14040 standards: 

- ISO/TR 14047:2003 (“ISO/TR 14047,” 2003a) "Environmental management – Life cycle impact assessment 

Examples of ISO 14042 implementation". 

- ISO/TR 14049: 2000 (“ISO/TR 14049,” 2000b) "Environmental management – Life cycle assessment – 

Examples of ISO 14041 application to goal and scope formulation and inventory analysis". 

The technical specification ISO / TS 14048:2002 (“ISO/TS 14048,” 2002c) "Environmental management – 

Life cycle assessment – Data documentation format" is also available. Its purpose is to provide the 

requirements and structure relating to the format of the data, which is used for the documentation and exchange 

of these during the inventory phase, as well as during the evaluation of the life cycle itself. 

The standards are provided by the ISO describe the four main phases of an LCA (Figure 2.2): 

 

Figure 2.2 - Scheme of the phases of the LCA 
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1. Goal and scope definition 

2. Inventory analysis 

3. Impact assessment 

4. Interpretation 

While the following Figure 2.3 depicts the entire life cycle of a product, process, or activity, including raw 

material extraction and treatment, manufacturing, transportation, distribution, reuse, recycling, and final 

disposal, as well as input flows and outputs that are typically considered during the inventory phase. 

 

Figure 2.3 - Life cycle of a generic product, process or activity with its inlet and outflows. 

LCA is an iterative process that allows to refine things along the analysis. For example, the initial phase of 

analysis may indicate that more data is required. Alternatively, the evaluation results or interpretation may 

suggest to change the goal and scope. In this manner, each LCA not only provides vital recommendations for 

making changes in organization, but it also shows how to effectively adjust the LCA to learn even more. 

There are several varieties of LCA. The general rule is that the more detail you desire, the more detailed your 

LCA must be (Production Engineering, 2019). A report for internal usage has fewer criteria than a report for 

marketing or other forms of external communication. There are also several LCA-related evaluations, such as 

Environmental Product Declarations (EPDs), studies that are compliant with product- or sector-specific 

standards, single-issue analyses such as the carbon or water footprint, social LCA, and long-term monitoring 

studies. The wonderful thing about a life cycle model is that it can be used to undertake a number of 

assessments, depending on what your organization requires right now. Every phase of a product's life cycle 

(extraction of materials from the environment, production of the product, use phase, and what happens to the 

product after it is no longer used) can have a significant impact on the environment. LCA allows to assess the 

environmental impact of your product or service from the beginning to the end, or from cradle to grave. 

STEP 1 - Goal and scope definition  

This initial phase is critical because it emphasizes the fundamental rationale for doing this study, permits 

understanding of how the data will be used, and specifies the amount of information sought. First, it must be 

thoroughly described: 1) the desired use; 2) the motives for conducting the study; 3) the sort of audience for 

whom it is intended; and 4) if the results are to be utilized to perform comparison statements for public 

dissemination. Before any data is gathered, the purpose and scope of the study are determined (Curran, 2017). 

It should also be noted that when new information about the product system is collected during the analysis, 

the purpose and scope will need to be revisited and revised. Issues and facts that were unknown or could not 
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be predicted at the start of the project would necessitate rewriting the target. For example, the initial target 

established for the test could not be met. This exemplifies LCA's iterative nature (Villares et al., 2017). 

SUB-STEP 1.1 - Functional unit definition 

The functional unit (FU) is defined as the performance of a system's functional outputs (“UNI EN ISO 14040,” 

2006). A valid functional unit should be physically quantifiable and accompanied with an appropriate unit of 

measurement, which might be a unit of time or a well-defined amount if product durability is required. In other 

words, the coherence of the FU selection must be compatible with the baseline situation and transformation 

objectives. The significance of a clear definition of the functional unit cannot be overstated, because it is 

required for the right development of scenarios and the correct normalizing of all reference flows, and therefore 

for the final outcomes. The FU definition should make it simple to compare the evaluation findings to other 

values regarded as benchmarks. 

SUB-STEP 1.2 - Reference flow and system boundaries  

A reference flow is the quantity and kind of energy and materials required by a product, process, or activity to 

generate the functional unit's performance (Weidema et al., 2004). Several authors (Cooper, 2003; Reap et al., 

2008a; Gandiglio et al., 2019) believe the reference flow definition to be inextricably linked to the functional 

unit definition. The problems concern the specification of product lifespan, performance, and interdependence 

of the product, process, or activity under consideration. The suggested technique begins with designing and 

defining the system using a process flow diagram that depicts the links between the unit-processes and the 

reference flows. System boundaries ((European Committee for Standardization, 2011)) depicted in Figure 

2.4.define which processes and activities will be included or omitted from the evaluation. Boundaries have an 

influence on the breadth and depth of the evaluation, as well as the dependability of the results (Liu and Müller, 

2012). The exclusion (cut-off) of factors, i.e. features of the process, product, or activity to be analysed, that 

are not regarded to affect the impact of the system on the scope of the analysis (Goedkoop et al., 2016), is the 

determination of system boundaries. The cut-offs should be determined based on the results of a sensitivity 

analysis of the process or activity's impact on the LCA results (L’Abbate, 2018). The problems in including 

economic and social components into the LCA are mostly the result of: Social (Dreyer et al., 2006) - dispute 

on measurements, contextual techniques, and reliance not just on the life cycle but also on company conduct. 

Economic (Guinée et al., 2011) - lack of scientific or procedural consensus on terms, methodology, and so on; 

challenges in dealing with externalities, cost allocations, system border compatibility, and possible cost 

forecast. 
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Figure 2.4 - System Boundaries of an LCA according to EN 15978 

STEP 2 – Life Cycle inventory analysis 

The most challenging step of an LCA is the life cycle inventory (LCI). LCI analysis is the computation of all 

raw materials, energy resources, and machinery (inputs) utilized in the process, as well as the estimation of 

their emissions to air, water, and soil (outputs) created across the whole life cycle, using the functional unit as 

a reference. 

Figure 2.5 illustrates the questions (requirements) that must be asked in order to obtain a full inventory of input 

and output data (information) flows. 

 

 

Figure 2.5 - Requirements for a LCI 

SUB-STEP 2.1 - Choice of the database  

The LCI must give the most accurate and objective picture of reality possible [21]. The accuracy of the data is 

critical in the model's implementation. An LCI analysis necessitates a thorough examination of each process 

flow and the emissions that emerge from it. Numerous databases have been developed over the years to assist 

the collecting of data on raw materials and auxiliary materials, energy, transportation, machinery, and so on 

by research centers (e.g., ELCD (Mathieux et al., 2013)), organizations, and volunteers (e.g., Ecoinvent 

(“Ecoinvent,” 2019) or WorldSteel (World Steel Assoctiation, n.d.)). Some existing datasets have formerly 

been incorporated into LCA tools such as SimaPro® or GaBi®. The database enables the selection of raw 
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materials, transportation networks, energy mixtures, and even complete processes. Each item on the list already 

includes a set of information (Input/output matrix) regarding the steps of raw material extraction and 

processing, making inventory analysis a lot easier. The availability of data at the local and sectoral levels is 

very important. Before beginning the real inventory analysis, it is best to pull every data point to be included 

to the inventory from the database that best suits its context, keeping in mind the declared purpose and scope 

of the evaluation. Considering the production procedures of items. Table 2.1  provides a selection of the most 

useful databases. It is important to emphasize that, in order to justify any lack of consistency in the data (which 

reflects on the results of the analysis), specifying the version of the reference database is essential during the 

Inventory phase, because the Input/output matrices are constantly updated and can drastically influence the 

magnitude of the emissions and environmental impacts. 

SUB-STEP 2.2 - Allocation  

The allocation refers to techniques for allocating the environmental load of operations with several outputs. 

To prevent allocation, ISO 14040 suggests separating operations into sub-processes or widening system 

boundaries. In LCA, consequential modelling avoids allocation, whereas the allocation technique is known as 

attribution modelling. See (Schrijvers et al., 2016) for further approaches. Attributional LCA tries simply to 

reduce the product's worldwide environmental effect. The purpose is to explain the relevant physical flow in 

the environment. It is necessary to utilize average data. Consequential LCA tries to record changes in 

environmental effect caused by a specific activity and, as a result, create information on the consequences of 

activities. It is necessary to use marginal data. 

SUB-STEP 2.3 - Local technical uniqueness 

Disparities in location can represent differences in extraction, production distribution, and end-of-life 

technology. These changes in geography, businesses, facilities, and production lines might have a significant 

influence on the Inventory phase and ultimately the LCA outcomes. To have as little uncertainty as possible, 

the data for the LCI should be geographically characterized (see, for example, (Nilsson et al., 2010)). Countries 

all across the world have produced a diverse set of rules and regulations. The preceding are well-known 

country-specific standards (British Standards Institution, 2011; European Commission and Joint Research 

Centre, 2010; “Requirements for the EcoLeaf PCR,” n.d.), which give clear definitions and criteria to reduce 

choice flexibility and support the accuracy of LCA outcomes and quality assurance related to these throughout 

their life cycle. 

 

According to ISO 14040, the inventory analysis in conducted following the equation: 

 Amount       x           Emissions        x     Characterisation factor       =        Equivalents            Eq.  2.1 

 (MJ or Kg)                     (g/MJ or g/kg)                         (from databases)                                     (g-eq) 
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Table 2.1 - Benchmark of databases for LCI in manufacturing context up to the end of 2020 

Database Name Link 
Last 

update 

Open 

source 
Category of materials and processes 

Nr of data 

items 

Ecoinvent 
 

https://www.ecoinvent.org 
 

2020 no 
Metals, aluminium, paints, energy, transports, 

textile industry, waste management 
~17.000 

ICE 

 

http://www.bath.ac.uk/mech-

eng/sert/embodied 
 

2019 yes Construction materials ~1.700 

ELCD 
 

https://eplca.jrc.ec.europa.eu/ELCD3/ 
 

2013 no 
Transports, wastes, organic and inorganic 

materials, wood, semi-metals 
~500 

USLCI 
 

https://www.nrel.gov/lci/ 
 

2009 yes 
Processing metals, finishing, washing 

processes, paintings 
~100 

AusLCI 
 

http://www.auslci.com.au/ 
 

2016 yes Agricultural products, energy, fuels ~400 

IDEA 
 

http://idea-lca.com/?lang=en 
 

2016 no 
Forestry, Mining, ceramics, gas, water, 

sewerage 
~3.900 

Material Universe 
 

https://grantadesign.com 
 

2019 no Polymers ~3.700 

Industry Data 

Plastics Europe 
 

https://www.plasticseurope.org/it 
 

2010 no Plastics ~85 

WorldSteel 
 

https://www.worldsteel.org/ 
 

2018 no Steels ~45 

ERASM 

 

http://erasm.org/index.php/about-

surfactants/value-chain 
 

2016 yes Detergents, surfactants, chemicals ~70 

 

https://www.ecoinvent.org/
http://www.bath.ac.uk/mech-eng/sert/embodied
http://www.bath.ac.uk/mech-eng/sert/embodied
https://eplca.jrc.ec.europa.eu/ELCD3/
https://www.nrel.gov/lci/
http://www.auslci.com.au/
http://idea-lca.com/?lang=en
https://grantadesign.com/
https://www.plasticseurope.org/it
https://www.worldsteel.org/
http://erasm.org/index.php/about-surfactants/value-chain
http://erasm.org/index.php/about-surfactants/value-chain
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STEP 3 - Life cycle impact assessment  

The goal of life cycle impact assessment is to establish a link between the right burdens and the right 

affects at the right time and location (Reap et al., 2008b).  

Three matrix equations can be used to represent life cycle assessment (LCA) (Heijungs and Sun, 2002): 

The first equation is used to convert process data into a manufacturing system: 

𝑠 = 𝐴−1 ∙ 𝑓                       Eq.  2.2 

Where 

A: database of process flows and manufacturing processes  

f: final demand vector, or the intended output from the system  

s: scaling vector, which represents the intensity of manufacturing processes 

The scaling vector derived from the first equation is used to calculate the intensity of emissions from 

unit processes  

g = B ⋅ s                       Eq.  2.3 

Where 

B: unit emission matrix (a database of process values)  

g: emission inventory vector detailing the emissions produced by the entire system 

The third equation is used to convert emissions into environmental consequences (e.g., CO2 emissions 

into climate warming potential)  

ℎ = 𝑄 ⋅ 𝑔                       Eq.  2.4 

Where 

Q: matrix of characterisation (impact intensity characterization values)  

h: a vector indicating the system's environmental impacts. 

To make the obtained affects more understandable, they might be normalized by dividing by a 

geographical reference impact vector (e.g., The climate change potential of the EU countries in 2004). 

Finally, the normalized results may be weighted using value-based weights to provide a single 

environmental performance indicator. 

The data is transformed from inventory to potential impact (EP(j)i) by multiplying the input/output of 

a specific substance (Q) with its equivalent factor (EQ(j)i) (characterisation): 

EP(j)i = Q x EQ(j)i                      Eq.  2.5 

While the total emission is the sum of every potential impact during each phase of life cycle: 

∑ EP(j)i = Q x EQ(j)i
𝑛
𝑖                       Eq.  2.6 

SUB-STEP 3.1 - Impact category selection  

This stage involves associating data acquired during the LCI with the appropriate effect category, such 

as global warming, acidification, human toxicity, waste resource use, and so on. The main challenges in 

selecting an impact category are the absence of standardization, the disuse, and the selection of a mid-

/end-point. 

SUB-STEP 3.2 - Space characterization  

The computation of impacts and their impact on the environment might be heavily reliant on spatial 

characterization. The characterization of meteorological, topology, hydrology, and land use status all 

influence the estimation of consequences, such as acidification, eutrophication, and health implications. 

(Bartolozzi et al., 2013) provides an example of environmental uniqueness consideration. For example, 
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the outcome of resource extraction or pollution might vary based on the distinctiveness of the local 

environment, such as soil characteristics or population density. 

SUB-STEP 3.3 - Time characterization  

This problem is about the temporal characterization of transformations and the effect evaluation criteria. 

During the analysis, the duration of the transformations in each unit-process and, ultimately, the useful 

life of the functional unit should be considered as a change in emissions caused in narrow or prolonged 

time arcs, thereby also altering potential environmental damage in the short, medium and long term.  

STEP 4 - Life cycle interpretation  

The life cycle interpretation process entails the study of inventories and the implications to support a 

product/process selection, an enhancement of some product feature or process element, and so on 

(Hellweg et al., 2005). According to ISO 14044 (“ISO 14044,” 2006), the interpretation means to: a) 

identify significant issues based on the LCI and LCIA phases; b) critically evaluate the overall analysis 

itself, how complete it is, and if it is done sensitively and consistently to the goal and scope and the 

determined requirements; and c) provide conclusions, limitations, and recommendations. 

Understanding the precision of the data and ensuring they achieve the study’s objective are the first steps 

in interpreting LCA findings. This is achieved by determining the data elements that relate significantly 

to each effect group, determining the importance of these significant data elements, assessing the 

completeness and accuracy of the analysis, and drawing conclusions and guidelines based on a detailed 

view of how the LCA was performed and the findings were developed (Hauschild et al., 2018). 

2.1.2. Exergy Analysis 

2.1.2.1. Real thermodynamic systems and their irreversibility 

To evolve, life has always taken use of whatever resource that the Earth has offered, even if it has been 

compensated by solar energy, creating trash with a higher entropy content than the starting state. Outputs 

can become more resources, but this cycle cannot be infinite since the gap between initial and final 

availability becomes too large at some point, i.e., the necessary resources are no longer sufficient for 

further transformation. 

Real transformations are distinguished by irreversibility: if a system undergoes a transformation that 

moves a state variable from state A to state B (Figure 2.6), it can be returned to state A, resulting in a 

thermodynamic cycle. The system will be returned to its previous level of entropy, but the environment's 

entropy will grow.  

 

Figure 2.6 - Ideal transformation (in continue line) and real transformation (in dotted line) from state A to state B 

Time appears to be unimportant in the study of the first law of thermodynamics; but, in thermodynamics, 

we deal about variables and state functions that vary and transform so quickly that in irreversible 

thermodynamics, considerable emphasis is paid to the ‘speed of a process’ (Petrescu et al., 2016). Real 

processes change with the largest variation in entropy in the quickest period, therefore designing a 
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sustainable process implies creating the least amount of entropy (and hence causing the least number of 

environmental difficulties) over its life cycle. 

Entropy increase principle is equivalent to the extropy decrease principle formulation of the Second Law 

(Martinas and Frankowicz, 2001): imagine the Earth as a reservoir containing material resources, 

energy, and the ecosystem, as shown in Figure 1.  

 
Figure 2.7 - Theoretical model of the system and the environment interactions 

The reservoir is classified as an open system in thermodynamics because it exchanges energy and matter 

with its surroundings (Bertalanffy, 1950). Following a particular transition over time, the reservoir 

would contain matter and energy in states other than the initial ones, causing an imbalance in the 

environment that would have an effect. In an open system, there is no possibility of thermodynamic 

equilibrium; instead, it is all about thermodynamic non-equilibrium (Martinás, 1997).  

In an ideal world, the entropy of the system under study and the entropy of the system with which it 

interacts are identical in form but have opposite signs, because one emits heat and the other absorbs it. 

As a result, the system's cumulative shift is zero. In practice, the net increase in entropy is positive 

because the entropy value of the system that produces work (which is positive) is larger than that of the 

system under examination (which is negative). As a result, in the actual world, a change that occurs in 

a non-isolated system generates a decrease in entropy in the physical system and an increase in entropy 

throughout the universe. Because manufacturing processes are artificial non-equilibrium systems, the 

same idea applies. The process or product are closed systems in and of themselves, but because the 

production pulls resources from the environment in which it operates and returns losses and waste to it, 

it must be regarded an open system. 

Combining this principle with sustainability thinking, while entropy is not a natural state variable and 

contains statistical assumptions in its definition (Martinás and Grandpierre, 2007), extropy is more 

'physically sound' because it quantifies the distance from equilibrium, i.e. the degree of irreversibility 

(Poór, 2005). Because thermodynamic reactions have a preferred path to achieve equilibrium, this 

distance is not regular. Extropy is closely connected to exergy: the creation of extropy is a measure of 

the extent of a process's irreversibility. For a steady-flow process, entropy generation is expressed as 

(Prasad et al., 2009): 

Sgen = ∑ me ∙ Seout − ∑ mi ∙ Siin − ∑
Qi

Ti
i  ≥ 0                   Eq.  2.7 
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The first two terms on the right are the sums of exergy outputs and inputs, and the third is the rate of 

entropy transfer over the part of the control surface where the instantaneous absolute temperature is Ti. 

Exloss = T0·Sgen may be used to calculate the exergy. Extropy is a measure of the entropy produced by 

the fictive process that brings a physical system into balance with its surroundings. As a result, it is equal 

to the difference between the maximal entropy of the system and the total entropy of the system and the 

environment: 

Π = Se
S + Se

E - SS - SE                           Eq.  2.8 

Because manufacturing processes are artificial non-equilibrium systems, the same idea applies. The 

process or product are closed systems in and of themselves, but because the production pulls resources 

from the environment in which it operates and returns losses and waste to it, it must be regarded an open 

system. These considerations allow to define the efficiency indicator (ηl) as the outcome of a linear 

analysis (shown below as the horizontal line in Figure 2.8): a simple ratio of output to input, final state 

to beginning state (state B and A as described above). While the vertical arrow, which represents the 

conceptual model of the transformation under consideration, investigates the dynamic features of the 

transformation and subsequently investigates its thermodynamic laws (which would mean constructing 

the real trajectory of the transformation). 

 

Figure 2.8 - General scheme of linear and non-linear features in an industrial process 

Complex systems' non-linear dynamics make it exceedingly difficult to anticipate their evolution over 

time. Hybrid evaluation models, such as those provided in this paper, generally depict the dynamics of 

a system and may be used to forecast multidimensional system trajectories by working on a wide range 

of parameters. As a result, the transformation's probable consequences may be predicted. 

 

2.1.2.2. Exergetic Analysis 

When we think about energy, we think in terms of quantity. However, in a resource-constrained reality, 

energy must also be valued in terms of quality, which is basically a measure of its utility, or capacity to 

do labour. Exergy must be measured in order to account for the quality of energy rather than just the 

amount. Exergy analysis may be applied to individual processes, companies, and even whole national 

economies (Sousa et al., 2017). It provides a solid foundation for evaluating the impact of policy actions 

aimed at increasing energy, resource, and climate efficiency. In the future, consumers may be told about 
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items and services based on their exergy-destruction footprint in the same manner that they are educated 

about carbon emissions (Brockway et al., 2016). 

The notion of exergy and its application to energy efficiency was discussed in 2015 at (Science Europe 

Scientific Committee for the Physical, Chemical and Mathematical Sciences, 2015). In doing so, the 

Committee appealed to policymakers to establish an International Exergy Panel to: bridge the gap 

between energy science and energy policy, resulting in the systematic use of the concept of exergy where 

appropriate; provide an evidence-base for interrelated energy-climate change and economic policies; 

and drive interdisciplinary research and development on the causes of exergy destruction and how we 

can minimize this destruction, from the molecular to the global scale; direct the development of exergy 

footprints for commodities and services; and engage with the Intergovernmental Panel on Climate 

Change (IPCC).  

The idea of exergy is intricately linked to the fundamental laws of thermodynamics. These laws must 

not be disregarded: they are vital. First law: energy is preserved. Second law: heat cannot be completely 

turned into useful energy. The second law deals with the idea of exergy. Exergy is destroyed in every 

energy-conversion process. 

Exergy is defined as the maximum amount of work which can be delivered by a system or a flow of 

matter or energy when it reaches the equilibrium with a reference environment through a sequence of 

reversible processes in which the system can only interact with (Rant, 1956). Due to the irreversibility 

of the process, some of the exergy is wasted or destroyed during the process (Kotas, 2013). Exergy 

Analysis in a manufacturing system seeks to find and analyse thermodynamic flaws (irreversibilities) 

and to reveal opportunities for improvement. Furthermore, exergy efficiency is an essential criterion for 

determining the sustainability of a process or product. According to (Duflou et al., 2011) and (Renaldi 

et al., 2011), the application of exergy in manufacturing systems allows for the detection and evaluation 

of thermodynamic flaws as well as the identification of possibilities for improvement. The measurement 

of resource consumption and the consequences of emissions may be represented on a single objective 

scale using the second law of thermodynamics, distinguishing it from the LCA, which examines the 

diverse effects by quantifying them on several scales. 

While exergy destruction is never zero in any process, it may be minimized. Every process leaves a 

distinct exergy destruction footprint. This footprint may be used to rationalize resource selections before 

to production and to monitor the usage of energy and resources throughout production. It may be utilized 

in a whole life-cycle approach to examine a product's overall energy and resource 'cost': basically, its 

exergy destruction footprint. It is critical to remember that there can be no output without an exergy 

destruction footprint. When designing more environmentally friendly technology, a deliberate attempt 

to decrease exergy degradation to a bare minimum is a goal to strive towards. 

Given the triple approach to sustainability (TBL), even exergetic analysis bridges well this concept; in 

fact, (Morosuk and Tsatsaronı̇s, 2012) graphically depicted some conceivable interdependencies among 

exergy, economics, and environment already in 2012. These dependencies are shown in Figure 2.9 
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Figure 2.9 - Interdependencies between exergy destruction and the three dimensions of the TBL paradigm 

A first approach may appear to be that exergetic analysis provides a more abstract interpretation of 

concepts already known as the thermal efficiency of a thermodynamic cycle, but exergetic analysis is a 

useful investigation tool to identify which They are the causes that determine the plant's thermal 

efficiency reduction. The use of exergetic analysis is exactly in its capacity to detect exergy to the extent 

The potential to create work and, thus, as a measure of energy quality. The other significant attribute is 

its relationship with thermodynamic properties (such as pressure and temperature), for which it is also 

a thermodynamic property. It is therefore feasible to measure the exergetic loss owing to the 
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irreversibility of the Transformation in complex systems, offering indications on its origin and impacts 

on the whole process, in order to pinpoint the components on which intervention is most suitable. 

The fundamental principle of thermodynamics affirms the ultimate conservation of energy: it, like 

matter, cannot be generated or destroyed; nevertheless, it may be controlled to change the form in which 

it appears. In actuality, throughout thermodynamic processes, entropy is generated, and as a result, the 

quality of energy is degraded, as defined by the second thermodynamic principle. Consider the energy 

of a material flow as a measure of its potential utility, and you will be more easily induced. If you 

examine the same energy term of electricity and hot water, they have a very different quality of energy: 

unlike the electric current flow, the utility that can be gained from the scope of hot water is principally 

subject to its temperature and environment of reference. In reality, while it is theoretically conceivable 

to transform a full electrical flow into mechanical work, the same cannot be said for hot water, from 

which reversible work may be derived based on its Carnot limit (Boateng, 2016). 

Wmax = Q ∙  
T−T0

T
                     Eq.  2.9 

For these reasons, exergy, defined as "equivalent reversible work," has become a standard for measuring 

not only the quantitative but also the qualitative aspects of energy exchanges between many systems or 

between a system and the environment over the years. 

Figure 2.10 depicts a generic open system in equilibrium, the state of which is characterized by specific 

values of its physical and chemical attributes. The system interacts with its reference environment, which 

has certain physical and chemical features. 

 

 
Figure 2.10 - Generic open system control volume 

In addition, a generic system, such as the one seen in Figure 2.10, can interact with its reference 

environment in two ways: 

1) Non-material interaction: any interactions that do not include a flowing flow rate. Because exergy 

is defined as the reversible work that may be taken from a system, mechanical work and exergy are 

equivalent. They can be further subdivided into: 

•    Thermal interactions: the system can exchange heat via conductive, convective, or radiative 

modes on its second side. In this scenario, the maximum work done by a thermal exchange 

may be specified. It is feasible to acquire from the thermal flow studied, utilizing the 

reference environment as a thermal tank with an unlimited thermal capacity; heat is the word 

given to exergy associated with a thermal flow. Considering the environment as a thermal 

well at the reference temperature T0, with a given thermal power Q and a given control 

surface temperature T, heat exergy is computed as ExQ = Q̇ ∙  ∂, where ∂ it is referred to the 

Carnot factor, or non-dimensional exergetic temperature. When the temperature of the 
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control surface through which the heat exchange occurs is T, the heat exergy describes the 

transfer of exergy associated with the transmission of heat. The direction of the flow of heat 

exergy will be determined by the following factors: I) the sign of ∂: the Carnot factor will be 

positive if T > T0, and negative if T < T0; II) the direction of the thermal flow Q: positive or 

negative according to the signed conventions employed. 

•   Mechanical interactions: As a result of the work transfer, exergy transfers can be characterized 

in the direction and form to which they correspond.  

The work exergy is defined as Exw = Ẇ − P0 ∙  
dV

dt
. According to the signed conventions, an 

emphasis on the system has a positive sign and corresponds to outbound exegetic power, 

which is likewise positive. If the system is rigid, the second-term is null, and the work is 

completely accessible, matching to exergy. Mechanical work can take many forms, including 

system volume fluctuation work, shaft rotation work, electrical work, magnetic work, and so 

on. If the system is not rigid, it can mechanically interact with its surroundings by modifying 

its volume. Interactions between mechanical elements can, however, occur in the presence 

of a non-rigid system, such as spinning trees or electricity fluxes; 

2) Material interaction: it occurs whenever a state material flow and chemical composition different 

from those of the ambient pass through the system, interacting by work, heat, or chemical species 

exchanges. In the absence of nuclear, magnetic, electric, and surface tension effects, exergy 

associated with a material flow is a property of the system; it can be expressed as the sum of 

kinetics, potential, physical, and chemical exergy. Because it is related to a moving mass, exergy 

may also be represented as a specific measure. 

The interaction between a system and its reference environment can thus occur through the system 

control surface in different modes: energy exchanges (decreased in work or heat) or mass exchanges. 

Each of these interactions is associated with a certain quantity of exergy, which represents the amount 

of reversible work that may be achieved from the interaction or as a group of interactions considered in 

the analysis. The overall exergy associated with the system is therefore sum of three contributions 

associated with work, heat and mass flows. 

Instead, in the case of manufacturing systems, which is the major issue of this thesis, it is conceivable 

to neglect specific potential and kinetic exergy contributions and focus just on specific chemical and 

physical exergy (referring to material and energy flows). 

The foundation of EA is stated by the first and second principles of thermodynamics. The first law deals 

with energy conservation, while the second deals with the quality of energy and materials. These 

thermodynamic rules underlying the EA are critical for tracing the set of parameters that must be 

measured and monitored throughout the process, as well as the variables that may be derived. According 

to Szargut's research (Szargut et al., 1987), reference flows can be uniquely recognized in the balancing 

equations below. 

Eq. (4)'s mass flow balance explains the balance for the investigated system of in and out material flows. 

∑ ṁk
i

k = ∑ ṁk
o

k                    Eq.  2.10 

Energy flow balance is reported in Eq.  2.11. Because energy is a broad variable, the energy of a system 

in a given state equals the sum of the energies of all subsystems that can be identified as being a 

component of a particular system (Bakshi et al., 2011). The entire energy content of an isolated system 

cannot change, as stated by the first rule of thermodynamics: energy is conserved (Terzi, 2018). As a 

result, energy may only be transformed or converted from one kind to another, with no regard for energy 

quality loss. To identify and quantify the irreversibility, an EA must be performed. Closed material and 
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energy flow balancing with energy interactions (work and heat) between incoming and outbound flows 

from the system boundaries must be performed to accomplish it. 

∑ Ḣc
i

c + ∑ Ẇd
i

d + ∑ Q̇p
i

p = ∑ Ḣc
o

c + ∑ Ẇd
o

d + ∑ Q̇p,tot
o

p                  Eq.  2.11 

Exergy flow balance is stated in Eq.  2.12. Because it is neither visible or even feasible in nature, the idea of 

equilibrium is frequently questioned. Unlike energy, exergy is not preserved. In any genuine process, it is instead 

consumed or destroyed to some extent. As a consequence, the quantity of exergy destroyed by the system may be 

calculated by accounting for all of the exergy streams in the system. The exergy loss is proportional to the entropy 

created; the lost exergy, or produced entropy, is responsible for the system's less-than-theoretical 

efficiency. When work is exchanged or heat transfers occur, the exergy destruction rate (Ėxloss) may be 

calculated by balancing the exergy between inbound and outgoing flows. 

∑ Ėxc
i

c + ∑ Ẇd
i

d + ∑ (1 −
T0

Te
) Q̇p

i
p = ∑ Ėxc

o
c + ∑ Ẇd

o
d + ∑ (1 −

T0

Te
) Q̇p

o
p + Ėxloss          Eq.  2.12 

In the term (1 −
𝑇0

𝑇𝑒
), T0 is the dead state reference temperature and Te is the equilibrium temperature, 

as defined in Eq.  2.13.   

Te = 
Tk

i  + Tk
o

2
                     Eq.  2.13 

The following equations are used to compute the enthalpy flow rate (Eq.  2.14), specific entropy (Eq.  

2.15), and exergy (Eq.  2.16): 

Ḣ  = ṁ ∙ c ∙ (T − T0)                   Eq.  2.14 

s = c ∙ ln (
T

T0
)                    Eq.  2.15 

Ėx =  ṁ ∙ [h̅ − h̅0 − T0 ∙ (s̅ − s̅0)]                  Eq.  2.16 

The process or its components' performance indicators are stated in the following net and general 

efficiencies (Eq.  2.17 and Eq.  2.18), depending on whether the goal is to assess the percentage of 

relevant exergy for the realization of the final product or the total exergy of the process: 

ηn =
∑Exproduct

∑Exin                     Eq.  2.17 

ηg =
∑Exout

∑Exin                           Eq.  2.18 

The optimization criteria entail minimizing the term Exloss, which is the source of the process's less-

than-theoretical efficiency. Temperature changes are important in the exergetic equilibrium. The bigger 

the temperature difference between two transition phases, the more energy is generated. The energy 

balance in Eq. (6) is also significant for optimizing product quality. This means that energy analysis 

makes possible at the same time to increase the quality of the finished product, to control its 

characteristics and to reduce the energy costs of the process (Kamps et al., 2018). 

Each complex manufacturing system is distinguished by the combination of multiple elementary 

subsystems. Attention should be made to its subsystems as well as the overall system in order to evaluate 

it from an energy standpoint. It is an issue of accurately identifying the control volume each time, since 

the object of the research varies: the writing of the exergetic budget and the computation of its efficiency 
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are consequences and functions of the control volume choice. It's worth noting that, while the energy-

type efficiency yield or characteristics allow to compare machines of the same kind; the exergetic yield, 

which also expresses energy quality, allows you to compare machines of various types. 

The following are the primary benefits of using exergetic analysis: 

1) The ability to compare different energy systems, such as direct cycles and inverse cycles; 

2) Possibility of locating and quantifying the real sources of system inefficiency, giving helpful 

information, and properly resolving the resource expenditure to improve the system's effectiveness. 

 

To summarize and conclude, exergy is a unit of measurement for usable energy. The true efficiency of 

an energy system or process is referred to as exergy efficiency. In this regard, the second-law exergy 

technique, when contrasted to standard first-law thermodynamics energy approaches, can uncover and 

quantify the reasons of inefficiencies. Exergy is thus the appropriate statistic for valuing energy 

consumption and resource scarcity. However, the practical implementation of exergy for resource 

evaluation meets numerous challenges: first, any exergy accounting involves the establishment of a 

reference environment that is in thermodynamic equilibrium (Gaudreau et al., 2012). This proves to be 

rather difficult: can the planet in its current condition (not in equilibrium) be used as a reference setting, 

or should a hypothetical earth in thermodynamic equilibrium/maximum entropy be assumed? Second, 

because chemical exergy comprises both enthalpy and resource concentration, exergy combines the two 

characteristics of energy content (formation enthalpy/heating value) and availability (concentration). 

This is consistent with the nature of exergy, but it might be deceptive when used to resource estimation 

(Finnveden et al., 2016). Energy resources have a high exergy value, whereas even rare but very inert 

(= low enthalpy) substances have a low exergy value that can only be estimated by looking at their 

concentration exergy. Although exergy continues to be of relevance for resource depletion accounting, 

being a scientific thermodynamic method with few assumptions, it is objective (Peters, 2021).  

 

2.1.3. Hybrid Exergy-Life Cycle Assessment 

Sustainability is defined by a dynamic multidimension, and no apparent, simple solution appears to be 

capable of dealing with its entire complexity. To collect detailed knowledge from a manufacturing 

process in terms of productivity, performance, quality, and reversibility, a variety of evaluation 

approaches are used independently or in a hybrid way throughout the multidimensional sense of 

sustainable development. Hybrid modelling is another viable option for balancing bottom-up and top-

down evaluation methodologies.  

According to the preceding paragraphs, while traditional LCA tools place a strong emphasis on 

emissions, EA focuses on resource and product availability and utility, and is thus efficiency oriented 

(Moya et al., 2013). Each approach reflects on the same problem: integrating two distinct points of view 

may lead to the usage of the combined methods' strengths while decreasing the flaws of the individual 

ones (Milanovic et al., 2017).  

The following issues were raised concerning hybrid methods: how are they employed in case studies? 

What is the advantage of a hybrid analysis over a traditional one? How effectively are LCA and EA 

mathematically and in terms of the flows to be evaluated integrated? Which starting hypothesis governs 

the selection of the best hybrid method? Is there a superior one than the others? 

The dictionary definition of “Hybrid” (as a noun in the early 17th century) is: "from Latin 'Hybrida,' 

meaning 'bastard,' of unclear derivation." Something created by merging two or more distinct parts. 

Characteristics that are conflicting. A term made from of components from other languages, such as 

television (tele from Greek, vision from Latin). A vehicle powered by both a gasoline engine and an 

electric motor" (Cambridge English Dictionary, n.d.). Composite, cross-bred, interbred; compound, 
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combined, blended, mongrel, impure are synonyms. As a result, a hybrid technique of evaluation entails 

combining, merging, or cross-breeding one or more approaches to offer a comprehensive picture of the 

same system or phenomena defined by diverse data types and dynamics. Otherwise, it may be thought 

of as a model involving linked approaches based on many methodologies, each expressing one aspect 

of the system in the most appropriate way in relation to reality, with a level of interconnection ranging 

from basic comparison to entire fusion (Vincenot et al., 2017).  

2.1.3.1. Hybrid models state of art 

Since now, there have been several hybrid techniques that integrate EA and LCA that are available in 

the literature. In Figure 2.11, the hybrid techniques indicated below, together with their respective 

authors, are shown in sequential sequence. 

 
Figure 2.11 - Timeline of hybrid EA and LCA methodologies discovered in the literature 

• (Valero, 1986) developed Thermoeconomics (TE), a monetary costing system that blends the ideas 

of the second law with traditional cost accounting methodologies. He began by considering that the 

economic dimension, because it involves matter, energy, entropy, and other externalities, should 

also be modelled as a thermodynamic process, and thus integrates thermodynamics and cost 

accounting principles, measuring the expense of the product or process with either exergy 

accounting. Exergy is referred to as TE because, according to the 'exergy costing theory,' exergy 

represents the true usage value of goods. The objective is to establish the optimal balance between 

system performance and overall costs. One disadvantage of TE is that the costs of environmental 

restoration are inconsistent since the exergy of an outflow and its toxicity may not have a 

thermodynamic-physically determined relationship (Sciubba et al., 2012).  

• (Szargut and Morris, 1987) made the first attempt to merge EA and LCA in 1987, developing the 

Cumulative Exergy Consumption (CExC). This method, which is equivalent to Valero's exergy cost 

method (as stated by (Stougie, 2011)), consists of a set of balance equations expressing the 

cumulative consumption characterizing the process as a sum of the cumulative consumption 

connected to the natural resources extracted directly from the environment. Szargut was able to 

calculate the process's Cumulative Degree of Perfection (CDP) using this approach. 

• The Cumulative Exergy Demand (CExD), created by (Bösch et al., 2007), is an analogous approach 

of CExC that is currently included as an effect assessment method in all main LCA software 

packages. It calculates the overall exergy drawn from nature to produce a product by adding the 

exergy (chemical, kinetic, hydro-potential, nuclear, solar-radiative, and thermal) of all energy 

carriers used in the process. The last impact category is divided into eight resource groups (fossil, 

nuclear, renewable, hydropower, biomass, water, minerals, and metals). Its interpretation entails 

assessing both the quality and amount of the resources required by the process in order to produce 

a certain functional unit. One of the fundamental disadvantages of this technique is that the social 

need for a resource, as well as its technical supply or scarcity, are not taken into account in CExD. 
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• Exergetic Life Cycle Assessment (ELCA) and Zero-Exergy Emission ELCA (Zero-ELCA) methods 

were developed by (Cornelissen, 1997) in his PhD dissertation. The ELCA uses the same structure 

as the LCA, but is evaluated in terms of life cycle irreversibility, i.e., the exergy loss of a product 

across its entire life cycle. ELCA's inventory analysis is more comprehensive than LCA's; there is 

no need for classification during the impact assessment since the process allows for the computation 

of energy and matter flow in a single unit of measurement. The ELCA is a time-based extension of 

CExC in which the material and energy streams are examined throughout the system's life cycle, 

including maintenance and deconstruction. In Zero-Exergy Emission ELCA, the primary exergy 

cost is calculated while additionally taking into account the environmental effect of pollutant 

emissions from emission abatement techniques. CExC, ELCA, and Zero-ELCA, like CExC, do not 

contain labour and capital fundamentals. 

• Another remarkably interesting concept is Emergy. Emergy analysis describes a product or process 

in terms of solar energy equivalents, or how much energy would be required directly or indirectly 

to generate an output if solar radiation were the sole input. Because emergy is thought to be 

embodied in the product or processes, the term embodied energy was simplified to emergy. (Odum 

and Odum, 2000), who was concerned in environmental and energy quality issues, established this 

notion. Matter and energy flows are quantified in solar equivalent joules (sej) using a conversion 

factor known as 'Solar Transformity' or Unit Emergy Value (UEV), which is the amount of Emergy 

necessary to produce one unit of a specific product or service. Transformity is important because it 

allows for a hierarchical structure between energy flows and different sub-systems. The superior 

output energy flow is hierarchically superior. The higher an energy flow's hierarchical rank, the 

more transformations are required to obtain it (Odum, 1988). Because of its ability to capture the 

dynamics of large open systems, Emergy is a viable accounting tool for supporting environmental 

management initiatives (Jiang et al., 2019). Emergy reflects the energy costs of a system in terms 

of solar power throughout each transition in the life cycle, and it is easily comprehended in 

monetary terms as well. Several publications in the literature link Emergy directly to LCA; one of 

these hybridizations is called Emergy Based-LCA, and it is formally provided by (Reza et al., 

2014a), who say that Emergy is a beneficial supplemental tool to LCA rather than an alternative 

technique. Actually, it has been explored about coupling emergy analysis with LCA since (Li and 

Wang, 2009)but the technique known as Emergy Based-LCA was better formalized in 2013. 

Because the Emergy study is capable of systematically evaluating the role of environmental, 

economic, and social impacts in an energy-based framework, the indirect effects of raw materials 

and energy carriers as environmental support for the production of any output, including monetary 

capital, can be measured and identified using a single metric. 

• (Wall and Gong, 2001) introduced a method called Life Cycle Exergy Analysis (LCEA) to solve the 

disadvantages of the LCA's multidimensional approach. The distinction between LCEA and ELCA 

is ephemeral: it is at the level of aggregate. The first combines all exergetic contributions at each 

stage (high level of aggregation), whereas the second disaggregates any exergetic input at each 

stage of the life cycle to emphasize local irreversibilities. Another contrast is the separation between 

renewable and non-renewable resources. 

• Extended Exergy Accounting (EEA) by (Sciubba, 2001) is an approach to performing design and 

configuration optimization of a system evaluating overall resource consumption because it enriches 

the energy and matter flow with some other 'externalities' (Rocco et al., 2014) as capital flow, 

environmental damage remediation costs flow, and labour flow, always in exergetic terms, where 

the calculations are done along all system's Life Cycle phases. All terms of the production cost 

function are translated into exergy flows in order to generate an exergy cost function in a single 

measure. One disadvantage of this technique is that substantial assumptions must be made in the 



 

35 

computation of the conversion factors since they must be viewed as primary resource flow. EEA, 

like ECEC, allows for the provision of economic data in primary exergy equivalents. The extended 

exergy cost function produced from EEA may be used to replace the economic cost function across 

the Thermoeconomics framework to identify and optimize the utilization of a system's natural 

resources. Therefore, should be noted that EEA is a newer approach than others that are well 

established, and it requires more validation before it can be considered a standard assessment 

method. 

• (Hau and Bakshi, 2004) suggested an extension of CExC termed Industrial/Ecological Cumulative 

Exergy Consumption (ICEC/ECEC). The primary distinction between ICEC and ECEC is that the 

former does not take into account the exergy losses of ecological processes in its calculations, but 

just the non-renewable natural resource use in terms of exergy losses. ECEC is specifically related 

to Emergy Analysis and consists in including in the assessment the exergy consumed by ecological 

processes for the processing of raw materials, the dissipation of pollutants, and the operation of 

industrial systems, whereas CExC focuses solely on natural resources, ignoring ecological products 

and services. The ECEC analysis is predicated on the concept that ecosystems produce all products 

and services at the cost of one solar equivalent Joule. With the ECEC, it is feasible to evaluate the 

system from a monetary standpoint thanks to emergy balances. (Yang et al., 2013, 2015) were 

successful in including economic and environmental considerations into ECEC computation. 

Currently, the model based on ecological LCA considers three factors: resource use, economic 

capital, and environmental effect. Because ECEC is a very advanced technology, information about 

it is still evolving, and it has limited use in the industrial area. Another flaw in ECEC analysis is 

the unpredictability in emergy transformities.  

• Another more recent technique that deviates significantly from the CExC is the Cumulative Exergy 

Extraction from Natural Environment (CEENE), which adds the cumulative exergy expenses of 

land occupancy to standard CExC accountings. According to this theory, land usage is just as 

significant as other categories since the land uses solar irradiation (represented in exergetic effects) 

to exist and sustain itself, hence occupying areas of land reduces the odds of capturing solar energy. 

(Dewulf et al., 2007) created this technique and immediately offered the methodological support to 

integrate it with LCA; in fact, it was born with the intention of being compatible with current LCA 

datasets. 

• A different method presented by (Dewulf and Van Langenhove, 2002) is termed 

Thermodynamically Based-Life Cycle Analysis, and it presents a framework for measuring all of a 

process's or product's effects on the Ecosphere and population on a single objective scale. The 

authors propose an open system in which the Ecosphere, Technosphere, and society interchange 

exergy created by solar energy, resources, products, wastes, and a fraction of the heat irradiation 

associated with process irreversibility through time. This method integrates life cycle impact 

assessment, exergy analysis, and socio-economic aspects into one large exergetic equilibrium of 

pollution and related human and ecotoxicological impacts across the entire life-cycle in terms of 

exergetic losses, i.e., the risk of opportunity depletion for current and future generations.  

• (Szargut and Stanek, 2007) later proposed the Thermo Ecological Cost (TEC). They expanded the 

Exergy Analysis into the environmental dimension based on CExC to account for the cumulative 

consumption of natural resource costs in terms of environmental consequences. This technique 

specifies environmental costs in order to limit the adverse effects of pollutants discharged into the 

natural environment (Stanek et al., 2014). The original TEC was concerned with the investigation 

of the single operational phase under the Life Cycle concept. The first TEC investigated the only 

activity inside the Life Cycle thinking. In recent years, TEC has been partnered with or integrated 
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into LCA in a number of works to quantify the worldwide impact of a given manufacturing process 

(Domínguez et al., 2014; Stanek, 2018).  

• Exergoenvironmental Analysis, pioneered by (Meyer et al., 2008), evaluates the environmental 

effect of each component of a system as well as the true sources of the impact by integrating exergy 

analysis and LCA. The Exergoenvironmental Analysis incorporates both traditional exergy analysis 

and environmental analyses such as LCA to assess the impact of exergy losses and exergy 

destruction on environmental sustainability. The first step is to do an exergy analysis on all of the 

material and energy sources. The second stage includes the LCA of each component or subprocess 

all the way up to the input streams to the overall system. The environmental implications of LCA 

are assigned to the exergy streams in the third and final stage (Tsatsaronis, 2007). 

• Exergoenvironmental Analysis is frequently used in tandem with Exergoeconomics, which was 

introduced earlier than the latter by (Tsatsaronis, 1984). Exergoeconomic analysis combines 

thermodynamics and economics to determine the cost of a product or process. It correlates exergy 

losses with capital expenses in order to build an economically viable efficient system that is not 

possible with traditional solitary energetic or economic analyses. (Aghbashlo and Rosen, 2018a) 

dubbed the integrated framework of exergy analysis, economic principles, and environmental 

evaluation 'Exergo-econo-environmental analysis'. Advances have been made by integrating 

Emergy with traditional Exergoenvironmental and Exergoeconomic Analysis (Aghbashlo and 

Rosen, 2018b): the monetary term and the environmental impact score are substituted by the solar 

emergy joule (sej) going to standardize the metric of their outputs. This allows to better understand 

and interpret the results e provide an accurate picture of the same phenomenon in both 

environmental and economic dimensions.  

• (Stougie, 2012) introduced the Total Cumulative Exergy Loss (TCExL) procedure, which was 

previously known as CExL. The TCExL is a technique that combines or extends the CExC, 

CEENE, and ELCA approaches. The system, which is based on basic mathematical concepts, has 

been designed to take into consideration as many aspects of sustainability as feasible. By analysing 

the net total exergy loss emerging from a technical system, the TCExL method indirectly addresses 

resource degradation and scarcity, exergy loss produced by waste flow and emissions management 

systems, and land use systems. One benefit of TCExL, according to (Stougie and van der Kooi, 

2016), is its independence from time and weighting considerations. It would reduce the objectivity 

of the overall process since it involves factors and equations that are not derived from 

thermodynamic rules. As a result, it does not expressly strive to combine the economic and social 

components of sustainability, but they are regarded indirectly since they represent a certain degree 

of indirect exergy flow. 

• (Rocco, 2014) defined an integrated technique termed Exergy based Input - Output analysis (ExIO) 

in his doctoral dissertation. Its theoretical foundation is based on Leontief's Input-Output Analysis 

(IOA) (Bjerkholt and Kurz, 2006), which is one of the most widely used methods in both 

Environmental Impact Analysis and Economics, as well as Exergy Analysis, which is applied in a 

Life Cycle perspective. The fact that the creation of products and services in modern economies 

may result in significant indirect resource depletion or other externalities that are missed by 

traditional methodologies was the spark. The ExIO is unusual in that it has numerous unique 

'extensions' cantered on the case study's features, one of which is the Hybrid Exergy-based Input-

Output Analysis (H-ExIO), in which the exergy is utilized to characterize both external resources 

and the foreground system. As a result, the system boundaries include direct primary exergy 

requirements as well as indirect primary exergy requirements due to the system's supply chains, 

i.e., the estimation of the product or process's primary exergy costs as well as the associated costs 

of exergy losses throughout the transformation. 
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2.1.3.2. Integration modelling degree 

The assessment techniques listed above each propose a hybridization strategy between traditional 

methodologies in their unique way. Their integration levels differ, and this issue has never been 

discussed previously. Because the review was done from a different point of view than other studies, 

the findings of this part reflect the heart of this study as well as an upgrade to the literature's state-of-

the-art. In the generic functional system model shown in Figure 2.12, the structure of an analysis is 

always determined by the context in which it is performed, i.e., the purpose and scope of the analysis, 

as well as the specification of the functional unit to be studied. It also relies on the type of streams to be 

studied, the data available, and the amount of depth of the study. To this purpose, EA-LCA hybrid 

methodologies were used to examine the following for each case study: 

- The fundamental aspects of any assessment, namely the starting assumptions, the functional unit, 

system boundaries, operating context, and related goal and scope definition; 

- The types of input and output streams considered in the analyses (which have been generalized and 

schematized in Figure 2.12) as well as the reference units of the streams to comprehend their physical 

nature; 

- The databases that were utilized during the inventory phase; 

- What characteristics of sustainability were taken into account in the analyses; 

- What dimensions of sustainability were taken into account in the analyses; 

- The approximations made throughout the analyses and how they were justified;  

- The mathematical equations on which each evaluation is based, the analysis of which has permitted 

the most consistent formalization of interoperation models;  

- The metrics used to depict the results; 

- Where applicable, the indicators and/or multi-criteria analyses utilized to deal with the finding’s 

interpretation phase. 

 

Figure 2.12 - Generic functional system model 

The examined characteristics indicated four recurring degrees of integration. Let us add an auxiliary 

notation to focus on the integration models (schematized, to be clearer, in Figure 2.13): within the 
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framework of the analysis (braces), round brackets indicate the LCA contribution, and square brackets 

reflect the EA contribution. 

 

Figure 2.13 - Scheme of the integration models. Exergy is [ ] and LCA is ( ) 

QUALITATIVE MODEL 

The weakest integration occurs following the qualitative model, in which EA and LCA are carried out 

independently. During the interpretation step, their outcomes are simply compared. This model is 

typically used when the goal of the research is to acquire a more detailed knowledge of the effective 

utilization and loss of resources and wastes in order to establish the best approach for optimizing both 

the process and the product. Furthermore, because of the well-known variability of the presented results 

and their poor comparability, auxiliary multi-criteria evaluation approaches are frequently used, see 

(Wang et al., 2015) for results using a multi-objective optimization model; (Mejia et al., 2012) for 

decision-making using the PROMETHEE-GAIA multi-criteria model; (C. Zhang et al., 2019) for multi-

factor evaluation and decision making method for trans-critical ORC through a Fuzzy Analytic 

Hierarchy Process; and (Arnal et al., 2020) Another option is to extract dimensionless indications from 

both approaches and then compare them (Medyna et al., 2009a; A.F.C. Fortes et al., 2018).  

There are various situations in the literature where this approach has been used. (Beccali et al., 2003) 

conducted an ELCA on the production process of two different plaster products. Throughout the 

interpretation phase, the impact categories derived from the LCA were supplemented by an exergetic 

index to produce a thorough multi-criteria summary of effective resource consumption and the 

associated environmental impacts (with LCA) and the extent of wastes and depletions along the 

processes (with EA). (Mejia et al., 2012) did a similar case study. The authors were able to select the 

best alternative material to conventional plastic for shopping bags and bottles using a multi-criteria 

method that included LCA's GWP and EA's exergy loss. (Contreras et al., 2009) and (Moya et al., 2013) 

compared the LCA results from dominant impact categories of Eco-Indicator 99 and CExC of four 

different cane sugar production processes for by-products valorization in order to gain information both 

on their environmental impacts and the resources consumption efficiency. Another very similar study 

was performed by (Shirkhani et al., 2018) to determine the environmental sustainability of the Iranian 

cement production plant, which studied the effects and risk parameters based on CML baseline, 

IMPACT 20021, CExD, and Eco-indicator 99 methods. (Milanovic et al., 2017) made the first effort to 

utilize ELCA in a mobile communication network by comparing the solar-powered hybrid base 

transmitter with the standard model, but the study is insufficient owing to a lack of reliable and consistent 

data for disposal situations. In this case, eleven CML-IA LCA and CExD effect categories were 

compared. (Finnveden et al., 2016) focused their research on the effective use of resources and wastes 

on two case studies: ferrous waste recycling and the manufacturing and usage of a laptop computer. 

They argued that the contrast between CExD and EA may lead to better interpretations if CExD is a tool 

that quantifies all sorts of resources in exergetic terms and the thermodynamic approach is based on 

strong research and gives conclusions that are useful to decision-making. CExD and EA are also 

compared to other LCA evaluation methods such as ReCiPe, Eco-Indicator 99, CML-IA, and CED in 
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order to give a holistic picture of environmental consequences and resource depletion. The similar 

strategy may be observed in (Khanali et al., 2017)'s study of the Iranian saffron production process. 

CML and CExD effect categories were analyzed to determine the major hotspot during cultivation. 

(Mehmeti et al., 2018)'s work is unique in that they included information regarding the economic 

elements of the procedure in a 'multi-impact assessment'. The findings of the LCA ReCiPe procedure's 

environmental evaluation of the molten carbonate fuel cell system (MCFC), the findings of the CEENE 

research to calculate the MCFC resource footprint in an exergetic method, and the leveling cost of 

energy to analyze the process's economic feasibility are compared. (N. Faleh et al., 2018) did a thermo-

environmental LCA study on the biodiesel production system by transesterification of mutton tallow to 

choose the optimal mixture of different biodiesel structural components. The results of the process 

simulation using the Aspen Plus™ software were used for the EA as well as inputs to the Life Cycle 

Inventory Analysis and, finally, the LCA. Finally, the results of standard EA and LCA were compared 

to thoroughly evaluate the process from thermodynamic and environmental perspectives. (Stougie et al., 

2018) evaluated the environmental sustainability of three different biomass power production systems 

using the ReCiPe impact categories and the exergetic sustainability using the TCExL. This technique 

may compare not only the systems, but also the assessment procedures, based on the data gathered. 

Furthermore, the authors investigated how the various ways in which the goods were assigned and 

avoided in the research may have an impact on the outcomes. Another example of a qualitative technique 

is the use of Thermoeconomic Analysis. (A.F.C. Fortes et al., 2018) conducted an illustrative example. 

The goal of this research was to divide the environmental consequences and costs of food dehydration 

and water generation by a heat pump among its components. LCA was performed to examine the 

emissions connected with the process. EA was performed to identify the components with the biggest 

exergy losses, and economic analysis was performed to determine the monetary cost. The outcomes of 

each component were then compared. (Domínguez et al., 2011) conducted a combined economic and 

environmental analysis (ELCA) of various energy sources for electric power generation in order to 

evaluate the relationship between non-renewable and renewable resources over the entire life cycle of 

each energy source considered, including economic aspects. They began with a traditional LCA using 

Eco-Indicator 99 effect categories. The overall investment expenditures of each energy system were 

then compared to the Demand of Exergy Accumulated (DExA), which indicates the complete removal 

of exergy from nature throughout the creation of a system product. The authors were able to select the 

optimum alternative method for electric power generation by comparing all of the outcomes. 

According to what has been discussed so far, the findings of the impact categories in LCA assessment 

methodologies (for example, Eco-Indicator 99 or ReCiPe) and the EA outcomes in such studies are not 

precisely similar. Aside from the many units of measurement that can be standardized and transformed 

into non-dimensional units, the exergy analysis does not explicitly account for the impacts of emissions 

or analyze land use. On the contrary, LCA does not include information on the quality of processes or 

the true efficiency of resource consumption, but rather focuses on their repercussions. ELCA is always 

applied via a gentle interface between Exergy Analysis and current LCA tools and databases. 

SUMMATIVE MODEL 

The summative integration model is the second. The technique is slightly different from the previous 

one in that the EA is conducted at each step of the life cycle, which is included in the system boundaries 

of the specific analysis to be performed. In this case, the economic dimension may be easily included as 

long as it is turned into energy flow, as detailed in the first place in (Cornelissen and Hirs, 2002) and 

afterwards in more recent ways such as (Açıkkalp et al., 2018). The exergetic losses at each step of the 

life cycle may be examined separately, summed collectively, or combined, depending on the scope of 

the analysis. The same is true for the efficiency indices. This method should be used while doing 
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research to determine which stage of the process or product's life cycle is the most energy-efficient. In 

the event of an early design phase, the process system or the product itself may have already been 

enhanced; in the case of an existing analysis, efficiency interventions on the plant or production cycles 

may be planned.  

The summative model is commonly used with ELCA. (Cornelissen and Hirs, 2002), for example, did 

an ELCA on four different types of wood waste treatment to evaluate both the usage and depletion of 

the natural resources necessary for the procedures. The scientists were able to pinpoint where and when 

natural resource depletion occurred by estimating the quantity of exergy losses for each component at 

each life cycle stage. The ELCA results were also compared with traditional LCA results in this study 

to better understand the environmental implications of waste and natural resource depletion. (Wang et 

al., 2011) implemented ELCA on a CO2-zero-emission energy plant comprised of a coal-fired power 

system and a CO2 abatement system using a very different architecture. The goal of using exergy as a 

basic physical parameter of energy and resource consumption and environmental impact management 

in the inventory analysis and impact assessment rather than the conventional LCA is to use exergy as a 

basic physical parameter of energy and resource consumption and environmental impact management 

in the inventory analysis and impact assessment. The authors computed the CExC and pollution 

abatement (AExC) of the facility during the phases of building, operation, and decommissioning. 

(Aleksic and Mujan, 2016) used ELCA on electrical devices in smart grids. They computed the 

embodied and operational exergy losses of each component of each sub-process, as well as the losses 

during each life cycle step. Encourages the presence of the most influential material/component in smart 

grid equipment and at the most consuming stage. As a result, it is simple to select the most appropriate 

policies for improvement. (Rocco and Colombo, 2016) used the ELCA to an electrical production 

Waste-to-Energy system. They calculated the basic energy expenses as well as the monetary costs of 

the life cycle during the building, operating, and maintenance stages. When describing the stages of the 

life cycle in the evaluation, (Dincer and Rosen, 2013) took a different approach than Rocco and Aleksic. 

Their ExLCA was evaluated using fossil fuel supply, dividing exergy consumption into direct exergy 

lost during transformation and indirect exergy loss from embodied exergy released by construction 

materials and machinery during all life-cycle stages. The economic ramifications of indirect exergy 

losses are also included in this research, along with an independent capital investment efficiency factor. 

The authors adopted the exergy technique in this research to reduce the irreversible character of the 

manufacturing life cycle, but it is important to note that the exergy is also impacted by a certain degree 

of uncertainty due to the irreversibility and non-linearity of the real system itself. (Lettieri et al., 2009) 

created a set of advantages and cons for using exergy in LCA using the Life Cycle Exergy Analysis 

(LCEA) framework in 2008. Among the benefits, the most important is that this information will identify 

circumstances in which urgent technological improvements may be made, which should be allocated to 

maintenance processes, efficiency improvements, or optimizations. The authors offered a demonstration 

by applying this strategy to Computer Servers in a Data Center as a case study. They measured the 

server's exergy consumption at each stage of its life cycle, from raw materials extraction to disposal and 

recycling. (Wall, 2011), who used LCEA to a wind power facility, found the same benefits highlighted 

by Lettieri et al. a few years earlier. His LCEA framework consisted of computing the exergetic balances 

of the wind power plant's key life-cycle stages, from turbine production through destruction and 

sanitation. LCEA's application to various wind generating systems provided an excellent description of 

the exergy fluxes involved. 

The inclusion of exergy in the LCA in analyzing the use of natural and non-natural resources, renewable 

and non-renewable resources, allows the evaluation to be more objective and robust, which is a 

noteworthy consequence of this study. 
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Aside from (Hau and Bakshi, 2004), (Yang et al., 2015) and (Wang et al., 2019) conducted ECEC 

analyses on a Chinese raw-coal manufacturing facility and an Organic Rankine Cycle for waste heat 

power generation, respectively. The former used their new expanded ECEC, which included ecological, 

environmental, and economic considerations, to determine the best optimization method for the process. 

The authors emphasized, particularly in terms of economics, that this technique supplements traditional 

economic analyses such as the Life Cycle Cost (LCC). Because this was the first attempt to adopt 

expanded ECEC, there were ambiguities and difficulty in organizing all of the data (information). (Wang 

et al., 2019) also attempted to adapt ECEC analysis to the ORC system in order to examine the 

environmental, resource consumption, and economic implications of 1 kWh of energy generation over 

the whole life cycle. The outputs of the thermodynamic (energetic), economic, and sustainable (resource 

and environmental) goals managed to place the emphasis on diverse optimization goals and their 

viability in each of the works described above. EEA takes a very different approach to merging LCA 

and EA than the previous example study, owing to its differing monetary cost methodology. (Rocco et 

al., 2014) tested the practical use of EEA on an electric power transmission line with three different wire 

diameters. In the assessment they summed up energy and materials flow assessed with CExC, the 

environmental remediation costs of the pollutant pollution estimated by LCA and the labor and capital 

equivalents by exergy. The building, operating, and dismantling phases of the life cycle have been 

analyzed in this approach and according to the functional unit. The authors were able to estimate the 

ideal diameter using this technique, which gave the best compromise for a decrease in overall energy 

consumption, an environmental balance, and a large monetary savings throughout the operating period. 

The authors also discussed the benefits and downsides of the EEA technique in comparison to standard 

LCA or ELCA. (Dai et al., 2012) used EEA to elucidate thermodynamically the environmental-social-

economic link between the key seven Chinese industrial sectors. Their objective was to demonstrate that 

the EEA is applicable to all generic manufacturing systems, not simply energy generation processes. 

The data identified the most influential sector as well as a network of hierarchical reliance among these 

seven sectors. Throughout 2014, they released a number of particular indicators for the EEA-based 

sustainability assessment of key Chinese industrial sectors (Dai et al., 2014).  

IMPLICATIVE MODEL 

The strategy entails doing an LCA evaluation on a substance or method first, and then conducting an 

exergetic review just on the component or sub-process that has caused the greatest environmental effect 

amount. Such intervention is explained by the idea that increased usage of resources and energy has a 

higher environmental impact. This model is useful when it is necessary to simplify the analysis owing 

to the various sub-processes or multiple components of the product manufacturing. To date, this 

technique has been used in two works  (Dassisti et al., 2019; Selicati and Cardinale, 2021a). The authors 

used traditional LCA on die-casting process at an Italian industrial SME. The LCA research conducted 

allowed for the identification of the most essential product in terms of resource usage and emissions. 

The Exergy Analysis was then performed to the chosen completed product, determining the exergy loss 

for each sub-component. The system boundaries in measuring mass flow and energy flow in the LCA 

were different, which was fascinating. The implicative path in this study became a strategic framework 

to discover process optimization options, as well as prospective enhancements to the manufacturing 

process, and to establish an IoT monitoring strategy on the technologies. 

INTERLACED MODEL 

The final model, the interlaced one, incorporates LCA and EA the most. Integration can be accomplished 

in a number of ways. As demonstrated by (Portha et al., 2010) and (Hamut et al., 2014), it is feasible to 
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integrate LCA characteristics with Exergy or Emergy traits in a unique formulation or method. In this 

case, the conclusion is frequently expressed in energetic terms, although assumptions and 

approximations must nearly always be made (Dewulf and Van Langenhove, 2002). Furthermore, no 

case studies exist in which the exergy is transformed into the effect categories that characterize the LCA 

(e.g., Human Toxicity or Global Warming Potential). It is a one-sided change. The second strategy is to 

combine LCA and EA elements in a single indicator, as (Casas-Ledón et al., 2017) and (Gao et al., 2018) 

have done. Socioeconomic factors may be incorporated into the formulation as well as the indicators 

using the interlaced model. (Dewulf and Van Langenhove, 2002) provided one of the most complete 

frameworks recognized in the literature for the thermodynamic treatment of emissions and their human 

and ecotoxicological consequences. The authors examined several synthetic organic polymers for 

building insulation over time to establish their sustainability in terms of global exergy lost in the 

ecosphere, the technosphere, and the population, showing the rate of loss of possibilities for current and 

future generations. The authors presented a formulation in which renewal rates and particular exergy 

contents are assessed in time using a single thermodynamic measure. The former is derived from a life 

cycle evaluation of resource consumption and emissions, while the latter is derived from a phrase that 

measures the exposure to ecological and human damaging consequences. The latter is derived from an 

exergy study that includes some statistical thermodynamics to account for complicated biological 

systems. The main constraint of this study is the many assumptions and approximations made in the 

evaluation and application of statistical input data, particularly for society and biodiversity, but the case 

study indicated that it may be utilized in practice. (Portha et al., 2010) applied a coupled Exergy-LCA 

to two petrochemical processes to generate fuel and energy. They argued that when assessing a process 

involving the transfer of energy carriers, exergy is the ideal supplemental technique to LCA since it 

identifies process irreversibilities that LCA cannot solve on its own. They estimated the effects of 

greenhouse gas emissions by combining direct and indirect emissions. The former is produced by a mass 

balance of pollutants represented in CO2eq of the GWP of the LCA. The latter are derived from the 

quantity of exergy lost in the considered system as a result of unit creation or disassembly, electricity, 

and heat usage. Aside from this computation, the authors devised a 'quality factor' to assess the economic 

worth of the flows under consideration. Combining exergy with LCA allows you to compare two 

alternative processes with the same purpose in terms of resource depletion, climatic change, and 

monetary value.  

The literature has a number of case studies in which Exergoenvironmental research is conducted, 

frequently in conjunction with an Exergoeconomic evaluation. Following the first publication of the 

Exergoeconomic and Exergoenvironmental analysis by (Tsatsaronis, 1984), (Tsatsaronis and Morosuk, 

2008a, 2008b) proposed a 'advanced' Exergoenvironmental and Exergoeconomic analysis implemented 

on a gas-turbine based cogeneration system in order to evaluate the real energetic and economic potential 

for improving the system and its components by splitting capital costs, environmental impacts, and 

exergy destruction into end Because the unavoidable components cannot be further decreased owing to 

technological limits of the system or the reference environment, the authors have concentrated on 

decreasing the avoidable-endogenous parts. Because the unavoidable components cannot be further 

decreased owing to technological limits of the system or the reference environment, the authors have 

concentrated on decreasing the avoidable-endogenous parts. The endogenous component represents the 

efficiency of the actual system. The authors conducted and contrasted both ordinary and advanced 

exergoeconomic and exergoenvironmental analyses in the case study. The main disadvantage that they 

emphasized in the advanced study was the use of more or less arbitrary facts and assumptions, which 

were necessary for the division of the subsystems into avoidable and unavoidable components. Also 

(Buchgeister, 2010) used only traditional Exergoenvironmental analysis to generate electricity from a 

high-temperature solid oxide fuel cell, with the goal of demonstrating that this approach is a powerful 
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support tool for detecting the interdependencies between thermodynamic behavior of process 

components and environmental impacts. He stated that while this approach can be applied to a variety 

of processes (chemical, manufacturing, etc.), a unique and more practical method for conducting this 

analysis is still required. (Hamut et al., 2014) performed the first Exergoenvironmental analysis on a 

hybrid electric vehicle's thermal management system. Furthermore, the LCA is performed using 

SimaPro software and the Eco-Indicator 99 evaluation technique to identify the component with the 

greatest environmental effect. The authors indicated that the study needed to be improved by introducing 

a multi-objective optimization phase into the advanced framework to provide more objective data and 

information on trends and design improvements. (Cavalcanti et al., 2019) calculated exergy efficiency, 

specific cost, specific environmental impacts, and exergoeconomic and exergoenvironmental impact 

factors in order to evaluate a diesel engine with five diesel–biodiesel blends and three different load 

capacities and achieve the best conditions for electricity production. They proved that the choice of the 

optimal fuel is greatly impacted by the desired purpose, rather than being offered immediately and 

unequivocally by the comparison of outcomes.  

Because solar energy has gained tremendous interest in both electricity and heat generation over the last 

ten years, and because solar energy is one of the largest sources of renewable energy with no 

environmental impacts (Dincer and Rosen, 2017), many authors have focused their attention on this 

field, attempting to improve the efficiency of generation systems through environmental and economic 

analysis. (Casas-Ledón et al., 2017) were the first to apply the Exergoenvironmental study to the 

integration of municipal solid waste gasification with a combined power system in Chile (waste-to-

energy system). The system and its components were simulated using the Aspen One v9.0 program, 

however several assumptions were made in order for the simulation to operate. The research is 

complemented for these aspects by a sensitivity analysis, which also attempts to provide insight into the 

most significant concerns discovered at the component level during the evaluation of the 

Exergoenvironmental results. (Gao et al., 2018) performed exergy and Exergoeconomic evaluations on 

a coal-fired combined heat and power plant, focusing on better residue and CO2 allocation 

methodologies. The authors examined the cost of flue gas cleaning in the study for the first time, 

however the waste heat recovery system owing to recycling potential was not addressed. The following 

year, and similarly to Gao et al., (C. Zhang et al., 2019) conducted the same study on the coal-fired 

combined heat and power plant, including the waste heat recovery system. In the same year, (Yang et 

al., 2019) conducted the same study on the refrigeration, heating, and power system, focusing on a dual-

fuel CCHP device based on biomass and natural gas and analysing the system's thermodynamic 

efficiency and stream costs. (Montazerinejad et al., 2019) did the same thing on a novel CCHP hybrid 

solar system. A novel and fascinating research was carried out by (Okonkwo et al., 2019), which 

provided added value to the established studies on parabolic trough solar collector by evaluating the 

impact of its irreversibilities from an economic and environmental point of view via an 

Exergoenvironmental and Exergoeconomic analysis. The purpose of the work was to compare the 

traditional absorber tube with the innovative characterized with a converging-diverging geometry. 

(Aghbashlo and Rosen, 2018b) recast the Exergoenvironmental and Exergoeconomic studies in terms 

of emergy to unify the unit of measurement of their outputs and produce more ecologically sound 

conclusions. The authors also used the innovative framework to a cogeneration system based on a gas 

turbine. They employed the specific exergy costing (SPECO) approach to establish the conversion 

factors for each flow of matter, energy, and money in solar emergy joule, and then performed 

Exergoenvironmental and Exergoeconomic studies. 
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2.1.3.3. Integrated EA-LCA Highlights 

As previously said, EA and LCA are two recognized and documented feasible sustainability estimators, 

each with potential and limitations, similarities and distinctions. This work is far from a complete 

discussion of their theoretical basis, instead focusing on the most relevant practical aspects in order to 

explain why the two techniques should be integrated.  

Life Cycle Assessment is goal and scope oriented and based on steady-state calculations (ISO 14040, 

2006), Exergy Analysis is goal and scope oriented too, but its empirical usefulness varies whether the 

approach is product-specific or process-driven analysis (Liao et al., 2013); EA talks about dynamic 

equilibrium. LCA is a linear method while EA is a non-linear method due to process irreversibilities. 

Both procedures are time-dependent, although even the time range evaluated during an LCA is often 

greater than that considered during an EA. It is critical to create the framework of the research 

throughout the LCA and the EA, for which the LCA is titled "System Boundaries" and the EA refers to 

the defining of the reference environment. Both LCA and EA involve mass and energy balances, but 

LCA does not have a single measure; in fact, many writers regard it as a multidimensional approach. 

EA has a single measure, which improves practitioner comparability and comprehension of 

outcomes(Romero and Linares, 2014). LCA is based on cause-and-effect linkages and seeks to 

comprehend the environmental effects of occurrences (Hellweg and Mila i Canals, 2014). However, it 

is insufficient to define indirect consequences such as the connection between goods, processes, 

services, sectors, and so on and their surroundings (social, economic, environmental, and innovative 

goals) (Onat et al., 2017). On the other hand, according to (Hammond, 2004), the relationship between 

exergy consumption and resource efficacy is not yet direct, hence exergy analyses are insufficient to 

establish whether a system is sustainable or not. According to (Gaudreau et al., 2009), "despite various 

attempts, there is no empirical proof that there is a direct link between the quantity of exergy contained 

in the wastes of a process and the potential harm that this exergy is capable of inflicting on the 

environment." According to (Cleveland et al., 2000), subjectivity affects LCA outcomes owing to too 

many assumptions and approximations throughout the assessment, whereas EA ignores human 

preferences and needs. The consistency of the reference databases for the design of input and output 

flows greatly influences the accuracy and completeness of the LCI phase. The dependability of the 

databases has been extensively debated in the literature, see (Hellweg et al., 2001; Edelen and 

Ingwersen, 2006). The same is true for the EA, which is accompanied with databases. (Alvarez, 2013) 

and Szargut before her conducted research on similar databases, however his research was limited to 

chemical Exergy (Szargut and Morris, 1987) 

It is clear from this brief summary of the primary functional elements of LCA and EA that they are 

complimentary techniques. Other writers, see, agree with this assumption (Pati et al., 2009; Portha et 

al., 2010). It would be beneficial to apply these two methodologies in tandem, using hybrid approaches, 

for a systematic and fair assessment of sustainability. 

According to the literature, there are strong perspectives on the utility of exergy in conjunction with 

LCA as a measure of sustainability. Exergy inefficiencies are frequently employed as an extra effect 

category in the existing LCA paradigm; however, these impact categories are not directly comparable 

(Stougie and Weijnen, 2014). (Ozbilen et al., 2012; M.A. Rosen et al., 2012) shown the possibility of 

adopting EA as a single indicator in tackling environmental sustainability concerns. According to 

(Hernandez and Cullen, 2019), EA is a holistic, flexible, integrated, and transparent method that 

evaluates both quantity and quality of energy and resources and can be seen as an added value to 

traditional life cycle assessment; however, no simple guides, training, or software tools exist to facilitate 

its wider use. (Alvarenga et al., 2013) provide another point of view, focusing on another major aspect 

of LCA: the completeness of the characterization elements. They developed new exergy-based spatial 
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characterisation parameters for land usage as a resource within man-made or natural systems in this 

work, allowing for greater geographical distinction without double-counting resources. Characterization 

factor issues can also be encountered in (Zarei, 2020). 

Because sustainability may be assessed not just in environmental terms, but also in economic and social 

ones (Purvis et al., 2019), and because these dimensions are not immune to change over time, these other 

two aspects can be included in the evaluation. 

Nonetheless, economic and, notably, social issues are less studied in literature than environmental ones. 

A business, a technique, or an environmental alteration have all had a societal impact. The social factor 

is rarely analysed in the context of sustainable development strategies, or it is evaluated with a 

statistically incomplete, confusing, or incomplete weak connection (Assefa and Frostell, 2007). The 

reason is that there is a lack of knowledge about its implications in environmental and economic 

performances. (Clarke‐Sather et al., 2011) offer an insightful perspective on the societal, environmental, 

and economic aspects of SMEs. Because economic consequences are critical to decision-making, it is 

helpful to take account of the reality that exergy efficiency is directly linked to the costs of the operating 

process or activity. EA is prone to be combined with economic considerations to find cost-effective and 

realistic improvement options (Salehi et al., 2018). 

Concerning the other aspects of sustainability, the economics may be an essential feature for a factory's 

production system, but an economic input-output analysis alone does not show how to accomplish low-

cost cleaner manufacturing. Exergy, on the other hand, is one of the pure thermodynamic metrics, but 

its interpretations are insufficient to address mitigating issues that are compatible with its laws. Exergy, 

emergy, and LCA seldom cover social aspects, despite the fact that society is one of the foundations of 

sustainability, and when they do, substantial approximations are made during the early and intermediate 

phases, resulting in unscientifically and inconsistent findings. Alternatively, the socioeconomic issues 

are handled using entirely different methodologies, such as in (Švajlenka and Kozlovská, 2020). 

Table 2.2 summarizes the case studies examined in this review: The relationship between the EA-LCA 

hybrid techniques and their respective integration model is classified, as is the functional system model 

of assessment (e.g., the general kind of streams that each approach analyses) and the sustainability 

dimension.  

This part allows you to respond to some of the questions raised in the paper's opening paragraph. All of 

the hybrid techniques studied utilised neither a unique computational model nor a shared calculation 

framework. Sometimes the authors' answers are too specialized for each case study, and a common 

approach will result in a large number of assumptions and hence not an adaptable model. This remark 

is especially pertinent since the review discovered that a high level of collaboration between EA (or 

Emergy) and LCA led to stronger and more strict hypotheses both early in the assessment and 

throughout. The same thing does not happen when EA, Emergy, or LCA are regarded to be separate 

contributions. 

Most hybrid techniques find it simpler to refer to Szargut for EA, to utilize Eco-indicator 99 for LCA, 

or to examine simply life cycle phases for EA, or to make supplemental use of emergy balances to add 

economic or social flows to the evaluation. 

It is unclear if the interlaced model is sufficiently integrated to ensure a full knowledge of a system 

process or product's sustainability and quality. As a result, we may conclude that there is no better hybrid 

approach than any other because each has its own set of advantages and disadvantages. It is more crucial 

to understand all of the ways and how to select the one that best meets company demands each time. 

The discrepancies are inherent in the chosen interoperation paradigm. This is the novel outcome that has 

been highlighted in this paper. One notable characteristic that considerably restricts the arbitrary 

selection of the optimal assessment technique is that the stronger and more restricted the assumptions 

are at the outset, the higher the interaction between EA and LCA. 
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Because LCA is based on linear assumptions while EA is based primarily on non-linear assumptions 

(such as the second law of thermodynamics), only one way of interaction appears to be possible: LCA 

to EA. Furthermore, the disadvantages of hybrid techniques are overcome by an ad hoc interpretation 

arrangement (e.g., multi-criteria analysis). It is insufficient since important information is lost during 

these procedures. It is considerably simpler to locate studies in the literature on how to optimize 

traditional LCA on several dimensions for assessing emerging technologies (for example,(Cucurachi et 

al., 2018) or (van der Giesen et al., 2020)) than research on optimizing the frameworks of more extensive 

hybrid methods. 

Based on all of the methodologies discussed, it can be concluded that a perfect union of exergy and life 

cycle thinking is still difficult to achieve. The idea of developing a standardized and consistent 

assessment system capable of providing a comprehensive, detailed evaluation of process reversibility 

and its environmental implications is still a long way off. 

Exergy Analysis remains a viable tool for optimizing production processes in the absence of a 

standardized, comprehensive, and rigorous method of assessment. When a quality problem emerges, the 

first step is to trace the physical and dynamic nature embedded in those variables by checking 

controllable and non-controllable characteristics. It will also allow greater efforts to be made to 

strengthen the specific EA-LCA approach as a standard, expand both EA and LCA databases, and, as a 

result, eliminate some operational uncertainties. 

 

To conclude and summarize: neither of these have been carried out from the perspective of the authors 

of this review, i.e., to investigate the degree of integration, completeness, and effectiveness of hybrid 

methods in line with the objectives of the analyses themselves through a plethora of case studies 

addressing these methodologies. The evaluation identified further issues regarding the total integration 

and interoperability of EA and LCA, which would necessitate further examination, as well as additional 

research into the complicated topic of indicators as an interpretative model of hybrid analytic findings. 

This review will encourage both researchers and practitioners to choose the best model approach for 

their goals, the streams to be considered, interpret the findings, and build a transdisciplinary 

understanding of the case study system's information in order to determine the best approaches for 

process enhancements.  

 



 

47 

Table 2.2 - A summary of hybrid approaches, the degree of integration of EA and LCA, the streams considered, and the sustainability dimension addressed 

Method 
Integration 

Model 
Reference 

Streams Sustainability Dimension Indicator 

provided? 

Multi-criteria 

Analysis Matter Energy Capital Others Environmental Economic Social 

ELCA/Zero-ELCA Qualitative (Ayres et al., 1996, 1998) x x   x     

(Cornelissen, 1997) x x x  x x    

(Beccali et al., 2003) x x   x   x x 

(Domínguez et al., 2011) x x   x   x  

(Mejia et al., 2012) x x   x     

(Milanovic et al., 2017) x x   x     

Implicative (Dassisti et al., 2019) x x   x     

Interlaced (Portha et al., 2010) x x   x     

(Rubio Rodríguez et al., 2011) x x   x   x  

Summative (Cornelissen and Hirs, 2002) x x   x     

(Wang et al., 2011) x x  x x   x  

(Ozbilen et al., 2012) x x   x   x  

(Marc A. Rosen et al., 2012) x x   x     

(Dincer and Rosen, 2013) x x x  x x  x  

(Koroneos and Stylos, 2014) x x   x     

(Rocco and Colombo, 2016) x x   x     

(Aleksic and Mujan, 2016) x x   x     

LCEA Summative (Gong and Wall, 2001) x x   x     

(Lettieri et al., 2009) x x   x     

(Wall, 2011) x x   x     

Exergoenvironmental 

Analysis 

Qualitative (Meyer et al., 2009) x x x  x x  x x 

(Buchgeister, 2010) x x   x     

(Tsatsaronis, 2011) x x x  x x    

(Morosuk and Tsatsaronis, 2014) x x   x   x  

(Restrepo and Bazzo, 2016) x x   x   x  

(Nahla Faleh et al., 2018) x x   x     

Interlaced (Hamut et al., 2014) x x   x     

ExIO/H-ExIO/B-ExIO Summative (Rocco, 2014) x x x x x x  x  

(Rocco et al., 2017) x x x  x x    

CExC/CExD Qualitative (Szargut and Morris, 1987) x x   x   x  

(Bösch et al., 2007) x x   x     

(Medyna et al., 2009a, 2009b) x x   x   x x 

(Finnveden et al., 2016) x x   x     

(Khanali et al., 2017) x x   x     

(Shirkhani et al., 2018) x x   x     

Summative (Moya et al., 2013) x x   x     

(T. Gulotta et al., 2018) x x  x x   x  

ICEC/ECEC Qualitative (Wang et al., 2005) x x x  x x   x 

Summative (Hau and Bakshi, 2004) x x x x x x  x  

(Yang et al., 2013) x x x  x x    

(Yang et al., 2015) x x x x x x x x  

(Wang et al., 2019) x x x  x x    

CEENE Qualitative (Dewulf et al., 2007) x x   x     
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(Mehmeti et al., 2018) x x x  x x    

Summative (Huysveld et al., 2013) x x   x     

TCExL Qualitative  (Stougie, 2012; Stougie and van der Kooi, 2016) x x x  x x    

(Stougie et al., 2018, 2019) x x   x     

TEC Qualitative (Stanek et al., 2015, 2018) x x x  x x    

Summative (Domínguez et al., 2014) x x x  x x    

EEA Qualitative (Sciubba, 2001) x x x x x x  x  

Summative (Sciubba, 2012) x x x  x x    

(Rocco et al., 2014) x x x x x x x x  

(Dai et al., 2012, 2014) x x x x x x x x  

Thermodynamically 

based-LCA 
Interlaced (Dewulf and Van Langenhove, 2002) x x  x x  x   

Exergoeconomics Interlaced (Groniewsky, 2013) x x x  x x    

(Açıkkalp et al., 2018) x x x  x x  x  

(Grisolia and Lucia, 2019) x x x  x x  x  

Thermoeconomics Qualitative (González et al., 2003) x x   x     

(Anderson Felipe Chaves Fortes et al., 2018) x x x  x x   x 

Summative (Sieniutycz and Salamon, 1990) x x   x     

(Bakshi et al., 2011) x x x  x x  x  

Exergoenvironmental + 

Exergoeconomic Analysis 

Interlaced (Tsatsaronis and Morosuk, 2008a, 2008b) x x x  x x  x  

(Casas-Ledón et al., 2017) x x x  x x    

(Aghbashlo and Rosen, 2018a, 2018b) x x x  x x    

(Gao et al., 2018) x x x  x x    

(Q. Zhang et al., 2019) x x x  x x  x  

(Montazerinejad et al., 2019) x x x  x x    

(Okonkwo et al., 2019) x x x  x x    

(C. Zhang et al., 2019) x x x  x x  x x 

(Cavalcanti et al., 2019) x x x  x x    

Emergy based-LCA Interlaced (Reza et al., 2014a, 2014b) x x x x x x x   

Qualitative (Li and Wang, 2009) x x   x   x  

Summative (Niccolucci et al., 2009) x x  x x  x   

? 
Fully 

Integrated 
None x x x x x x x 

Overall 

Reversibility? 
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2.1.4. Exergetic-Life Cycle Assessment Heterogeneities addressed with the System Thinking  

The goal of any sustainability assessment approach is to quantify the environmental, social, and economic 

harm caused by product, process, or activity life cycles. Thus, the comparability of numbers is a vital problem 

for guiding informed decision-making. 

The consistency of the sustainability assessment results stems from a variety of practitioner decisions and 

assumptions, which vary depending on materials, technical processes, and geographical environment, all of 

which can be causes of variability. Addressing the sources of heterogeneity in sustainability assessment 

resulting from data contexts, procedural decision-making methods, and measurement procedures is critical, 

given that all existing methodologies, such as Life Cycle Assessment, Exergy Analysis, and methods derived 

from their combinations, leave a significant role to the practitioner's subjective judgment. Heterogeneity is 

thus related to the possibility of different perspectives in decision-making, which may, for example, reflect in 

the selection of dissimilar inventorying for the impact evaluation as well as in the selection of the most 

appropriate impact category: the effect is uncertainty in the final results. The issue of heterogeneity can be 

ascribed to a variety of factors, including data sources, indicators, and subjective perspectives. 

At this stage of the thesis, it is almost evident that both LCA and EA have similar aims, both focusing on 

process sustainability and relying on observable data. Both strategies might be complimentary if they work 

toward the same aim of producing sustainability measurements but from different perspectives. Indeed, several 

attempts have been made to hybridize the two methods thus far, see the previous paragraph 2.1.3. However, 

current methodologies are either distant from the original thermodynamic idea of exergy or considerably too 

wide and unsuited for resource accounting (Peters, 2021). However, there are challenges with identifying the 

best suited approach based on the purpose, i.e., more than one procedural alternative option that leads to distinct 

outcomes. As a result, two practitioners evaluating the same system may arrive at different conclusions. The 

EA performed in tandem with the LCA encourages the practitioner to make more strict procedural decisions, 

eliminating subjectivity difficulties that might arise throughout each phase of the analysis (Bakshi et al., 2011).  

Because of its multidimensional character, heterogeneity is an imprecise phrase that applies to a variety of 

contexts. A system's heterogeneity is defined etymologically as a composite of varied pieces that are typically 

incomparable (“Heterogeneity. A Dictionary of the English Language - Samuel Johnson,” 2017). It refers to 

any discrepancy in analysis in terms of procedural activities that results in disparities in ultimate environmental 

impacts (Higgins and Thomas, 2019). The heterogeneity issue in sustainability assessment is widely discussed 

in the literature, and is sometimes referred to as "unresolved problems" (Reap et al., 2008b), "limitations" 

(Curran, 2014) or "ambiguities" (Werner, 2005), "technical emerging challenges" (Hellweg and Mila i Canals, 

2014), and "granularity" of data (Ross and Cheah, 2019), all of which refer to the same procedural and 

interpretative issues. In this paragraph, we seek to define the meaning of disparities in timeframe references, 

data context (temporal, geographic, economic, social), procedural decision-making processes, and 

measurement procedures. As a result of heterogeneity, various subjective options may emerge, resulting in 

multiple decision-making outcomes at each stage of the EA and LCA. As a result, the quality and validity of 

the outcomes of the two distinct practitioners' analyses might be quite questionable. If LCA and EA are used 

as practical frames to answer the question of ‘how to classify and quantify emissions’, the system design view 

is proposed as a conceptual frame to answer the question of ‘how they can be strategically applied’ to create a 

context-specific sustainable strategy. In this paragraph we discuss the causes of heterogeneity in sustainability 

assessment, with a focus on LCA and EA, using system thinking to allow the evolution of practitioner's 

subjective decisions into coherent best choices, as well as to provide a possible procedural guideline for 

reducing heterogeneity. As a consequence, the practitioner's subjective viewpoint and other sources of 

variability may be reduced. System thinking is useful for delving into complex situations. It comprises a 

methodical approach that utilizes a variety of methodologies to investigate the activities of wholes and the 

numerous relationships between the components. Any of these ways is rigorous and ordered, but systematic 

thought is more typical in the reductive approach, where situations are broken down into constituent elements 

and mostly fundamental, linear cause and effect linkages are explored. The literature has a variety of system 
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ideas, the most important of which are given in (Kumanyika et al., 2010). In general, system design or system 

thinking is a method for determining how things (components and systems) are linked and how they impact 

one another. This strategy needs easy framing as well as the ability to describe what and how is investigated 

while maintaining consistency and transparency (Cabrera and Cabrera, 2019). As stated in the introduction, 

seeing systematically refers to a means of organizing and making sense of our thoughts about what is 

conceivable. The aim is to demonstrate why LCA and EA approaches are used to reduce the variability of 

sustainability evaluations. Essentially, the notion is that employing system thinking to apply both 

methodologies in parallel and simultaneously can minimize the variability of the sources. Following, we will 

discuss some essential notions beneficial for this goal known as "procedural choices." A system is a static 

model that simulates a real product or industrial process (Andersson, 2013) by utilizing unit-processes, each 

of which represents one or more activities (e.g., manufacturing, assembly, transportation, etc.) and the initial 

assumptions. These system requirements define its boundaries (Curran, 2012). The reference flows connect 

the unit-processes: the quantities of particular product flows required by each of the compared systems to 

create one unit of the function. The reference flow then serves as the foundation for developing product system 

models (“UNI EN ISO 14040,” 2006). We define scenario S at time tx (S(tx)) as "a description of a hypothetical 

future condition useful for certain sustainability analysis applications, based on specified future assumptions, 

and (where applicable) also containing the depiction of the progression from the present to the future" (Pesonen 

et al., 2000). Within system thinking, a transformation is defined as any process or action that resulted in a 

change in the state of a system, such as from S(t1) to S(t2). 

The system is referred to in order to facilitate the development of various transformation pathways from S(t0) 

to S(tx). Each system able to meet the requirements can be considered an alternative solution. Each system 

capable of meeting the requirements might be regarded as an alternative option. See Figure 2.14 for a schematic 

explanation of a generic system Each alternative system has a needed transformation (from S(t0) to S(tx)) and 

one or more criteria that are used to evaluate the alternative systems. This evaluation helps you to choose the 

best alternative analytical path. To make each alternative comparable, practitioners must follow the same 

transformation path.  

 

Figure 2.14 - The model of a generic system within the system thinking 

The primary cause of heterogeneity in sustainability assessment is subjectivity generated from procedural 

decisions made during each phase of the evaluation, which is not an easy problem to overcome. Due to this 

subjectivity, comparing two or more LCAs of the same system (product, process, or activity) may be 

impracticable. The influence of any procedural option is dependent on the 1) initial scenario while 
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contemplating a sustainability evaluation in a system thinking (S(t0)), the 2) transformation objectives (S(tx)) 

and the 3) criteria for choosing the finest makeover. As a result, a comparison is only conceivable if the 

processes, products, or activities being compared have the same identical beginning context, transformation 

objectives, and assessment criteria (coherence criteria). The EA method, on the other hand, makes this 

definition easier by utilizing the exergy-loss measure as a unique reference, with the optimal alternative being 

the one that decreases this term as much as feasible. By combining LCA and EA methodologies, a well-posed 

assessment framework should be offered, provided that this is a bottom-up approach directed by product 

advancement along the production settings. Thus, the challenge of heterogeneity is to provide an efficient 

impact measurement in which the acceptable measurement error is less than the uncertainty of the total 

computed value (Giovannini, 2015).  

The paragraphs that follow are grouped in accordance with paragraph 2.1.1 as s generic actions to be taken 

when implementing an LCA and EA sustainability evaluation. Thus, heterogeneity sources will be explained 

and treated through system thinking. In conclusion, system design allows practitioners' judgments to be turned 

into system design activities that fulfil the demands of stakeholders. Stakeholders formalize their demands via 

the formulation of a list of requirements. The requirements reflect the limits that the system must follow. In 

this context, the EA aids in limiting the LCA's inherent heterogeneity sources that are not directly dependent 

on this set of requirements. 

STEP 1 - Goal and scope definition  

The system view encourages practitioners to share the same way of reasoning by answering what, where, and 

when to measure questions in a unique and unequivocal manner, reducing the sources of heterogeneity related 

to functional unit and reference flow choices, the scenario, system boundaries, and temporal and geographical 

boundaries. 

SUB-STEP 1.1 - Functional unit definition 

The FU must be compatible with the initial scenario concept and transformation objectives. The significance 

of precisely defining the functional unit cannot be overstated. It is evident how different FUs produce distinct 

LCA findings, explaining the resultant heterogeneity. 

Adopting exergy, on the other hand, significantly reduces this difficulty because EA may look at any period 

of the life cycle, but only via energy measures, necessitating the examination of very particular physical phases 

that do not entail heterogeneities in data selections. Examples for several industrial domains may be found in 

(Hischier and Reichart, 2003)or (Panesar et al., 2017; Gandiglio et al., 2019).When LCA and EA are combined, 

their FU must be the same, which implies that the input and output data gathered during the inventory stage 

must be compatible with both LCA and the EA metrics, as well as the performance to be measured in line with 

the criteria. 

SUB-STEP 1.2 - Reference flow and system boundaries  

Main criticisms of the ISO 14040 and 14044 recommendations have been raised, primarily by (Raynolds et 

al., 2000; Jolliet et al., 2015): 1) the definition of the boundaries is influenced by data availability or ease of 

retrieval, but the approach of excluding or including unit-processes in the analysis would result in respectively 

incomplete assessment and a false sense of completeness with insignificant added information; and 2) the 

approach of excluding or including unit-processes in the analysis would lead to respectively incomplete 

assessment and a false sense of (without considering the time loss by the practitioner in analysing extra data 

and processes). 2) The ratio between mass and energy in terms of environmental effect. 3) Selecting between 

process-based and input/output LCA. The former has a high rate of truncation mistakes and excludes capital 

goods. The latter has issues with data resolution and the unjustifiable shortening of recycling industrial sectors 

and process life cycle phases (Majeau-Bettez et al., 2011). 4) The ISO ignores the economic and social 

consequences. Once the functional unit, the reference flow, the system boundaries, and the beginning scenario 

S(t0) have been identified inside the system thinking, it is feasible to unambiguously determine the set of unit-



 

52 

processes to consider in order to satisfy the objectives S(tx) out of S(t0).  

Furthermore, EA, like LCA, requires a system boundary definition that corresponds to the description of the 

reference environment. The reference environment is chosen based on the system under consideration. The 

reference environment must be immediately accessible to the system and its attributes must not change as a 

result of interactions with the system. The exergetic performance of the system as a whole may be viewed by 

establishing the reference environment. Each subsystem functions within these parameters, with exergy input 

and output dictated by the potential in relation to the surrounding environment (Lozano, 2008). Gaudreau et 

al., in (Gaudreau et al., 2012) conducted a comprehensive investigation of the reference environment to have 

a better grasp of how exergy influences decision-making. EA addresses the heterogeneity issue mentioned 

above by focusing on the unique flows of material, work, and energy that occur throughout every 

process/activity, as it is required to construct mass, energetic, and exergetic flow balances. When EA is 

combined with LCA from a system thinking perspective, the LCA system boundaries must correspond with 

the reference environment in EA. 

STEP 2 – Life Cycle inventory analysis 

Even if LCA is combined with EA, the life cycle inventory (LCI) is the most onerous step in which material 

and energy flows are collated and measured. 

Because the information acquired will aid in the anticipated effect assessment, the inventory review should be 

guided by the selection of impact assessment metrics. If the effect computation is an exergy research, the data 

acquired may be appropriate, implying that gathering a large amount of pollution data may be overlooked since 

they are either toxic or greenhouse gases but do not contribute significantly to exergetic losses. 

LCI analysis is the computation of all raw materials, energy resources, and machinery (inputs) utilized in the 

process, as well as the estimation of their emissions to air, water, and soil (outputs) created across the whole 

life cycle, using the functional unit as a reference. 

SUB-STEP 2.1 - Choice of the database  

Both LCA and EA suffer from the quality of available data (mainly related to specific data, i.e., derived from 

the physical site of the system analysed), driven from databases, in the reasoning about heterogeneity of 

sustainability assessment, because the nature of these methods has a subjective component. Several difficulties 

have been highlighted in LCA studies including data quality and a lack of understanding (Edelen and 

Ingwersen, 2006). It is standard practice to fill gaps in inventory data with assumptions or statistical data. 

Problems with data quality can arise from either the practitioner's access to data (e.g., confidentiality) or an 

impartial lack of understanding of the whole system (e.g., available measures of process parameters, 

measurement quality. This, in turn, may cause uncertainty in analysis results: this should be maintained less 

than the tolerance permitted for the criteria employed in the LCA research (specified as starting assumptions 

or restrictions on the analysis) or the total tolerance admitted in the exergy calculation. The availability of data 

at the local and sectoral levels is very important. Although there is still a need for a database that is universally 

consistent and dependable for the LCI phase of a wide range of diverse manufacturing processes (Kellens et 

al., 2017). In the absence of databases belonging to the country or geographical region in which the assessment 

must be addressed, the practitioner who is obliged to utilize databases of other nationalities must pay attention 

to the data source. The databases, in fact, may exhibit a great diversity of impact outcomes, even if they are 

identical or even if they are two distinct update versions. As a result, the decision can entirely alter the LCA 

research and become a source of additional subjectivity in the evaluation, whilst, realistically, it translates into 

a range of variability in the dependability owing to a random-error created and transmitted along the LCI and 

the LCIA. 

SUB-STEP 2.2 - Allocation  

To prevent allocation, ISO 14040 advises breaking operations into sub-processes or widening system 

boundaries. Obviously, the independence of the sub-processes determines the quality of the physical and 

economic process decomposition (Ekvall and Finnveden, 2001). The system boundary expansion, on the other 
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hand, results in a bigger and more intricate model. This latter strategy necessitates a thorough understanding 

of the causalities underlying processes, since utilizing alternative causality principles for allocation can result 

in considerable disparities in LCA outcomes. The decision between consequential modelling and attributional 

modelling, according to system thinking, is determined by the purpose and scope. EA is also susceptible to 

allocation, such as appropriately allocating the amount of electrical energy required annually by a specific 

machine that generates a variety of goods over the course of a year, and it is also subject to periodic power-on 

and power-off cycles. 

SUB-STEP 2.3 - Local technical uniqueness 

Neglecting technical uniqueness is equivalent to ignoring system attributes that might affect system costs. The 

challenges with local uniqueness are caused by a lack of accuracy in the characterization of the qualities of the 

transformation to be assessed. To have as little ambiguity as feasible, the data for the LCI should be 

geographically characterized (see, for example, (Nilsson et al., 2010)). On the contrary, unless the economic 

implications of energy consumption assessed by the analysis are taken into account, EA is not subject to 

geographical classification. 

STEP 3 - Life cycle impact assessment  

SUB-STEP 3.1 - Impact category selection  

This problem is caused by a practitioner's or an impact's lack of information. Distinct information might lead 

to different system options while starting with the same purpose and scope. As a result, differing bodies of 

knowledge for the LCA will always result in incomparable LCA outcomes, as demonstrated by (Müller et al., 

2005). 

The lack of consistency across the many proponent groups of these categories is a significant source of 

variation in the LCA findings. The modest discrepancies between the suggested groups are mainly due to the 

modelling technique used, e.g., midway versus endpoint. Endpoints are less comprehensive and have greater 

degrees of uncertainty (UNEP, 2003), whereas midpoints are more difficult to understand since they are not 

immediately tied to an area of protection (Haes et al., 2002). Unfortunately, even in a system thinking, EA 

does not tackle this issue, because the final exergy flow analysis accounts for the quality of natural resource 

degradation but not the character of output goods or the possible harm to the environment.  

SUB-STEP 3.2 - Space characterization  

As for the system boundary definition, the issue here is the establishment of a tolerance value for the 

transformation to take into account, as well as its long-term performance. This element has no bearing on EA 

since its methods are not dependent on the time or spatial characterization of the process under investigation; 

hence, EA with LCA will avoid both spatial variation and geographical characterization. 

SUB-STEP 3.3 - Time characterization  

Even ISO 14042 (“ISO 14042,” 2000) admits that failing to include the dynamic nature of industrial and 

environmental factors might diminish the usefulness of LCA results. The decision is impacted by the declared 

objective and scope, therefore temporal characterization of the transformation should be regarded part of the 

limitations contained in the specification of S(t0) and S(tx). As a result, various temporal characterizations 

require distinct transformation characteristics to be considered, resulting in incomparable LCA outcomes. 

Time characterisation by the unit control volume is a common feature of EA.  

The time-dependency of the affects refers to the irregularity of emissions across time, repercussions that take 

years to manifest, and impact comparisons that have resulted in such changes throughout the studied time 

horizon (Field et al., 2000). This time-dependence is usually neglected, and the effects are averaged. (Hellweg 

et al., 2005)demonstrated how the selection of two distinct time periods might influence the environmental 

effect profile of the same operation, namely trash incineration and groundwater pollution. 
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STEP 4 - Life cycle interpretation  

The interpretation is a process that implies a work of subjectivity because when a decision must be made, the 

type of aggregation of the results, possible weighting and normalization are thus inevitable. To this aim, 

significant is the table 12.1 in Hauschild et al. book section (Hauschild et al., 2018). Depending on how the 

results are shown and argued, a practitioner can interpret them in one or multiple forms, and they condition 

the interpretation of the results by emphasizing the importance of certain phenomena rather than others, for 

example the formation of the ozone layer depletion rather than acidification.  

In the case of an LCA, identifying a unique criterion for comparing alternatives is a more difficult task than in 

EA. The clear specification of the stakeholders' needs in a system thinking allows the selection between the 

system alternatives to be reduced to a question of production costs if the performances of the system 

alternatives fulfil the criteria equally.  

On the other hand, EA provides an ideal framework for evaluating this work since it is a measure of the 

reversibility of the processes, possibly decreasing the interpretation heterogeneities inherent in the LCA. The 

material, energy, and other streams all participate in the process and are changed into the product and waste 

streams. The exergetic yields associated to the exergetic balances of the process/activity itself provide the 

performances (or yields) of a specific process or activity. To summarize, it is typically difficult to analytically 

express the many types of uncertainty outlined in LCA. Probability distributions may be used to characterize 

random variability in input parameters, missing or incomplete data, and other sources of uncertainty in LCA, 

which are likely the most prevalent sources of uncertainty. A variety of LCA uncertainty analysis strategies 

have used probability distributions (Geisler et al., 2005; Guo and Murphy, 2012; Ross and Cheah, 2019; Lima 

et al., 2020). So far, no LCA uncertainty analysis approach has been devised to assist the characterization of 

this trade-off in order to make the evaluation as comprehensive as possible while being tractable in terms of 

decision making. The analysis of uncertainty on EA, on the other hand, on the other hand, is faster since the 

major source of error propagation is related to the sensitivity of the measuring devices of the in and out flows, 

and missing or incomplete data-sets are unlikely to occur. Using efficiency reports also substantially simplifies 

the comprehension of the Overall Analysis. In this scenario, there are additional assessments of uncertainty 

and sensitivity in Exergy Analysis in the literature (Ege and Sahin, 2014; Boyaghchi and Molaie, 2015; Javadi 

et al., 2020).  

 

To summarize and conclude, addressing variability in sustainability assessments is an appealing issue, and 

eliminating it is a lofty goal. The job is mostly useful to the business partner and stakeholder. The problem of 

heterogeneity and subjective decisions is addressed by attempting to use system thinking as a procedural 

guideline. Systemic thinking provides a fresh method of thinking about existing problems by removing the 

traditional glasses of mental models, assumptions, and beliefs that allow us to perceive problems from the 

same perspective all of the time. To begin looking at situations holistically, it is a process of discovery that 

takes time. We demonstrated that including Exergy-based Analysis in Life Cycle Thinking is a useful method 

for reducing sources of variability throughout the whole process design. While introducing EA into the LCA 

approach helps to reduce sourced heterogeneity, it does not guarantee comprehensive coverage of the system 

under evaluation. Recommendations have been developed as a series of actions to take, resulting in a kind of 

reference operational framework that may decrease decisional inconsistencies that arise from several 

practitioners examining the same system. 

Using the system thinking, that systems of different types with varied beginning circumstances and/or aims 

might be similar. By formalizing the links between the many unit-processes and the overall process and their 

proportional impacts, it is feasible to harmonize the data. The causes of heterogeneity have been identified 

owing to system thinking, which provides a cohesive holistic perspective on the manufacturing processes. This 

viewpoint appears to address the subjective practitioner's choices, which raises a coherence issue between the 

decision at each stage of sustainability assessment and its inputs (the initial scenario, the objectives of the 

transformation and the sustainable performances to be assessed). The work has also offered useful fuel for 
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thought, which may improve the interpretability of current ISO standards. Furthermore, the study could be 

expanded and refined with a quantitative assessment (rather than only qualitative, as has been done thus far in 

this work) of the interactions between the system's components and the impact they have on the degree of 

uncertainty in the final results, and thus on sustainability.  

 

2.2. DATA-DRIVEN APPROACH  

Each research and development path is a dynamic journey of learning through study and experience of the 

environment, from which we gather property details, often readily quantifiable, often qualitative. Observation 

also allows one to link events to property records. It is through repeated interactions that we can deduce certain 

patterns that link events to data and data into actions. In the case of scientific discovery, these patterns and 

relations are formalized as rules and equations, the data as properties and factors, and the results as event 

measurements.  

Because of the different operating needs and limits of the underlying industrial processes, the design of model-

based process monitoring and fault detection systems has been a fascinating research issue for several decades. 

The well-established model-based methodologies have been effectively deployed to a variety of processes for 

industrial electronics (He et al., 2013), automatic control systems (Kuestenmacher and Plöger, 2016), and so 

on, based on physical and mathematical understanding of the industrial processes. Model-based systems need 

significant physical and mathematical understanding of the process. The well-established model-based 

methodologies might be successfully utilized after the design of the process model based on the fundamental 

principles. On the other hand, a data-driven approach helps to extrapolate further knowledge from reality that 

human experience alone is not able to capture, and has the added benefit of checking associations between 

various variables and findings, learning unforeseen trends in nature, and helping one to uncover new science 

laws or, still more, performing predictions in the absence of those laws (Montáns et al., 2019). Data-driven 

approach have been used for some years in industrial processing both for monitoring, maintenance and for 

predicting (Solomatine and Ostfeld, 2008; Ding et al., 2011; Sutharssan et al., 2015; Bousdekis et al., 2021). 

There is considerable overlap between data-driven techniques and data mining (Clarke et al., 2009). Data 

mining is the analytical stage in the "knowledge discovery in databases" (KDD) process, which entails using 

data analysis and discovery algorithms to uncover patterns in big data sets (U. Fayyad et al., 1996). Data 

mining is the process of extracting useful information from massive volumes of data contained in databases. 

It is the extraction of knowledge from data. Data-driven techniques relate to the capacity to teach computers 

to learn without explicitly programming them. 

Data, which are generated by sensors, measuring devices, machinery, and quality control tools, can be 

transformed into powerful tools for improving production planning, optimizing operational processes, and 

influencing decision-making by accurately analysing all available data. Data analysis has always been a key-

activity in the management of a typical manufacturing process, and its importance has grown as the number of 

flows and sources responsible for generating them has increased. Sensors, measuring devices installed along 

production lines, industrial plants, and quality control tools all contribute to their creation today: a plethora of 

sources capable of producing data so important to businesses that it can influence not only production planning, 

but also operational process optimization and decision-making process correction through accurate analysis. 

In terms of production planning, Enterprise Resource Planning (ERP), Programmable Logic Controller (PLC) 

systems and Manufacturing Execution Systems (MES) can now provide extremely detailed views of all 

industrial processes, reaching previously unthinkable levels of granularity (Khan et al., 2017). 

With the rapid growth of automation and information, data collecting devices are extensively utilized in smart 

factories, and manufacturing data in factories are becoming larger (Volume), fast (Velocity), and diverse 

(Variety) (Katal et al., 2013). In general, factories are motivated by a causal relationship and use factory 

simulation models and algorithms to increase production efficiency, product quality, and other workshop 

performance. 
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To gain adaptive control of a manufacturing process, knowledge of both the process and the environment must 

be gained. This expertise can be gained by mining vast quantities of data gathered during the production 

process monitoring. This allows for the investigation of process parameters as well as the correlations of 

process parameters, environmental parameters and machine faults. This allows for the establishment of 

information about the process and its relationship to the environment, which can then be used for adaptive 

process management. 

The data culture has gone through various “ages” of development and innovation, with each subsequent phase 

incorporating the previous technology. Figure 2.15 contains a summary. On the horizontal axis, there is a 

timeline marked in years with two types of related references: manufacturing-related technological solutions 

(for example, I4.0 around the year 2012) and technological information solutions (such as, for example, IoT 

around 2000). On the vertical axis data’s increasing volume, variety, and complexity are showed. The graph’s 

dial has four sets, one inside the other, that distinguish the sequence of ages over time. In addition, the types 

of data that characterized each age are indicated. As can be seen, this evolution includes the digitalization 

process. 

 
Figure 2.15 - Evolution of data in manufacturing (Tao et al., 2018) 

Companies who do not process data limit their access to the very data that might sharpen their competitive 

edge and provide important business insights. That is why it is critical for all businesses to grasp the importance 

of processing all of their data, as well as how to do it. 

Every data-driven approach starts with data in its raw form and converts it into a more readable format by the 

specific algorithms. Data processing methods for big data analytics involve (Bhatnagar, 2018): 

1. Data gathering. The type of raw data collected has a huge impact on the output produced. Hence, raw 

data should be gathered from defined and accurate sources so that the subsequent findings are valid 

and usable. 

2. Data storage. The data must be stored in a data warehouse, data vault, or data lake. Here, data and 

metadata are stored for further use. This allows for quick access and retrieval of information whenever 

needed, and also allows it to be used as input in the next data processing cycle directly. 
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3. Data preparation or data cleaning. Involves improving data quality. It is the process of sorting and 

filtering the raw data to remove unnecessary and inaccurate data. Raw data is checked for errors, 

duplication, miscalculations or missing data, and transformed into a suitable form for further analysis 

and processing. This is done to ensure that only the highest quality data is fed into the processing unit. 

Quello che si deve andare a verificare è che i  

4. Data input. Clean raw data are converted into machine readable form and fed into the processing unit. 

This can be in the form of data entry through a keyboard, scanner or any other input source. 

5. Data analysis. Raw data is subjected to various data processing methods using machine learning and 

artificial intelligence algorithms to generate a desirable output. This step may vary slightly from 

process to process depending on the source of data being processed (data lakes, online databases, 

connected devices, etc.) and the intended use of the output. 

6. Data presentation. data is finally transmitted and displayed to the user in a readable form like graphs, 

tables, vector files, audio, video, documents, etc. This output can be stored and further processed in 

the next data processing cycle. 

 

2.2.1. Coping with Big Data and their Heterogeneities 

When it comes to gathering data for industrial IoT in the manufacturing world, it’s not just about quantity. It 

all comes down to the accuracy of the data being collected from various machines; data that allows for 

interpretation and decision-making now boosts both productivity and strategic edge in the long run (World 

Manufacturing Foundation, 2020). 

Because we observe the temporal evolution of a system, real manufacturing processes are dynamic, not static. 

The added richness of dynamic data allows for better understanding and intrinsic knowledge, but it can be 

difficult to figure out how to use the richer temporal data to gain new insights into a system’s behaviour and 

structure (Hu, 2020). 

The development of advanced calculation instruments has given rise to new forms of data collection. As a 

consequence, data often have dynamic dependency structures. These dynamic systems usually necessitate non-

standard statistical methods that are computationally intensive (McGoff et al., 2012). Conventional tools 

usually assume that the data, or any appropriate transformations of it, obey a normal distribution. This 

presumption no longer holds expressly in these situations. There have been remarkable advances in 

mathematical methods for analysing such data over the last twenty years. Unfortunately, the advancement of 

computational applications and devices has not remained static with these methodological advancements, but 

practitioners now have a plethora of highly advanced methods at their disposal for dealing with complicated 

results. This has enabled their acceptance and implementation in the solution of important substantive problems 

in a variety of disciplines, especially engineering and finance, as well as medicine and health. Multivariate 

data, which consists of a combination of discrete (i.e., categorical, binary, count) and continuous variables, is 

an especially typical example of non-standard correlated data in use. (de Leon and Chough, 2013). 

Furthermore, as measuring methods develop, data collection becomes less expensive and simpler. Data is often 

obtained from various channels or networks on the same sample collection, and is referred to as multi-view or 

multi-modal data. One of the main challenges associated with the analysis of multi-view data is that 

measurements from different sources may have heterogeneous types, such as continuous, binary, and count-

valued. 

In the manufacturing sector, big data analysis aids in the correction of parameters that underpin individual 

production processes. In the case of complex operations, i.e., those influenced by a large number of parameters, 

manufacturing companies can actually use the data provided in real time by sensing systems to modify these 

same parameters, thereby improving productivity, quality, and operational efficiency (Nagorny et al., 2017). 

Companies must be able to integrate all types of information (which may cause heterogeneities in the 
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construction of an all-inclusive database) in order to conduct comprehensive analyses, regardless of the 

geographical location of the machinery and plants that generate it. 

If we wish to extract valuable information and knowledge from a manufacturing process, we must first address 

data integration issues so that we can apply effective empirical techniques to detailed and uniform data. This 

type of practice is referred to as data process knowledge discovery (U. M. Fayyad et al., 1996). 

Dealing with structured, semi-structured, and unstructured data at the same time is referred to as data 

heterogeneity. The ultimate goal of this task is often to obtain a coherent or cohesive understanding of the real-

world institutions described in the data sources. 

Every stage of Big Data analytics has its own set of challenges. These involve real-time computation, dealing 

with diverse data types, and parallel data processing, among other things. Big Data provides access to a vast 

amount of dynamic, heterogeneous, and informative data that is not always reliable. 

The emergence of too many data from various data providers opens up a plethora of new doors for knowledge 

discovery. At the same time, it poses a new problem that can only be overcome if the data sources of interest 

are analysed in a coherent and interconnected manner. Indeed, scientists have accepted that the study of single-

type datasets cannot explain the whole-science phenomena (Mandreoli and Montangero, 2019).  

As a consequence, there are some critical problems to solve when dealing with Big Data, and new ideas are 

needed. This issue is called 4Vs (Cappa et al., 2021):  

1. the volume of data coming from various sources. This is true for the scale of the data collection. It’s 

the most prominent characteristic associated with big data. The term “volume” refers to the massive 

datasets that organizations are trying to use to improve decision-making policies;  

2. the velocity at which data is generated and updated: data sources can be flexible and changing. This 

applies to the rate at which data is obtained as well as the rate at which it should be analysed and based;  

3. the variety of data from multiple sources, even though they describe the same objects. This applies to 

a data set’s structural heterogeneity. Companies will now use structured, semi-structured, and 

unstructured data owing the know-how to technological advancements;  

4. the veracity of data. This is a reference to data uncertainty. Since data sources may be in conflict and 

data may be replicated from one source to another, the degree of authenticity associated with some 

types of data is known as veracity (Chen et al., 2016). To reduce confusion, analysts shall create 

context around the data. 

In literature this issue has been deeply investigated such as the 4Vs enlarged to 10Vs, adding to the first four 

(Khan et al., 2018): 

5. the variability of data. It can refer to a variety of things. The number of inconsistencies in the data is 

one. In order for any useful analytics to take place, they must be discovered using anomaly and outlier 

detection tools. Big data is also changeable due to the plethora of data dimensions arising from a 

variety of distinct data kinds and sources. Variability may also refer to the erratic rate at which huge 

data is put into the database, as opposed to velocity; 

6. the validity of data. It relates to how accurate and precise the data is for the purpose for which it is 

designed. According to Forbes, data scientists spend an estimated 60% of their time cleaning their data 

before performing any analysis (Forbes Press, 2020). The benefit from big data analytics is only as 

good as its underlying data, proper data governance processes must assure uniform data quality, 

standard definitions, and metadata; 

7. the vulnerability of data. Big data brings new security concerns. After all, a data breach with big data 

is a big breach; 

8. the volatility of data due to the velocity and volume of big data. It is essential to define criteria for data 

currency and availability, as well as to assure speedy retrieval of information when needed, because 

the costs and complexity of a storage and retrieval procedure are increased with massive data; 

9. data visualization. Current large data visualization solutions suffer technological issues owing to in-

memory technology restrictions, as well as insufficient scalability, functionality, and reaction time. 
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Combining this with the plethora of variables coming from big data's diversity and velocity, as well as 

the intricate interactions between them, creating a meaningful representation is difficult; 

10. data value. The primary purpose of any data analysis is to derive strategic value from data. Big data 

may provide significant value in a variety of ways, including better understanding your consumers, 

targeting them appropriately, streamlining processes, and boosting machine or company performance. 

Before beginning on a big data plan, you must first comprehend the possibilities as well as the more 

difficult qualities. 

One method is data fusion, which involves merging several less reputable databases to produce a more precise 

and usable data point, such as social comments appended to geospatial location information. Advanced 

mathematics that accepts complexity, such as rigorous optimization methods and fuzzy logic approaches, is 

another way to treat it. 

Consequently to the 4Vs issue, there are following types of data heterogeneity (Jirkovsky and Obitko, 2014): 

• Syntactic heterogeneity occurs when two data sources are not expressed in the same language.  

• Conceptual heterogeneity, also known as semantic heterogeneity or logical mismatch, denotes the differences 

in modelling the same domain of interest.  

• Terminological heterogeneity stands for variations in names when referring to the same entities from different 

data sources.  

• Semiotic heterogeneity, also known as pragmatic heterogeneity, refers to people’s differing interpretations 

of events. 

• Spatial-temporal heterogeneity happens more often while observing over a long period of time, or when the 

time stamp is used to distinguish specific phenomenon within the method. It is thought that the instances are 

structurally similar to one another in various spatial and temporal domains (e.g., different regions on the 

machine but with different sampling frequencies). Ignoring these dependencies during data processing may 

result in findings that are inaccurate and difficult to understand (Atluri et al., 2017).  

• Data source heterogeneity draws attention to the fact that each data source can have a different data model. 

Data with identical meanings can be represented differently in each data source. Furthermore, they can contain 

contradictory information. 

• Dependency heterogeneity, which results from the assumption that data are always isolated elements that are 

not optimized for use in a data integration framework. They cannot be compelled to behave in such respects. 

As a normal result, they will alter their data or functionality without warning. 

• Distribution heterogeneity that refers to spatial distribution of data sources. The required system 

configuration should allow for the potential delay in communicating with data sources. 

 

2.2.2. Data Quality and Significance 

To ensure that the data used is precise, consistent, and complete, data quality management is critical. To 

compound the complexity of handling data quality, data is rapidly evolving, with increasing sizes, shifting 

formats, and different distribution methods. Data may become obsolete and unusable if it is not properly 

maintained. The following properties must characterize high-quality data (Madhikermi et al., 2017): 

• Validity – a measure of how well data conforms to required value attributes and ensuring that data 

obtained are in the proper format and style. An example metric for validity is finding the percentage of 

data that have values within the domain of acceptable values. 

• Completeness – data monitoring to ensure that data requirements allow for lost or insufficient data. The 

measure of completeness can be assessed in two ways: at the record level or at the attribute level. An 

example metric for completeness is the percent of data fields that have values entered into them 

• Accuracy – sufficient accuracy for the intended purpose when taking into account expense, usage, and 

effort. Data accuracy is critical in large organizations, where the penalties for failure are high. An example 

metric for accuracy is finding the percentage of values that are correct compared to the actual value. 
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• Relevance – entails being appropriate for the intended reasons, as well as having a proper feedback 

mechanism and quality assurance. 

• Integrity – to maintain all the data quality metrics when they are moved or merged between different 

systems. Typically, data stored in multiple systems breaks data integrity. An example metric for integrity 

is the percent of data that is the same across multiple systems. 

• Consistency – to maintain synchronicity between different databases. An example metric for consistency 

is the percent of values that match across different records/reports. 

• Reliability – a continuous data collection method over time and within systems. 

• Timeliness – reflects the accuracy of data at a specific point in time, that is, being available at the 

appropriate frequency to allow for timely decision making. An example metric for timeliness is the 

percent of data you can obtain within a certain time frame, for example, weeks or days. 

• Auditable – modifications to a collection of data must be traceable, and data transformation must be 

verifiable. 

• Replicability – allowing a data operation to be reproduced, either by the same practitioner or by another 

as well. 

The term Data Quality refers to activities and procedures that are aimed at analysing (and possibly improving) 

the quality of a data collection. To that end, the size of the data quality is proposed as a tool (qualitative) for 

evaluating data quality. First, the logical structure used to represent the data is examined to ensure that it is 

adequate and appropriate for obtaining a provided with the requisite quality characteristics (Batini et al., 2009). 

First, the logical structure used to represent the data is examined to ensure that it is sufficient and appropriate 

for obtaining data with the necessary quality characteristics. Similarly, the process-level analysis ensures that 

the method used to observe or collect data is appropriate. Data-level analysis, on the other hand, analyses 

stored data directly, without regard for the type or manner in which it was obtained. It is critical to emphasize 

that the quality at the scheme level influences the quality at the process level, which in turn influences the 

quality of the final data. However, analysing and correcting qualitative inconsistencies at the model or process 

level is not always feasible. In these situations, data-level analysis is thus the only viable option. 

Before handing over the dataset to the algorithms, various techniques should be used to preserve data quality 

and guarantee that any erroneous data is found as soon as feasible and then manually or automatically repaired 

(Mills, 2009). 

- Data discovery is a frequently disregarded and undervalued component of any data-related activity. 

People frequently make incorrect assumptions about their data since most people only see the facts 

from their own point of view. Data discovery, on the other hand, is an important aspect of the design 

process since it gives input for scope definition and project estimates. Discovery is a rigorous 

investigation of the data itself, with the goal of discovering correlations inside and between datasets. 

All applications that use the data and need to be adjusted or updated must also be considered, especially 

in the event of data migrations. As a result, data discovery in bigger businesses may be a multi-team 

effort that frequently crosses departmental boundaries. 

- Data cleansing is the process of cleaning "dirty" data in its original place before using it in any data 

transformation. The data cleaning process is frequently integrated into the business logic, with the data 

being cleaned in the transformation but remaining intact in the source system. During data discovery, 

you will frequently realize that the data cannot be used in its present state and must first be cleaned. 

Low data quality may be caused by a variety of factors, ranging from basic ones (anything involving 

human data entry is likely to contain mistakes such as typos, missing data, data abuse, and so on) to 

complicated difficulties caused by incorrect data handling techniques and software defects. 

- Data validation, which works hand in hand with data cleansing, is a key procedure in ensuring 

appropriate data quality in the target system. Any data that does not fulfil the validation requirements 

is flagged by the validation process. Data that fails the validation phase is flagged for clean-up. It 

might be either a manual or an automated procedure. Of course, for bigger systems, a high degree of 
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automation is desired, if not required. With automated data validation, the great majority of data may 

be rectified without the need for human interaction, resulting in fewer mistakes and the elimination of 

bottlenecks. Nonetheless, some manual validation may be required, particularly for the most critical 

data that cannot be permitted to pass without human inspection or correction. 

- Reporting is an important aspect of ensuring data quality. Well-executed reporting guarantees that 

stakeholders receive all status information immediately and can respond in a timely manner. This, in 

turn, reduces the time required to rectify any data quality concerns and improve any processes that 

consistently result in bad quality data, allowing to manage the bad data that are inevitably in the 

systems. 

To sum up all the gaps and challenges related to the big data features, (Zhang et al., 2015) and (Wang, 2017) 

schematized a complete picture that is reported and adapted in the following Table 2.3 

 

Table 2.3 - Big data issues, gaps and challenges 

Big data 10Vs issues Gaps Challenges 

1. Volume 

2. Velocity 

3. Variety 

4. Veracity 

5. Variability 

6. Validity 

7. Volatility 

8. Vulnerability 

9. Visualization 

10. Value 

a) Data Consistency 

b) Data Integrity 

c) Data Identification 

d) Data Aggregation 

e) Data Confidentiality 

f) Data Interpretability 

g) Data Complexity 

h) Data Heterogeneity 

- Data Scale 

- Incomplete Data 

- Data Usefulness in decision making 

- Data Processing and Parallel Processing 

- Data Quality 

- Data Durability 

- Structured, Semi-structured, Unstructured Data 

- Illegally Tampered Data 

- Human Collaboration 

 

(Zhou et al., 2017) provided an outstanding review, and the next part examines each of the aforementioned 

pre-processing difficulties, as well as the obstacles and recommended methods to decrease the risk associated 

with them. 

An application for discussing and resolving some of these difficulties is in (Stief et al., 2019) in a case study, 

they attempted to fill the gap with a heterogeneous benchmark dataset based on an industrial-scale multiphase 

flow facility. The study gathered data from varied operational situations, both with and without generated 

faults, to create a multi-rate, multi-modal dataset and highlight the relevance of the pre-processing step in big 

data aggregation and analysis. 

The Internet of Things (IoT) is directly connected to big data and their life cycle in industrial process 

management. The advancement of internet technology enabled the possibility of a more extensive and robust 

network communication between the items. Every object in IoT is recognized as a node and is connected to 

each other in a network; this type of system enables information sharing such as receiving and transmitting. 

The design and implementation of IoT for unique applications may vary, but there is a common architecture 

approach to be followed for IoT project execution. The best, fast, reliable, and secure convergence of the 

information technology and communication technology will only happen when an effective IoT architecture 

layer is built. (Kumar and Mallick, 2018) in their work illustrated how the layer architecture of IoT changed 

over time and produced a graphic comparison (see Figure 2.16): One of the first and most fundamental IoT 

designs introduced is three-layer architecture. It is really handy and simple to apply. The perception layer, 

network layer, and application layer are the three layers present in the architecture. The stated three levels 

describe the operation of IoT; however, they cannot provide a trustworthy solution due to the higher aspects 

of IoT.  
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Figure 2.16 - IoT architecture layers evolution (Kumar and Mallick, 2018) 

Cloud computing (FOG Layer in Figure 2.16) appears to be the tipping point: it is a more flexible and scalable 

method that enables numerous services for IoT systems. These services include data storage choices, software 

tools and analytics, an appropriate platform, and core development infrastructure. With the cloud facility, users 

may have visualization, machine learning, and data analytics choices for larger volumes of data. Because of 

the ambiguity of the information detected and produced in the form of data by IoT sensors, cloud-based 

architecture became popular in IoT systems. Most IoT architectures use cloud-based data processing 

technologies to provide centralized control over data. In this sense, it emerged as a basic layer inside the IoT 

architecture as a specialized layer between data sources and the structured database: a data integration layer 

that handles ETL processing (pre-processing layer in Figure 2.16). 

To conclude, it is critical to implement effective big data cleaning methods in order to increase data quality. 

Data virtualization and data lakes are effective methods for facilitating data integration. In Big Data analytics, 

traditional data mining and deep learning approaches have drawbacks. Deep learning can analyse and learn 

from vast volumes of unsupervised data; hence, it has potential in Big Data analytics where raw data is mainly 

unlabelled and un-categorized. 

The following figure closes this paragraph with an overview to the life cycle framework of manufacturing 

data, highlighting the IoT layers and each phase/operating level to reach data quality in big data analytics. 
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Figure 2.17 - Life cycle framework of manufacturing data 

 

2.2.3. Machine Learning techniques for Manufacturing Systems 

Machine Learning (ML) is the most growing field in Computer Science. Everyone is now talking about ML-

based solution techniques for a specific issue set. ML is a subset of AI in which computer algorithms are used 

to learn independently from data and information.  

ML is a critical component of smart manufacturing since it provides accurate insights for better decision 

making. As illustrated in Figure 2.18, ML has been extensively researched at many phases of the manufacturing 

lifecycle, including concept, design, evaluation, production, operation, and sustainment (Zhang et al., 2017). 

(Harding et al., 2006) examined data mining applications in industrial engineering, focusing on several areas 

such as production processes, operations, defect detection, maintenance, decision support, and product quality 

enhancement. (Esmaeilian et al., 2016; Kang et al., 2016) examined the evolution and future of manufacturing, 

highlighting the role of data modelling and analysis in manufacturing intelligence. To satisfy present and future 
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demands for efficient and reconfigurable production, smart manufacturing also needs prognostics and health 

management (PHM) capabilities (Vogl et al., 2019). 

 

Figure 2.18 - Typical application scenarios of machine learning in smart manufacturing (Wang et al., 2018) 

What are the mathematical foundations at the base of ML? In summary, it starts with a non-parametric model 

trained on existing data. The training data is supplied into an untrained or partially trained model, and then 

computations are done to calculate the deviation from the expected outcome. 

ML techniques are defined as discovering a target function (f) that optimally maps input variables (X) to output 

variables (Y). 

Y = f(X) 

This is a common learning problem in which the aim is to predict the future (Y) given new instances of input 

variables (X). The function (f) is unknown as well as how it looks like or what its form is. If we did, we would 

utilize it directly rather than learning it from data through machine learning methods. It's more difficult than 

that. There is also error (e), which is unrelated to the input data (X). 

Y = f(X) + e 

This issue might be due to a lack of characteristics to adequately define the optimum mapping from X to Y. 

This error is known as irreducible error since it cannot be reduced no matter how proficient the model is at 

predicting the target function (f). To put it another way, learning a function from data is a challenging 

challenge, which is why the discipline of machine learning and ML algorithms exists. 

The most frequent form of ML is learning the mapping Y=f(X) in order to predict Y for fresh X. This is known 

as predictive modelling or predictive analytics, to create the most accurate forecasts possible. As a result, the 

practitioner is less concerned with the shape and form of the function (f) and more concerned with the fact that 

it produces correct predictions. To learn more about the relationship in the data, we may discover the mapping 

of Y=f(X). This is known as statistical inference. 

When learning the function (f), it involves estimating its shape based on the facts supplied. As a result, there 

will be some inaccuracy in this estimate. It will not be an exact estimation of the underlying hypothetical 

optimum mapping from Y onto X. Much work in applied machine learning is spent attempting to improve the 

estimate of the underlying function and, as a result, the performance of the model's predictions. 

The error is reduced by altering the model's parameters in accordance with predefined mathematical criteria. 

In ML, the training process is essentially an error minimization procedure in which the model parameters are 

defined in such a way that the model can duplicate the training data as precisely as possible. However, the 

underlying model will also be capable of predicting input data that was not included in the training data. In 

other words, the model has the ability to generalize. The talent in ML is in picking a suitably sophisticated but 
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not too huge model that can accomplish good generalization across the complete range of relevant input data 

with only a little quantity of training data. 

Some prominent ML techniques/methods include dimensionality reduction (Richter et al., 2015), clustering 

(Dietrich et al., 2015), association rules (Dietrich et al., 2015), classification (Mikut and Reischl, 2011), 

regression (Mikut and Reischl, 2011), topic modelling (Dietrich et al., 2015), time series analysis (Dietrich et 

al., 2015) and collaborative filtering (Twardowski and Ryzko, 2014). These are used to do analytics and 

forecast future trends based on current patterns and correlations between data in a particular dataset.  

(Fahle et al., 2020) performed an extensive review of the potential uses of ML algorithms in manufacturing 

for handling particular issues such as scheduling, cost and energy projections, quality control, predictive 

maintenance, logistics, and so on. 

There is a significant distinction between classification and regression problems. Basically, classification is 

concerned with predicting a label, whereas regression is concerned with predicting a quantity. A classification 

problem can be turned to a regression problem in some instances. A label, for example, can be turned into a 

continuous range. Some algorithms already achieve this by forecasting a probability for each class, which may 

then be scaled to a given range. If the class labels in a classification issue do not have a natural ordinal 

connection, converting from classification to regression may result in unexpected or bad performance because 

the model may learn a false or non-existent mapping from inputs to the continuous output range. 

While Supervised Learning, Unsupervised Learning, Semi-supervised Learning, Reinforcement Learning, and 

Deep Learning are the primary categories into which ML approaches may be classified (Zhou et al., 2017).  

• Supervised learning: Occurs when an algorithm learns from example data and associated target 

responses that can consist of numeric values or string labels — such as classes or tags — in order to 

later predict the correct response when posed with new examples. The supervised approach is, indeed, 

similar to human learning under the supervision of a teacher. The teacher provides good examples for 

the student to memorize, and the student then derives general rules from these specific examples. 

• Unsupervised learning: Occurs when an algorithm learns from plain examples without any associated 

response, leaving the algorithm to determine the data patterns on its own. This type of algorithm tends 

to restructure the data into something else, such as new data features that may represent a class or some 

new values helpful for additional analysis or for the training a predictive model. 

• Semi-supervised learning: it is a learning issue with a few labelled instances and a huge number of 

unlabelled examples. Learning issues of this sort are difficult to solve because neither supervised nor 

unsupervised learning algorithms can effectively employ combinations of labelled and untellable data. 

As a result, semi-supervised learning algorithms with particular features are required. The purpose of 

semi-supervised learning is to understand how mixing labelled and unlabelled input affects learning 

behaviour and to create algorithms that take advantage of this combination. 

• Deep Learning: in terms of feature learning, model design, and model training, it differs from 

classical machine learning. Deep learning combines feature learning and model creation in a single 

model by using different kernels or tuning the parameters through end-to-end optimization. Its deep 

neural net design with multiple hidden layers is essentially multi-level non-linear computations. Deep 

Learning and Neural Networks are computing systems inspired by the human brain. Health 

assessment, performance prediction, and defect detection are the key applications of utilizing neural 

networks and deep learning in manufacturing. Its goal is to make complex manufacturing fully 

autonomous. 

• Reinforcement learning: Occurs when you sequentially present the algorithm with examples that 

lack labels, as in unsupervised learning. The machine is placed in an environment where it is constantly 

trained through trial and error. The learning agent, in particular, interacts with an environment and 

learns the best policy on the fly based on feedback from that environment. At each time step, an agent 

examines the state of the environment, selects an action, and monitors the input it receives from the 

environment. There are several key components to the feedback from an agent's activity. The ensuing 

condition of the environment after the agent has acted on it is one component. Another factor is the 
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reward (or penalty) that the agent receives for executing that specific action in that specific condition. 

The incentive is carefully set to coincide with the goal for which the agent is being trained. The agent 

modifies its decision-making policy based on the state and reward to maximize its long-term reward. 

In contrast to supervised and unsupervised learning approaches, the machine learns from the past and 

attempts to capture the greatest available information in order to make appropriate business judgments. 

Reinforcement learning is connected to applications for which the algorithm must make decisions (so 

that the product is prescriptive, not just descriptive, as in unsupervised learning), and the decisions 

bear consequences. 

• Ensemble learning: it is an approach used because of its shown improvement in performance in terms 

of predictions. It uses the idea of using several weak learners and combining them to form a strong 

learner. It takes a majority vote approach in terms of classification, and this is what makes the approach 

more robust as compared to using single classification algorithms independently. There are different 

types of ensembles learning approaches, mainly Bagging and Boosting. Bagging is a method in which 

multiple trees are being built over different subsets of the data. These subsets are drawn from the 

original dataset, with replacement. Hence, Bootstrapping is done and a model is built on each of the 

subsets individually. Boosting, on a high level uses algorithms that use weighted averages to convert 

weak learners into strong ones. 

According to what has been described above, Figure 2.19 depicts a grouping of the key ML methods and the 

corresponding main algorithms, with the goal of schematizing and summarizing the universe of ML. There are 

obviously many alternative algorithms, but they are not relevant to the topic of this dissertation. A more 

complete list of ML algorithms can be found in (Brownlee, 2016). 

 

 
Figure 2.19 - Overview of ML techniques and their core algorithms 
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The next subsections will conceptually discuss the approaches and algorithms that are most commonly used 

in manufacturing sector challenges. 

 

2.2.3.1. Classification  

Classification modelling is the task of approximating a mapping function (f) from input variables (X) to 

discrete output variables (Y). The output variables are frequently referred to as labels or categories. For a given 

observation, the mapping function predicts the class or category. For example, a text email can be categorized 

into one of two categories: "spam" or "not spam". A classification assignment involves categorizing instances 

into one of two or more groups. It may accept input variables that are either real or discrete. A multi-class 

classification issue is one that has more than two classes. A multi-label classification issue is one in which one 

example is allocated to many classes. Classification models frequently forecast a continuous value as the 

likelihood of a given example belonging to each output class. The probabilities represent the likelihood or 

confidence that a particular example belongs to each class. By picking the class label with the highest 

likelihood, a projected probability may be transformed into a class value. A classification process is determined 

by: 

• Input: a training dataset including objects with characteristics, one of which is the class label;  

• Output: a model (classifier) that assigns a specific label to each item (classifies the object in one category) 

depending on the other attributes. 

There are several methods for estimating the quality of a classification prediction model, the most frequent of 

which is to compute classification accuracy. The classification accuracy is the proportion of successfully 

categorized instances among all predictions. In paragraph 3.2 of this dissertation there is a more extensive 

discussion.  

The Table 2.4 covers some of the issues and approaches for selecting the most suitable classifier. 

 

Table 2.4 - Overview for selecting the most suitable classifier 

 Issue Algorithm 

1 
In addition to class labels, the classification output should 

provide class probabilities 
Logistic Regression, Decision Tree, K-NN 

2 Analysts seek to understand how the factors impact the model Logistic Regression, Decision Tree 

3 The issue is multidimensional Naive Bayes 

4 The variables in the data are of several sorts Logistic Regression, Decision Tree 

5 
Nonlinear data or discontinuities in the input variables would 

impact the outcome 
Decision Tree, SVM, K-NN 

6 
The information includes categorical variables with a 

significant number of levels 
Decision Tree, Naive Bayes, SVM 

7 Some of the input variables may be connected to one another Logistic Regression, Decision Tree 

8 Some of the input variables may be irrelevant Decision Tree, Naive Bayes 

 

Support Vector Machines (SVM) 

The goal of support vector machines is to find the line that maximizes the minimum distance to the line of the 

instances (Figure 2.20). 

Optimal margin classifier, Hinge loss and Kernel There are three types of conditions that the model must 

respect.  

The optimal margin classifier (h) is such that: 

h(x)  =  sign(ωTx −  b)                       Eq.  2.19 

where (ω, b) ∈ ℝ𝑛 x ℝ  is the solution of the following optimization problem: min
1

2
||ω||2 such that      

y(i)(ωT x(i)  −  b)  ≥  1                              Eq.  2.20 
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Figure 2.20 - SVM 

The line is defined as  ωT x −  b =  0                      Eq.  2.21 

The hinge loss (L) is used in the setting of SVMs and is defined as follows: 

L(z, y)  =  [1 −  yz]+  =  max(0,1 −  yz)                     Eq.  2.22 

While, given a feature mapping ϕ, kernel (K) is defined as: 

K(x, z) =  ϕ(x)T - ϕ(z)                       Eq.  2.23 

In practice, the kernel K defined by  K(x, z)  =  exp(−
||x−z||2

2σ2 )   is called the Gaussian kernel and is commonly 

used to compute the cost function using the kernel since we don't need to know the exact feature mapping ϕ, 

which is frequently highly difficult. Rather, just the values K(x,z) are required. 

 

Decision Trees 

A decision tree classification approach uses a training dataset to stratify or split the predictor space smaller 

and smaller subsets while at the same time an associated decision tree is incrementally developed. Each of 

these areas only comprises a subset of the training dataset. The final result is a tree (like the one shown in 

Figure 2.21) with decision nodes and leaf nodes. A decision node has two or more branches. Leaf node 

represents a classification or decision. The topmost decision node in a tree which corresponds to the best 

predictor called root node. Decision trees can handle both categorical and numerical data. 

To anticipate the outcome of a certain (test) observation, first determine which of these zones it belongs to. 

Once discovered, its outcome class is predicted to be the same as the mode of all training observations included 

in that region. The ideas employed to stratify the predictor space may be described visually in a tree-like 

flowchart, thus the algorithm's name. The primary distinction is that these decision trees are drawn in the other 

way. (Quinlan, 1986) introduced the ID3 technique for generating decision trees performs a top-down, greedy 

search across the space of feasible branches with no backtracking. ID3 builds a decision tree using Entropy 

and Information Gain.  

 
Figure 2.21 - Decision Tree 
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ID3 algorithm uses entropy to calculate the homogeneity of a sample. If the sample is completely homogeneous 

the entropy is zero and if the sample is an equally divided it has entropy of one. To build a decision tree, two 

types of entropy must be calculated as follows: 

a) Entropy using the frequency table of one attribute: 

E(S) =  ∑ pilog2pi
c
i=1                            Eq.  2.24 

b) Entropy using the frequency table of two attributes:  

E(T, X) =  ∑ 𝑃(𝑐)𝐸(𝑐)c ∈ X                       Eq.  2.25 

The information gain, on the other hand, is based on the decrease in entropy when a dataset is divided on an 

attribute. Creating a decision tree is all about determining which attributes provide the most information gain 

(i.e., the most homogeneous branches). 

The procedure involves: (1) Calculating entropy of the target. (2) The dataset is then segmented based on the 

distinct properties. Each branch's entropy is computed. The total entropy for the split is then added 

proportionately. Before the split, the resultant entropy is deducted from the entropy. The consequence is an 

increase in information or a decrease in entropy. (3) Using the property with the highest information gain as 

the decision node, divide the dataset into branches and repeat the method on each branch. (4) If a branch's 

entropy is equal to zero, it is a leaf node; otherwise, the procedure continues with additional splitting. (5) The 

ID3 algorithm is run recursively on the non-leaf branches, until all data is classified. 

Without the requirement for dummy variables, decision tree classification algorithms can effectively 

accommodate qualitative predictors. Missing values are also not an issue. Surprisingly, decision tree 

techniques are also employed in regression models. The same library that you would use to develop a 

classification model may also be used to generate a regression model when some parameters are changed. 

Although decision tree-based categorization models are simple to understand, they lack robustness. The huge 

variance of decision trees is a key issue. A little modification in the training dataset can result in a completely 

different decision tree model. Another drawback is that they have lesser prediction accuracy than other 

classification models, such as Random Forest models (for which decision trees are the building blocks). 

 

Naïve Bayes 

Naive Bayes is one of the most common machine learning algorithms that is often used for classifying text 

into categories. Naive Bayes is a probabilistic classification algorithm as it uses probability to make predictions 

for the purpose of classification. Naive Bayes is one of the easiest classification algorithms. The Bayes 

Theorem underpins the Naive Bayes Classifier (Bishop, 2016). According to the Bayes Theorem, the 

conditional probability of a result may be estimated using the conditional probability of the outcome's cause. 

P(A|B) =  
P(B|A)∙P(A)

P(B)
                       Eq.  2.26 

Where 

P(A) is the prior probability of A, i.e., the likelihood of the occurrence without taking the B into account. The 

event is also known as the marginal probability of A. 

P(B) is the prior probability of B, i.e., the likelihood of event B without taking event A into account. It is also 

known as the marginal probability of B. 

P(A|B) is the event's conditional probability given the information about the B event. It is also known as the a 

posteriori probability of the occurrence since it is affected by the value of B. 

P(B|A) represents the conditioned probability of event B given the knowledge about event A. It is also known 

as the a posteriori likelihood of event B since it is affected by the value of A. The Naive Bayes classifier selects 

the class with the best posterior probability based on the input variable. 

Because it makes an assumption about the distribution of the data, the method is referred to be naïve. Gaussian, 

Bernoulli, or Multinomial distributions are all possible. Another disadvantage of Naive Bayes is that 
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continuous features must be pre-processed and discretized by binning, which might result in the loss of 

important information. 

 

2.2.3.2. Regression  

Regression predictive modelling is the task of approximating a mapping function (f) from input variables (X) 

to a continuous output variable (y). 

A real-value, such as an integer or a floating-point value, is a continuous output variable. These are frequently 

numbers, such as amounts and sizes. A regression problem necessitates the estimation of a quantity. Real-

valued or discrete input variables can be used in a regression. A multivariate regression issue is one that has 

several input variables. A time series forecasting issue is a regression problem in which the input variables are 

sorted by time. Because a regression predictive model predicts a quantity, the model's skill must be expressed 

as a prediction error. 

There are several methods for estimating the quality of a regression prediction model, but one of the most 

frequent is to compute the root mean squared error, abbreviated as RMSE (see paragraph 3.2.3 for a better 

explanation). 

The difficulties associated with classification predictive modelling differ from those associated with regression 

predictive modelling. Regression is the process of predicting a continuous quantity. For example, there is some 

overlap between classification and regression techniques: A continuous value can be predicted by a 

classification method, however the continuous value is a probability for a class label. A regression approach 

can forecast a discrete value, but only as an integer number. Some approaches, such as decision trees and 

artificial neural networks, may be utilized for classification and regression with little modifications. Some 

approaches, such as linear regression for regression predictive modelling and logistic regression for 

classification predictive modelling, cannot or should not be used for both types of issues. 

In some circumstances, a regression problem can be converted to a classification problem (Salman and 

Kecman, 2012). The quantity to be anticipated, for example, might be translated into discrete buckets. This is 

known as discretization, and the resulting output variable is a classification with an ordered connection 

between the labels (called ordinal). 

Linear Regression and Logistic Regression are the most common algorithm for regression. 

 

Linear Regression 

Linear regression is a method of modelling the connection between a continuous dependent variable y and one 

or more predictor variables X. One fundamental assumption is that the connection between an input variable 

and an outcome variable is linear. Although this assumption may appear to be restrictive, it is frequently 

feasible to alter the input or result variables in order to obtain a linear connection between the adjusted input 

and outcome variables. The relationship between y and X may be represented linearly as follows (MathWorks, 

2020a): 

Given the training examples {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁 , the parameter vector β can be learnt. 

𝑦 = 𝛽0 + ∑ 𝛽𝑖
𝑇𝑋𝑖

𝑁
𝑖=1 + 𝜀                      Eq.  2.27 

where: 

y is the outcome variable 

xi are the input variables, for i = 1, 2,…,i-1 

βi is the change in y based on a unit change in xi for i = 1, 2,…,i-1 

ε is a random error term representing the difference between the linear model and a specific observed value y. 

The Ordinary Least Squares (OLS) method is a popular methodology for estimating parameters. The 

Regression line is a straight line that best fits the data, with the total distance from the line to the dots (variable 

values) depicted on a graph being the shortest. The Figure 2.22 describes all of the definitions for linear 

regression. 
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Figure 2.22 - Linear Regression 

 

The best-fitting regression line has the equation 

y = a + bx, 

where: 

a is the y-intercept. 

b is the slope of the line 

x is an explanatory variable. 

y is a dependent variable 

 

Logistic Regression 

If the dependent variable is not continuous but categorical, linear regression can be transformed to logistic 

regression using a logit link function (Subasi, 2020). 

Logistic regression is based on the logistic function f(y), as given in the following equation. 

In the meantime, in Figure 2.23 is depicted how logistic regression works. 

 
Figure 2.23 - Logistic Regression 

f(y) =  
ey

1+ ey        for − ∞ < y <  +∞                     Eq.  2.28 

That means when y → +∞, f(y) = 1 and when y → -∞, f(y) = 0. That's why the range is between 0 and 1. 

Because f(y) has a range of (0, 1), the logistic function looks to be an acceptable function to predict the 

likelihood of a specific result occurring. As the value of y grows, so does the likelihood of the result occurrence. 

To forecast the likelihood of a result in any given model, y must be a function of the input variables. y is stated 

as a linear function of the input variables in logistic regression. 
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When the input variables are continuous or discrete, including categorical data types, but the result variable is 

continuous, linear regression is appropriate. Logistic regression is a preferable alternative if the outcome 

variable is categorical. Both approaches require that the input variables are linear additive functions. If this 

assumption is not met, both regression approaches perform badly. Furthermore, the assumption of normally 

distributed error terms with a constant variance is significant in linear regression for many of the statistical 

conclusions that might be explored. If the different assumptions do not appear to hold, the data must be 

transformed appropriately. Although a set of input factors may be a reasonable predictor of the end variable, 

the analyst should not conclude that the input variables are directly responsible for the outcome. 

Multicollinearity occurs when multiple of the input variables are substantially connected with one another. 

Multicollinearity frequently results in coefficient estimates that are relatively big in absolute magnitude and 

may be pointing in the wrong direction (negative or positive sign). When feasible, eliminate the bulk of these 

correlated variables from the model or replace them with a new variable that is a function of the associated 

variables. In the situation of multicollinearity, it may be necessary to limit the magnitudes of the calculated 

coefficients.  

Ridge regression, which penalizes the magnitude of the coefficients, is one strategy that may be used. The goal 

of fitting a linear regression model is to determine the coefficient values that minimize the sum of the residuals 

squared. A penalty term proportionate to the sum of the squares of the coefficients is added to the sum of the 

residuals squared in ridge regression.  

A comparable modelling approach is lasso regression, in which the penalty is proportional to the total of the 

absolute values of the coefficients. In the usage of logistic regression, only binary outcome variables were 

investigated. Multinomial logistic regression can be used if the result variable has more than two states. 

 

2.2.3.3. Clustering 

Clustering techniques are unsupervised in the sense that the labels to be applied to the clusters are not 

determined in advance by the data scientist. The data structure specifies the things of interest and dictates how 

the objects should be grouped. Clustering is a technique that is frequently used in exploratory data analysis. 

There are no predictions made during clustering. Clustering algorithms, on the other hand, discover similarities 

between items based on their qualities and arrange the comparable objects into clusters. Clustering methods 

are used in marketing, finance, and a variety of scientific fields. A popular clustering method is k-means. 

K-means 

Given a collection of items, each having n quantifiable properties, k-means (Tan et al., 2019) is an analytical 

approach that discovers k clusters of objects based on their closeness to the centre of the k groups for a given 

value of k. The arithmetic average (mean) of each cluster's n-dimensional vector of characteristics is used to 

calculate the centre. This section discusses the algorithm for calculating the k means as well as how to apply 

this technique to various use situations. After identifying the clusters, labels may be applied to each cluster to 

categorise each group depending on its features. To explain the procedure, consider each item that corresponds 

to the location (x, y), where x and y signify the two qualities and i = 1, 2,... M. A centroid is the location that 

corresponds to the mean of a particular cluster of m points (m ~ M). A centroid is a location in mathematics 

that corresponds to an object's centre of mass. The k-means approach for finding k clusters may be broken 

down into six parts. (Figure 2.24). (a) The data points to be clustered (solid blue circles) in a bidimensional 

feature space. (b) For random cluster center placements (aqua, green, and red hollow circles), each data point 

can be assigned to the nearest center. (c) Three decision boundaries split the bidimensional space into three 

parts (black dashed lines). (d) Each center advances to the centroid of the data points allocated to it at the time 

(movements shown by the black arrows). (e) The data points' revised cluster assignments are derived based on 

the new center positions. Steps (c) and (d) are repeated until convergence is reached. (f) finally, the cluster 

allocations. 
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Figure 2.24 - k-means steps with a bidimensional example (Chen and Lai, 2018) 

To extend to n dimensions, consider M objects, each of which is characterized by n characteristics or property 

values (p1, p2,…pn). Then, for i = 1,2,...,M, object i is described by (pi1, pi2,…pin). In other words, there is a 

matrix with M rows for the M objects and n columns for the attribute values. To extend the previous procedure 

of locating the k clusters from two dimensions to one dimension, the following equations offer formulae for 

determining the distances and positions of the centroids for n ≥ 1. For a given point, pi,at (pi1, pi2,…pin) and a 

centroid, q, located at (q1, q2,…qn). Equation expresses the Euclidean distance, d, between pi and q. 

d(pi, q) =  √∑ (pij − qj)
2
   n

j=1                       Eq.  2.29 

Equation shows how to determine the centroid, q, of a cluster of m points (pi1, pi2,…pin). 

(q1, q2, … qn) =  (
∑ pi1

m
i=1

m
,
∑ pi2

m
i=1

m
, … ,

∑ pin
m
i=1

m
)                    Eq.  2.30 

The value of k can be determined by a reasonable guess or a predetermined criterion. The structure of the data 

would be explained by k + 1 clusters. Following that, a heuristic based on the Within Sum of Squares (WSS) 

metric is evaluated to get a relatively optimal value of k. WSS is defined as shown in Equation using the 

distance function given in Equation. 

WSS = ∑ d(pi, q
(i))

2
= ∑ ∑ (pij, qj

(i)
)
2

n
j=1

M
i=1

M
i=1                   Eq.  2.31 

WSS is the sum of the squares of the distances between each data point and the nearest centroid. The term q(i) 

refers to the centroid that is closest to the ith point. The WSS is modest if the points are substantially near to 

their respective centroids. As a result, if k + 1 clusters do not significantly lower the value of WSS compared 

to the situation with just k clusters, adding another cluster may be of little advantage. 

The k-means method is sensitive to the first centroid's starting position. As a result, it is critical to conduct the 

k-means analysis numerous times for a given value of k to guarantee that the cluster results represent the 

overall minimum. WSS 

Other functions to consider are the cosine similarity and Manhattan distance functions. The cosine similarity 

function is frequently used to compare two papers based on the frequency of each word in both publications. 

Equation expresses the Manhattan distance, d1, between p and q. 

d1(p, q) =  ∑ |pj − qj|  
n
j=1                      Eq.  2.32 

If the Manhattan distance is required for a clustering study, the median is a better choice for the centroid than 

the mean. 

Hierarchical Clustering 

Hierarchical Clustering is an alternative approach to k-means clustering that uses the approach of finding 

groups in the data such that the instances are more similar to each other than to instances in other groups. This 
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measure of similarity is generally a Euclidean distance between the data points, but Citi-block and Geodesic 

distances can also be used. 

The data is broken down into clusters in a hierarchical fashion. The number of clusters is 0 at the top and 

maximum at the bottom. The optimum number of clusters is selected from this hierarchy. Hierarchical 

partitions can be visualized using a tree structure (a dendrogram). It does not need the number of clusters as 

an input and the partitions can be viewed at different levels of granularities (i.e., can refine/coarsen clusters) 

using different K. 

To measure the dissimilarity between two or more clusters of observation, a number of different cluster 

agglomeration methods (i.e, linkage methods) have been developed to answer to this question (Scikit-learn, 

2020). The most common types methods are explained and then depicted with 2-clusters example in Figure 

2.25: 

- Maximum or full linkage clustering: It computes all pairwise dissimilarities between elements in cluster 

i and elements in cluster j, and uses the biggest value (i.e., maximum value) of these dissimilarities to 

calculate the distance between the two clusters. It produces more compact clusters. 

- Minimum or single linkage clustering: This method computes all pairwise dissimilarities between 

elements in cluster i and elements in cluster j, and uses the least of these dissimilarities as a linkage 

criteria. It produces lengthy, "loose" clusters. 

- Mean or average linkage clustering: This method computes all pairwise dissimilarities between elements 

in cluster i and elements in cluster j, then uses the average of these dissimilarities to calculate the distance 

between the two clusters. 

- Centroid linkage clustering: This method computes the dissimilarity between the centroid of cluster i (a 

mean vector of length p variables) and the centroid of cluster j. 

- Ward's approach of minimizing variance: It reduces the overall within-cluster variance. Each phase, the 

pair of clusters with the shortest between-cluster distance is merged. 

 

Figure 2.25 - Hierarchical Clustering - Types of linkage 
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DBSCAN 

Partitioning methods and hierarchical clustering work for finding spherical-shaped clusters or convex clusters. 

In other words, they are suitable only for compact and well-separated clusters. Moreover, they are also severely 

affected by the presence of noise and outliers in the data. When the number of clusters, k, is not specified, 

DBSCAN (density-based spatial clustering of applications with noise) (Ester et al., 1996) can be used to link 

samples using density diffusion. A dense zone is formed by points that are x distance apart and create a 

collection of core points. A cluster is formed by points that are x distance apart, both core and non-core. Points 

that cannot be reached from any of the core points are referred to as noise points. It is a clustering technique 

based on density that detects dense regions in data as clusters. Dense regions are described as places where 

points may be reached from one another. The method employs two variables: ε and minpts. ε defines the 

neighbourhood around a data point while minpts is the minimum number of neighbours (data points) within ε 

radius. Larger the dataset, the larger value of minpts must be chosen. Figure 2.26 shows an example of the 

DBSCAN functioning. 

 
Figure 2.26 - DBSCAN 

As a general rule, the minimum minpts can be derived from the number of dimensions D in the dataset as, 

minpts >= D+1. The minimum value of minpts must be chosen at least 3.If the distance between two data 

points is less than ε, they are within reach of each other. A cluster must also have a certain number of points 

in order to be termed a cluster. Core points are those that have the fewest number of points within ε distance. 

Noise points are spots that cannot be reached by any cluster. The density-based nature of DBSCAN makes it 

resistant to outliers. It does not, however, perform well when dealing with clusters of varied density. 

 

2.2.3.4. Anomaly Detection 

The technique of discovering outer points or observations that diverge significantly from the rest data is known 

as anomaly detection, sometimes known as outlier identification. Anomaly detection can range from simple 

outlier detection to complex machine learning algorithms trained to uncover hidden patterns across hundreds 

of signals. Usually, these outer points have a fascinating history to tell, and by analysing them, one may grasp 

the system's severe functioning conditions. It is a useful technique to deal with imbalanced data sets in which 

anomalies are often difficult to detect visually from raw data The dataset is trained on a single class (normal 

or majority class), and the method draws a line along this class. During the training, the other class is entirely 

ignored. Anything discovered outside of this decision threshold is referred to as a novelty or an outlier (Lee 

and Cho, 2006). To minimize too many false positives during the anomaly discovery process, proper anomaly 

detection should be able to discern signal from noise. 

Several approaches to designing anomaly detection algorithms require little or no anomalous data 

(MathWorks, 2020b):  

- Thresholding. Thresholding detects anomalies when data crosses a certain threshold on a statistical 

indicator. Examples include calculating the standard deviation over recent windows in time series data, 

applying a control chart to a signal, detecting abrupt changes in a signal using change point detection, 
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and obtaining robust estimates of the data distribution and identifying anomalies as samples on the 

distribution's fringes. Thresholding on statistical measures is an excellent place to start, but it is more 

difficult to apply to multivariate data and is less robust than machine learning techniques to anomaly 

identification. Statistical estimates that are resistant to outliers, such as robust covariance, will produce 

superior results. 

- SVMs with a single class. Support vector machines with a single class find separation hyperplanes 

that minimize the distance between classes. Training only one class produces a model of data that may 

be deemed normal, allowing you to identify anomalies in the absence of labelled abnormalities. This 

method, like others based on distance, requires numeric characteristics as input and will not function 

well with high-dimensional data. 

- Isolation forests grow trees that isolate each observation into a leaf, and an anomaly score is calculated 

as the average depth of your sample: normal samples make fewer judgments than anomalous samples. 

This approach works with high-dimensional data and supports a combination of numeric and category 

variables. 

- Autoencoders. Autoencoders are neural networks that have been trained on normal data and seek to 

recover the original input. A normal input will be properly reconstructed by the trained autoencoder. 

A significant disparity between the input and its reconstruction might suggest an error. Signal and 

picture data may both be encoded using autoencoders. 

Depending on whether the data can be labelled, anomaly detection can be addressed in either a supervised or 

unsupervised manner. 

 

2.2.3.5. Random Forest  

It is a tree-based approach that employs a large number of decision trees constructed from randomly chosen 

sets of features. It is a combination of tree predictors such that each tree depends on the values of a random 

vector sampled independently and with the same distribution for all trees in the forest (Sankhye and Hu, 2020). 

A special case of random forest uses bagging on decision trees, where samples are randomly chosen with 

replacement from the original training set. It is very uninterpretable, in contrast to the basic decision tree, but 

its overall strong performance makes it a popular algorithm. Ensemble approaches include random forests.The 

Figure 2.27 fully expresses the Random Forest's procedure and highlights the distinction between the classifier 

and the regressor: once the nth Decision Trees are computed, the class with the highest number of votes is 

determined for the classifier, whereas for the regressor, average votes are used to obtain the prediction. 

 
Figure 2.27 - Random Forest 
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2.2.3.6. Dimensionality Reduction 

Feeding a high number of features straight into a machine learning algorithm is often counterproductive since 

some features may be useless or the "intrinsic" dimensionality may be less than the number of features. It is 

one of the non-supervised dataset pre-processing techniques in automated learning. It is important in Machine 

Learning to remove redundant (related) information from the dataset that is less or not very relevant to the 

issue to be addressed. It is undeniably simpler and less expensive to train an algorithm with a smaller data 

space. So it is a workaround for the curse of dimensionality (Chen, 2014). 

Reducing data dimensionality entails not just removing some size (noise), but also integrating redundant and 

relevant information. 

Dimension reduction can be accomplished using Features Selection and Features Extraction (with Principal 

Component Analysis (PCA) and Singular Value Decomposition (SVD)) (Huang et al., 2019; Velliangiri et al., 

2019). 

Feature selection  

Feature selection is used to remove characteristics that are irrelevant or redundant from your dataset. The 

primary distinction between feature selection and extraction is that feature selection retains a subset of the 

original characteristics while feature extraction generates entirely new ones. Some supervised algorithms, such 

as Regularized Regression and Random Forests, already include feature selection. Feature selection can be 

unsupervised (e.g., Variance Thresholds) or supervised as a stand-alone activity (e.g. Genetic Algorithms). 

Variance thresholds exclude characteristics whose values do not vary much from observation to observation 

(i.e. their variance falls below a threshold). These features are of limited use. Because variance is scale 

dependent, normalization is required. Genetic algorithms (GA) are a large family of algorithms that may be 

tailored to specific needs. They are evolutionary biology and natural selection-inspired search algorithms that 

combine mutation and cross-over to rapidly explore huge solution spaces. GAs have two key applications in 

ML. The first is for optimization, such as determining the ideal neural network weights. The second is for the 

selection of supervised features. In this application, "genes" represent individual characteristics, whereas 

"organisms" represent a potential group of traits. Each organism in the "population" is assigned a fitness score, 

which is based on model performance on a hold-out set. The most fit creatures survive and reproduce, and this 

cycle continues until the population converges on a solution several generations later.  

Feature extraction  

Feature extraction is used to create a new, smaller collection of features that captures the majority of the 

important information. Again, feature selection retains just a subset of the original features, whereas feature 

extraction generates new ones. Some algorithms, such feature selection, already include feature extraction. 

Deep Learning is the finest example, since each buried neural layer recovers progressively meaningful 

representations of the raw input data. 

PCA 

PCA translates the original data space into a lower-dimensional space while retaining as much information as 

feasible. The PCA simply selects a subspace that best preserves the data variance, with the subspace 

determined by the data's covariance matrix's dominant eigenvectors. 

SVD 

The SVD is linked to PCA in that it produces the dominating left singular vectors that form the same subspace 

as PCA for the cantered data matrix (features against samples). SVD, on the other hand, is a more versatile 

method since it can perform things that PCA cannot. It might be the most popular technique for dimensionality 

reduction when data is sparse. Sparse data refers to rows of data where many of the values are zero. This is 

often the case in some problem domains like recommender systems where a user has a rating for very few 

movies or songs in the database and zero ratings for all other cases. Both techniques work on a linear mapping 

but identify a completely different segment. Therefore, alternative and complementary solutions with pros and 

cons. The PCA technique preserves the information while the LDA technique better distinguishes the two 

classes. 
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2.2.3.7. Deep Learning with Neural Networks  

Neural networks spread in 1985 due to their parallel and distributed processing ability. However, research in 

this sector has been hampered by the ineffectiveness of the back-propagation training technique, which is 

extensively employed to optimize neural network parameters. In ML, SVM and other simpler models that can 

be readily taught by addressing convex optimization problems rapidly supplanted neural networks. 

New and improved training strategies, such as unsupervised pre-training and layer-wise greedy training, have 

sparked renewed interest in neural networks in recent years. Increased computational capability, such as 

graphics processing units (GPU) and massively parallel processing (MPP), has also fuelled the resurgence of 

neural networks. The resurgence of neural network research has resulted in the development of models with 

hundreds of layers. Shallow neural networks, in other words, have developed into deep learning neural 

networks. Deep neural networks have had a lot of success with supervised learning. Deep learning performs 

as good as, if not better than, humans in voice and picture recognition. Deep learning, when applied to 

unsupervised learning tasks such as feature extraction, pulls features from raw pictures or voice with far less 

human involvement. A neural network is made up of three layers: the input layer, the hidden layers, and the 

output layer. The input and output layers are defined by the training samples. When the output layer is a 

categorical variable, the neural network is a technique for dealing with classification difficulties. The network 

may be used to do regression when the output layer is a continuous variable. When the output layer and input 

layer are the same, the network may be used to extract inherent characteristics. The model complexity and 

modelling capability are defined by the number of hidden layers. The activation function is a very important 

feature of an artificial neural network, they basically decide whether the neuron should be activated or not. A 

linear equation is simple to solve but is limited in its capacity to solve complex problems and have less power 

to learn complex functional mappings from data. A neural network without an activation function is just a 

linear regression model. The activation function does the non-linear transformation to the input making it 

capable to learn and perform more complex tasks. 

 
Figure 2.28 - Simple Neural Network functioning 

In the above Figure 2.28, (x1,x2,…,xn) is the input signal vector that gets multiplied with the weights 

(w1,w2,…,wn). This is followed by accumulation (i.e., summation + addition of bias b). Finally, an activation 

function f is applied to this sum. 

Some activation functions are (Gupta, 2020): 

- Identity activation function (linear function) with equation f(x) = x and range (-∞,+∞). As shown in 

the above figure the activation is proportional to the input. . This can be applied to various neurons 

and multiple neurons can be activated at the same time. 

- Sigmoid activation function (non-linear function) with equation ϕ(x) =  
1

1+ 𝑒−𝑥  and range (0,1) so that 

the function curve looks like a S-shape. Sigmoid have major drawbacks and difficulties in application 

than linear activation function. 

- Hyperbolic tangent activation function with equation f(x) =  
1−𝑒−2𝑥

1+ 𝑒−2𝑥  and range (-1,1). Here 

optimization criteria is easier than Sigmoid, but it suffers vanishing gradient problem. 
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- Softmax activation function with equation σ(z)𝑗 = 
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

  where z is a vector of the inputs to the 

output layer, j indexes the output units, so j = 1, 2, …, K. It is also a type of sigmoid function but it is 

very useful to handle classification problems having multiple classes and it ideally used in the output 

layer of the classifier where we are actually trying to attain the probabilities to define the class of each 

input 

Deep Neural Networks (DNN) are in the frontline of data-driven approaches. DNNs have also been shown to 

be useful for predicting the potential state of dynamical systems (Raissi et al., 2017). The lack of 

interpretability of the resulting model is a major drawback of DNNs and related data-driven methods; they are 

based on estimation and do not have governing equations or easily interpretable models in terms of the original 

variable collection. 

 

2.2.3.8. Gradient Boosting 

Gradient Boosting Regression Trees is one of the most effective machine learning models for predictive 

analytics because they are a flexible, non-parametric learning strategy for classification and regression (Zhang 

et al., 2021). The strengths of two techniques, regression trees and boosting approaches, are combined in 

boosted regression trees. Boosted regression trees contain key benefits of tree-based approaches, such as 

managing diverse types of predictor variables and accepting missing data. They do not require previous data 

transformation or outlier removal, can fit complicated nonlinear relationships, and automatically handle 

predictor interaction effects. Figure 2.29 shows the learning process through gradient boosting: (1) The first 

distinguishing feature of gradient boosting is that it begins with a dummy estimator. Basically, it computes the 

average value of goal values and generates preliminary projections. Calculates the difference between the 

predicted and actual value using predictions. This is referred to as residues. (2) Instead of training a new data 

estimator to forecast the target, train an estimator to predict the first predictor's residues. This predictor is often 

a decision shaft with particular constraints, such as the maximum number of leaf knots permitted. If the 

majority of the instance residues are in the same leaf knot, the leaf node value is taken from their media and 

the USA. (3) To generate predictions, for each instance, add the value of the basic estimator to the predicted 

residual value of the instance's decision shaft to get a new forecast. Then, compute the residues between the 

predicted and actual values once more. (4) This procedure is continued until either a specified threshold is 

attained or the residual difference is extremely tiny. (5) To forecast an unseen instance, it sends it to each 

decision-making tree, sums their forecasts, and adds the value of the fundamental estimator. 
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Figure 2.29 - Gradient Boosting (Zhang et al., 2021) 

 

2.2.3.9. Other techniques  

Bagging (or bootstrap aggregating) (Sutton, 2005) use the bootstrap approach, which samples a dataset with 

replacement from a uniform probability distribution. "With replacement" signifies that when a sample is 

chosen for a training or testing set, it is maintained in the dataset and can be chosen again. Because of the 

replacement sampling, certain samples may appear several times in a training or testing set, while others may 

be absent. On each bootstrap sample, a model or base classifier is trained individually, and a test sample is 

allocated to the class with the most votes.  

Boosting (or Ada Boost) (Sutton, 2005), like bagging, utilizes classification votes to aggregate the output of 

individual models. Furthermore, it merges models of the same type. Boosting, on the other hand, is an iterative 

technique in which the performance of prior models influences the performance of the new model. 

Furthermore, boosting gives each training sample a weight that indicates its value, and the weight can alter 

adaptively at the conclusion of each boosting session. Bagging and boosting have been demonstrated to 

outperform decision trees.  

Using association rules, patterns can be discovered from the data that allow the association rule algorithms to 

disclose rules of related items. The research of association rules started as early as the 1960s. Early research 

by (Hájek et al., 1966)introduced many of the key concepts and approaches of association rule learning, but it 

focused on the mathematical representation rather than the algorithm. The framework of association rule 

learning was brought into the database community by (Agrawal et al., 1993). Apriori is the main focus of the 

discussion of association rules. Apriori is one of the earliest and the most fundamental algorithms for 

generating association rules. It pioneered the use of support for pruning the itemset and controlling the 

exponential growth of candidate itemset. Shorter candidate item sets, which are known to be frequent item 

sets, are combined and pruned to generate longer frequent itemset. This approach eliminates the need for all 

possible item sets to be enumerated within the algorithm, since the number of all possible itemset can become 

exponentially large. One major component of Apriori is support. 

 

2.2.3.10. ML techniques comparison  

The literature abounds with reviews or case studies that compare various ML techniques, both qualitatively 

and quantitatively, also in production processes (Almanei et al., 2021; Amornsamankul et al., 2019; Baumann 
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et al., 2019; Fahle et al., 2020; Karmaker Santu et al., 2020; Komputer et al., 2019; Rosalina, 2019; Stief et al., 

2019; Wuest et al., 2016). 

Taking into account the primary techniques outlined above, Table 2.5 summarizes some of the most essential 

characteristics that a practitioner must consider when selecting the most suitable algorithm.  

 

Table 2.5 - Ranking of the main ML algorithm according to the most important characteristics 

             Algorithm 
Training 

speed 

Prediction or 

Classification 

speed 

Quantity 

of data 

handling 

Tolerance to 

noise/outliers 

Tolerance to missing, 

unrelated, redundant 

attributes 

Ease of 

interpretation 

Ease of 

use 
Power 

Linear Regression 9 9 9 5 8 9 9 5 

SVM 7 7 5 6 9 6 6 8 

K-NN 10 2 6 5 8 9 8 5 

K-Means 7 7 7 4 8 5 6 6 

Naive Bayes 9 8 9 8 2 8 7 4 

Decision Trees 8 9 8 4 4 8 7 8 

Gradient Boosting 6 6 7 6 6 6 6 9 

Graph-based 4 4 3 8 6 9 3 7 

Random Forest 3 2 9 7 4 4 6 9 

Neural Networks 3 7 4 7 3 3 4 10 

 

The comparison was performed using the literature and a summary of the primary benefits and drawbacks of 

each of the following techniques. The chart illustrates that Linear Regression gets the highest score, whereas 

Gradient Boosting and Neural Networks are powerful tools but are difficult to apply, tune, and interpret. 

 

2.3. ADVANTAGES AND RESEARCH GAPS 

2.3.1. Model-Based Approaches 

The models based on thermodynamic analyses, thus based on discrete variables, represent an innovative and 

interesting strategy for maximizing the sustainability of manufacturing system performances while facilitating 

the management of new smart manufacturing processes, thus driving practitioners to employ a suitable sensing 

system and information structure for real-time monitoring, thus combining model-based approaches with data-

driven ones and gathering a comprehensive picture. 

LCA, described in paragraph 2.1.1, is regarded as a leading eco-design technique since it allows for in-depth 

analysis of each component of a product or service, allowing for an exploration of the nature of the whole life 

cycle. It aids in the identification of the most influencing systems and stages, as well as providing a clear image 

of the issues that must be remedied by the action goals. It may be used to improve existing products or to guide 

decision-making in the development of new ones (Alberto Navajas et al., 2017). Measurement of consumption 

and effects, which enables ongoing development and improvement of goods and processes not only from a 

technical but also from an environmental standpoint, is an expression of responsibility for all stakeholders. 

Because it sums up quantities, this approach is based on linear equations. LCA has certain limitations as well. 

The first is that it is more oriented toward the quantification of resources depleted during the process, but does 

not provide information on efficiency and potential margins for improvement; the second is that it relies on 

various datasets relating to general or generic results, regardless of the specific process assessed. If data 

collection is inadequate or there aren't enough data accessible, the study won't be able to draw meaningful 

results. The third point is that LCA evaluations are focused on assumptions and scenarios since they employ a 

simplified model to represent the local environment. 

The inventory phase is, undoubtedly, the most time-consuming and resource-intensive, as it may include both 

upstream and downstream activities (resource collection, processing, and transport) (product consumption and 

disposal). Upstream and downstream data might be available in opensource or payment databases, such as 

Ecoinvent (payment, but the most extensive), ELCD (payment), USLCI (opensource), and so on, to enable 

data gathering and full implementation of the LCA. SimaPro, Gabi, and OpenLCA software assist users in 
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doing the evaluation in a more direct and straightforward manner (Dincer and Bicer, 2018). They obviously 

require databases to function and are thus inaccessible to any practitioner. 

 

With paragraph 2.1.2, the benefits of employing exergy for analysing efficiency, environmental effect, and 

sustainability have been illustrated. Exergy ideas are thought to play an important role in assessing and growing 

the usage of sustainable energy and technology. Although decisions about the design and modification of 

energy systems are typically concerned with not only efficiency but also economics, environmental impact, 

safety, and other issues, exergy should be useful to engineers and scientists, as well as decision and policy 

makers, in design and improvement activities. 

An improved knowledge of energy-related environmental concerns provides a substantial challenge, both in 

terms of allowing problems to be handled and ensuring that solutions are beneficial to society and energy 

policymaking. The potential use of exergy analysis in addressing and resolving energy-related difficulties is 

enormous, and exergy can play a role in energy-related decision and policy making. 

The paragraph 2.1.3 provided a method for analysing the benefits and drawbacks of both EA and LCA, as well 

as their differences and similarities, as well as an analysis of the probable manner of interaction between the 

two. It should be highlighted that none of the methodologies investigated are comprehensive in every area of 

any industrial scenario. Both procedures cannot be substituted for one another; rather, they are complimentary 

and should be carried out concurrently, or better, in an integrated manner. The most consistent approach is to 

conduct both analyses in a systematic manner, including the same initial assumptions, objectives, phases, 

processes, streams, boundaries, and so on, and then, if necessary, combine the results of both analyses to make 

the fewest assumptions and approximations and lose as little information as possible. The hybrid EA-LCA 

methods were developed to achieve a holistic view of the system/process to be analysed; however, the lack of 

appropriate indicators and a well-established set of calculations, as well as the lack of complete and up-to-date 

data to overcome uncertainty analysis, are frequently problematic, resulting in a poor scientific consistency in 

the evaluation. However, discovered ambiguities and weaknesses can serve as a solid foundation for further 

refining current procedures, making it simpler to select the best suited approach based on the practitioner's 

needs. These types of data are not immediately deductible from a multi-criteria analysis or an individual 

performance/sustainability indicator. 

To be fully aware of the sustainability assessment, or rather, the environmental performance of the 

process/system, it is necessary to strengthen the physical and mathematical concepts that tie the EA to the 

LCA. The issue of EA's complete integration with LCA remains unresolved, and a solution appears to be a 

long way off since a mathematical convolution of linear and non-linear laws (that does not need significant 

assumptions and approximations) has not yet been resolved.  

Consider the first law of thermodynamics and the generic system depicted in Figure 2.30: 

dU = δQ - δW                        Eq.  2.33  

                       

 
Figure 2.30 - System status and its internal energy U 

where d is an exact differential associated with state functions (the state functions do not rely on the route of 

the transformation), and is a non-exact differential associated with values that are not state functions but are 

dependent on the path of the transformation (Smith et al., 2001).  U is the system's internal energy, Q is the 

heat contributed to the system, W is the work done by the system, and R is the heat wasted owing to irreversible 

processes. 
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For a reversible process: 

δQ = T·dS                        Eq.  2.34             

and      

δW = P·dV                       Eq.  2.35                         

so 

dU = T·dS - P·dV                       Eq.  2.36                        

According to the second law of thermodynamics, the entropy of every isolated system always rises. Isolated 

systems grow spontaneously toward thermal equilibrium. This is referred to as the system's highest entropy 

state. 

dQ ≤ T·dS                       Eq.  2.37                         

The first law of thermodynamics (dU = dQ + P·dV) and the second law of thermodynamics (dQ ≤ T·dS) 

(Feynman et al., 2011) may now be merged into a single mathematical statement known as the combined law 

of thermodynamics (Eq.  2.38) 

dU - T·dS + P·dV ≤ 0                      Eq.  2.38                   

It is worth noting that these equations were developed for a reversible adiabatic process, but they only depend 

on the final state, therefore the change in characteristics during a given change of state is the same for an 

irreversible process as for a reversible process. As a result, they can also be utilized for irreversible processes. 

dU - T·dS + P·dV + δR ≤ 0                     Eq.  2.39            

For increasingly complex systems, adding extra material to the system itself can also affect the status. When 

generalized forces act or species migrate beyond the system border, the generalized combined law of 

thermodynamics assumes the form (Gladyshev, 2015). The combined law of thermodynamics for complex 

systems is the Eq.  2.40  

T ∙ dS ≥ dU + P ∙ dV + ∑ Xk ∙ dxkk + ∑ μk ∙ dmkk                    Eq.  2.40             

Here, T denotes temperature, S the entropy, U the internal energy, P pressure, V volume, Xk any other 

generalized type of work except pressure, xk any generalized coordinate except volume, μk chemical potential, 

mk the mass of the k-th substance, which can be replaced by the number of moles.  

Starting from Clausius-Planck inequality for the definition of entropy (Eq.  2.41) 

∆S ≥ ∫
dQ

T

B

A
                       Eq.  2.41 

that in differential form it becomes 

ρs + ∇
q

T
− ρ

r

T
 ≥ 0                      Eq.  2.42 

Where q denotes the internal energy transfer for conduction and r denotes the particular rate of energy supply 

or energy loss by radiation. The Helmholtz free energy (a = u – Ts) and the first law of thermodynamics for 

continuous systems (ρu = – ∇q – P :  ∇v + ρr). 

The differential form of the inequality becomes 

D = − ρ(a + sT) − P ∶ V −
q∇T

T
 ≥ 0                    Eq.  2.43 

The Clausius-Duhem inequality (Demirel, and Sieniutycz, 2003), depicted in Eq.  2.43, gives the general form 

of the combined law of thermodynamics articulated for a continuous system, where D is the dissipation and 

the three components reflect energy, mechanical, and thermic dissipation, respectively. The continuous form 

can only be resolved in a punctual, distinct manner during a fixed time span. 
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This inequality expresses the irreversibility of natural processes, particularly when energy dissipation is 

involved. The dissipation inequality is only expressed for the entire system or for each control volume (sub-

components). Clausius inequality is a proposition that applies to closed systems. In his study (Bhalekar, 1996) 

established that it is not possible to apply the Clausius inequality equivalent for open systems, but there is an 

operational counterpart of the Clausius inequality at the local level that is clearly sufficient to build an 

irreversible thermodynamic analysis. This implies that the inequality does not apply to all non-equilibrium 

settings, a claim made by Meixner in 1975 (Meixner, 1973).  

In an ideal case the entropy of the system under consideration and the entropy of the system with which it 

interacts (and that it performs work on it) are equal in the form, but they have opposite sign, because one yields 

heat and the other acquires it. As a result, the total change in the system is zero. In the real case, however, the 

total change of entropy is positive, since the value of entropy of the system that performs work (which is 

positive) is greater than that of the system under consideration (negative). Therefore, in a real case, a 

transformation that takes place in a non-isolated system causes a decrease in entropy in the physical system, 

and an increase in entropy in the universe. 

In an ideal instance, the entropy of the system under study and the entropy of the system with which it interacts 

(and on which it does work) are identical in the form, but have opposite signs, because one yields heat and the 

other gains it. As a result, the overall change in the system is zero. In practice, however, the overall change in 

entropy is positive since the value of entropy of the system that produces work (which is positive) is larger 

than that of the system under consideration (negative). In practice, a transformation that occurs in a non-

isolated system generates a drop in entropy in the physical system and an increase throughout entropy in the 

universe. 

 

2.3.2. Data-Driven Approaches 

Data-driven approaches allow to analyse parameters within different fields, e.g. product, process and logistics, 

and enable the extrapolation of forms of cause-effect interactions that traditional methodologies (i.e. statistical 

models, physical models) cannot identify on their own. In this way, quality issues may also be defined and 

managed along with sustainability concerns. 

While model-based approaches rely on equations of states and boundary conditions to describe reality, data-

driven approaches can discover many hidden relationships between data and gather previously unknown 

knowledge. But yet, they have their drawbacks: the most significant disadvantage is the difficulty in 

interpreting the results. So, these two approaches are not mutually exclusive, in fact more and more they are 

used in conjunction to solve problems. 

Among the benefits of using data-driven techniques in manufacturing businesses are the elimination of 

mistakes and biases in decision-making, increased efficiency, improved communication, and the promotion of 

transparency and understanding. These correspond to drawbacks, such as the fact that each model must be 

customized for each project. There is currently no invariant model that can adapt to any environment without 

human intervention. Furthermore, a data-driven business culture might cause people to underestimate their 

own judgment and experience. During data analysis, it's crucial to maintain a healthy scepticism about results 

that look too wonderful to be true, or, conversely, too bad to be real. If something appears to be off, it is a good 

indication that it is. When you look at your data, you want to make sure that everything is in order and that 

nothing is illogical. Mistakes happen, and data is no exception. A fully automated system complicates this 

process and opens the door to possible misinterpretations of the procedure's reality. It takes time to learn the 

ability to correctly read and analyse data, and the potential of working with low-quality data is extremely high. 

It is, nevertheless, critical if you want your data to realize its maximum potential. Data visualization tools may 

assist you in quickly identifying linkages, trends, and correlations in your data. It draws the most significant 

information to the user's initial attention, allowing even individuals who are unfamiliar with data to better 

properly grasp its meaning (Dahlin, 2021). 
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Further issues address the economic factor: while it helps to increase the quality and efficiency of resource 

production and consumption, the initial investment capital is costly. The development of these technologies 

necessitates a significant investment. Each step along the process necessitates an investment to ensure success. 

For starters, the algorithms must be created by a team of developers. Then there's the portion where you have 

to teach new individuals on the machine learning language and the implementation process. Finally, you will 

require industry-specific machinery. And all of this comes at a hefty price. 

Among Smart Technologies, IoT and AI enable businesses to optimize the outcomes obtained from the data-

based approach. On a practical level, the application lines for AI technologies are primarily three: increased 

operational efficiency, improved product quality and safety, and a lower environmental impact of the entire 

production chain. The most complex challenges arise when it comes to having a non-intrusive architecture to 

gather data from older industrial plants (Farooqui et al., 2020). Exploiting big data intelligence to gain a 

competitive edge would necessitate addressing new problems, such as how to ensure data accuracy and 

significance across lengthy and dynamic supply chains (Bogle, 2017). 

IoT technology has created exciting opportunities to develop powerful tools for monitoring and management 

production through sensor systems. However, there are still difficulties in the application of this technology, 

such as, for example, what kind of data needs to be collected and how to properly acquire it, because there are 

multiple consumption points and lots of sub-processes in the system, and how to specifically analyse the data 

collected from multi-sensors in order to determine the real operational state of the overall system and all the 

sub-systems as well, as the data acquired by a single sensor (e.g. a power sensor, a temperature sensor) may 

not provide sufficient information. For a hierarchical structure such as those developed by (Lee et al., 2015), 

process inefficiencies and effect-relationships can be detected and optimized automatically. 

Finally, there is no standardized method for organizing datasets, analytical models, and interpreted results. 

More intelligence functions will be required to manage the algorithms and their input/output if the platform 

presented in this work is used by other organizations. Concerning the algorithms, as the models evolved, they 

got increasingly sophisticated. So, one looks at a model simply from a performance standpoint, neural 

networks, Gradient Boosting, and so on are typically the best models since they are relatively new. However, 

various models perform better with different types of data. For example, if features are very independent, 

Naive Bayes will perform well. SVM is useful when there are too many characteristics and the dataset is 

middling in size. If the dependent and independent variables have a linear relationship, linear regression, 

logistic regression, and SVM are appropriate. k-NN can be implemented if the dataset is tiny and the link 

between the dependent and independent variables is unknown. As a result, before deciding on which ML 

method to utilize, one must first understand and analyse the data. If you can't decide on a single machine 

learning algorithm, you can analyse all of them and compare their accuracies on training and test sets before 

settling on one.  

There are methods that can be used for multiple applications, such as regressors and classifiers, which may be 

employed supervised or unsupervised. A beginner practitioner has a tough time determining what strategy to 

take right away, especially if the goal of the study is not completely stated and the raw dataset does not provide 

any information on the sort of data on which you must work. Many websites and platforms now offer free 

cheat-sheets that can help to choose the best algorithm according to the requirements or to the properties of the 

dataset. 

However, the first implementations should not be considered as certain because an initially inadequate 

approach may be appropriate if performed with the necessary data pre-processing and/or with the correct tuning 

of hyperparameters. 

The graphic in Figure 2.31 below is a Scikit-Learn cheat-sheet example, which is quite handy if you are in the 

initial weaponry and dataset and know essentially the size and kind of target. 
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Figure 2.31 - scikit-learn algorithm cheat-sheet (https://scikit-learn.org/stable/_static/ml_map.png) 

Instead, figure 2 indicates which of the proposed methods performs better in terms of implementation speed 

or forecast accuracy. It also considers dimension reduction to be a pre-processing phase if the amount of data 

is large. 

 

 
Figure 2.32 - Cheat sheet for ML algorithms depending on accuracy or implementation speed 

(https://blogs.sas.com/content/subconsciousmusings/files/2017/04/machine-learning-cheet-sheet-2.png) 

 

Because the world of ML is made up of so many tests, attempts, and adjustments to every single case study, it 

is still impossible to talk about the approach and model being invariant and completely adaptive to a reality as 

dynamic as industrial manufacturing. The same is true for various stakeholders, each of whom brings their 

own set of skills, tools, methodologies, datasets, and objectives. The numbers are too sectoral and, at times, 
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unable to speak with one another or derive a meaningful decision-making policy from their unique analyses 

(Karmaker Santu et al., 2020). 

It’s worth noting that smart manufacturing should focus not only on enhancing economic and environmental 

sustainability, but also on improving social sustainability. As a result, process safety risk prediction can be an 

integral part of smart process manufacturing (Gobbo et al., 2018; Moktadir et al., 2018). The risk evaluation 

should be the first and most important phase in irregular situation management in order to develop a 

preliminary profile of the risk situations to be handled. Alarm detection, workflow control, equipment fault 

detection, and human activity tracking can all be effectively combined in the sense of big data analytics (Yuan 

et al., 2017). 

While businesses are working to improve internal know-how, this first section of the dissertation demonstrated 

that manufacturing engineers need a basic method for data analytics rather than complex algorithms. These 

practitioners may need assistance in determining the algorithm is best suited to their problems, what kind of 

data should be collected for the algorithm, and how the collected data should be pre-processed. 
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3. INTERPRETING SUSTAINABILITY 

The interpretability of the results provided downstream of thermodynamic and/or LCA analysis, as well as the 

metrics returned by the implementation of machine learning algorithms on process datasets, was systematically 

addressed during the doctoral programme. In the following two paragraphs, what can be deduced from the 

state of art analysis will be examined in detail. Following that, in the case study, explanatory applications of 

these metrics and the resulting interpretations will be reported to facilitate decision-making on the business 

strategies to be implemented to improve the quality and sustainability performance of the analysed industrial 

processes. 

3.1. INDICATORS OF REVERSIBILITY 

In manufacturing, sustainable development is the process of continuously improving environmental, social, 

and economic (cost-benefit) performance through time. 

The greatest challenge in adopting a sustainable strategy is from the difficulty of accurately assessing and 

evaluating one's work's economic, environmental, and social effect. Measuring, monitoring, evaluating, and 

communicating sustainability is an important step in policymaking. 

The first step that a practitioner must do is to map all the sustainability components of the system to be 

analysed. Once all relevant areas have been identified, the improvement targets must be established. These 

goals include, for example, limiting resources consumed and, as a result, maximizing value through decreasing 

energy consumption, optimizing the plant, lowering CO2 emissions, and so on. The downstream interpretation 

of these interventions, as well as the resulting strategic measures to be taken, may be carried out using suitable 

indicators to measure the system's success versus its objectives (i.e., the level of performance to be achieved). 

“Only what gets measured gets managed”, stated Peter Drucker (Klaus, 2015). 

Environmental stewardship, economic growth, social well-being, technical innovation, and performance 

management are the five factors to be evaluated in the manufacturing industry, increasing from three to five. 

Technology advancement accounts for firms' propensity to foster technological improvement via R&D 

conscription, investment, and high-tech items. Performance management is concerned with the execution of 

sustainability initiatives and policies, as well as regulatory compliance (Joung et al., 2013).  

Evaluation of various dimensions, both traditional and novel, need sophisticated evaluation methodologies, 

and in this case, an Exergetic Analysis (EA) combined with a Life Cycle Assessment (LCA) yields a solid 

implementation plan. Among the modelling and sustainability analysis approaches available in the literature, 

this article focuses on the strategic coupling of thermodynamic laws, and therefore the Exergetic Analysis, and 

the Life Cycle of the product, process, service/activity. These two methodologies had been hybridized in many 

ways and on multiple levels, making it difficult to immediately evaluate the data in order to generate the best 

decision-making strategies for the instance analysed. (Selicati et al., 2021a). 

The goal of this paragraph is to first present a thorough analysis of all metrics linked to the hybrid or combined 

usage of exergy and LCA, their significance, and their application in specific use scenarios. The second goal 

is to give a broader definition of the measure as a tool to aid in the understanding of the assessment findings.  

Many indicators or sets of indicators published in the literature appear to be designed to offer trustworthy 

information on various parts of the global sustainability environment, but it is always a difficulty when 

aggregation of findings is required as an integrated measure. Their accuracy in assessing environmental, but 

mainly social and economic, factors is yet unknown. The absence of full and up-to-date data and uncertainty 

analysis is frequently problematic, as is the lack of scientific consistency in the assessment's interpretation. 

Manufacturing processes generate material riches for people, but they also generate a lot of waste and use a 

lot of resources. Waste created throughout the production process, during product usage, and after the product 

has reached the end of its useful life contributes to environmental damage. As a result, decreasing resource 

consumption and the environmental effect of production systems has become increasingly crucial. As a result, 

striving towards sustainable production is crucial for manufacturing businesses.  
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To characterize the indicators in terms of their relevance and value to sustainable production, a thorough grasp 

of sustainable manufacturing is essential. Although there is no common idea of sustainable manufacturing, the 

US Department of Commerce explains it as follows: “The creation of manufactured products that use processes 

that minimize negative environmental impacts, conserve energy and natural resources, are safe for employees, 

communities, and consumers and are economically sound” (Howard, 2011). 

Sustainable production is defined as a system that integrates product and process design issues with 

manufacturing, planning, and control issues in order to identify, quantify, evaluate, and manage the flow of 

environmental waste, with the ultimate goal of reducing the environmental impact of the Earth's self-recovery 

capability while also attempting to manage it. As a result, the sustainable approach must be linked to a change 

policy in order to attain this aim with a consistent effort in a realistic time frame for current and future 

generations. The 6R technique might help to achieve this shift toward new linear thinking: Reduce, Reuse, 

Recycle, Redesign (or Rethinking), Recover, and Remanufacture. Reduce especially relates to the 

manufacturing process, when the quantity of energy, material, and waste should be kept to a minimum. This 

is related to the reuse of components after their original life cycle in order to decrease raw resource usage. 

Recycling waste materials is another technique to reduce the consumption of raw materials. Recover is a 

method of extending a product's life cycle, which might be extended to remanufacturing, which is the process 

of restoring the product to its original state. All of this can only be accomplished by rethinking the product and 

the life cycle with a long-term goal in mind (Jayal et al., 2010). The ISO standards are arranged into four parts 

based on a process-based LCA approach: aim and scope definition, inventory analysis, impact assessment, and 

interpretation. Because this paragraph focuses on the interpretation of sustainability, the last step in the process 

takes the results of the previous three processes and makes recommendations for improving the environment 

of the product or process under examination. In an ideal world, this information would give direct guidance to 

constructive measures, such as the development of environmental projects. EA is used to track processes or a 

specific product from a thermodynamic standpoint. 

Among the optimization parameters is the reduction of exergy loss owing to system irreversibilities. EA 

combined with LCA provides significant benefits: first, they provide more objective evaluation results; second, 

they become a valuable tool for decision-making policies aimed at creating a retrofitting solution, allowing the 

system to automatically avoid any potential failure. Furthermore, they are important tools for understanding 

process management options in order to enhance and develop industrial process technologies. Among the 

optimization parameters is the reduction of exergy loss owing to system irreversibilities (Cornelissen and Hirs, 

2002). The hybridization method is also quite effective for analysing the data. While most sustainability 

indicators (such as Carbon Footprint or Global Warming Potential) must be contextualized within international 

regulatory processes and frameworks in order to meet the requirements of scientificity, reproducibility, and 

reliability, the indicators (or, in this case, efficiencies) returned by the exergetic analysis or when combined 

with the LCA are self-explanatory and simple to understand. 

3.1.1. Sustainable Manufacturing Indicators Aspects  

Indicators have been identified in a variety of approaches in the literature. (see the reviews in (Heink and 

Kowarik, 2010) and (Singh et al., 2009)). In most cases, the term indicator refers to a tool that may convey 

information in a synthetic form that is simpler than a more complicated occurrence but has a larger 

significance. As a result, it is a tool capable of bringing to light a pattern or phenomena that is not immediately 

apparent. An indicator is a metric or aggregation of measurements that may be used to draw inferences about 

the phenomena of interest based on the objective set. 

In order to be scientifically legitimate, any indicator must have the following properties (United Nations, 

2019): 

• Ease and comprehensibility: if an indication is not instantly intelligible owing to extremely complicated 

or inconsistent measurements, its use as an instrument of internal governance and a means of external 
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communication is severely restricted. Furthermore, an unintelligible indication might lead to 

misunderstandings. 

• Importance and comprehension: an indicator should enhance decision-making by highlighting areas for 

improvement. It should not include too many technical characteristics, nor should it be overly wide; it 

should encompass all of the important aspects and relevant repercussions in connection to the purpose of 

the study. 

• Manageability and comparability: the performance standards of the indicators should be evaluated by 

assuring their comparability and replicability, therefore providing a continual standard in the area to which 

they belong. 

• Controllability: a practitioner must be completely aware of what he is going to measure and calculate in 

order to deliver precise and timely signals to stakeholders. 

• Consistency: in order to prevent invalidating the analysis, the indicator must be regularly reviewed and, 

if necessary, changed in reaction to changes. 

• Efficiency: one of the most essential features, as an indication for which exorbitantly costly data gathering 

is necessary, or data collection is technically impossible, has a negative influence on the whole 

performance of the analysis, including the final phase of interpretation. 

In general, and hence in terms of production sustainability, indicators can be defined in a variety of ways. The 

first significant distinction is established between indicators that relate to immediately quantifiable events and 

indicators that relate to phenomena that cannot be measured directly. Many of the phenomena that impact 

sustainability may be measured. Some are directly measurable chemical and physical phenomena (for example, 

CO2 emissions); others, on the other hand, are characteristics for which we do not have direct measuring 

instruments but which can always be expressed quantitatively by reference to an appropriate and considered 

intensity scale (Boulanger, 2008). There is a distinction to be made between physical indicators, units of 

measurement, and levels of variables designated as relevant; and multidimensional indicators or indices, which 

consist of the aggregation of indicators and data of the same or different categories. In concrete terms, the 

former provides basic information on the system's components, such as quantities and flows (for example, 

annual waste generation in a region), whereas the latter allows the information presented to be condensed into 

several parameters in order to better communicate and facilitate knowledge (e.g., coupling between waste 

production and economic well-being measured by the ratio of the waste produced to the gross domestic product 

of a region). Indices, for example, emphasize the link between system components; moreover, indices can be 

given in absolute numbers via standardization and aggregation of the beginning information. 

Indicators are commonly used to better evaluate and explain the results of a hybrid study, as well as to quickly 

compare various production or multiple systems with different units of measurement. They can also give 

aggregate data. They are simple to comprehend since their value may range from zero (worst case scenario) to 

one (best case scenario) (ideal conditions). Indicators are a good method for swiftly and intuitively recognizing 

changes in the energy efficiency and quality of time-dependent operations. In addition to satisfying a variety 

of scientific problems, environmental indicators and the weighting system must represent the aims of the many 

environmental issues, priorities that are clearly related to the belief system of individuals who define them and 

thus subjective. Some nations have developed their own scale of environmental goals, allowing professionals 

to develop an effective set of indicators. 

 

3.1.2. State of Art of Sustainability Indicators in Manufacturing field related to Exergy and LCA  

Many researchers stress the value of utilizing exergy losses as an indication since it gives a consistent metric 

for comparing and evaluating diverse processes (Bakshi and Fiksel, 2003; M.A. Rosen et al., 2012). Exergy-

based indicators provide useful sustainability measures for assessing the exploitation of material resources and 

energy, as well as evaluating the side effects of ecological and socioeconomic behaviours in complex systems. 

The indicators from LCA presented following the characterization and normalisation of the assessment, on the 

other hand, have traditionally been deemed erroneous due to the subjectivity that characterizes this stage 
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(Cleveland et al., 2000), furthermore, only a handful of the LCA evaluation methodologies allow for the 

generation of dimensionless indicators of the necessary effect categories. Many indicators or sets of indicators 

have been proposed in the literature that are supposed to provide reliable information about various aspects of 

the global context of sustainability, but it is always a problem when an aggregation of results, such as an 

integrated index of LCA and EA results, is required: their accuracy as environmental, social, and economic 

indicators is still not clear. (Böhringer and Jochem, 2007). 

Material, energy, and other streams participate in the process inside the system, and they are changed into the 

product and waste streams. The exergetic yields associated to the exergetic balances of the process/activity 

itself provide the performances (or yields) of a specific process or activity. The classic exergy efficiency rate 

informs about the ratio of benefits to expenses or losses. The losses are equivalent to the difference between 

what is offered and how much is gained, and they are associated with the irreversible destruction of exergy 

(Bakshi et al., 2011).  

The formulations and meanings of the most typical metrics that we will examine are discussed in Table 3.1. 

The traditional exergy efficiency rate provides information about the ratio between benefits and costs or losses. 

The losses are equal to the difference between what is provided and how much it is obtained and identified 

with the destruction of exergy due to irreversibility (Bakshi et al., 2011). The most often used exergetic 

indicators are the output/input exergy ratio (for assessing efficiency) and exergy per unit of product (for 

sustainability assessment). The performance metrics of the process or its components are defined in the 

following net use and general efficiencies, depending on whether the goal is to evaluate the portion of useful 

exergy for the realization of the final product or to evaluate the overall exergy of the process: output/input 

exergy ratio (for efficiency assessment) and exergy for unit of product (for sustainability assessment). The 

performance metrics of the process or its components are specified in the following net and general 

efficiencies, respectively, depending on whether the goal is to assess the percentage of useable exergy for the 

realization of the final product or to evaluate the total exergy of the process, respectively ηε and ηg. The former 

is the ratio of the system's useable exergy to the total exergy supplied to the system, whereas the latter is the 

ratio of total exergy production to total exergy given to the system. The ratio is proportionate to the system's 

intrinsic exergy destruction. The Global Warming Potential (GWP) was created to enable comparisons of the 

global warming impacts of various resources (IPCC, 2006). It is a measure of how much energy a ton of a 

resource may utilize over a specific time period in contrast to a ton of CO2 emissions (CO2). The higher the 

GWP, the more a particular gas heats the Earth in compared to CO2 during the same time period. The most 

frequent time span for GWPs is 100 years. GWPs provide a standard unit of measurement that allows analysts 

to add up emissions figures for different gases (for example, to compile a national GHG inventory) and 

policymakers to compare emissions reduction opportunities across industries and gases. 

Cumulative exergy extracted from the natural environment (CEENE), introduced for the first time by (Dewulf 

et al., 2007), is a resource accounting system that quantifies diverse types of resources per functional unit in a 

single unit (exergy). The quantity of energy equivalent to each input in each process is computed by 

multiplying the resource inputs by the CEENE factor of the reference flow. The CEENE model is based on 

general global characteristics. It takes into account the depletion caused by the extraction of useful exergy 

embedded in resources when they are extracted from their natural environment, such as abiotic renewable 

resources, fossil fuels, nuclear energy, metal ores, minerals and mineral aggregates, water resources, land and 

biotic resources, and atmospheric resources. Many authors have utilized CEENE in their studies, including 

(Mehmeti et al., 2018) , which used CEENE to quantify the life cycle resource footprint (upstream effects) of 

a Molten Carbonate Fuel Cell power plant, (Alvarenga et al., 2013) who proposed and implemented a new 

framework for calculating exergy-based spatial explicit characterization factors (CF) for land as a resource, 

which deals with both biomass and area occupied on a global scale by creating a schematic overview of the 

Earth, dividing it into two systems (human-made and natural), allowing it to account for what is actually 

extracted from nature, i.e., the biomass content was set as the elementary flow to be calculated We were able 

to develop CF for land resources for these two separate systems using exergy. The novel CF's applicability 

was evaluated for a variety of biobased goods. And (Taelman et al., 2014), who included the CEENE method 
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in the LCIA method and was capable of analysing the environmental impact (and, more specifically, the 

resource footprint) of marine area occupation in two case studies: comparing resource consumption of on- and 

offshore oil production, and fish and soybean meal production for fish feed applications. 

In their recent work (Lucia and Grisolia, 2019) introduced other two exergy-based indicators, a modification 

of the classic exergy efficiency ratio, were introduced to quantify the technical level of a process in relation to 

its unavailability. The goal was to assess the equivalent primary wasted resources, technological features, and 

advanced level of industrial processes by calculating the cost of the wasted exergy required to support 

workhours and generate capital flow, as well as the quantity of production expressed by mass and moles of 

CO2 for wastes. Also (Cleveland et al., 1984) adapted the exergy efficiency naming it Energy (Exergy) Return 

on Energy (Exergy) Investment (EROEI or ExROI), which is defined as the ratio between the net exergy 

generated by the system and the embodied non-renewable exergy necessary to develop the system itself. If the 

ratio turns out to be less than the unit, the expenditure outweighs the gain. In the aforementioned study (Beccali 

et al., 2003) created an ‘exergetic index’ by dividing the entire consumption of exergy (in MJ) by the mass of 

the product that represents the functional unit of the case study (in kg). It is a particularly valuable tool for 

assessing the potential for technological development of processes and gauging quality. In the context of multi-

criteria or multi-factor decision making, in their study (C. Zhang et al., 2019) calculated eight multi-factor 

indicators representing exergetic, energetic, economic and environmental elements of the Organic Rankine 

Cycle for water heat recovery in their study. The eight indicators are in the energetic context: net power output 

(Wnet) and thermal efficiency (ηth); in exergetic context: total exergy loss (Itot) and exergy efficiency (ηex). In 

the economic context: cost per unit of time (Z), electricity production cost (EPC) and dynamic payback period 

(DPP). In the environmental context: CO2-equivalent emissions (ECE). Weighting and normalisation were 

used to construct the Feasibility Level, which represents the total influence of the eight indicators. Medyna et 

al. conducted an early environmental evaluation assessment (Medyna et al., 2009c, 2009a) comparing the three 

major impact categories of Eco-Indicator 99 (Human Health, Ecosystem Quality and Resource Consumption) 

with new three dimensionless indicators ∏ derived from EA (primary exergy conversion efficiency, material 

and resource consumption efficiency and environmental impact efficiency), in order to offer a possible solution 

to the heterogeneity metrics problem during the interpretation of the results. The difference of the meaning of 

these three new indicators lies in the considered exergetic terms for the ratio. (Rubio Rodríguez et al., 2011), 

in the energy systems context, presented a dimensionless sustainability index SIC in the context of energy 

systems to assess alternative to various end services that imply distinct metrics and magnitudes but referred to 

the same functional unit. The index indicates the environmental damage averted by selecting the best solution. 

Another point of view is provided by (Domínguez et al., 2011), who introduced an indicator called the 

'renewability factor' (FR) in order to evaluate the relationship between non-renewable and renewable resources 

throughout the entire life cycle of each energy source considered for electric power generation. It represents 

the ratio between the cumulative exergy demand for renewable resources to the cumulative exergy demand for 

non-renewable resources. (Dai et al., 2014) in their work provided a list of six EEA-based indicator for the 

evaluation of the effective use of resources and energy in complex systems of some industrial sectors including 

environmental, social, and economic dimension. Another way to evaluate the sustainable use of the resources 

is given in 2006 (Toxopeus and Lutters, 2006) and it was used also by Koroneos and Stylos in 2014 in their 

implementation of an ELCA on polycrystalline photovoltaic system in energy generation context (Koroneos 

and Stylos, 2014). They introduced an ELCA-based exergetic eco-efficiency indicator to account the efficiency 

of consumption for both renewable and non-renewable sources along the Life Cycle of the product or process 

under study. It relates the exergetic efficiency of total input and output flows to the distinction between 

renewable and non-renewable flows throughout the Life Cycle. The large disparity between conventional and 

new exergetic efficiency values is due to the amount of renewable exergy (solar radiation) in the production 

of total incoming exergy, which the traditional indicator cannot capture.  (Restrepo and Bazzo, 2016) addressed 

the Exergoenvironmental study from a systematic approach on co-firing power plants in 2016. The writers 

concentrated solely on the operational phase. They developed the Exergoenvironmental-based Global 

Greenhouse Gases index for a variety of co-firing scenarios in order to assess the extent of the power plant's 
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improvement. The index's objective is to compare the exergoenvironmental impact of the real process under 

investigation to the impact of the identical ideal process (under Carnot cycle condition). A higher index value 

indicates a more sustainable process. (T. M. Gulotta et al., 2018) integrated EA in the LCA in their study by 

adding three new indices focusing on quality, irreversibility, and technical obsolescence to assist decision-

makers in comparing similar technologies. The Life Cycle Irreversibility Index might reveal potential exergetic 

inefficiencies of the process or technologies and necessary retrofit measures by comparing the usable 

cumulative exergy associated with all sub-processes and the total cumulative exergy demand. The Technology 

Obsolescence index facilitates the comparison of identical processes and products that share the same 

functional unit. Technology obsolescence may be a valuable criterion in policy decision-making to assess how 

much more inventive one technology is than another by recognizing which new technology might lower current 

irreversibilities from production through end-of-life, decreasing natural resource extraction. In general, the 

feature of technology obsolescence is still visible in the examination of industrial processes.  
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Table 3.1 - List of the most representative indicators found in literature for manufacturing-sustainability 

Indicator’s name Indicator’s ratio Meaning 

Coefficient of resources-use performance 

(Bakshi et al., 2011) 
ηp =

Ėxproduct

Ėxi
 

The useful exergy produced by the system divided by the total exergy 

provided to the system. 

Net use efficiency (Bakshi et al., 2011; Ozbilen et 

al., 2012) 
ηε =

∑ Ėxj

∑ Ėxi
 

Total exergy output divided by total exergy given to the system. The ratio 

is proportionate to the system's intrinsic exergy degradation. 

Equivalent wasted primary resource (1) (Lucia 

and Grisolia, 2019) 
EIλ =

T0Sg

nhnw

 

The proportion of exergy lost to working hours per worker. It calculates 

the cost of squandered exergy necessary to support work hours and produce 

capital flow. 

Equivalent wasted primary resource (2) (Lucia 

and Grisolia, 2019) 
EIλ =

T0Sg,PS

ṁCO2

 ṁproduct 
The exergy loss-to-wasted-product mass ratio expressed in CO2 and the 

mass generated in a day. 

Exergy Return on Investment (Cleveland et al., 

1984) adapted by (Rocco, 2014) 
ExROI =

Exnet

Exneeded

 
The quantity of net exergy obtained from a process divided by the amount 

of exergy required (or its equivalent from another source) to produce it. 

Exergetic index (Beccali et al., 2003) exc =
Exc

mpd
   [MJ/kg] 

The ratio of entire exergy loss, including environmental emissions, to a 

specific quantity of product representing the functional unit. 

Global Warming Potential (IPCC, 2006) 

GWP =
∫ Fres(t)dt

yn

0

∫ FCO2(t)dt
yn

0

 

or   

GWP = ∑ (mi ∙ IFi)
n
i=1       [kgCO2eq] 

The impact of a resource over a given time period when compared to the 

same amount of carbon dioxide (CO2) over the same time period. 

Cumulative Exergy Extracted from Natural 

Environment (Mehmeti et al., 2018) 
CEENEJ = ∑ (Xi ∙ ai,j

i )     [MJeq]] 

Accounting for several sorts of resources (measured in different units) per 

functional unit, all represented in exergy terms with a reference factor. The 

extraction of usable exergy contained in resources results in resource 

depletion. 

Feasibility Level (C. Zhang et al., 2019) FL = ∑(xi ∙ wi)

8

i=1

       xi =

[
 
 
 
 

Xi

Xopt

  Xi ∈ (En, Ex)          

Xopt

Xi

  Xi ∈ (Ex, Eco, Env)
]
 
 
 
 

 

Economic (Eco), environmental (Env), energetic (En), and exergetic (Ex) 

measures are all used to calculate the overall influence of eight 

components. 

Primary exergy conversion efficiency 

(Tsatsaronis and Morosuk, 2008a, 2008b) 
∏

PECE
=

Exprod−i + Exbiprod−i

Exmaterial + Exsupply

 
The ratio of the usable outcome to the sum of the inputs that worked 

together to produce it. 

Material and resource consumption efficiency 

(Tsatsaronis and Morosuk, 2008a, 2008b) 
∏

MRCE
=

Exprodi + Exenv−standard

Exmat + Exsupply + Exrecy + Exbiprodi

 
The output, minus the exergy loss, to the total of the inputs minus the 

regenerated biproducts. 
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Environmental impact efficiency (Tsatsaronis 

and Morosuk, 2008a, 2008b) 
∏

EIE
=

Exenv−mixing

Exmat + Exsupply + Exrecy + Exbiprodi

 The ratio of the sum of the inputs to the exergy of mixing. 

Sustainability index (Rubio Rodríguez et al., 

2011) 
SIC =

∆kE

kT

 
The ratio of the environmental exergetic cost of two alternatives to the 

indirect exergetic cost. 

Renewability Factor (Domínguez et al., 2011) FR =
CExDren

CExDnon−ren

 
The ratio between cumulative exergy demand of renewable resources to 

cumulative exergy demand of non-renewable resources. 

Exergy Structure Ratio (Dai et al., 2014) ESR =
CECi

Ewi + Eci

 

Exergy consumption structure in various productions, derived by 

comparing material-based exergy consumption to social supporting exergy 

within sectoral size. 

Social Exergy Conversion Rate (Dai et al., 

2014) 
SECR =

Ew + Ec

∑CECi

 

Net social exergy conversion level by intaking material-based exergy, 

calculated by the ratio of labour and capital equivalent exergy to exergy 

input into the system. 

Exergy Deliver Efficiency (Dai et al., 2014) EDE =
∑ fij

CECj

 

Ability in production sectors to deliver exergy into the system from the 

environment, calculated by exergy output from production sector j divided 

by exergy input into production sector j from the surrounding. 

Environmental Yield Ratio (Dai et al., 2014) EYR =
CEC

Ein

 

Ability of a process to exploit available locally renewable and non-

renewable resources by investing outsider sources. The higher the value of 

this index, the greater is the return obtained per unit of exergy invested. 

Environmental Loading Ratio (Dai et al., 2014) ELR =
EN + CECN

ER + CECR

 
Outside causes of disruption to the local drive are possible. The smaller the 

ratio, the lesser the environmental stress. 

Extended Exergy Sustainability Index (Dai et 

al., 2014) 
EESI =

EYR

ELR
 

Index aggregation based on interaction with the surrounding environment 

as well as renewability. 

Exergetic Eco-Efficiency (Toxopeus and Lutters, 

2006) 
ηeco =

ηexergetic ∙ (Fn−r + Fr)

Fn−r + ηexergetic ∙ Fr

 

The efficiency with which renewable and non-renewable resources are 

used during the full Life Cycle of the product or process under 

consideration. 

Global Greenhouse Gases index (Restrepo and 

Bazzo, 2016) 
iGHG
Global =

iGHG  (carnot condition)
total

iGHG   (real condition)
total

 
Degree of improvement in relation with the impact category (focused in 

the GHG emission). 

Life Cycle Quality Index (T. M. Gulotta et al., 

2018) 
ψ =

UCEx

CExD
 

The ratio of the beneficial impacts of a process or product to the entire cost 

of providing that process or product. 

Life Cycle Irreversibility Index (T. M. Gulotta 

et al., 2018) 
X = 1 −  ψ = 

 CExD− UCEx

CExD
 Complementary to ψ. 

Technology Obsolescence Index (T. M. Gulotta 

et al., 2018) 
Xi,j =

Xi

Xj

 

Which revolutionary technology, when compared to existing technologies, 

has the potential to lower the irreversibilities of the process or product 

under consideration. 
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The authors provide these indicators under a variety of titles, but the general pattern is a comparison of the 

system's output flows with its input flows, with certain special idiosyncrasies for each case study. Furthermore, 

their significance is stated in many ways as an indicator/index of quality, performance, efficiency, and 

sustainability. 

In this thesis, the ideal interpretation for this sort of indication is ‘indicator of reversibility’ (Selicati and 

Cardinale, 2021b). The choice is endorsed first by the definition of sustainability as stated the Brundtland 

Report in 1987 (WCED, 1987): “is the development that meets the needs of the present without compromising 

the ability of future generations to meet their own needs”; second by Dewulf et al. in (Dewulf et al., 2000) who 

argued that a technological process is sustainable only if its resource supplying, production and resource 

depletion or wastes won’t damage the ecological balance in the ecosphere. This implies ensuring that the 

process consumes raw materials from the environment at a rate lower than their potential to regenerate. Third, 

by (Valero et al., 2013) that established an indicator called "exergy replacement cost," which is the amount of 

exergy required to return the resources to their initial state (equilibrium). 

To summarize this paragraph, sustainable manufacturing is the most crucial component that all production 

engineers must identify, not because it is a cultural trend, but because it is a mandate as a duty to the 

environment in which we live. The study of the product life cycle has become a popular tool for determining 

the environmental impact of items, processes, or activities. To reach the goal of earth's self-recovery 

capabilities, the three key ideas to be addressed are minimizing the use of resources in the process, using 

environmentally friendly materials, reducing all sorts of waste, and reusing and recycling as much material as 

feasible.  

According to the findings of the state of the art and the case study, it is not feasible to establish an indicator 

that individually and thoroughly assesses the degree of manufacturing sustainability, not one of the steel corner 

production methods. Despite the lack of a defined, thorough, and widely used assessment model, Exergy 

Analysis within Life Cycle thinking remains an effective technique for optimizing industrial processes. 

The multidimensional nature of the measures described in this paper emphasizes how difficult the topic of 

sustainable manufacturing is. The lack of suitable metrics and a well-established collection of equations for a 

set of sustainability challenges, as well as a lack of complete and up-to-date data and uncertainty analysis, are 

frequently troublesome, resulting in a poor level of scientific accuracy in the evaluation. 

 

3.2. METRICS FOR DATA-ANALYSIS 

Predictive models rarely predict everything perfectly, so there are many performance metrics that can be used 

to analyse the models. 

Aside from a simple comparison of the analysis findings and actual data from the factory, several 

methodologies are necessary to evaluate the accuracy and performance of the generated algorithms.  

The algorithm's performance may be measured in a variety of ways. Classifiers are frequently evaluated using 

accuracy, precision, recall, and F1-score. Regression techniques can be scored using mean absolute error 

(MAE) and mean squared error (MSE) metrics. While the Silhouette coefficient and Dunn's Index are the two 

most often used metrics for evaluating clustering techniques. Regardless of the algorithm, the error on the 

training data is often less than the error on the test data. The model is considered to be overfit to the training 

data when the difference between the two is considerable. Over-fitting is a concern for data scientists since 

such a model does not generalize. The model performs admirably on training data, but when fed fresh data, 

the algorithm's predictions become untrustworthy. 

 

3.2.1. Metrics for Clustering  

The most commonly used type of unsupervised learning is clustering. The dataset contains no labels for 

clustering, only a collection of observational characteristics whose objective is to build groups with similar 

observations aggregated together and different observations separated as much as feasible. Evaluating the 
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performance of a clustering method is more complicated than just calculating the number of mistakes, 

accuracy, and recall, as is done with supervised learning algorithms. 

The clusters' consistency is assessed using a similarity or dissimilarity metric, such as the distance between 

cluster points. The clustering method has worked well if it isolates different observations and groups like 

observations together.  

The mean of the Silhouette Coefficients for each sample is used to calculate the Silhouette Coefficient for a 

set of samples (scikit-learn, 2021). 

s =  
b−a

max (a,b)
                          Eq.  3.1 

Where 

• s is the Silhouette Coefficient 

• b is the average distance between a sample and all other points in the closest cluster 

• a is the average distance between a sample and all other points in a cluster 

The score ranges from -1 for inaccurate clustering to +1 for robust clustering. Scores close to 0 denote 

overlapping clusters. The score is greater when clusters are dense and well-spaced, which corresponds to a 

conventional cluster idea. 

 

Given the information of the samples' regression coefficients class assignments, conditional entropy analysis 

may be used to establish any understandable measure. 

The following two desired goals for each cluster assignment can be converted into scores: 

• homogeneity: each cluster only contains members of one class. 

• completeness: every member of a particular class is allocated to the same cluster. 

which are both constrained by 0.0 (worst clustering) and 1.0 (best clustering): 

Their harmonic mean, known as the V-measure, is determined (Rosenberg and Hirschberg, 2007) 

v =  2 ∙  
homogeneity ∙ completeness

homogeneity+completeness
                       Eq.  3.2 

Clustering with a poor V-measure can be qualitatively evaluated in terms of homogeneity and completeness 

to get a clearer sense of the 'kind' of errors committed by the assignment. 

There are no assumptions about the cluster structure: it may be used to compare the results of clustering 

algorithms such as k-means, which assumes isotropic blob forms, with the results of spectral clustering 

algorithms, which can identify clusters with "folded" shapes. As a disadvantage, the metrics are not 

standardized in terms of random labelling: depending on the number of samples, clusters, and ground truth 

classes, a totally random labelling will not always produce the same values for homogeneity, completeness, 

and therefore v-measure. Random labelling, in particular, will not produce zero scores, especially when the 

number of clusters is considerable. Furthermore, these metrics need knowledge of ground truth classes, which 

is usually never accessible in practice or necessitates manual assignment by human annotators (as in the 

supervised learning setting). 

 

Another metric for assessing a clustering technique is Dunn Index (DI) (Stein et al., 2003). It is a metric for 

evaluating clustering algorithms, is an internal evaluation scheme, where the result is based on the clustered 

data itself. Like all other such indices, the aim of this Dunn index to identify sets of clusters that are compact, 

with a small variance between members of the cluster, and well separated, where the means of different clusters 

are sufficiently far apart, as compared to the within cluster variance. Dunn Index is calculated by dividing the 

lowest inter-cluster distance by the maximum cluster size. It is worth noting that larger inter-cluster distances 

(better separation) and smaller cluster sizes (more compact clusters) result in a higher DI value. A greater DI 

indicates improved clustering. It is assumed that superior clustering implies that clusters are compact and well-

separated from one another. It also has some drawbacks. As the number of clusters and dimensionality of the 

data increase, the computational cost also increases. 
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Other metrics about clustering approach can be found in (Desgraupes, 2017) 

 

3.2.2. Metrics for Classification  

The most important categorization statistic is accuracy. It is rather simple to grasp. And it's well-suited for 

both binary and multiclass classification problems. The proportion of genuine outcomes among the total 

number of cases studied is referred to as accuracy. Data can be divided into: true positives are data points 

classed as positive by the model that are actually positive (meaning they are correct), whereas false negatives 

are data points labelled as negative by the model that are actually positive (incorrect). 

Accuracy =  
TP+TN

TP+FN+TN+FP
                         Eq.  3.3 

Where 

• TP is the number of true positives 

• TN is the number of true negatives 

• FP is the number of false positives 

• FN is the number of false negatives. 

Accuracy itself is misleading when it comes to finding metrics for classifier performance evaluation on an 

unbalanced data set. This is so because, even if the classifier predicts all of the instances as the majority class, 

even then the accuracy will be very high. However, in case of unbalanced datasets, identifying the more 

important minority class is the goal. This can be tested and achieved by using balancing techniques and using 

other performance metrics for classification evaluation, such as, precision, recall, area under the ROC curve. 

 

The capacity of a model to detect all relevant cases within a data collection is the precise definition of recall. 

It is computed mathematically by dividing the number of true positives by the number of true positives + the 

number of false negatives.  

Recall =  
TP

TP+FN
                          Eq.  3.4 

Where 

• TP is the number of true positives 

• TN is the number of true negatives 

• FP is the number of false positives 

• FN is the number of false negatives. 

 

Precision is defined as a classification model's ability to identify only relevant data points. It is defined 

mathematically as the number of true positives divided by the number of true positives and the number of false 

positives. False positives are casing the model incorrectly labels as positive that are actually negative, 

Precision =  
TP

TP+FP
                           Eq.  3.5 

While recall represents the capacity to locate all relevant occurrences in a dataset, precision expresses the 

proportion of data points that our model said were relevant that were truly relevant. 

The measures we pick to optimize, like most notions in data science, have a trade-off. In the case of recall, 

increasing the recall reduces the precision. The idea underlying the precision-recall trade-off is that changing 

the threshold for detecting whether a class is positive or negative will cause the scales to tip. That is, it will 

cause precision to rise but recall to decrease, or vice versa. Classifier computes a decision score for each 

instance, and if the decision score is equal to or greater than the threshold value, it predicts a positive class, 

indicating that the instance belongs to the class, target, or output. If the decision score is less than the threshold, 

the instance is in the negative class, target, or output. The majority of the classifier employs a threshold of 0. 
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An example of a relationship between Recall and Precision is plotted in Figure 3.1. The graph illustrates that 

if we require greater precision, we should set threshold higher than the default threshold value, and if we need 

higher recall, we should set threshold lower than the default threshold value. 

 

Figure 3.1 - Recall vs Precision with threshold equal to zero 

In certain cases, it is unclear if the aim is to maximize recall or precision at the expense of the other statistic. 

When it is necessary to find an ideal balance of accuracy and recall, the F1 score combines the two variables. 

The F1 score is calculated by taking the harmonic mean of accuracy and recall. 

F1 =  2 ∙  
precision ∙ recall

precision+recall
                         Eq.  3.6 

Because it excludes extreme values, the harmonic mean is utilized instead of a simple average. A classifier 

with 1.0 accuracy and 0.0 recall has a simple average of 0.5 but an F1 score of 0. The F1 score gives equal 

weight to both criteria and is a subset of the generic Fβ metric that may be altered to give greater weight to 

either recall or accuracy by adjusting β. Other metrics for combining precision and recall, such as the 

Geometric Mean of accuracy and recall, are available, but the F1 score is the most widely employed. We strive 

to maximize the F1 score if we wish to develop a balanced classification model with the best balance of recall 

and precision. 

The methods for calculating these metrics are well represented visually in the following Figure 3.2: 
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Figure 3.2 - Confusion matrix for binary classification and metrics calculation 

The diagonal entries of the confusion matrix are the true predictions of both classes. The greater the number, 

the more accurate the predictions, and therefore the classifier. The misclassifications predicted wrongly by the 

classifier are represented by the diagonal elements. When compared to metrics such as accuracy, confusion 

matrix is a good metric to use in cases of unbalanced data sets. The reason for this is demonstrated with a 

simple example: suppose in a data set there are 99 good samples and 1 bad sample, then the classifier would 

be biased towards the majority class and make all predictions as belonging to the good class. If this is the case, 

the classifier's accuracy remains at 99%. In this scenario, it is clear that the classifier failed to identify the more 

relevant minority class. Similarly, finding the components that will fail the quality test is more critical in metal 

casting data than identifying the majority or passed class samples. The confusion matrix allows us to easily 

see the classifier's predictions on the minority class. The confusion matrix illustrates how many samples are 

erroneously recognized. They can also provide us with indices of the components that will fail. Instead of 

merely giving us the raw numbers of accurate and erroneous predictions for a certain data set, this will tell us 

the percentage of correct and incorrect forecasts. 

In general, these measurements are interpreted as follows (Shivaprasad, 2020): 

• High recall or precision values indicate that the model manages the class well; 

• Low recall or precision values indicate that the model is reliable when it predicts a positive one for that class, 

but that the model is unable to identify the members of that specific class (it is true in our case for the class of 

the class "1" As the prediction of "1" is usually correct but does not identify several) 

• A high recall value and a low precision value imply that the model correctly recognizes the class but also 

contains components from other classes (it is true in our case for the class of "0" as it intercepts almost all but 

predicts "0" also for many "1") 

• Low recall or precision levels indicate that the model performs poorly. 

 

AUC (which stands for "Area Under the Curve") is another metric for a classifier, where the curve in issue is 

termed ROC (Receiver Operating Characteristic curve). A model's ROC curve may be quantified by computing 

the overall Area Under the Curve (AUC), a statistic that ranges between 0 and 1, with a greater value indicating 

better classification performance. AUC ROC indicates how well the probabilities from the positive classes are 

separated from the negative classes. In essence, the curve depicts the trend of the probability threshold "T" 

above and below which a positive and negative is characterized in terms of belonging to a given class. For 

example, if it is determined that 0.7 is the value of the probability threshold above which a positive one is 

credited, we will have a given percentage of false positives and a certain rate of true positives at this threshold. 
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For all values of "T," the function that depicts the true positives vs. false positives, the trend of the sort is 

depicted in Figure 3.3: 

 

 
Figure 3.3 - Illustration of possible ROC curves depicting different model performance. From the left: the 

model has to sacrifice lot precision to get high recall; to the right: the model is highly effective and it can 

reach high recall while maintaining high precision 

The true positive rate on the y-axis is shown against the false positive rate on the x-axis in a ROC curve. The 

recall is represented by the true positive rate (TPR), while the chance of a false alert is represented by the false 

positive rate (FPR). The confusion matrix may be used to compute both of these. The representation on the 

left indicates that a model with this property, in order to intercept a significant number of true positives, must 

inevitably produce a big number of false positives (the worst case is the dotted blue colour in which one is 

substantially a 50% of real positive). 

Instead, in the case of the model on the right, with a low rate of false positives (the optimum scenario is in the 

top left corner), it has a large number of actual positives, and so, the more the curve has this tendency, the 

better the curve reacts. The AUC, and the diagram on the right will have a value of the order of 0.95 (which is 

already a very excellent number), but the diagram on the left will have a value of the kind of 0.6.  This indicates 

that AUC is not affected by scale. It evaluates how well predictions are rated rather than their absolute values; 

it is classification-threshold-invariant: it assesses the quality of the model's predictions regardless of the 

classification threshold used, unlike F1 score or accuracy, which are affected by the threshold used. 

 

3.2.3. Metrics for Regression 

Regression is a term used to describe predictive modelling challenges that entail forecasting a numerical value. 

It differs from classification, which entails anticipating a class label. In contrast to classification, accuracy 

cannot be used to evaluate a regression model's predictions. Instead, there are error metrics that are particularly 

built for analysing regression predictions. Error addresses on average how close predictions were to their 

expected values (Naz et al., 2019). 

There are three error metrics that are commonly used for evaluating and reporting the performance of a 

regression model; they are: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE) 

The Mean Squared Error, or MSE is calculated as the mean or average of the squared differences between 

predicted and expected target values in a dataset. 

MSE =  
1

n
 ∙  ∑ (Yi − Yî)

2n
i=1                    Eq.  3.7 

Where 

• 𝑛 is the number of samples in the dataset 

• Yi is the actual value of the output (the one expected) 
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• Yî is the predicted value of the output (that ideally should be equal to the actual value) 

The difference between these two numbers is squared, which removes the sign and results in a positive error 

value. Squaring has the additional consequence of inflating or amplifying big mistakes. That is, the greater the 

gap between the predicted and actual values, the greater the squared positive error. When MSE is employed as 

a loss function, this has the effect of "punishing" models more for higher mistakes. When employed as a 

measure, it also has the effect of "punishing" models by raising the average error score. A perfect mean squared 

error value of 0.00 indicates that all forecasts completely matched the expected values. This nearly never 

happens, and if it does, it indicates that the predictive modelling problem is easy. 

 

The Root Mean Squared Error (RMSE) is an extension of the mean squared error. When the square root of the 

error is calculated, it indicates that the RMSE units are the same as the original units of the predicted target 

value. 

RMSE =  √MSE  = √
1

n
 ∙  ∑ (Yi − Yî)

2n
i=1                   Eq.  3.8 

Where 

• 𝑛 is the number of samples in the dataset 

• Yi is the actual value of the output (the one expected) 

• Yî is the predicted value of the output (that ideally should be equal to the actual value) 

It is important to note that the RMSE cannot be determined by taking the average of the square root of the 

mean squared error values. This is a common blunder. 

MSE use the square operation to eliminate the sign of each mistake value and to penalize big errors. This 

procedure is reversed by the square root, but the outcome remains positive. Like for MSE, a perfect root mean 

squared error value of 0.00 indicates that all forecasts completely matched the expected values. 

 

Mean Absolute Error, or MAE, is a common metric because, like RMSE, the units of the error score correspond 

to the units of the anticipated target value. 

Changes in MAE, unlike RMSE, are linear and hence intuitive. 

In other words, MSE and RMSE penalize greater errors more severely than smaller ones, inflating or 

magnifying the mean error score. This is due to the incorrect value being squared. The MAE does not give 

distinct sorts of mistakes more or less weight, and instead, the scores grow linearly as the error increases. 

The MAE score is derived as the average of the absolute error values, as the name implies.  

MAE = 
1

n
 ∙  ∑ |(Yi − Yî)|

n
i=1                         Eq.  3.9 

Where 

• 𝑛 is the number of samples in the dataset 

• Yi is the actual value of the output (the one expected) 

• Yî is the predicted value of the output (that ideally should be equal to the actual value) 

When computing the MAE, the difference between an expected and forecast value might be positive or 

negative, and the abs forces it to be positive. 

Like for MSE and RMSE, a perfect mean absolute error value of 0.00 indicates that all forecasts completely 

matched the expected values 

 

R-Squared (R2) represents the amount of variability in the dependent variable that the model can explain. It is 

the square of the Correlation Coefficient (R), thus the name R-Squared. R2 is derived by squaring the prediction 

error and dividing it by the entire sum of the squares that replace the calculated forecast with mean. It ranges 

from 0 to 1, with a higher value indicating a better match between forecast and actual value. 
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𝑅2 =  1 − 
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
= 

∑ (Yi− Yî)
2n

i=1

∑ (Yi− Y̅)2n
i=1

                   Eq.  3.10 

Where 

• 𝑛 is the number of samples in the dataset 

• SS means sum of squares 

• Yi is the actual value of the output (the one expected) 

• Yî is the predicted value of the output (that ideally should be equal to the actual value) 

• Y̅ is the mean value of the entire samples in the dataset 

R2 is a useful metric for determining how well a model fits the dependent variables. R-squared values range 

from 0 to 1 and are commonly stated as percentages from 0% to 100%. In the best-case scenario, the modelled 

values precisely match the observed values, resulting in SSresiduals = 0 and R2 = 1. While R2 = 0 for a baseline 

model that always predicts Y̅. Models with poorer predictions have a negative R2 value. 

Figure 3.4 shows plotted graphs, one with a high value of R2 and the other a low value of R2. 

 

 
Figure 3.4 - Plot of a good regression prediction model vs a bad regression prediction model 

However, it does not account for the overfitting problem. Because the model is overly sophisticated if the 

regression model includes numerous independent variables, it may fit extremely well to training data but 

perform poorly on testing data. That is why Adjusted R2 is introduced; it penalizes the inclusion of new 

independent variables to the model and adjusts the measure to avoid overfitting difficulties.  

R2 is a convenient, apparently straightforward metric for determining how well your linear model fits a 

collection of facts. However, R2 doesn't reveal the whole picture. It cannot identify whether the coefficient 

estimations and projections are skewed, which is why the residual plots must be evaluated: it does not indicate 

the suitability of a regression model. A good model can have a low R2 value, while a model that does not match 

the data can have a high R2 value. In summary, it estimates the strength of the association between your model 

and the response variable, but it does not give a formal hypothesis test for this relationship. 

 

Through a measure called "Permutation Feature Importance" (Breiman, 2001), which shows the sensitivity of 

the model score to fluctuations in the values of the individual features, it is possible to evaluate what R2 is 

reliant on each of the features (thus assessing a "score" of the features for the model). This model inspection 

approach may be applied to any estimator with tabular data that has already been trained. Essentially, the 

approach allows you to calculate the loss in model score (when compared to training) if the values from a 
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certain feature are cancelled arbitrarily. This process will provide a score for the lowest model achieved (e.g., 

the predictions with the data of a scrambled feature will be less exact), and the drop in the model score will 

represent an indication that measures how much that performance depends on a specified feature. In essence, 

the approach destroys the association between the feature values and the accompanying labels and analyses 

the resulting drop in the model's score. The approach may be used to regressors or classifiers, as well as to test 

and training data. When the relevance of features on test data differs significantly from what is obtained on 

training data, this is seen as model overfitting. The final key consideration is the clarification that technical 

outcomes are model-specific: 

1) It is possible that features are unimportant in models with low scores but extremely significant in models 

with high scores (with equal estimators). It is usually preferable to base the evaluation of the Permutation 

Feature Importance on models derived from optimal parameters acquired using the cross-validation procedure. 

2) Because the approach is model-specific, it is not essential to determine how much more or less high the 

inherent predictive value of a feature is, but rather how relevant the feature is for the given model. 

 

Cross-validation, also noted CV, is a method that is used to select a model that does not rely too much on the 

initial training set. The different types are summed up below:  

k-fold  

- Training on k − 1 folds and assessment on the remaining one  

- Generally k = 5 or 10  

Leave-p-out 

- Training on n − p observations and assessment on the p remaining ones 

- Case p = 1 is called leave-one-out 

 

The most often used approach is k-fold cross-validation, which divides the training data into k folds in order 

to verify the model on one-fold while training the model on the remaining k folds, all k times. The error is then 

averaged over the k folds and referred to as the cross-validation error. 

 

 
Figure 3.5 - k-fold Cross-Validation 

There are many additional metrics that may be used in practice today, but a comprehensive treatment of them 

would be too time consuming and, in any case, would be inconsistent with the topic of the doctoral thesis and 

with the case study that will be discussed in the next paragraph. It is recommended  a careful reading of for all 

other procedures in (Pedregosa et al., 2011) 
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4. COMPANY TEST CASE: MANUFACTURING-SUSTAINABILITY ASSESSMENT 

4.1. MASTER ITALY S.R.L. 

Master Italy s.r.l, is an Italian SME, that designs, produces and sells all of the small accessories for window 

and door frames (Mster Italy, 2019), with a research, investment, and study of aluminium cultural process, and 

reserving a profound Attention to the quality of materials, innovative technologies (by 97% of the value in 

house), identifying new market demands (national and worldwide), and customer satisfaction and care (on 

Time Delivery 95%). 

Since 2013, Master has chosen to embark on a continuous improvement program with the goal of ensuring 

customer satisfaction and managing the rising company complexity. 

The logics at the base of the program master improvement are those of Lean Thinking, that is, the battle against 

waste through process simplification, staff participation, and a drive toward the construction of synchronous 

process flows. To support the activities, enabling technologies, such as integrated automations, machines, and 

systems, are being used, allowing for the maintenance of proper working conditions and the analysis of real-

time performance. As a result, the groundwork is laid for challengers' ever-increasing improvement activities. 

After 5 years of implementing Lean logics, the company capitalized on its experiences by developing the 

Master Italy Program System, which is a dynamic collection of lean techniques and methods to be used in 

various operating areas, human resource development tools, and Best Practices to be inspired by new projects. 

The areas within which it is spaced include security and the environment, improvement and ongoing 

innovation, digital transformation, and competence development (Master Italy, 2018). 

As an additional value, Master Italy has chosen to begin an activity of study of the production chain and 

reduction of the environmental effect of the goods in the domain of window components in 2011. This is the 

path that the Master Group has followed to position itself as a virtuous model of circular economy by thinking 

that a survey of environmental consequences is a must, demonstrating its commitment to the long-term growth 

of the firm. The monitoring of consumption and impacts, which enables ongoing action and improvement of 

its goods and processes, not only from a technological but also from an environmental standpoint, is therefore 

an acceptance of duty towards all stakeholders. 

The industrial structure of the Master Italy is exceptionally varied, as it is distinguished by a large number of 

machines (72) split among around 15 manufacturing departments spread throughout three sheds and an 

administration office building, with a total area of 37.000 m2 (see Figure 4.1). Furthermore, the company is 

distinguished by a vertically integrated organization, which results in a diverse range of technological 

processes: aluminium die-casting, zamak die-casting, plastic molding, steel shearing, aluminium shearing, shot 

blasting, washing and tumbling, painting, drilling and threading, automatic and manual assemblies. The supply 

chain may be separated into two macroblocks: 1. The first is for raw material processing (aluminium die-

casting, zamak die-casting, plastic molding, steel shearing, aluminium shearing, shot blasting, washing and 

tumbling, drilling and threading), which is distinguished by a high production capacity, large production 

batches, a large number of machines, high plant and equipment costs, and so on; 2. The second processing 

block consists of painting (and other outdoor surface finishes) and automatic and manual assemblies, which 

have distinct characteristics and organizational needs from the first block and are highly heterogeneous within 

it due to the large number of references and the high variability of production batches (from a few pieces to 

thousands). 
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Figure 4.1 - Plant of Master Italy's spatial distribution 

Since 2013, the company's Lean Manufacturing approach has enabled it to arrange processes and resources 

according to the "value stream" logic, especially regarding:  

• The processes have been categorized according to homogenous product families, both in terms of final 

product families, material absorption, and comparable processes (belonging to both block 1 and block 2, with 

a view to the "flow"; 

• The key process management and measurement techniques (OEE, OLE, SMED, 5S, Kanban, Action Plan, 

Problem Solving, and so on...) have been implemented in various departments in order to monitor process 

efficiency and effectiveness and to introduce the logic of continuous improvement.  

Due to the lack of technological solutions on the production lines, production data is managed using manual 

or low-tech tools, which are plagued by issues of timing (timely availability of data to support both low- and 

high-level decision making) and quality (reliability and quality of the data), as well as a high risk of operational 

error due to the large number of manual loading and management activities. 

The issues surrounding data generation and storage included: the time-consuming nature of data collection, 

validation, and entry into the system, which is often done manually; the risk of data entry or transmission errors 

due to manual skills, and the fragmentation of data across multiple information mediums, including paper, 

which is not always integrated with the company's management system; 

Data management, on the other hand, created the following issues: 

1) The inability of the system to automatically update production data, which has apparent negative 

consequences for data dependability and correctness. 

2) the inability of the Production Manager and value stream leaders to control machine activities and key 

productivity indicators of operators, machinery, and other production resources in real time; 

3) the lack of a centralized corporate reporting system;  
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4) the lack of congruity analysis and data certification. 

The virtualization of the organization necessitates the development and use of digital models known as digital 

twins, which reflect the collection of resources and knowledge of real-world operations. Because virtual 

replication of a physical system is quite complicated, a substantial quantity of data and models that reflect the 

operational semantics of the simulated pieces must be available.  

A lack of knowledge of the genuine goal to be reached still persists. Companies in manufacturing that seek to 

analyse Big Data to improve the perception of what they are doing, for example, by being aware of the aim 

they want to attain, are still few. Master Italy is not one of them; it no longer wants to sell components; instead, 

it wants to sell a full service that includes AI (“Cafagna, Gruppo Master Italy Srl,” 2018). 

As a result, technical solutions (MES and scheduler - machine level production planning simulation software) 

were implemented in 2017 to optimize production process management and monitoring along the following 

intervention axes: 

1. Automated production planning and scheduling 

2. Real-time updates on the status of production orders and deviations from the scheduled one. 

3. Elimination of errors in paper compilation and manual data entry. 

4. The created pieces are automatically registered. 

5. Manufacturing waste is automatically documented. 

6. Automatic recording of active and idle machine times. 

7. Machine status is automatically updated in real time. 

8. Consistent resource monitoring throughout the production process. 

9. Processing and monitoring of performance indicators in real time and automatically (e.g. OEE, Machine 

production capacity). 

The thesis work is part of a larger and long-term project begun by the company in 2017 to report the phases of 

analysis concerning the implementation of the project called “Master Twin” which aims at an application of 

ML aimed at predicting, with a certain advance, the machine faults of a manufacturing plant. The digital twin 

of a product or process allows for the emulation, analysis, and simulation of the evolution of its actual twin, 

assisting in the prevention of issues or improving performance through real-time data analysis. It is built on 

three pillars (Abusohyon et al., 2021): 

- Big data, IoT, and sensors: they enable continuous data interchange across goods, systems, and 

processes. 

- Digitalization: the digital copy provides a virtual environment for evaluating ideal operating 

conditions, highlighting deviations, and testing remedial solutions. 

- Intelligence: the digital twin provides tangible support for informed and timely strategic and 

operational decision-making.  

The output of the prototype phase is thus represented by the demonstration on field of the applicability of 

Machine Learning technologies to the operational context of the Master company, and that the application of 

these technologies can descend a concrete benefit of greater plant efficiency, higher productivity, lower 

production waste, and so on. Because it was a purely exploratory area, the characteristics of the prototype 

version were represented by a limited operational context to a single machine, the use of historical data (not 

updated in real time), and access to external support for the component of artificial intelligence technology. 

The end result is a computer application that, based on real-time readings of the machine’s operating 

parameters, is able to visually notify the operator that the conditions for a detained machine are being 

generated, to indicate the peak of the machine where the malfunction is occurring (based on the parameters of 

the pattern found), and to suggest a preventive solution. It will be possible, using an evolved human-machine 

interface (HMI), to alert the employees in charge of supervising the plant and suggest interventions aimed at 

preventing the critical event that is being announced, with obvious benefits on plant efficiency and 

productivity. 
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4.1.1. Context 

The “Master Twin” project had a breakthrough in 2020, with a development of a static prototype to test the 

applicability of artificial intelligence technologies to the context of company operations. 

In 2019, thanks to investments made by the company in accordance with the Smart-Factory philosophy, a 

capillary field data acquisition layer that, using IoT technologies, conveys large databases collected along the 

entire Production line to a centralized system monitoring system will be available (SCADA). This massive 

amount of field data constitutes a massive informational legacy (Big Data) that can be profitably used for ML 

purposes in order to train algorithms capable of predicting events based on large databases gathered. 

An application solution capable of bridging data from machine sensors on a single die-casting machine with 

machine event casualization from the production management system has been introduced. With this 

prototype, we want to demonstrate that, by applying ML methodologies to the data in question, artificial 

intelligence (AI) technology is capable of extracting, from the collected data, a series of patterns capable of 

predicting events whose correspondence has been found in the causals of critical events (microstops, 

production waste, faults) relating to the same machine on the MES system. 

The Master Twin project is divided into the following phases: 

1. Project definition: an awareness on the organization's goals, priorities, and resources in order to identify 

the goal that the predictive analysis must reach by calculating the costs of implementation and the 

associated timing. This step entails conducting research on the aluminium die-casting process, which will 

be followed by research on the other raw material departments and the painting department, as well as the 

subsequent application of the model on them, in order to make a technological change and manage 

production in a flexible and predictive manner. 

2. Data preparation: it is required to collect all relevant data so that it may be utilized later in the analysis. 

The majority of Master's machines are outfitted with a PLC with basic control capabilities and a set of 

machine edge sensors capable of monitoring some crucial process parameters. The following operational 

steps are used to gather, historicize, and clean data: 

- Data Selection: choosing a data collection necessitates understanding of the domain from which 

the data is drawn. Removing irrelevant data from the data set minimizes the research space during 

the data mining phase, resulting in a shorter analysis time. 

- Data pre-processing: his phase involves cleansing the information and eliminating discrepancies 

that may create difficulties throughout the data analysis process. This phase involves the 

development of E-R (entity-relationship) models, which are conceptual models for the conceptual 

and graphical representation of data as well as the relationships between data databases. 

- Data Transformation: the data is translated into forms suited for data mining techniques analysis. 

During this phase, the diversity of data is reduced while the quality of the data is maintained. 

3. Data analysis and exploration: the extraction of information from current data sets in order to create 

models and forecast future outcomes and/or trends. The best algorithms for analysis are defined at this 

stage. This stage entails evaluating and implementing machine sensors (e.g., machine learning algorithms 

or data mining techniques). The two primary roles of data mining are extraction and analysis. The 

approaches employed in the first extract implicit and tacit information to make it useable; in the second, 

the data is investigated and analysed mechanically or semi-automatically to uncover patterns and 

regularity in the behaviour being studied. These are referred to as patterns. A pattern is a synthetic and 

semantically rich representation of a set of data that encapsulates a recurring pattern in the data. 

4. Digital model construction: it entails creating a very accurate virtual representation of the actual thing. 

The model collaborates with the appropriate physical system to undertake behaviour analysis, assessment, 

and prediction. 

Users must develop the following models to generate a full mirror replica of the physical system: 

1. The geometric model was built as a solid 3D model. 
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2. a physical model that simulates the physical features of a physical system (e.g., stress on the gear and 

temperature, working pressure, etc.). 

3. The behavioural model depicts the behaviour of a physical system that is governed by driving factors (for 

example, production orders) or disturbing factors (e.g., human interference factors). 

4. A rule model contains restrictions and relationships that enable assessment, optimization, and/or prediction. 

5. Model Validation and Model Use: To validate the developed digital model, tests must be done. Statistical 

analysis, heuristic analysis, experimental analysis, and human analysis are some of the methodologies that may 

be utilized for evaluation. 

 
Figure 4.2 - Digital Twin conceptual architecture (Parrot and Warshaw, 2017) 

As a result, the digital twin's ability is to emulate three human brain capacities: conceptualization, comparison, 

and collaboration. At the following stages, virtual transformation enables the following benefits, confirming 

what has been said by (Becue et al., 2020): 

• Quality: reduced processing waste due to proper system control;  

• Productivity: reduced setup times, failures, and machine downtime;  

• Competitiveness: reduced testing times;  

• Innovation: highly technological products and processes. 

• Real-time communication between the digital twin and the real system. 

• Digital twin implementation and utilization 

• Documentation and interpretation of the preceding stages' outcomes It may be required to return to 

prior phases to refine or change the information obtained in response to the user's most pressing 

demands. 
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4.1.2. Die-casting Process  

Die-casting is a process that involves melting metal pans in high-temperature furnaces, then pouring the liquid 

metal into a mold of the appropriate shape and allowing it to solidify. When the final solidified object, also 

known as a casting, is expelled from the mold, the cycle is complete. 

The casting process is comprised of one cycle, from mold cleaning to casting, and it takes around 4–120 

seconds, depending on the casting size. As a result, it has a high productivity, with the ability to manufacture 

30–1000 castings per machine per hour; the casting duration is determined by the mold clamping force. Die-

casting offers the most price competitiveness in mass production components since it is a high-productivity 

technique. The traditional die-casting method, on the other hand, has drawbacks such as a lack of pressure 

resistance owing to high internal gas content, surface flaws due to the breaking layer, losses in strength and 

airtightness due to internal shrinkage, and difficulties in undercut processing. A furnace, metal, die-casting 

machine, and die are all used in the die-casting process. The metal, which is usually a nonferrous alloy such 

as aluminium or zinc, is melted in the furnace and then injected into the dies using a die-casting machine. 

Die-casting technology is quite complicated in practice, and it is critical to select the parameters of the HPDC 

process in order to obtain appropriate mechanical qualities and the desired performance for the made 

aluminium-alloy components.  

operating parameters during the cycle (strokes of the mechanical parts C1, C2, and CC, execution times of the 

various phases of the T1, T2 cycle, speed V1, V2, pressures PS, PF, and PM, closing force FC, and measured 

sprue thickness in the SM mold). 

 

One cycle of die-casting process can be divided into four distinct phases: 

1. Melting: Aluminium enters as a solid and departs as a molten state. For injection, die-casting needs that 

aluminium be heated deep into its liquid phase. Aluminium has a melting point of 680-700 °C. The aluminium 

is transported to each die-casting machine once it has been melted and heated to the right temperature. Each 

die cast machine has its own holding furnace, which keeps the molten aluminium at the proper temperature as 

it waits to be used in the die cast machine. 

2. Injection: Molten aluminium is pumped into the mold via a plunger (Figure 4.3). The molten metal is then 

moved into a chamber where it may be injected into the die after being kept at a constant temperature in the 

furnace. When a die cast machine is ready for its next cycle (die closed and ready for shot), an automated ladle 

pulls a predetermined volume of molten aluminium from the holding furnace and pours it into the mold. When 

the pouring is finished, the injection step begins. The first injection phase is the sluggish phase (T1), in which 

the plunger goes slowly forward (V1).  
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Figure 4.3 – Injection scheme 

After a predetermined distance (C1), the plunger moves (C2) with an intermediate speed phase (V2), during 

which the speed is raised to fill the mold. When this is finished (T2), the machine enters a rapid phase in which 

the speed is considerably increased in order to fill the component cavity with aluminium (CC). 

3. Molding: The molten aluminium hardens in the cavity of the mold. After the cavity has been filled and the 

plunger has stopped moving, the hydraulic cylinder that is pushing the plunger is inflated to a greater pressure 

(PM). During solidification, this pressure keeps the molten metal in the dies. The final shape of the casting is 

established when the whole cavity is filled and the liquid metal hardens. The die cannot be opened until after 

the cooling time has passed and the casting has hardened. To hold the die tightly closed while the metal is 

injected, clamping force (FC) must be provided. The die opens the ejector or moves half of the die after a 

certain length of time (TC). 

4. Extraction: The casting is pushed out of the mold chamber by an ejection device. When the injection cycle 

is finished and the machine is fully open, the die cast is pushed out and the thickness of the die cast (SM) is 

regulated to avoid quality faults. At this point, the mold is lubricated and a new cycle can start over. 

5. While the next cycle begins, the previous print has finished cooling and is moving towards the final steps 

of processing. Depending on the intricacy of the component, they might be more or less articulated. 

6. The cleaning of the mold comes after the molding and cooling phases. This process entails removing the 

meshes.  To remove the part of the jet that has hardened and remained connected to the product component 

throughout this step of the process. It is a variable procedure dependent on the size of the component to be 

separated from the castable channel: for little pieces (as is typically the case with zamak products), bending 

the break point is often sufficient to break the connection; however, for big parts, a specific cutting equipment 

is necessary, which can be automatic or manual / robotized, depending on the component in production.  

A die cast is a representation of an injection cycle. There are 36 pieces in the die cast. This means that every 

33 seconds, 36 components are created for each die-casting cycle. 

 

The quality of a die-cast product is affected by a number of elements. It is mostly determined by the properties 

of the alloy materials, the casting parameters, and the design circumstances of the molds and components. In 

general, a die-cast product is built with component thickness, charge time, local overheating temperatures, and 

surface conditions in mind. To reduce casting defects and produce high-quality die-cast goods, the equipment's 

working conditions must be adjusted, and the size and position of the gate speed, runner, overflow, and 

ventilation must be appropriately addressed while constructing molds. Among them, casting procedures or 



 

112 

casting circumstances have a greater impact on the mechanical characteristics of die-cast aluminium alloys 

than the alloys utilised. Several thermodynamic parameters impact on die-casting process. They increase the 

quality of die-cast items when appropriately determined and adjusted. Mold temperature, dose volume, slow 

and quick injections, injection pressure, set up pressure, chemical composition, and liquid metal temperature 

piston velocity, metal temperature, filling time, and hydraulic pressure (Verran et al., 2008). 

A die-casting process's environmental and technological performance is the consequence of a large number of 

criteria. Some of these settings may be changed, while others are random. On a daily basis, modern foundries 

may collect massive amounts of process data. These contain information about molten metal preparation, 

casting process parameters, simulation findings, component shape, Non-Destructive Evaluation (NDE) data, 

and so forth. In an industry firm, there are many various sources of information, such as data from the PLC 

system, MES, manufacturing line, and from outside the company. The ERP system understands what 

consumers want, the MES system understands how to create it, and data from production line sensors 

demonstrates how the production system functions. Enterprise data source systems are frequently produced by 

various suppliers and may not speak the same language. Data is acquired at several phases of the process. 

These data are held in silos, and their value is frequently restricted until they are combined. This would be a 

missed opportunity for the foundry unless there was a means to combine, fuse, and analyse the data.  

Each die-casting process cycle is monitored and recorded on the cells during the operations. Each cycle record 

is made up of values relating to the input and output process parameters. 

Over time, the types of data and collecting methods utilized by several departments within the same institution 

have developed. Methods range from high-tech automated uploading to a cloud database to handwritten 

notebook entries. As a result, merging the numerous sources into a coherent dataset presents issues because 

collection frequency and identities frequently differ. Communication among stakeholders is crucial throughout 

the process to determine whether, how, and how frequently data should be gathered to provide the best 

description of the system to be modelled. Integrated data is required for conducting machine learning, and it is 

a missed opportunity for the foundry business if no attempt is made to assemble, fuse, and analyse this data in 

order to better understand the process elements impacting casting quality. 

 

4.1.2.1. Company die-casting process research challenges  

 

1. Real-time thermodynamic process analysis. It is important to construct a network of sensor meets and 

a data integration system (IOT architecture) to gather all operations in real time and do automate 

thermodynamic analysis using a built-in ad-hoc algorithm. 

2. Being able to incorporate an EA and LCA study into a single automated analysis. 

3. Solve the challenge of heterogeneous data sources and formats by combining raw data sets from MES, 

PLC, and environmental data into a single structured database. The ability to acquire deep PLC data, 

MES data, and data from sensors, which monitor more particular objects that may not be available via 

the PLC or MES, is critical to high quality analytics and outcomes (Khan et al., 2017). 

4. Managing an Unbalanced Dataset. Handling unbalanced data for machine learning is a major study 

topic, and various studies have been conducted to address the skewed data set issue, since many real-

world datasets are severely imbalanced. Considering the causalisations reported on the MES, it is 

discovered that about 80% of the dataset influences the cause for microstops, 10% for mechanical 

faults, and 5% for both electrical faults and equipment faults, resulting in severely uneven data 

training. 

5. Apply various anomaly detection approaches, like as machine learning, to find minority class samples 

that are oddities or outliers. 

6. Fine-tune algorithm performance with additional data and verify models using previously unknown 

test data. 
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4.2. COUPLED EA-LCA FOR THE THERMODYNAMIC MODELLING 

In this paragraph, an EA-LCA coupled analysis is performed on the company industrial test case, in accordance 

with what is stated in paragraph 2.1.4, thus following the System Thinking. Since the company's dedication to 

the long-term growth of the business for all stakeholders, it has been feasible to gather data formatted according 

to our needs and undertake direct measurements on the field of the process under investigation. LCA, as the 

name implies, is commonly used to assess a product's complete life cycle in a so-called "cradle-to-grave" 

assessment. LCAs are sufficient for analysing environmental impacts over the whole product life cycle. LCAs, 

on the other hand, do not have a broad influence on a certain stage of life. Because just a few customers have 

complete influence over a product over its entire life cycle, thorough reviews are vital. The application will 

allow you to clarify the systematic approach outlined in the preceding paragraph in further depth and identify 

any gaps that remain unbridged. This case study is typical since the whole process may be characterized using 

alternative beginning assumptions; also, it is composed of many sub-processes with distinct flows, increasing 

the risk of meeting heterogeneities. 

STEP 1 - Goal and scope definition  

The goal and scope derive from the company's requirements in quest of product system optimization: to 

decrease scraps created, to limit the environmental effect in terms of CO2 in order to get the EPD declaration 

on the company's products (“EPD International,” 2020), and to minimize energy consumption. To achieve 

these objectives, the LCA and EA will be built individually, followed by a hybrid EA-LCA. The study is 

performed on a single component (a safety pin, manufactured by die-casting zamak) and then on the full 

manufacturing chain of the finished product ready for sale (a handle). In terms of research, the purpose is to 

demonstrate the differences in the level of complexity of the analyses done on a particular process vs the 

complete production chain. As a result, the amount of heterogeneity is more or less significant. The two 

analyses will be conducted in parallel following the system thinking. 

SUB-STEP 1.1 - Functional unit  

It is simple to pick the functional unit for both the LCA study and the EA based on the company's performance 

requirements. The functional unit of the product system under examination in the current case study was found 

in one piece of safety pin with a diameter d = 9.6 mm and weight m = 20.1 gr, which is the same for all 

scenarios. While the functional unit chosen for the assessment of the entire manufacturing process is the steel 

corner square (whose safety pin is a component) with dimensions L x P x H = 24 mm x 14 mm x 24 mm and 

weight of m = 121 gr. This option normalizes the input and output data for the reference flows, proportional 

to the functional unit of the investigated product system. The functional units (depicted in Figure 4.4) provide 

a structure for the standardization (in a computational sense) of input and output data on the basis of which the 

performance of the analyzed process may be defined. 
 

a)        b)  

Figure 4.4 - Functional Units. a) the safety pin; b) the steel corner square 

SUB-STEP 1.2 - Reference flow, scenario and system boundaries 

The recommended initial step is to create a process flow diagram depicting the relationship between the system 

unit-processes, as illustrated in Figure 4.5. According to the system thinking, the benefit of studying the process 

as a first step is the identification of its main phases, as well as the definition of its primary and secondary 
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elements to be considered in the analysis, the estimation of the total cycle time, and the apparent criticalities 

that may arise during the analysis. As it corresponds to a distinct technological cycle, the schematization 

becomes objective, eliminating heterogeneity. 

Third-party suppliers' zinc alloy (zamak) (“UNI EN 1774,” 1999) panels (or ingots) are unloaded using an 

electric forklift in a dedicated zone of the production plant. The individual panels are then placed into the 

furnace. The alloy is melted in an electric oven at a temperature of 400-420 °C. Molten metal is pumped into 

steel molds during die-casting. After that, the molten material is squeezed into steel molds. To cool melting 

systems and trim, closed cycle water is employed. While reusable scraps are reintroduced upstream of the 

furnace, completed items are retrieved, put into boxes, and transferred to the assembly section. The die-casting 

process is characterized as a basic sequence of activities indicated in Figure 4.5: melting (furnace), die-casting 

(injection and die phases), cooling and trimming, and final extraction for machining.  
 

 

Figure 4.5 - Die-casting sub-processes (or sub-systems according to the system thinking) 

While, concerning the analysis relating to the steel corner square, one final product, 1 pc, is made up of six 

components (see Figure 4.6Errore. L'origine riferimento non è stata trovata. for the overall manufacturing 

process flow chart): 

- a safety pin produced by the zamak die-casting and vibro-tumbling processes. Die-casting zamak is a 

method of producing zamak (zinc alloy) items by injecting molten metal into steel molds. In an electric 

oven, the alloy is fused at a temperature of 400-420 °C. The molten substance is then injected and 

squeezed into steel molds. Following that, the printed material is discharged into boxes and allowed 

to cool to room temperature. The sprues are reintroduced into the furnace prior to the melting process. 

The semi-finished product is next transferred to the vibro-tumbling step, which is a mechanical 

scouring of metal surfaces that also allows the piece's sharp edges to be removed. The procedure is 

carried out by immersing the parts to be treated in a heterogeneous mass of moving granules or spheres 

that perform metal removal / sanding by sliding along the surfaces of the component. 

- a spring block plate produced by stainless steel shear presses, washing, and vibro-tumbling processes 

Stainless steel coils are physically treated with additives in the metal pressing and sheathing section 

utilizing eccentric presses for shearing machining supplied with steel pitch molds. The steel belt is 

then forced into the mold, where it is molded and cut to fit the plate to be created. Dirty components 

are delivered to an industrial washing machine with a centrifuge. The procedure is intended to remove 
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processing residues (oil, pastes, fats, dust, etc.) from metal semi-finished goods. The washing system 

operates by dissolving appropriate detergents in hot aqueous washing solutions maintained at roughly 

70 °C. 

- a female wing produced by die-casting and shot blasting, and a male wing produced by die-casting, 

shot blasting, drilling, and threading. In order to make aluminium alloy components, molten metal is 

injected into steel molds during the die-casting process. The raw material for aluminium alloy loaves 

is delivered within melting furnaces and heated at the melting temperature of the alloy (660-700 °C). 

The molten substance is then injected and squeezed into steel molds. Robotic arms are then used to 

place the printed material in boxes and bring it to room temperature. Shot blasting is carried out by 

pushing steel metal balls with a diameter of 0.5 mm at high speed against the objects to be treated, 

eliminating any leftover burrs created by molding. The item is then transported to the department of 

drilling and threading. The section is comprised of a range of machine tools that can work dry as well 

as with lubricants and chemicals. In the latter situation, fully automated machines run a continuous 

cycle in a closed cab, recycling the emulsion after filtering. 

- third-party contractors are used to purchase springs and screws. 

Following that are the semi-automatic assembly and hand packing (with labels and cardboard) steps. 

To make the findings of LCA and exergetic analysis more similar in terms of indicators, the stages of transport 

(typical of LCA), assembly, and packing will be excluded from the study. This decreases the amount of 

variation in process definition, inventory, and computations. Finally, the purpose and scope of the two 

independent studies are the same, the system boundaries are the same, and the inventory analysis is performed 

on the same flows of matter and energy. 

 

 
Figure 4.6 - A flow chart depicting the manufacturing processes of corner square 

The scenario analysis is linked to the sensitivity analysis in this example, which is a function of the possible 

alterations in the percentage allocation of energy consumption during the production phases. EA substantially 

assists the quest for technical or operational process improvements. In this situation, EA aids in the definition 

of a single scenario, eliminating potential heterogeneities by identifying sub-systems (unit-processes) 
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whenever a state change happens. Concerning the reference flows, non-compliant items were included in the 

analysis as long as the overall entering raw materials and their consequences were included. Waste treatment 

methods were also provided. The EA uniquely identifies reference flows in its balance equations (see 

paragraph 2.1.2), eliminating analytical heterogeneity.  

The system boundaries were chosen based on the analysis's goal and scope. The defined boundaries are as 

follows: i) a temporal boundary (2020); ii) a geographical boundary (the main production setting place is 

Conversano - Italy); and iii) a technological boundary, which includes all in-plant production processes 

necessary to manufacture the two functional units, excluding raw material production and transportation (buy) 

and packaging (made in another company's department). Due to a lack of precise data, only the manufacturing 

phase has been included in the system boundaries for the hybrid analysis done here.  

Because EA was used as a guideline to identify the unique intermediate path from S(t0) to S(tN), heterogeneity 

was severely reduced. The system thinking aims to simplify the search for different production of S(tx).  

The optimization criteria in the EA is a guidance to this goal by decreasing the term Exloss, which is the source 

of the system's less-than-theoretical efficiency. Heterogeneity is decreased in EA and LCA by describing our 

industrial system as a thermodynamic model. It is probable that LCA is an estimate of the distance between 

the end state S(tN) stated in terms of environmental effect rather than thermodynamic potential, and that EA is 

a thermodynamic approach that also helps to measure process inefficiencies. The thermodynamic model is 

built of four unit-processes, each of which may be regarded as a separate thermodynamic system (more control 

volumes) with associated mass and energy input and output fluxes determined by the functional unit and the 

system boundaries/system environment. Figure 4.7 and Figure 4.8 depict a graphical depiction of the two 

system models. The models were built on the basis of the "ontological reference model" approach used by 

(Cao et al., 2018), which states that when there is a variation from the previous state, the system must be 

divided into sub-processes; this means having a technological view of the production cycle and the product. 

 
Figure 4.7 - The model of the die-casting process according to the system thinking 
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Figure 4.8 - The model of the entire manufacturing process of the steel corner square according to the system thinking 

STEP 2 - Inventory analysis 

It is known which data must be inventoried now that the goal and scope specification process has concluded. 

The physical characteristics of raw materials and secondary materials (zinc, water) may be discovered in 

technical standards datasheets. The amount of processed materials intake and output, as well as their relative 

temperatures, have been monitored throughout time. Partial and whole-time cycles have also been tracked. 

Over the course of 2020, the electrical power consumption by machines was measured and proportionately 

assigned to the functional unit. 

SUB-STEP 2.1 - Choice of the database 

Equivalent items must be discovered and selected from the appropriate database for all data linked to the 

functional unit. Because the availability of data related to each specific database was limited, as was the number 

of items recorded (Table 2.1) and the poor geographical specification that these datasets provide, the choice 

for the most suitable database for our case study fell solely on Ecoinvent v.2.2 uploaded on the SimaPro® v.7.3 

software. Concerning EA, the chemical exergies associated to zinc and water were gathered from the most 

recent list of chemical exergies (Szargut, 1989; Rivero and Garfias, 2006).  

SUB-STEP 2.2 - Allocation  

Allocation criteria for energy consumption were assessed based on the nominal power of each machine, rather 

than machining costs (economic allocation). As a result, an attributional LCA was performed using average 

data on power usage. The same allocation criteria were used for EA. To address the issue of average data, 
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expanding the borders would be avoided since some information would be lost; instead, it would be a good 

practice to place an electrical meter on each machine. 

SUB-STEP 2.3 - Local technical uniqueness 

The topic of location in LCA encompasses more than just changes in geographical, topographic, and climatic 

geometry. Each ecosystem touched by resource exploitation or pollution is unique to some extent. As a result, 

a local ecosystem is particularly sensitive to the constraints imposed by a single product system's life cycle. 

Local distinctiveness is demonstrated by investigations into the influence of site-specific evidence and testing 

programs aimed at incorporating local sensitivities in LCA. According to the system thinking, data relating to 

the geographical position have been picked in the database: primarily data related to Italy, if accessible, or 

average data connected to European territory in the remaining situations. In contrast to LCA, EA is not 

susceptible to geographical requirements that might alter the technical application of this technique of analysis, 

limiting the potential heterogeneities that may develop when picking data based on local specifications in LCA. 

The geographical location of the system/process under investigation has no direct influence on the exergetic 

analysis since what counts is the temperature differential between the material fluxes in, out, and with regard 

to the dead state. It signifies that the ability to create productive work through the absorption of power remains 

the same. When varied ambient conditions are considered, it will take more time and energy to melt the zamak 

panels, although this is not a reason that directly impacts exergy, in terms of spatial-local specification, even a 

strong conditioning system in the plant can degrade the efficiency of the foundry. 

 

In terms of the inventory connected to the safety pin, Table 4.1 shows the primary flows of materials, energy, 

and wastes for each sub-process of the die-casting zamak. These figures have previously been computed in 

terms of the functional unit, which is one pc of safety pin. 

Table 4.1 - Main process parameters, i.e., process flows of safety pin manufacturing 

Sub-process 
Materials Electrical Energy Wastes 

Type Quantity Non-renewable Photovoltaic Type Quantity 

Furnace 

Zamak panels + 

reusable scraps 
0.0014 kg 

0.00035 kWh 0.00003 kWh 
Metal dross 0.00003 kg 

Additives/Chemicals 0.0001 kg VOC 0.00007 kg 

Injection 
Zamak shot 0.0248 kg 

0.00017 kWh 0.00002 kWh 
Metal 0.00003 kg 

Additives/Chemicals 0.00005 kg VOC 0.00002 kg 

Die 
Zamak shot 0.0011 kg 

0.00054 kWh 0.00005 kWh 
Metal 0.00003 kg 

Additives/Chemicals 0.00035 kg Oil 0.0001 kg 

Trimming Zamak casting 0.0013 kg 0.00014 kWh 0.00001 kWh 
Dust 0.00001 kg 

Metal Scraps 0.00003 kg 

 

In terms of the inventory connected to the steel corner assessment, Table 4.2 shows the primary flows of 

materials, energy, and wastes for each sub-process. These figures have previously been computed in terms of 

the functional unit, which is one pc of steel corner. 

Table 4.2 - Main process parameters, i.e., process flows of steel corner square manufacturing 

Sub-process 
Materials Electrical Energy Wastes 

Type Quantity Non-renewable Photovoltaic Type Quantity 

Die-casting 

zamak 

Zamak panels 0.0014 kg 
0.0012 kWh 0.00011 kWh 

Metal 0.0001 kg 

Additives/Chemicals 0.0005 kg VOC 0.00011 kg 

Die-casting 

aluminium 

Aluminium panels 0.0248 kg 

0.00067 kWh 0.00003 kWh 

Metal 0.00048 kg 

Natural gas 0.012 m3 VOC 0.00002 kg 

Additives/Chemicals 0.001 kg Oil mist 0.0009 kg 
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Flattening and 

cutting 

Stainless steel coils 0.0011 kg 
0.00082 kWh 0.00008 kWh 

Metal 0.00005 kg 

Additives/Chemicals 0.0003 kg Oil 0.0001 kg 

Washing 

Water 0.0976 l 

0.0022 kWh 0.00021 kWh 

Sludge 0.095 l 

Natural gas 0.0018 m3 Formaldehyde 0.000001 kg 

Additives/Chemicals 0.0003 kg Chemicals 0.0003 kg 

Vibro-tumbling Abrasive grains 0.0002 kg 0.00082 kWh 0.00008 kWh Grains 0.0002 kg 

Shot blasting Abrasive blasting 0.0003 kg 0.0016 kWh 0.00014 kWh Grains 0.0003 kg 

Drilling and 

threading 
Additives/Chemicals 0.0001 kg 0.000034 kWh 0.000006 kWh Metal 0.0001 kg 

 

STEP 3 - Life cycle impact assessment  

SUB-STEP 3.1 - Impact category selection and cut-off rules 

The environmental performance comprises data on resource usage, energy consumption, pollutant emissions 

across the product's life cycle, and possible environmental consequences in kgCO2eq. The IPCC-GWP-100y 

impact category was chosen, with a cut-off value of less than 1%. The firm's goal of obtaining EPD certification 

on their products, which demands exactly the environmental effect represented in kgCO2eq, compelled the 

corporation to choose this impact category (“The International EPD® System - The International EPD® 

System,” n.d.). The sole metric for EA is the amount of exergy loss represented in Joules, or dimensionless 

efficiency. Cut-off was simple in this situation since the EA previously set the tolerance of the performance 

parameter to +/- 1 [J]. This decision is solely based on the goal and scope previously defined. 

Because the information acquired will aid in the anticipated effect assessment, the inventory review should be 

guided by the selection of impact assessment metrics. If the effect calculation is exergy research, the data 

acquired may be suitable to this, implying that gathering a large amount of pollution data should be overlooked 

since they are either damaging or greenhouse gases but do not contribute significantly to Exergy losses. 

Consider that EA alone is incapable of delivering full information regarding the system under study's 

environmental sustainability. Just when coupled with LCA and adding information pertaining to process 

performance, not only environmental, but also technical/technological, does exergetic analysis become a 

helpful instrument for the cause, as in Exergoenvironmental and Exergoeconomic analysis, or CExD. As a 

result of being more limiting in terms of system boundaries and flows to be evaluated than the LCA, exergy 

minimizes some sources of uncertainty and heterogeneity inherited in the LCA. When a broad-spectrum 

examination of probable environmental consequences is needed, the LCA impact categories, such as Recipe 

or CML-IA, are recommended. CExD is the best assessment method for integrating LCA and EA because it 

allows for the consideration of all upstream and downstream flows (as well as related primary and secondary 

data) that characterize the LCA to be expressed in a single more comprehensive metric, such as exergy demand 

(MJ). 

SUB-STEP 3.1 - Space and time characterization 

The bounds were chosen to address space characterization. In terms of time characterization, the system view 

only applies to the production stage, reducing heterogeneity caused by the limitation of different alternatives 

that would occur at each sub-step of the analysis, i.e., additional alternatives in functional units, system 

boundaries, and even more during LCI, where similar data in the datasets may lead to inaccuracies.  

STEP 4 - Results and interpretation 

ISO 14044 state that “The selection of impact categories shall reflect a comprehensive set of environmental 

issues related to the product system being studied, taking the goal and scope into consideration” (“ISO 14044,” 

2006). Indeed, even if it investigates the whole product system, a study that focuses primarily on one type of 

effect, such as carbon footprint or water footprint reports, is not considered a life cycle assessment in the 

meaning of the ISO standard. However, from a system standpoint, where the practitioner must answer to the 
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company's needs, which constitute a constraint, the purpose is realized by the measurement of CO2eq 

emissions, which is the quantity necessary to receive the EPD certificate. Furthermore, as established at the 

start, the EA allows to reduce some of the inherent heterogeneities of the LCA technique while simultaneously 

providing us with relevant information on process and system performance. The general character of ISO 

standards is a limitation: more contextualization or a set of representative test cases would be preferred to 

avoid free interpretation. 

As concerns the case study, the life cycle results, the emissions have been summarized per each component in 

the following Figure 4.9 illustrating the normalized overall impacts of one safety pin. The evaluation of the 

impacts for the GWP reported a total value of 0.0775 kgCO2eq/pc. While the normalized overall impacts for 

the steel corner square are depicted in Figure 4.10, reporting a total value of 0.3186 kgCO2eq/pc 

 

Figure 4.9 - Safety pin: results of IPCC GWP100y performed with LCA 

 
Figure 4.10 – Steel corner square: results of IPCC GWP100y performed with LCA 

When the EA is performed from a systemic perspective, the total sustainability evaluation becomes less 

uncertain than the LCA. The retrofit work has been examined indirectly by taking into account the exergy loss 

flow in the Sankey diagram in Figure 4.11. Despite the unambiguous specification of all presumptions and 

assumptions made for both analyses, the greatest exergy loss happens in the 3-Die sub-process, which 

contradicts the conclusions obtained by using the LCA.  
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Figure 4.11 - Sankey diagram of exergy flows expressed in Joule 

 
The following figures were produced from the EA for the sustainability performances based on the exergy 

efficiency indices determined for each sub-process, as shown in Figure 4.12. While the metrics for the complete 

manufacturing process of the steel corner square are presented in the next paragraph in Table 4.3  

  
Figure 4.12- Exergy efficiencies for each sub-process 

 

Because of the quantity of destroyed exergy, heat losses, and wastes, net use exergy efficiency differs from 

general exergy efficiency. The gap between these two efficiency indicators implies that the melting operation's 

exergy efficiency may be enhanced further, i.e., there is potential for alternate process scenarios S(tN).  

As a reference, a more integrated EA-LCA was also performed in SimaPro®, integrating Exergy and LCA. 

The CExD approach was chosen as the analytical method. The goal of CExD is to calculate the total exergy 

extracted from nature by adding the exergies of all resources (both material and energy) necessary to supply a 

product or process. The evaluation occurs at several stages of the life cycle. This approach assesses the quality 

of energy demand in the investigated system by using exergy as a measure of the possible loss of valuable 

energy. The CExD assessment results, presented in Figure 4.13 and Figure 4.14, were consistent with 

independent LCA and EA evaluations. 
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Figure 4.13 - Safety pin: results of CExD expressed in MJ 

 
Figure 4.14 - Steel corner square: results of CExD expressed in MJ 

Because they use quite different measures, the sustainability assessment results obtained through the LCA 

alone are not directly comparable to those obtained by the EA alone. The case study results utilizing the two 

methodologies independently are contradictory, because LCA deems the furnace to be the most influential 

sub-process, whilst the EA turns out to be die-casting. Because the aluminum endures a significant drop in 

temperatures in a relatively short period of time during die-casting, the value of the Carnot efficiency 

component (1 −
T0

TK
) Q̇e

i  of Eq.  2.12 turns out to be greater in this sort of Exergy-based research. Assuming 

that the CExD was the appropriate compromise between LCA and EA, the following findings are consistent 

and predictable: SimaPro® software does CExD analysis, hence it relates to its method's characterisation 

factors (see (PRé, various authors, 2019) for a deep insight). CExD's findings, but as shown in Figure 4.13, the 

impacts of the die-casting sub-process are proportionately bigger than those of the LCA alone in Figure 4.9. 

This implies that exergy has helped to achieve a better balance between the significance of data flows and the 

emissions associated with them, as well as the environmental consequences.  

The comparability of the analysis's results is then ensured. Another way to look at it, always in accordance 

with the system thinking, is to conceive of a production batch, i.e., one printed (a cycle) made up of 32 safety 

pins, as a functional unit (in Figure 4.5 is visible the whole printed extract before trimming). We may analyse 

the integral physics, the genuine physical quantities that are not distributed equally among the 32 pcs, in this 

approach, but information about the processing on the single piece may be lost. 

 

4.2.1. Process Performance Metrics 

The purpose of this paragraph is to offer an overview of the value of the most important indicators mentioned 

in the state of the art (see paragraph 3.1.2) concerning the case study. 
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The indicators will be calculated on the basis of the manufacturing process for the production of a corner 

square (which therefore represent the functional unit, as well as the finished product of the analysis). As a 

result, in this situation, the analysis is carried out not only on the die-casting process, but also on the full chain 

of processes required for the manufacturing and supply of the completed product and packaging. This process's 

information and assumptions have already been explained in the preceding paragraph 4.2. 

The results of the analyses per unit of manufacturing process, all of which are connected to the functional unit, 

will be displayed as indicators of process performance in terms of sustainability and technological quality. 

The indicators discussed below were computed using the equations provided in Table 3.1. As a result, the LCA 

and EA performed are useful in determining the parameters needed to calculate the indicators. The results are 

shown in Table 4.3. 

LCA’s GWP100y, which is widely used as a benchmark for obtaining EPD certifications for a sustainable 

product. The greenhouse gas potential (GWP) represents a greenhouse gas's contribution to the greenhouse 

effect in proportion to the CO2 impact, which has a reference potential of 1. Each GWP value is determined 

for a specific time period of 100 years. The case study reported a total value of GWP of 0.3186 kgCO2eq/pc 

net of assembly and packaging for the case study carried out with SimaPro® and Ecoinvent v.3 database. The 

meaning of this measure is to determine the quantity of CO2 equivalent created for each sub-process. The more 

energy-intensive the process, the higher the quantity generated. As a result, according to GWP100y, die-casting 

aluminium is the most energy-intensive subprocess (considering, however, that this process is called into 

question twice, for the production of both wings, male and female). Die-casting methods, in general, have the 

biggest environmental effect. 

Exergy losses are irreversible poor uses of available energy, or squandered labour potential. This is also known 

as dissipated energy, and it may be decreased with the right retrofit solutions. The Exloss number has also been 

included in the table since it is commonly mistaken as a metric for evaluating which sub-process consumes the 

most energy and hence has the greatest opportunity for improvement in terms of technological quality and 

sustainability. 

the overall Exloss of 1.315 MJ represents the sum of exergies lost in sub-processes. When the Exloss values of 

sub-processes are examined, it is clear that there are cases where the result is consistent with that expressed by 

GWP100y, at least from a ranking standpoint, and other cases where a sub-process, such as washing, finds 

itself less energizing than vibro-tumbling, despite the GWP's assertion to the contrary. Exloss has repeatedly 

classified the two die-casting methods as less sustainable. 

The coefficient of resource-use performance, ηp, is defined as exergy efficiency. It is a non-dimensional 

measure that may be stated in percentage form. In order to increase performance, exergy efficiency highlights 

the significance of measuring losses and internal irreversibilities. Higher exergy efficiency reflects more 

energy content employed in the system, making it more sustainable, whereas lower exergy efficiencies 

represent energy losses and internal irreversible processes, resulting in inferior energy quality and a worse 

sustainable rating. It is calculated by dividing the total exergy intake by the useable exergy output. The overall 

efficiency of the process under consideration is 50.70%, placing steel corner production on a medium 

sustainable path. As a consequence of pure exergetic analysis, the ηp findings are totally compatible with Exloss, 

indicating die-casting operations as the most energy-intensive sub-processes. Because ηp in this situation is not 

cumulative, the process efficiency is represented by the value 12.34% of the die-casting aluminium, 

independent of the number of pieces produced. It has a little better efficiency than zamak, which contradicts 

the GWP100y. 

The Exergetic Eco-Efficiency, ηeco, is a measure used to compare two identical processes. It is worried with 

the possible effect differential between exergy generated from renewable sources and exergy created from non-

renewable sources. Thus, the more specific the definition of which streams in the process come from renewable 

resources and which come from non-renewable resources, as opposed to the intelligent use of recyclable 

materials, the more accurate this indicator becomes. The most notable difference in the case study in question 

is the amount of electricity absorbed by the machines in the various sub-processes, which is generated for 

approximately 9% by photovoltaics and the remainder purchased from grids, consisting of 20% coal, 1.1% oil, 
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61.2% natural gas, 5.1%nuclear, 8.7% renewable, and the remainder from a combination of sources. In light 

of the foregoing, and depending on the source of raw materials, the overall process has an average eco-

efficiency of about 0.56, which is not directly comparable to simple energy efficiency, but when compared to 

the hierarchy of sub-processes, it is very consistent with what the GWP has expressed. Furthermore, in terms 

of environmental effect, the two die-casting operations are the worst sub-processes. 

The Life Cycle Irreversibility Index, χ, complementary of the Life Cycle Quality Index ψ, supports to the 

comparison of processes and products having the same functional unit. In contrast to the previous indicator, 

this one emphasizes the value of useful exergy generated throughout the life cycle, as well as the recycling 

potential of waste materials, and thus the exergy that can be recovered rather than that which is completely 

lost. The Life Cycle irreversibility index considers the exergy inefficiency, however if a real system is 

compared to the latest technological innovations, or to an ideal Carnot machine, an index that measures 

technology obsolescence may be implemented. In terms of the case study, the Life Cycle Irreversibility Index 

verifies what the other indicators have already said: die-casting procedures are the most impactful, and in this 

case, the most irreversible. It should be highlighted that the majority of sub-processes are reasonably valuable. 

This is owing to the fact that all genuine processes are irreversible, especially those involving abrupt 

temperature changes, state changes, or large waste of auxiliary material that does not contribute to the increase 

in useable exergy created. Because there are no substantial temperature variations or material waste, 

procedures with reduced irreversibility include vibro-tumbling, drilling, and threading. On average, the whole 

production cycle of the steel corner component is 60% irreversible. The Renewability Factor is calculated by 

dividing the cumulative exergy demand of renewable resources by the cumulative exergy demand of non-

renewable resources. This metric is equivalent to the ηeco, but since it is calculated entirely on SimaPro using 

the hybrid CExD method, it eliminates the uncertainty that may arise when integrating the LCA and EA only 

at the end, rather than from the beginning. In the case study, FR also confirms that die-casting processes are 

the least sustainable, with a low renewability factor. However, it is inconsistent with ηeco on the other sub-

processes as well. On average, the overall production process has a low renewability factor of 0.348, where 1 

is the optimum process. 

Table 4.3 - List of the main indicators’ results for each sub-process 

Sub-process 

Metric 

GWP100y 

[kgCO2eq] 

Exloss 

[MJ] 

ηp 

[%] 

ηeco 

[-] 

χ 

[-] 

FR 

[-] 

Die-casting zamak 0.0731 0.217 11.2 0.137 0.92 0.149 

Die-casting aluminium 0.1674 0.445 12.34 0.114 0.89 0.229 

Flattening and cutting 0.0107 0.133 47.89 0.564 0.74 0.46 

Washing 0.0218 0.085 79.08 0.721 0.65 0.355 

Vibro-tumbling 0.0099 0.178 52.47 0.821 0.24 0.371 

Shot blasting 0.0321 0.186 63.28 0.68 0.58 0.431 

Drilling and threading 0.0036 0.071 88.65 0.873 0.17 0.444 

Overall 0.3186 1.315 50.70* 0.559* 0.60* 0.348* 

*average between the values of each sub-process 

 

In conclusion, while all metrics agree that the zamak and aluminium die-casting processes are the most energy-

intensive and least sustainable, when compared to other sub-processes, this agreement is not clear.  

Because the inventory created during the LCA, which is done with SimaPro, is made up of background data 

that already has certain pre-set processing, the findings of the LCA and EA analyses cannot be directly 

compared. Here, we're talking about metrics and orders of magnitude that are so dissimilar that SimaPro®’s 

CExD values and the findings of pure exergetic analysis do not converge to equivalent conclusions. All of this 

raises the level of uncertainty in interpreting the data for effective consumption reduction and process 

improvement measures. As a consequence, it would be reasonable to compare consistent measures in terms of 
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inventory and process type with one another. Indicators obtained from combined EA-LCA evaluations may 

appear to be a more consistent solution as an outcome.  

 

4.3. DIE-CASTING PROCESS THERMODYNAMIC MODEL 

These studies conducted in the preceding paragraph help as a reference point for determining which factors 

should be regulated and where to begin constructing one's approach. In reality, the die-cast model was required 

to emphasize process parameters, their physical linkages, and the type of source to be utilized for control, 

monitoring, and validation. The Table 4.4 below depicts an overview from the Excel model, which will serve 

as the foundation for the later design phase of the measuring and monitoring system, as well as the automation 

of the real time EA. 

Master Italy is an extremely dynamic and constantly developing SME. Although it has management platforms 

for production and quality control, the human influence (of operators) on all processes is still very strong. The 

continuous improvement of processes through targeted interventions identified by EA and LCA analyses, as 

well as the company's management system platforms, attempts to minimize this aspect, which is still not easily 

measurable in terms of quality loss and energetic effort (we can call it "anthropic entropy"). This is supported 

by the fact that there is currently no technique of objective and accurate study in the literature that completely 

characterizes the contribution of the social dimension within the paradigm of both sustainability and quality of 

processes and/or finished products sold by the company. 
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Table 4.4 - Overview of the process's Excel thermodynamic model, including the sources from which to monitor each parameter 

MELTING 

Process parameter Symbol m.u. Source  Simulation Symbol m.u. Check Source 
        

Solid state temperature of 

ingots 
Ts °C Thermo cam  Quantity of heat for 

melting 
Qm J Qm = p·Val·cs·(Tf - Ts) Pyrometer 

       

Melting temperature of the 

aluminium alloy 
Tf °C Datasheet  

Quantity of heat for 

transformation from 

solid to liquid 

Ql J Ql = p·Val·cl Pyrometer 

       

Aluminium alloy casting 

temperature 
Tal °C PLC  Quantity of heat for 

casting 
Qc J Qc = p·Val·cs· (Tal - Tf) Pyrometer 

       

Furnace capacity volume Val m³ PLC  Total amount of heat Qt J Qt = Qm + Ql + Qc Pyrometer 
       

Density of the alloy ρ kg/dm³ Datasheet       
       

Specific heat of the alloy cs cal/g°C Datasheet       
       

Fusion latent heat cl cal/g Datasheet       
          

Furnace temperature Tfurnace °C PLC       
          

Methane gas Mgas m³ PLC       
          

Room pressure P0 Pa Air quality sensor       

 

CASTING 

Process parameter Symbol m.u. Source  Simulation Symbol m.u. Check Source 
        

    
 

Alloy volume to be injected Vg m³ 
Type of product to be 

manufactured 
 Melted alloy volume in 

the spilling bath 
Vb m³ Vb = 2/3·Val CCD Cam 

         
    

 

Alloy volume deposited on the 

mould by friction 
Vt m³ CCD Camera  

Alloy volume injected 

into the container in 

the pouring phase 

Vl m³ Vl = Vg - Vt Flow meter 

         
    

 

Mould temperature Tcup °C Thermocam  Alloy injection 

temperature 
Tl °C Tl = Tal - Ts - Tt - Tcont Pyrometer 

         
    

 

Container temperature Tcont °C Thermocam  Aluminium mass mal °C mal = Vl·p Mass flow meter 
         

     

Cup inclination % % PLC  
     

         
     

Cast translation speed vt mm/msec PLC  
     

         
     

Pouring speed vv mm/msec PLC  
     

         
     

Machine closing time tch msec PLC  
     

         
     

Alloy pouring time tv msec PLC  
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FIRST PHASE INJECTION 

Process parameter Symbol m.u. Source  Simulation Symbol m.u. Check Source 
         

 

First phase injection course C1 mm PLC  Container volume Vcont m³ Vcont = Lcont·Ap CCD Cam 
     

     

First phase time T1 msec PLC  Filling rate fcont % fcont = (Vcont/Vl) ·100 PLC 
     

     

First phase accumulator 

pressure 
pc1 Pa PLC  First phase course C1 mm C1 = Lcont·fcont PLC 

   
       

Hydraulic cylinder diameter dc mm 
Type of product to 

be manufactured 
 First phase injection speed V1 mm/msec V1 = C1/T1 PLC 

     
     

Injection piston diameter dp mm 
Type of product to 

be manufactured  
Hydraulic cylinder area Ac mm² Ac = dc

2·(3.14/4) CCD Cam 
     

     

Container length Lcont mm 
Type of product to 

be manufactured  
Injection piston area Ap mm² Ap = dp

2·(3.14/4) CCD Cam 
     

     

    

 Alloy flow in first phase 

injection mould 
Qvol1 m³/sec Qvol1 = Vl/T1 Flow meter 

          

 
    First phase piston force Fp1 N Fp1 = pc1·Ac Inductive meter 

     
     

     

Agent pressure on the metal in 

the first phase 
pal1 Pa pal1 = Fp1/Ap Inductive meter 

 
  

  
     

     First phase aluminum force Fal1 N Fal1 = pal1·Ap Inductive meter 

 

SECOND PHASE INJECTION 

Process parameter Symbol m.u. Source  Simulation Symbol m.u. Check Source 
         

 

Second phase injection 

course 
C2 mm PLC 

 
Second phase injection speed V1  mm/msec V1 = C2/T2 PLC 

 
 

       
 

Second phase injection time T2 msec PLC  Second phase injection course C2 mm C2 = Vl/Ap PLC 
 

 
       

 

Second phase accumulator 

pressure 
pc2 Pa PLC 

 
Second phase range Q2 m³/sec Q2 = V2·Ap Flow meter 

 
 

       
 

Printable area width sp mm CCD Cam 
 

Alloy flow in second phase 

injection mould 
Qvol2 m³/sec Qvol2 = Vl/T2 Flow meter 

         
 

Long casting length Lac mm CCD Cam  Long casting area Acc mm² Aac = sp·Lac CCD Cam 
         

 

     Long casting speed Va  mm/msec Va = V2·(Ap/Acc) PLC 
         

 

     Second phase piston force Fp2 N Fp2 = pc2·Ac Inductive meter 
         

 

     

Agent pressure on the metal in 

the second phase 
pal2 Pa pal2 = Fp2/Ap Inductive meter 

         
 

     Second phase aluminium force Fal2 N Fal2 = pal2·Ap Inductive meter 
         

 

     Total course Ctot mm Ctot = C1 + C2 PLC 
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THIRD PHASE INJECTION 

Process parameter Symbol m.u. Source  Simulation Symbol m.u. Check Source 
     

    
 

Multiplication time TM msec PLC  Multiplication pressure PM Pa PM = ((p3·A3 - pcontr·Acontr) ·A2) PLC 
          

     Specific pressure PS Pa PS = PM· (Ap/Ac) PLC 
          

     

Third phase injection 

course  
CC mm CC = Ctot-(dp/2) PLC 

 

SOLIDIFICATION 

Process parameter Symbol m.u. Source  Simulation Symbol m.u. Check Source 
     

    
 

Mould temperature Tmould °C Thermocam  Thermal content CS Kcal CS = (cl·mal) + (cs*(Tl - Te)·mal) Thermocam 
      

    

     Opening force Fopen N Fopen = PS·As PLC 
      

    

     Clamping force FC N FC = Fopen·1.2 PLC 
      

    

     Thickness SM mm SM = Cp - Ctot PLC 

 

LUBRICATION 

Process parameter Symbol m.u. Source 
    

Lubrication time tl sec PLC 
    

Detachment level DL % PLC 
    

    

 

EXTRACTION 

Process parameter Symbol m.u. Source 
    

Extraction temperature Te °C Thermocam 
    

Cycle time TC sec MES 
    

Good pieces pc conf pc MES 
    

Discarded pieces pc non conf pc MES 
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Finally, to complete this modelling phase, the developed model allowed for the simulation of the piston race 

in its three phases, based on the variation of the technological parameters associated with it. Matlab Simulink's 

Model Predictive Control (MPC) was used to simulate the die-casting process (MathWorks, 2019). Figure 4.15 

depicts an overview of the model and the simulation results. On Simulink (Bemporad et al., n.d.), the 

mathematical model is called ‘plant’ and interacts with the MPC controller. The plant consists of a piston, 

considered as a material point of mass (m) to which a force (F) is applied, subject to damping due to liquid 

metal. So, the piston is subjected to the applied force F, damping force and inertia force. Assuming that the 

system is in equilibrium, an equation of the second order at constant coefficients is obtained, which is the 

mathematical law behind the simulation. The plant integrated and connected to the MPC Controller, provides 

as output the velocity and the position of the piston in time. The velocity is then kept constant by the MPC 

through the variation of the force F. Lastly, is introduced a disturbance to the applied force F to simulate the 

effects of the uncontrolled parameters (i.e. inhomogeneity of molten aluminium). These inhomogeneities are 

completely random and not measurable in a deterministic way, depending on factors external to the process 

analysed, such as quality of the raw material and times of supply of the metal from the melting bath to our 

system. 

 

Figure 4.15 - Matlab Simulink’s MPC model of die-casting process focused on the three phases of injection-moulding 

 

4.4. AUTOMATIZATION OF REAL-TIME PROCESS EXERGETIC ANALYSIS 

In this paragraph, a novel approach to implementing the Exergy Algorithm within an online monitoring system 

is introduced. At each sample time, the thermodynamic variables, including the exergy, are calculated in real 

time. The energy and exergy efficiency index are then calculated, providing a new understanding of the 

evolving phenomena within the monitored process. A fast thermodynamic process was used as a test case. To 

put the algorithm to the test, an exergy analysis of a simple heather was performed.  
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To allow for iterative software implementation, the above thermodynamic equations must be rewritten in a 

more structured manner. The Exergy Algorithm must be applicable to generic thermodynamic streams, such 

as those in the chemical, industrial, electrical, and biological fields. In any case, some constraints have been 

imposed. 

A generic thermodynamic system has been divided into three levels (Figure 4.16): Level 1 is the overall system. 

Reading the Table 4.5, the overall energy flux at Level 1 is calculated as the sum of all Device energy streams 

in the system. Sub-devices at Level 2. At Level 2, the Device represents a single machine or system with a 

well-defined boundary, within which one or more Level 3 material flux energy exchanges occur. An electrical 

energy stream may be present in a device. Finally, the device’s energy input/output is the algebraic sum of 

materials and the electrical correspondent stream. Level 3 is the material and energy streams of the sub-device. 

    
Figure 4.16 - Structure of a generic thermodynamic system 

Only the following thermodynamic phenomena has been considered: heat transfer from a convective material 

at constant pressure and volume; while other assumptions were:  

• There was no material state transformation. 

• There was a constant flow of cinematic, internal, and potential energy. 

• The homogeneous system outside the System boundary represents the environment. The environment is 

assumed to have known temperature and pressure, as well as an infinite heat capacity. 

 

Table 4.5 - Thermodynamic system scheme 

Environment  DeadStateTempT0(t) [K]   

Level 3 Materials  

Measured Variables  

ij generic Material  

 

Material flux 

mijin(t)  [
kg

s
] 

mij
out(t)[

kg
s

]
 

 

Temperatures  

tempijin(t) [K] 

tempijout(t) [K] 

SYSTEM

DEVICE 1                       

Material Stream 1

Energy Stream 1

...

Material Stream n

Energy Stream n

DEVICE i

Material Stream 1

Energy Stream 1

...

Material Stream n

Energy Stream n

... DEVICE m

Material Stream 1

Energy Stream 1

...

Material Stream n

Energy Stream n
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Constants ′SpecificHeat′ij  [J/kgK]   (referred to the  ij material)   

Specific enthalpy 

hijin(t)    [
𝐽

𝑘𝑔
]  = SpecificHeat ij ∗ ( tempin(t)–  DeadStateTempT0(t)) 

hijout(t)    [
𝐽

𝑘𝑔
]  =  SpecificHeat ij ∗ ( tempout(t)– DeadStateTempT0(t)) 

hij(t)         [
𝐽

𝑘𝑔
]  =  hout(t)– hin(t) 

Specific entropy 

sijin(t)    [
J

kgK
]   =  SpecificHeat ij ∗ (ln (

tempin(t)

DeadStateTempT0(t)
)) 

sijout(t)  [
J

kgK
] =   SpecificHeat ij ∗ (ln (

tempout(t)

DeadStateTempT0(t)
)) 

s(t)      [
J

kgK
] =   sout(t) − sin 

Specific exergy 

exijin(t)     [
J

kg
]    =  hijin(t)  −  DeadStateTempT0(t) ∗  sijin(t) 

exijout(t)     [
J

kg
]  =   hijout(t) −  DeadStateTempT0(t) ∗  sijout(t) 

exij(t)      [
J

kg
]  =  exijout(t) −  exijin(t) 

Material stream 

matijin(t)[kg]   =  ∑min(τ) ∗  dτ

t

0

 

matijout(t)[kg] =    ∑ mout(τ) ∗  dτ

t

0

 

matij(t)[kg]         =  matout(t)  −  matin(t) 

Cumulative Enthalpy 

Hijin(t) [J] = ∑min(τ) ∗  hin(τ) ∗  dτ

t

0

 

Hijout(t) =   ∑mout(τ) ∗  hout(τ) ∗  dτ

t

0

 

Hij(t)       =  Hout(t) − Hin(t) 

Cumulative Entropy 

Sijin(t)   =  ∑min(τ) ∗  sin(τ) ∗  dτ

t

0

 

Sijout(t)  =   ∑ mout(τ) ∗  sout(τ) ∗  dτ

t

0

 

Sijj(t)   =  Sout(t)  − Sin(t) 

Cumulative Exergy 

Exijin(t)   =   ∑min(τ) ∗  exin(τ) ∗  dτ

t

0

 

Exijout(t)   =   ∑mout(τ) ∗  exout(τ) ∗  dτ

t

0

 

 

Exij (t)   =  Exout(t) −  Exin(t) 

Cumulative Max Entalpy 

Hexijin(t)   =  ∑min(τ) ∗  hin(τ) ∗  effmax(t) ∗ dτ

t

0

 

Hexijout(t)    =  ∑ mout(τ) ∗  hout(τ) ∗  effmax(t) ∗ dτ

t

0

 

Hexij (t)   =  Hexout(t) −   Hexin(t) 
 

 

Where: 
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tempmeanij(t) =
[ tempin(t) +  tempout(t)]

2
 

effmaxij(t) =  [ 1 −
DeadStateTempT0(t)

tempmeanij(t)
] 

 

Level 2 Devices  

Cumulative Enthalpy 

Only material flux 

HinmatDevice(t) i
 = ∑ Hinij

(t)

n

j=1

 

HoutmatDevice(t) i
 = ∑Houtij

(t)

n

j=1

 

HmatDevice(t)i
 = HoutmatDevice(t)

− HinmatDevice(t)
 

Cumulative Entropy 

Only material flux 

SinmatDevice(t) i
 = ∑ Sinij

(t)

n

j=1

 

SoutmatDevice(t) i
 = ∑Soutij

(t)

n

j=1

 

SmatDevice(t)i
 = SoutmatDevice(t)i

− SinmatDevice(t)i

 

Cumulative Exergy 

Only material flux 

ExinmatDevice(t) i
 = ∑Exinij

(t)

n

j=1

 

ExoutmatDevice(t) i
 = ∑ Exoutij

(t)

n

j=1

 

ExmatDevice(t) i
 = ExoutmatDevice(t) i

− ExinmatDevice(t) i
 

Cumulative Max 

Enthalpy 

Only material flux 

HexinmatDevice(t) i
 = ∑Hexinij

(t)

n

j=1

 

HexoutmatDevice(t) i
 = ∑ Hexoutij

(t)

n

j=1

 

HexmatDevice(t)i
 = HexoutmatDevice(t) i

− HexinmatDevice(t) i
 

Cumulative Electrical 

Energy 

Enelin(t)i
[J] =         ∑Winj

(t) dτ

t

0

 

Enelout(t)i
  [J] =         ∑ Woutj

(t) dτ

t

0

 

Cumulative Energy 

balance 

EninDevice(t)i
= HinmatDevice(t)i

+ Enelin(t) i
 

EnoutDevice(t)i
= HoutmatDevice(t)i

+ Enelout(t)i
 

EnDevice(t)i
= EnoutDevice(t) i

− EninDevice(t)  i
 

Cumulative Energy 

Efficiency 
EnDevice(t)effi

=
EnoutDevice(t)i

EninDevice(t)i

 

Cumulative Exergy 

balance 

ExinDevice(t)i
=  ExinmatDevice(t)i

+ Enelin(t)i
+ HexinmatDevice(t)i

 

ExoutDevice(t)neti
= ExoutmatDevice(t)i

+ Enelout(t)i
 

ExoutDevice(t)toti
= ExoutDevice(t)neti

+ HexoutmatDevice(t)i

 

ExlossDevice(t)i
= ExoutDevice(t)toti

− ExinDevice(t)i
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Cumulative Exergy 

Efficiency 

ExgenDevice(t)eff
=

ExoutDevice(t)tot

ExinDevice(t)tot

 

ExnetDevice(t)eff
=

ExoutDevice(t)net

ExinDevice(t)tot

 

 

Level 1 System 

Cumulative Electrical 

Energy 

EnelinSystem(t)
[J] =        ∑Enelin(t)i

m

i=1

 

EneloutSystem(t)
[J] =        ∑ Enelout(t)i

m

i=1

 

EnelSystem(t)
[J] =     EneloutSystem(t)

− EnelinSystem(t)
 

Cumulative Energy 

balance 

EninSystem(t)
= ∑EninDevice i

(t)

m

i=1

 

EnoutSystem(t)
= ∑ EnoutDevice i

(t)

m

i=1

 

EnSystem(t) = ∑EnDevicei
(t)

m

i=1

 

Cumulative Energy 

Efficiency 
EnSystem(t)eff

=
EnoutSystem(t)

EninSystem(t)

 

Cumulative Exergy 

balance 

ExinSystem(t)
=  ∑ExinDevice i

(t)

m

i=1

 

ExoutSystem(t)
=  ∑ExoutDevice i

(t)

m

i=1

 

ExoutSystem(t)tot
=  ∑ ExoutDevice i

(t)

m

i=1

tot 

ExlossSystem(t)
=  ∑ExlossDevice i

(t)

m

i=1

 

Cumulative Exergy 

Efficiency 

ExgenSystem(t)eff
=

ExoutSystem(t)tot

ExinSystem(t)tot

 

ExnetSystem(t)eff
=

ExoutSystem(t)net

ExinSystem(t)tot

 

 

4.4.1. Measuring and Monitoring System 

In order to improve knowledge about all of the individual parameters at stake, industrial processes necessitate 

the acquisition of multiple signals. 

The thermodynamic laws underlying Exergetic Analysis are important for tracing the set of parameters that 

should be measured and monitored throughout the process, as well as the variables that can be calculated. 

Reference flows are uniquely identified in its balance equations, which are based on Szargut’s studies (see the 

equations in paragraph 2.1.2), as well as the performance metrics (see paragraph 3.1.2). 

The system proposed configuration includes the following features. 

Operational features to be obtained: 
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1. modular system 

2. portability 

3. adaptability 

4. remotely accessible 

5. platform for the cloud 

Physical quantities that must be collected: 

1. electrical specifications (e.g., power, energy) 

2. temperatures (via thermocouples) 

3. temperature (via pyrometer) 

4. mV, V, A analogue signals. 

Then, the monitoring system has been assembled with the following components: 

- I/O Analog Acquisition Board (Figure 4.17) 

- Raspberry Pi 4 (Figure 4.18) 

- Type K thermocouples (Figure 4.17) 

- Type T thermocouples (Figure 4.17) 

Plus, the systems already in place in the department: 

- PLC (quantitative information) 

- MES (qualitative information) 

Data elaboration tools: 

- Database: MySql  

- Data and plots have been elaborated on Jupyter (“Project Jupyter,” 2021) 

 

 

Figure 4.17 - Acquisition board 
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Figure 4.18 - Raspberry Pi 4 model B 

The acquisition board can include up to 8 analogue sensors. Eventually energy meters, flux meters and other 

measurement devices can be included. 

4.4.2. Implementation of the Algorithm in Python  

The iterative algorithm includes a generic number of the following basic objects included in the overall System: 

- Measurement instrument 

- Measured variable 

- Material  

- Device 

 

The EA algorithm has been implemented in Python using the following steps: 

 

1. Read Setup file: the above objects are defined in a setup file, which contains Python dictionaries as 

follows in Table 4.6. 

2. Data acquisition 

3. Load of data  

4. Check data 

5. Calculate: 

i. Material Streams 

(a) Enthalpy 

(b) Entropy 

(c) Exergy 

ii. Devices Streams  

(a) Electrical Streams 

(b) Enthalpy 

(c) Entropy 

(d) Exergy 

iii. System Streams 

(a) Electrical Streams 

(b) Enthalpy 

(c) Entropy 

(d) Exergy 

6. Store Data 

i. Material Streams 

ii. Device Streams 
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iii. System Streams 

 

Table 4.6 - Algorithm structure in Python 

Dictionary name Filename configSetup.py 

Dictionary name: config_setup = {…} 

Sample Data setup ‘sampleId’: ‘Test’, 

‘timeStep’: ‘2s’, 

Materials Specifications ‘matSpec’: { 

        0: { 

            ‘matId’: 0, 

            ‘matName’: ‘ … ‘, 

            ‘matDescr’: ‘ … ‘, 

            ‘SpecificHeat’:  …, 

            ‘SpecificHeat_um’: ‘J/(kgK)’, 

            ‘Density’: …, 

            ‘Density_um’: ‘kg/m3’, 

        }, 

        1: { 

            ‘matId’: 1, 

            ‘matName’: ‘ … ‘, 

            ‘matDescr’: ‘ … ‘, 

            ‘SpecificHeat’: …, 

            ‘SpecificHeat_um’: ‘J/(kgK)’, 

            ‘Density’: …, 

            ‘Density_um’: ‘kg/m3’, 

        }, 

      … 

        n: { 

            ‘matId’: n, 

            ‘matName’: ‘ … ‘, 

            ‘matDescr’: ‘ … ‘, 

            ‘SpecificHeat’: …, 

            ‘SpecificHeat_um’: ‘J/(kgK)’, 

            ‘Density’: …, 

            ‘Density_um’: ‘kg/m3’, 

        }, 

                }, 

Measurement devices Structure: 

‘measurement_devices’: { 

‘idDevice’: { 

  idPar_1: ‘Description Parameter’, 

  … 

  idPar_n: ‘Description Parameter’, 

 }, 

} 

‘measurement_devices’: { 

        # Electric meter dev. 1 

        ‘e00’: {133: ‘ … [ … ]’}, 

 

        # Temperature dev. 1 

        ‘t00’: {370: ‘ … ‘, 

                371: ‘ … ‘, 

                372: ‘ … ‘, 

                373: ‘ … ‘, 

                }, 

               }, 

Environment Variables Variable declaration: 

‘variable_name’: [‘idDevice_idParameter’ , k , offset ], 
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Where: 

k, offset: constants for linear transformation 

v_out = k * v_in + offset 

idDevice: The measurement Device id 

idParameter: The measurement parameter id 

  ‘envParams’: 

        { 

            ‘temp_env’: [‘t00_370’, 1, …], 

            ‘temp_env_um’: ‘K’, 

            ‘DeadStateTemp_T0’: [‘t00_371’, 1, …], 

            ‘DeadStateTemp_T0_um’: ‘K’, 

            ‘DeadStatePressure_P0’: …, 

            ‘DeadStatePressure_P0_um’: ‘atm’, 

        }, 

System structure Structure: 

 

   ‘sysDevices’: { 

  0: { 

‘devName’: ‘…’, 

‘devDescription’: ‘…’, 

‘elecStream’: { … } 

‘matStream’: { 

0: {…} 

 j: {…} 

… 

 n: {…}   

} 

   }, 

i: {…}, 

… 

m: {…}  

               } 

 

Considering a general Thermodynamic System composed of multiple machines, Level 1 includes the System 

model. In Level 2, each machine is represented as a "Device." Material fluxes cross the device boundary. At 

Level 3 of the aforementioned structure, each material flux and related energy stream is modelled. 

Consider that i = 0,…,m represents the index associated with a generic j device, and j=0,…,n represents the 

index associated with the ith device generic material streams where  i is the generic device and ij the generic 

material stream. 

 

5.3.2.1. Gaps in the application 

 

The described algorithm needs to be applied and evaluated for further improvements. 

 

1) Values of initial energy.  

The initial values of the energy and enthalpy variables have been set to zero. This causes errors in the 

calculation of the efficiency index. 

 

2) Efficiency indices. 

The efficiency indices were calculated iteratively as the ratio of cumulated values at each sampling instant, 

beginning with the starting time. This needs to be revised because the actual initial values of internal 

energies were neglected. A better approach would be to calculate the efficiency index on a regular basis 

(hourly, daily, etc...) rather than at each sample. 
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3) Accumulation of energy and transients. 

The exergy balance equations are only applicable to steady-state systems. During the transient, it is 

expected to see the dynamic behaviour of exergy balance and exergy efficiency index. This was also 

discovered in this Test Case. This will be looked into. The iterative algorithm must consider transient 

terms related to thermal energy accumulation and release phenomena. Otherwise, only the steady-state 

periods will be considered. 

 

4.4.3. Model Test and Validation  

The model was validated on a single sub-device, a heat exchanger installed on the company's field. 

The Setup algorithm is depicted below:  

# 

# Setup Data 

# 

config_setup = { 

    # General Sample Data Information 

    'sampleId': 'Test', 

    'Description': 'Test over heater', 

    'location': '', 

 

    # DateTime 

    'startDate': '2021-01-09 00:00:00',    

    'endDate':   '2021-01-10 00:00:00', 

    'timeStep': '2s', 

 

    # Devices 

    'devices': { 

        0: True, 

    }, 

 

    # Materials Specifications 

    'matSpec': { 

        0: { 

            'matId': 0, 

            'matName': 'Water', 

            'matDescr': '', 

            'SpecificHeat': 4185, 

            'SpecificHeat_um': 'J/(kgK)', 

            'Density': 1000, 

            'Density_um': 'kg/m3', 

            'Melting_point': 0, 

            'Melting_point_um': '°C', 

            'latent_heat': 333500, 

            'latent_heat_um': 'J/kg', 

 

        }, 

        1: { 

            'matId': 1, 

            'matName': 'Air', 

            'matDescr': 'Air', 

            'SpecificHeat': 1005, 
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            'SpecificHeat_um': 'J/(kgK)', 

            'Density': 1.2, 

            'Density_um': 'kg/m3', 

        }, 

    }, 

 

    # Measurement devices 

    'measurement_devices': { 

 

        # Temperature dev. 1 

        't00': { 

                370: 'External air temperature', 

                371: 'Internal air temperature', 

                372: 'Heater input water temperature', 

                373: 'Heater output water temperature', 

                }, 

               }, 

 

    # Variables 

    'envParams': 

        { 

            #Environment Devices 

            'temp_env': ['t00_370', 1, 273.15], 

            'temp_env_um': '°C', 

            'DeadStateTemp_T0': ['t00_371', 1, 273.15], 

            'DeadStateTemp_T0_um': 'K', 

        }, 

 

    'sysDevices': 

        { 

            # Energy Balance 

            # Home heater 

            0: {'devId': 0, 

                'devName': 'Home_heater', 

                'devDescription': 'Home_heater', 

 

                'elecStream':   { 

                                    'W_in': ['nd', 1000], 

                                    'W_in_um': 'W', 

                                    'W_out':  ['nd',0], 

                                    'W_out_um': 'W', 

                                }, 

 

                'matStream': { 

                    0: { 

                        'matId': 0, 

                        'description': 'Heater water', 

                        'm_in': ['nd', 0.1], 

                        'm_in_um': 'kg/s', 

                        'm_out': ['nd', 0.1], 

                        'm_out_um': 'kg/s', 

                        'temp_in': ['t00_372', 1, 273.15], 

                        'temp_in_um': '°C', 

                        'temp_out': ['t00_373', 1, 273.15], 
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                        'temp_out_um': '°C', 

                    }, 

 

                    1: { 

                        'matId': 1, 

                        'description': 'Air', 

                        'm_in': ['nd', 0.3], 

                        'm_in_um': 'kg/s', 

                        'm_out': ['nd', 0.3], 

                        'm_out_um': 'kg/s', 

                        'temp_in': ['t00_370', 1, 273.15], 

                        'temp_in_um': '°C', 

                        'temp_out': ['t00_371', 1, 273.15], 

                        'temp_out_um': '°C', 

                    }, 

                }, 

            }, 

        } 

} 

 

The following diagrams depict the measured and monitored temperatures and fluxes (Figure 4.19, Figure 4.20, 

Figure 4.21). 

 

 

  
Figure 4.19 - Input/Output Temperatures of Device 0 – Material 0 
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Figure 4.20 - Input/Output Temperatures of Device 0 – Material 1 

  
Figure 4.21 - Material Flux 

The following diagrams depict the measured and monitored enthalpy, entropy and exergy (Figure 4.22, Figure 

4.23 and Figure 4.24). 

  

Instant values -  dt=2 s – E(0) =0 Cumulative value 

Figure 4.22 - DEVICE 0 - Material 0 – Enthalpy (H) 
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Instant values -  dt=2 s – E(0) =0 Cumulative value 

Figure 4.23 - DEVICE 0 - Material 0 – Entropy (S) 

  

Instant values -  dt=2 s – E(0) =0 Cumulative value 

Figure 4.24 - DEVICE 0 - Material 0 – Exergy (Ex) 

The following diagrams depict the measured and monitored enthalpy, entropy and exergy (Figure 4.25, Figure 

4.26, Figure 4.27, Figure 4.28, Figure 4.29). 

 

 

Figure 4.25 - DEVICE 0 - Electrical energy (Pconst = 1kW) 
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Instant values - E(0) = 0 Cumulative value 

Figure 4.26 - DEVICE 0 - Input balances 

  

Instant values –E(0) =0 Cumulative value 

Figure 4.27 - DEVICE 0 - Output balances 

  

Instant values - E(0) =0 Cumulative value 

Figure 4.28 - DEVICE 0 - Entropy balance 
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Instant values – E(0) =0 Cumulative value 

Figure 4.29 - DEVICE 0 - Exergy balance 

And finally, the following diagram depicts the calculated exergy net and general efficiencies (Figure 4.30). 

 

Figure 4.30 - DEVICE 0 - Exergy efficiency (general and net) 

 

4.5. DATASETS ANALYSIS 

As previously stated, the case study focuses on Master Italy aluminium die-casting process. The machine in 

discussion is known as “F55,” and it is located in a department floor dedicated to die-casting aluminium and 

zamak. 

There are two data sets available for the machine being tested: 

1) a collection of datasets relating to recordings of the machine’s operating parameters during the execution of 

each cycle detected by the PLC on board the machine and obtained from the system into which these 

measurements are poured on a regular basis. 

2) the recording of the causes of machine downtime and anomalies performed by operators on the MES system 

for production progress management. 

In the future, hopefully, there will also be field data from additional sensors that will monitor the internal 

micro-climatic conditions at the external facility climatic conditions. It will be possible to extract new patterns 

and correlations between process performance parameters and the latters to understand whether temperature 

and radiant average humidity affect the quality of the process and, more importantly, the finished product.  
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4.5.1.  PLC 

PLC is an abbreviation for Programmable Logic Controller, and it refers to a device used to control industrial 

processes. PLCs operate on an industrial plant by running a program and processing digital and analogical 

signals from sensors. It is an integral part of the "F55" machine. The process parameters continuously 

monitored by the machine are provided in Table 4.7. The limit values are established by trained operators and 

are those for which the machine goes into alert or stops completely. In that situation, the operator is compelled 

to act and declare (on the MES) the reason (causal) for which it was summoned. operator personnel often has 

to fix faulty situations manually because the possible faults and fault combinations are manifold and often need 

manual mechanical intervention by an operator (Vogel-Heuser et al., 2016). The parameters are congruent with 

what is indicated in paragraph 4.1.2. In terms of the die-casting process, the distinction between the 

characteristics of the first phase, second phase, molding, clamping and extraction is clear. 

 

Table 4.7 - Example of the operating and alarm process parameter values set on "F55" machine PLC by specialized operators 

Process Parameters Lower Limits (MIN)  Upper Limits (MAX) 

Name Symbol << < m.u. > >> 

course first phase C1 212 237 mm 263 288 

time first phase T1 1300 1360 ms 1532 1678 

speed first phase V1 0.14 0.16 m/s 0.18 0.2 

piston seizure GP 2 3 bar 12 20 

course second phase C2 95 137 mm 122 166 

time second phase T2 90 142 ms 106 173 

average speed second phase V2 0.82 0.9 m/s 1.45 1.5 

max speed second phase VM 1.5 1.55 m/s 2.3 2.5 

course third phase (compression) CC 1 2 mm 8 10 

solidification time T3 13 15 ms 20 22 

solidification time delay TD 20 23 ms 25 28 

injection pression PM 250 260 bar 280 290 

final pression PF 205 210 bar 285 310 

speed casting doses VA 0 0 m/s 0 0 

filling pression (of the clamp) PR 20 22 bar 24 26 

specific pression PS 830 927 bar 1025 1122 

closing (or clamping) force FC 5000 5391 kN 5959 6526 

sprue thickness SM 13 15 mm 26 30 

time cycle TC 30 31 s 47 48 

 

 

As shown in Figure 4.31, the dataset resulting from PLC registrations contains: 

• a series of references including the MeaSetId which is a sequential progressive of the PLC print, the 

timestamp of the printed (TimestampLocal), the machine reference (ResourceName) which is precisely the 

F55, the injection number N INIEZ which is also a progressive but is occasionally reset; 

• the set of values assumed by the machine’s operating parameters during the cycle (strokes of the mechanical 

parts C1, C2, and CC, execution times of the various phases of the T1, T2 cycle, speed V1, V2, pressures PS, 

PF, and PM, closing force FC, and measured sprue thickness in the SM mold). 

• A third set of data is shown in Figure 4.32, which represents the maximum and minimum values of each of 

the previous parameters set on the machine during the setup phase (MIN_C1, MAX_C1, etc). 

At first glance, the elements of interest in this dataset are the progressive of printed MeaSetId, which essentially 

represents a progressive of machine cycle, the printed timestamp TimestampLocal, and the values assumed by 

the machine parameters T1, C1, SM, etc, with the others substantially constant for the given F55 machine. 
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Figure 4.31 - PLC Dataset 

 

 

Figure 4.32 - Ranges of the machine set-up values 

4.5.2. MES 

MES stands for Manufacturing Execution System and is a system that collects and distributes information to 

allow for the optimization of production activities from order placement to finished product. Using real-time, 

up-to-date, and accurate data, the MES guides, responds, and informs about plant and production department 

activities as they occur. The resulting reaction time, combined with the emphasis on reducing non-value-added 

activities, propels plant operations and processes to maximum efficiency. By combining the optimization of 

production and logistics processes with the control of resource availability and product quality, the MES 

System bridges the “gap” between ERP systems (administrative and accounting) and machine control systems 

(PLC, SCADA MES). 

Indeed, the lack of interaction between ERP and Control Systems turns the production process into a black 

box: you know the inputs and outputs of production but have no visibility into what happens in between. 

MES is thus the critical component that enables system communication and provides complete visibility into 

what is happening in production. 

Figure 4.33 depicts the dataset obtained from the MES system and containing the causes imputed by the 

operators in conjunction with the occurrence of an anomaly. In this dataset, the recordings have a ‘date time’ 

timestamp as well as the identifier of the machine to which they refer (Resource field) and a series of ancillary 

information such as the item produced, the number of pieces produced, the names of the machine operators, 

production execution times, and so on. Finally, the most important information is represented by the content 

of the ‘casualisation’ field and its ‘suspension description’, which reports any anomalies with associated causal 

factors. 

The interesting aspect to notice is that there are multiple records with the same timestamp because the 

information is repeated for each operator and for each article code produced during the same production phase, 

and thus the causal anomaly occurs several times with the same timestamp. Because the information that is of 
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interest in this first phase is the reason for fault and the time reference at which it occurred, the first processing 

of this information aims to make the recordings that report the timestamp with the associated fault cause 

unique. A second important factor is that the MES system records a causal “99 – Fermo Macchina Generico” 

every time the machine stops, which is then better specified by the operator when the machine restarts (after a 

few minutes) with the actual fault cause. This implies that the same machine downtime will generally report 

two associated reasons for downtime, of which the generic reason 99 must be ignored in favour of the operator-

recorded reason (see the example in Figure 4.34). 

 

 
Figure 4.33 - MES Dataset 

 

 
Figure 4.34 - Double fault cause 

 

It is clearly evident that raw data from PLCs, MES, and possibly additional sensors requires extensive cleaning 

and pre-processing before being exploited by ML algorithms. 

 

4.6. DATA INTEGRATION and INTEGRATED DATASET CHARACTERISTICS 

Data integration necessitates the creation of a data acquisition platform with a database capable of hosting the 

datasets acquired by various machines and plants, as well as the design and implementation of a series of 

connectors and data acquisition procedures capable of bringing field data into this database in a reasonable 

timeframe.  

Direct connectors are used for data acquisition from SCADA and MES systems, as well as data transfer from 

involved systems to allow for timely analysis of the information generated by these systems. This timeliness 

is critical so that predictive activity about potential malfunctions or process criticalities reaches the operator in 

time for preventive actions to be implemented. 

The following figure depicts a complete picture of the location of IoT architecture in the Smart Manufacturing 

system paradigm. 
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Figure 4.35 -IoT reference architecture in smart manufacturing (Illa and Padhi, 2018) 

The die-casting process involves a number of variables that, on occasion, result in the production of defective 

castings. Productivity is lost as a result of the defects (i.e., time and cost). Identifying and removing defective 

castings is crucial to die-casting quality control.  

Many case studies of data integration on machines dedicated to the Die-Casting Process have been published 

in the literature, revealing that simply monitoring the process's processing parameters is insufficient for 

identifying and predicting problems that may arise throughout the process. (Liu et al., 2018) provided an 

excellent example of monitoring die-casting energy use: an IoT system enabled technique for streaming online 

energy data for energy analysis of a die casting machine is presented. Real-time Ethernet was used to send 

energy data gathered by digital power meters and PLCs to a central server. To interpret the data and evaluate 

the performance of a die casting machine, a set of indicators was developed, including energy per part and 

energy per action. (Park et al., 2019) established an IoT system on a die-casting environment to build a link 

between casting parameters and production quality.  

The innovative part lies in the approach used during the doctoral path that differs from the other case studies 

that are in the literature. Data analytics has been used to undertake some study on the methods and tools 

required to discover flaws in the die-casting process For example (Lee et al., 2017) have implemented analysis 

techniques on die-casting to address quality issues to reduce products’ defect and mitigate financial burdens 

due to excessive expenditure of times and costs. Artificial neural networks are used by (Soundararajan et al., 

2015) to prevent casting faults. (Zheng et al., 2009) use neural networks to optimize the high-pressure die-

casting process parameters; in their study, an artificial neural network is introduced to generalize the 

correlation between surface defects and die-casting parameters such as mold temperature, pouring temperature, 

and injection velocity. 

 

From the standpoint of scientific research, the issue of data quality has been tackled in any sense with the 

advent of I4.0 and digitization in general. 

The sections that follow will explain the key approaches to the problem of analysing and quality data in relation 

to the topics discussed in this paper, organized by macro approaches: 

• Data Collection Process Verification and Improvement: It consists of an in-depth review of the entire data 

collection process with the aim of identifying and enhancing the phases of the process that threaten the 

data’s quality (eg, modifying the data entry process from manual to automatic). It is important to keep in 

mind two points in this context: (1) In certain real-world situations, intervening or analysing the collection 

process is not feasible. (2) The intervention, with potential change, of the collection process does not 

guarantee the quality of the data: a quality review is often required to confirm how the intervention on the 

collection process has resulted in an increase in the quality of the data collected.  
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• Integration: Allows for the integration of data by comparing it to real-world counterparties. However, 

since this approach is highly costly, both financially and in terms of time, it is restricted to small databases. 

• Record Linkage (Fan, 2008): (also known as object identification, record matching, merge-purge 

problem) it entails comparing records that contain information on the same item but come from different 

databases (eg, data from different sources are crossed). It is important to have a key (link) that allows one 

or more records from different databases to be associated. Unfortunately, having databases with these 

characteristics is not always possible. In these cases, the technique can be used, but it is necessary to 

perform. (1) the Cartesian product of the domains of the two source databases (that is, all possible ways 

of associating all the elements of one database with all the elements of the other are generated), resulting 

in a large space that must be further refined; (2) Next, describing a subset of the search space on which to 

concentrate attention, and (3) finally, defining a decision-making model (e.g., a “distance” function) that 

determines whether two records from two distinct databases are similar or less related. As one would 

expect, the approach’s applicability is constrained by the size of the search space and the proper 

calibration of the decision model, on the basis of which false positives/negatives can be obtained. 

• Domain rules and constraints: In many real-world applications, the solution focused on data integration 

and record matching is inapplicable or too computationally costly. In these cases, an inspection and 

correction approach is used. It is the most widely used technique, and therefore the one with the most 

variations and improvements (Fursova, 2018). It distinguishes approaches based on (1) domain 

knowledge-derived rules (e.g., domain experts identify algorithms and ad-hoc tools for data analysis and 

quality), (2) dependencies (formalized by domain experts), and (3) learning (Neural Networks, Pattern 

Recognition, clustering):  

• ETL (Extract, Transform, Load): The term ETL refers to a process that consists of three phases (Ali and 

Wrembel, 2017): (1) data extraction from one or more sources; (2) data transformation (including data 

quality assessment and cleansing); and (3) data loading into the final database / data warehouse. In most 

cases, the data quality process is carried out with the assistance of business regulations (rules defined by 

the domain expert to manage the data quality phase). One of the challenges of this approach is the 

formalization of business rules, as well as the control of the side-effects (i.e., the effects that are not 

immediately detectable) that the implementation of these rules can have on the manipulated data. In this 

regard, a plethora of data profiling tools are available on the market, allowing you to conduct extensive 

data analysis based on the chosen dimensions. 

Referring to the test case presented in this dissertation, Figure 4.36 depicts a diagram of a real-time data 

integration system derived from multiple platforms / sensors.  

 
Figure 4.36 - Data Integration Prototype designed for die-casting test case 

 

In addition to the PLC, the machine has been outfitted with additional sensors to monitor the parameters that 

are fundamental results during the construction of the process's thermodynamic model. PLCs, MESs, and 

sensors communicate with a cloud system, where they transfer the acquired data to be pre-processed (ETL) 
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and molded based on the data analysis algorithm that will be implemented. To this end, Figure 4.37 depicts 

the entire date modelling procedure as a result of data acquisition via the designed IoT system. 

 

 
Figure 4.37 – Data modelling process following the data integration procedure 

The previous analysis for the F55 machine shows that the two data sets are significantly disconnected from 

each other, and the only element that allows to relate the prints detected by the PLC with the reasons for 

downtime recorded on the MES system is represented by the resource code (F55) and the timestamp. It is also 

obvious that, in order to connect the printouts of the machine parameters detected by the PLC to a reason for 

stopping while avoiding cartesian products (duplications) between the data, the timestamp causal fault must 

be unique on the MES dataset. On the latter’s data, the records with causal nr 99 must also be removed, taking 

into account only the actual reasons attributed by the operator when the machine is restarted. Finally, because 

it is a matter of predicting machine downtime, measures that represent the event object of the prediction must 

be identified. Specifically, after consolidating the PLC data with the causal from the MES via timestamps, it 

is considered convenient to use the minutes missing at the next machine stop as a reference measure for each 

PLC record by labelling the data with the reason for the immediately following machine downtime. 

The decision to label the PLC records with the cause for the first machine stop immediately following stems 

from the desire to attribute the values of the parameters measured by the PLC to the event represented by the 

machine downtime immediately following. As a result, it will be possible to separate the records derived from 

the PLC readings by homogeneous types of machine downtime (microstops, mechanical fault, electrical fault, 

and so on), as it is expected that the behaviours for each type of stop will differ, and thus each type of event 

must be analysed separately. 

As shown in Figure 4.38, machine downtime is a case study with a high rate of occurrence, and among all the 

reasons for blocking, the one that occurs the most is undoubtedly represented by microstops. 

The causal effects with the highest frequency of occurrence immediately following (change of work and 

general break) are physiological in nature, as they relate to shift changes or machine equipment, whereas other 

causes of accidental downtime, such as mechanical fault, electrical fault, equipment fault, and so on, will also 

be investigated. 
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Figure 4.38 - Occurrences of machine downtime causes 

All pre-processing and analysis procedures were performed on a complete dataset of 644'989 data records 

spanning 30 months, from August 2018 to December 2020. It contains all integrated and matched data from 

the PLC and the MES pertaining to the F55 machine. 

The complete database consists of 14 features (independent variables), which are PLC process parameters: C1, 

T1, V1, C2, T2, V2, CC, PM, PF, VA, PS, FC, SM, and TC, even though VA will not be taken into account 

because its value is regularly set to zero, so it will only may create unbalances to the dataset during 

normalization or analysis. Finally, depending on whether it is classification or regression, respectively the 

causalisation or the missing time at the next company, regardless of whether is among those specified, the 

targets will be different. 

In certain cases, the timestamp also serves as a feature. The total number of causalisations (i.e., anomaly 

descriptions) counted in the database is 12 and corresponds to the dependent variables: microstops, mechanical 

fault, electric fault, equipment fault, pending operator, self-maintenance, processing shift, unplanned, generic 

pause, cleaning, adaptation, and maintenance request. Only the first four causalisations will be investigated in 

the next paragraph since they are the most representative and directly depend on machine and process issues. 

Regarding the remaining causals, as mentioned below, it is important to explain why they were not taken into 

account in the tests, classifications, and regressions: a as previously stated, the data from both the PLC and the 

MES are "tampered" or "dirty" by the operators as the machine generates an alarm when at least one parameter 

(all or even just one can be monitored, at the option of the shift operator) of the monitored process is outside 

of the pre-set ranges. From the time the alarm occurs, the operator has a small window of time to intervene 

and ensure that the process (the cycle) is completed successfully. If the operator is late, the machine stops, 

which increases the cycle time of the printed one. The MES detects a delay or halt in the cycle time when 
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compared to the optimal one and "invites" the operator to justify this delay or stop. The operator must then 

choose one of the above-mentioned circumstances.  

In light of what has been discussed, among all the causes of downtime, there are those that are not dependent 

on the process's quality or the thermodynamic parameters that it takes during the cycle, and they are: 

- Pending operator: the company has set up three shift bands for the die-casting section, morning-

afternoon-night. This means that between one turn and the next, the operator could be absent or not 

fully prepared to operate on the machine if it gave alerts. Usually, at the end of the turn, the operator 

pauses the machine until the next operator is returned. 

- Self-maintenance: because the machine is programmed to make each n cycle an internal control, it is 

necessary to lock between one cycle and the next. However, it does happen that the most experienced 

operators can detect a problem with the machine even before it stops, and in order to avoid excessive 

waste and material consumption, they interrupt the cycle themselves to be able to intervene. At the 

end, the cycle resumed from where it had been interrupted, sometimes successfully but with a 

substantially longer cycle duration, and sometimes discarding printed if quality final checks were not 

met. 

- Maintenance request: can be the result of a failed machine maintenance or when an intervening 

operator fails to fix the problem. In both circumstances, the specialized maintainers must be contacted, 

and the time spent waiting for him to arrive the machine must be stopped. As a result, this halt must 

be justified. 

- Cleaning: similar to self-maintenance, the machine must be cleaned of waste and residues after n cycle. 

As a result, the machine is shut off or stopped. 

- Processing shift: each machine is not programmed to conduct a single process for a single product, but 

it is required to perform productions and a variety of components that are all extremely distinct from 

one another (just think of the difference between a Safety Pin and a Steel Corner). When the production 

program changes and the products to be cast change, the machine must be stopped, the new optimal 

process parameters for that processing established, and resumed. 

- Adaptation: it was discovered while examining the dataset that this causalisation is directly related to 

the processing shift. Because the machine can sometimes execute a "break-in" cycle on the new 

processing, the initial cycles are not always successful. 

- Unplanned: this causalisation is unintentional because it is set when the operator forgets to trigger the 

downtime. It is impossible to know what this capture linked to in this circumstance. 

- Generic pause: when the operator needs to leave the department or the car, it is his responsibility to 

suspend the procedure till he returns. As a result, this causalisation is neither systematic or recurring, 

and it can be identified by a machine learning model trained on a data set connected to generic pause. 

As a result, they will not be used in the analyses because they may impact negatively during data training and 

influence the model's performance. 

By removing, from the dataset, the records linked to causalisations that will not be evaluated, it moves from 

644'989 data records to 346'230 data records to be still cleaned, pre-processed, and analysed. 

 

4.7. MACHINE LEARNING TECHNIQUES ON THE TEST CASE 

The following approach consists of a two-phase analysis of the process's historical data: first, a characterization 

of the combinations of parameters that determine an alert system of the machine in relation to normal operation, 

and then, a prediction test on the time missing at a subsequent alarm based on the combination of values of 

this set of parameters.  

The insight has been conducted by scikit-learn (Scikit-learn, 2020). Scikit learn is a Python library for running 

machine learning. Scikit-learn is an open-source library licensed under the BSD license that can be used in a 

variety of contexts, encouraging both academic and commercial use, in fact it is constantly updated. In Python, 

it provides a variety of supervised and unsupervised learning algorithms. This makes it simple to solve 
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regression, classification, and clustering algorithms. Data transformation, feature selection, and ensemble 

methods can all be accomplished in a few rows. It also enables you to easily retrieve data from a variety of 

sources, including SQL databases, text, CSV, Excel, JSON files, and many other less common formats. Once 

the data is in memory, there are dozens of operations available to analyse, transform, retrieve missing values, 

and clean the dataset, as well as SQL-like operations and a set of statistical functions to perform even the most 

basic analysis. 

The first step was to query the data and determine the distribution of casualisations and parameters for each of 

them.  

 

4.7.1. Microstop 

The most significant case history is represented by microstops. The preliminary phases of analysis performed 

on microstops are described below, and they have been replicated for subsequent casualisations, but they will 

not be described in the thesis for the sake of brevity. 

The first step is to examine the data pertaining to the values assumed by the features to determine whether or 

not the statistical distribution of the values is similar to a normal distribution, whether or not there are any 

outliers (statistically anomalous values), and so on. Figure 4.39 depicts the statistical distribution of the main 

feature’s values, demonstrating that the distribution of values cannot be assumed always to be Gaussian, and 

thus standardization techniques based on the normal distribution cannot be applied to these variables (see, e.g., 

C1 or C2). Figure 4.39b) depicts the statistical distribution of the values of the feature V2, from which we can 

deduce a generally Gaussian trend in the distribution of values, as indicated by the horizontal axis extension, 

but also the presence of outliers. In fact, if we examine the values more closely, we find 91 instances of V2 

with values less than 50 when we use a filter that extracts only values less than 50. T1 value distributions are 

also reported, with SM having a roughly normal distribution. 

 

 

a b 

c d 
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Figure 4.39 - Statistical distribution of feature: a) C1, b) V2, c) T1, d) SM, e) C2, f) FC 

 

The scale of the histogram for SM indicates that there are also outliers in this case, as shown in Figure 4.40. 

 

 
Figure 4.40 - Outliers highlighting 

 

In this case, there are a few outliers that clearly coincide with the upcoming conditions to the fault because, in 

addition to having a particularly low FC (the closing force of the molds), there is also an outlier for the 

parameter that represents the metal thickness, SM (the thickness of the sprue) equal to 0. 

4.7.1.1. Effect of Outliers 

An "outlier" in a data set is one that is abnormal or, in any case, isolated from the rest of the data set. 

Instinctively, the question of whether the presence of the unavoidable outliers in the data can affect, and 

possibly to what extent, the generation of the predictive model and the quality of the results produced by it 

arises. 

Furthermore, it should be noted that the dataset covered by this document almost certainly contains abnormal 

data, which is frequently generated by restarting situations of the machine; the presence of this data, among 

other things, poses a problem if data normalization techniques are to be used. In fact, without the features of a 

normal statistical distribution (Gaussian) in many cases, scaling techniques based on data normalization are 

not applicable, but the presence of outliers has a strong influence on the different types of scaling techniques 

(e.g., min-max). It may then be necessary to be able to identify outliers, assess their impact on predictive 

models, and potentially remove them. 

Python provides a functional technique for identifying outliers with the "LocaloutlierFactor" method, which is 

based on measuring the local density deviation of a given data sample with respect to neighbouring data. As a 

result, the method calculates the Euclidean distance between each element and its neighbours. Distance is used 

to calculate density, and what is "isolated" is an element when compared to its neighbours. Outliers can be 

identified by applying the method to our data and assigning a threshold (quantile) below which the element 

can be considered isolated (see the example in Figure 4.41). 

 

e f 
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Figure 4.41 - Example of identifying outliers with scikit-learn 

In the preceding example, a quantile threshold value of 3 per 1000 was defined, which corresponds to a 

threshold value of -1.56 in the measurements of the distances between the elements. 

The application of this threshold filter yields 15 records from the mechanical failure dataset that are considered 

outliers as output. The values corresponding to the outliers are highlighted in red in the following diagram 

(Figure 4.42), which reports the values of two of the features. 

 
Figure 4.42 - A graphic example of identifying outliers (in red) 

To assess the impact of possible outlier removal from the dataset, we hypothesize raising the quantile that 

defines the 1 percent threshold to -2.054. This threshold determines 50 outlier values that we will remove from 

the feature and label data by generating a new dataset of "X2" features and an array of "Y2" labels. We then 



 

156 

proceed as before, determining the tests of tests and trains and training the model (using the Random Forest 

with the previously determined optimal parameters) on this data. 

 

A subsequent analysis can be performed by representing the trend of the PLC parameters in relation to the 

number of cycles remaining before the stop, which constitute the labels of the dataset being analysed. Almost 

all of the parameters exhibit a specific behaviour close to 0, indicating that they begin to show anomalous 

values when they are nearing the end of the machine’s cycle before stopping. It should also be noted that these 

behaviours, in many cases, are not limited to the proximity of the zero but also occur when many tens of cycles 

away from the zero (i.e., when one is still far from the stop), and thus, taken individually, they are unable to 

predict the stop with sufficient reliability. 

Another point to consider is that the specific behaviours, which are not particularly visible in the sample in 

question, manifest themselves starting a few cycles away from zero and, because each cycle corresponds to 30 

seconds, it is a matter of behaviours that occur at most in a few minutes before the microstops. In the case of 

TC, the behaviour is especially noticeable, but only when it is practically close to zero (which is of little 

significance if we consider that TC represents the cycle time and that this value will probably necessarily tend 

to immediately increase close to the stop). As a result, the time interval is insufficient to issue a notice 

sufficiently in advance to take measures capable of preventing the arrest. It can be concluded that the data 

analysis indicates that the algorithm we are going to identify will most likely be able to determine patterns that 

precede the micro-stop, but, as it is easy to hypothesize, the predictability of this event will involve a low rate 

of reliability. Figure 4.43 depicts the graph that describes this situation. 

 

 
Figure 4.43 - Variation of TC vs missing cycles number 

 

The correlation matrix and the covariance matrix, shown in the following Figure 4.44and Figure 4.45, can be 

used gain additional insights. 
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Figure 4.44 - Correlation matrix between missing cycles number and the features 

 

 
Figure 4.45 - Covariance matrix between missing cycles number and the features 

 

As is well known, when the correlation values tend (in absolute value) to 1, it indicates that there is a direct 

(positive values) or inverse (negative values) correlation, or that there is a linear relationship between related 

values that increases in the first case and decreases in the second. It should also be noted that the absence of 

correlation (positive or negative values close to zero) does not necessarily imply that the two random variables 

are independent, but only that there is no linear dependence (but could, for example, be quadratic and, in this 

case, the correlation would be close to zero).  

In our case, both the correlation matrix and the covariance matrix show a weak correlation between SM and 

the number of missing cycles at stop, as well as an equally weak correlation between SM and C1, V1, and CC. 
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Overall, the correlation matrix and covariance matrix do not appear to provide useful or meaningful indications 

because the only obvious correlations are those that relate the run of the second phase (C2) to the relative phase 

time (T2) so that, as the race lengthens, the time also increases consistently; similarly, the pressures (PS, PF, 

PM) are significantly correlated with the speed of the first phase V1. 

4.7.1.2. Feature selection 

Feature selection is a method of analysis that identifies the most significant parameters that determine the 

values of the labels based on the data (in the case of supervised algorithms). 

For the current case, represented by microstops analysis, we will employ the supervised algorithm known as 

“K-best.” The first step is to load the period data into the dataset named “dati”, which contains period records 

for all causal causes, as shown in Figure 4.46 below. 

 

 
Figure 4.46 - Loading data 

 

The following activity entails creating a filtered dataset called “datiMF” from the “dati” dataset by extracting 

only 400 causalisations relative to the microstops, as shown in Figure 4.47. 

 

 
Figure 4.47 - Extraction of the dataset related to microstops only 
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Then we separate the data of the features from the data of the labels by extracting all the columns related to 

the features from the dataset “datiMF.” We generate an additional dataset “X1” from the first dataset “X” by 

removing the column VA, which, as previously stated, does not carry any useful information (Figure 4.48). 

 

 
Figure 4.48 - Features dataset (microstops) 

Similarly, the “Labels” dataset, dubbed “Y,” is generated and shown in Figure 4.49. 

 

 
Figure 4.49 - Labels dataset (microstops) 

At this point, the algorithm is applied to the data frames “X1” and “Y” using the score function “f_regression” 

and the scores of the various features are obtained (Figure 4.50) 
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Figure 4.50 - Feature selection with “K-Best” 

According to the algorithm, the most significant parameter is SM, followed by T1, V1, and CC. A similar 

result is obtained by measuring the incidence of features using the Random Forest regressor, as shown in the 

following Figure 4.51: 

 

 
 

Figure 4.51 - Features score with Random Forest regressor 

T1 and SM are among the most significant in this case. Whereas in the feature ranking graph, the numbers “1”, 

“10”, and “11” correspond precisely to the ordered indices of the features T1, FC, and SM. 

4.7.1.3. Search for the best regressor 

In this phase, we investigate various regression algorithms and evaluate them using performance metrics. The 

following function is defined for this purpose (Figure 4.52): 
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Figure 4.52 - Evaluation function of different regressors 

When running on the training data, the function returns a measure of each of the regressor performance: 

• Linear regressor, 

• Decision Tree regressor  

• Random Forest regressor 

• Support Vector Machine regressor (SVR) 

Running the function on the training data yields the result shown in Figure 4.53, indicating that the regression 

based on the Random Forest algorithm yields the best results: 

 

 
Figure 4.53 - Result of the function 

4.7.1.4. Tuning of the Random Forest regressor 

Since it is obvious that the algorithm that provides the best performance is Random Forest, it is recommended 

that the tuning of the hyperparameters at the heart of the algorithm’s operation be performed in order to 

improve the results (the number of decision trees, their depth, the number of features to be considered, etc.). 

The best hyperparameters are generally impossible to predict ahead of time, and model optimization is the 

point at which machine learning transitions from science to trial-and-error engineering. The so-called “Cross 

Validation” method (K-Fold CV) is used for this purpose, which basically divides the training dataset into a 

certain number of pieces, called Fold, which will be used repeatedly to perform the training of the algorithm, 

sometimes as test data and sometimes as training data, and taking the metric corresponding to each iteration. 
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For example, if the data is divided into five pieces, the i-th piece will be used as a train dataset four times and 

a test dataset once for five consecutive executions. The K iteration metric is the average of the metrics from 

each iteration. This procedure prevents the metric from returning a value that is too dependent on how the 

dataset on which the algorithm is trained was packaged. The preceding procedure is repeated with different 

values of the algorithm’s hyperparameters, evaluating the resulting metrics from time to time, to obtain at the 

end a set of hyperparameter values that correspond to the best values of the resulting metrics. The algorithm is 

then run on the entire training dataset with the hyperparameters that produced the best results, providing the 

metric of the cross-validation method. This technique was used to evaluate several algorithms, including the 

ricker-based Random Forest algorithm, for which a 5-fold cross-validation was performed by analysing 

different values of the hyperparameter representing the number of estimators. 

The current phase goal is to fine-tune this and other algorithm parameters in order to improve the outcome. To 

this end, a grid of hyperparameter values is generated to be used to evaluate the algorithm’s performance, as 

shown in Figure 4.54. 

 
Figure 4.54 - Parameters grid 

The Random Forest regressor is then cross-validated on this grid by requesting that the parameters with the 

best performances be returned (Figure 4.55). 
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Figure 4.55 - Extraction of optimal parameters (tuning) 

The execution of the Cross-Validation method, as shown in the previous figure, generates a set of optimal 

parameters with which we will perform the training-on-training data. As we can see in Figure 4.56 below, the 

regressor (which we instantiate by calling it “base_model”) is created with the optimal parameters that we 

determined in the previous step, and then training data “Train_Features”, “Train_Labels” is trained. Following 

that, the model must make predictions on the test data “X _test” and compare the predictions to the actual 

values of the corresponding labels “Y_test” to determine the result of the resulting metrics. Metrics reveal a 

mean-squared error of about 6814, a mean-absolute error of 54, and an R2 value of 0.66. 

 

 
Figure 4.56 - Execution metrics 

It should be noted that, while the first two metrics are absolute values (and thus comparable with the respective 

metrics obtained by running with different hyperparameters), the last metric is a relative metric that, in general, 

constitutes a more significant measure because it compares the mean squared error obtained with that which 

would be expected. The measure of R2 assumes a maximum value equal to 1 when the model’s mean square 

error is 0, a value equal to “0” if the mean square error is equal to that of the hypothetical model, which always 

responds with the average value of the labels, and a value equal to 0 if the performance is worse than the 

hypothetical model (i.e., mean squared error is even greater). 

In other words, for values between “0” and “1,” the actual model outperforms the hypothetical model as the 

result approaches 1. In our case, the outcome was neither particularly good nor particularly bad. 

Let’s visualize the scattering diagram, which represents the predictions in relation to the actual values, to 

visually verify the meaning of such a result. All of the points would be arranged on a straight line inclined at 

45° in the ideal case, where the predictions overlapped exactly with the real values. 
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As shown in Figure 4.57, we find a large scatter in our case, indicating a low precision of the predictions. 

 

 
Figure 4.57 - Comparison between predict and actual values (test data) 

Even close to 0 (which is the area of interest), the error is frequently very high (on the other hand the measure 

of absolute medium error tells us that the absolute average error is average is equal to 54 cycles or about 27 

minutes). 

4.7.1.5. Classification 

Another way to make predictions about the approach of a micro-stop, while avoiding the possibility of 

predicting exactly when it will occur, is to hypothesize a time interval, such as 30 minutes (60 machine cycles), 

within which we will most likely enter the conditions that cause a micro-block. Assuming that the goal is to 

predict a micro-stop within a given time interval (i.e., within 60 machine cycles), the problem transforms from 

a regression problem to a classification problem because will be defined fault conditions as conditions that 

correspond to a micro-stop within a maximum of 60 cycles, rather than the conditions that precede the micro-

stop for more than 30 minutes (characterized by a state 1). In these terms, the problem is re-posed as a binary 

classification problem, with the goal of predicting the 1 or predicting the machine’s entry into a state where a 

micro-stop will be generated within the next 30 minutes (without specifying exactly when).  

To accomplish this, first add a column to the dataset that represents the state of the system from the number of 

missing cycles to the next micro-stop: 

“1” for a number of missing cycles ≤ 60  

“0” for a number of missed cycles > 60 

Figure 4.58 shows the syntax for running the task, as well as the resulting dataset. 
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Figure 4.58 - Adding the “STATO” column 

At this point, the dataset of features “X1” returns, as in the previous case, and it is assumed that the array of 

label “Y” coincides with the colonna “STATO,” as shown in Figure 4.59. 

 

 
Figure 4.59 - Features and Labels dataset 

On these data, the K-Fold Cross-Validation technique is used to determine the best parameters for the Random 

Forest classifier. As a result, the test and training datasets are created, and the parameter grid on which to run 

the tuning at the K-Fold Cross-Validation is defined (Figure 4.60): 
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Figure 4.60 - Classification tuning 

 

After a significant amount of processing time, the simulation is run for the parameter grid using 3-Fold and 

the following optimal parameters are obtained and shown in Figure 4.61. 

 

 
Figure 4.61 - Optimal classification hyperparameters 

 

At this point, after running the Random Forest classifier with these parameters on test data to obtain 

predictions, you can evaluate the classifier’s performance using various metrics. First and foremost, we notice 

that the test dataset contains a total of 20502 values, with 5522 true positive (i.e., 1) and 14980 true negative 

values (i.e., 0). The confusion matrix, depicted in figure 46, is the most straightforward metric to represent. 

The matrix reports the classes subject to the predictions (Figure 4.62): 
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Figure 4.62 - Confusion Matrix 

 

• For class 0 on the first line, the true positives (at the top left) account for 14120 of the 14980 actual positives, 

while the false positives account for 860 (at the top right). As a result, the algorithm correctly predicted 

14120/14980 = 94% of class 0 positives (recall of class 1) 

• On the second line, for class 1, the true negatives (lower right) account for 3314 of the actual positives (5522), 

while the false positives account for 2208 (lower left). As a result, the algorithm correctly predicted 3314/5522 

= 60% of class 1 positives (recall of class 1 and measures the sensitivity of the class). 

Looking at the matrix by columns, we can see the precision of the predictions for each class: 

• The precision of class 0 (first column) is given by the ratio of the 0 correctly predicted (true positives) in a 

number equal to 14120 to the 0 predicted total including the erroneous (false positives) in a number equal to 

2208. The accuracy of class 0 is represented by this ratio (14120 / (14120 + 2208) = 86%). 

• The precision of class 1 (second column) is given by the ratio of the 1 correctly predicted (true positives) in 

a number equal to 3314 and the 1 correctly predicted total including the erroneous (false positives) in a number 

equal to 860. The accuracy of class 1 is represented by this ratio (3314 / (3314 + 860) = 79%). 

Finally, a third metric defines model accuracy as the ratio of true positives across all classes (14120 + 3314) 

to total predictions made (14120 + 3314 + 2208 + 860), which corresponds to an 85% value in our case. 

 

The value of these metrics is represented in the following Classification Report, which is shown in Figure 

Figure 4.63: 
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Figure 4.63 - Classification Report 

Finally, the F1 metric value represents the harmonic average of each class’s precision and recall (so it is a 

synthetic metric per class).  

Another metric is the value of AUC (which stands for “Area Under the Curve”), where the curve in question 

is known as ROC (Receiver Operating Characteristic). 

In our case, the representation of the AUC metric yields a value of 0.771, and the best condition is obtained 

precisely at the value of Recall equal to 0.6, which is the sensitivity value for class 1 as shown in Figure 4.64. 

 

 
 

Figure 4.64 - AUC and ROC metrics 
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It should be noted that, by default, the representation shown in the previous figure considers actual positive 

labels to be equal to 1 and, thus, the representation in question refers to class 1. Instead, the value 0.771 

represents the area below the curve (i.e., the value of the AUC metric). 

 

4.7.2. Mechanical Fault 

The second causalisation among machine faults is mechanical fault (causal 114), which is the subject of this 

paragraph. 

4.7.2.1. Correlation Matrix 

The methodology used to address the problem is the same as described in the case of microstops, and it begins 

with an analysis of the correlation matrix, in Figure 4.65, to highlight any apparent relationships between the 

features and the label identified, which is represented by the number of missing cycles at the next stop, as in 

the previous case. 

 

 
Figure 4.65 - Correlation Matrix (Mechanical fault) 

 

The elements that emerge are represented by pressure-type quantities (PF, PS, and PM) bonds with the label 

and weaker bonds with the quantities V2, CC. We will represent the trends of the most correlated quantities 

towards the values of the corresponding labels in the same way that we did in the previous case. 

Just from these representations, it is possible to notice significantly different behaviours of the quantities in 

question within 80-100 cycles of the machine stop, which can be considered indicators of a change in the 

machine’s state. It should be noted that, in contrast to micro-stops, the variations in the correlated quantities 

are clearly visible in this case. Let’s take a look at the trend of some of the other features that will be important 

in the analysis progression (T1 and VA) in Figure 4.66and Figure 4.67. 
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Figure 4.66 - Variation of T1 vs missing cycles number 

 

 
Figure 4.67 - Variation of VA vs missing cycles number 

In particular, as in the previous case, VA is observed to be costing more than the label and may thus be 

neglected from the analysis dataset. 

4.7.2.2. Feature selection 

The methodology used to find the most important features is similar to the K-Best method, which was 

previously used for microstops. Other methodologies will be used to discover these results. Figure 4.68 depicts 

the application of the K-Best algorithm for mechanical faults. 
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Figure 4.68 - Application of the K-Best algorithm (mechanical fault) 

Using the K-Best algorithm on the X1 dataset of 13 features and the label array Y obtained in the previous 

figure, and the score function named “f_regression,” the results are shown in Figure 4.69. 

 

 
Figure 4.69 - Results of K-Best algorithm 

 

The algorithm thus demonstrates that the most significant features are the same as those identified by the 

correlation matrix or the three pressures PF, PS, and PM, followed by SM and, at a greater distance, C2 and 

T2. 

4.7.2.3. ElasticNet regression algorithm 

To determine the optimal set of algorithm hyperparameters, different regression algorithms are evaluated 

using, as in the previous case, the Cross-Validation technique. As a result, we prepare the grid of algorithm 

parameters and run the fit with the “GridSearChCV” method on a 5-fold scale. The algorithm is shown in 

Figure 4.70. 
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Figure 4.70 - Optimal parameter search with ElasticNet 

The results shown in Figure 4.71 are obtained by running the algorithm on test data after it has been optimized 

and trained on training data: 

 

 
Figure 4.71 - ElasticNet algorithm results 

 

These results show that the algorithm performance is quite poor, with a mean absolute error in the predictions 

of the missing time at the 84 cycles stop (about 42 minutes) and a R2 index of very low value (0.36 about). In 

fact, when the dispersion diagram of the aforementioned values towards test values is represented, it is noted 

that the representation is very far from a linear trend that should have the optimal representation (Figure 4.72). 
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Figure 4.72 - Predictions vs label with ElasticNet (test data) 

4.7.2.4. Linear regression 

We now assess the performance of the linear regression algorithm, for which we do not use the cross-validation 

technique (at least not formally), because the algorithm lacks significant parameters for tuning (Figure 4.73).  

 

 
Figure 4.73 - Execution of linear regression algorithm 

 

In this case, based on the metrics shown in Figure 4.74, it should be noted that the model has expired 

performance in terms of the accuracy with which the values on the test data are predicted. 

 

 
Figure 4.74 - Linear regression results 

 

The dispersion diagram (Figure 4.78) demonstrates the poor performance of the model. 
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Figure 4.75 - Predictions vs Label with linear regression (test data) 

 

4.7.2.5. SVC regression algorithm 

We now assess the performance of the Support Vector Machine-based regression algorithm, using the cross-

validation method to tune the parameters as usual (Figure 4.76). 

 

 
Figure 4.76 - Execution of the SVC regression algorithm 

 

The result of the algorithm’s execution, as shown in Figure 4.77, does not differ significantly from the previous 

reporting, and even in this case, the results are not remarkable. 

 

 
Figure 4.77 - Results of the execution of the SVC algorithm 
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The dispersion diagram (Figure 4.78) demonstrates the poor performance of the model. 

 

 
Figure 4.78 - Predictions vs Label with SVC regressor (test data) 

4.7.2.6. Decision Tree regression algorithm 

Another regression algorithm under consideration is one based on decision trees, on which we perform the 

standard tuning procedure using the Cross-Validation method (Figure 4.79). 

 

 
Figure 4.79 - Execution of decision tree regression algorithm 

 

In this case, the algorithm execution results are noticeably better (Figure 4.80). 

 

 
Figure 4.80 - Results of the execution of the algorithm Decision Tree 
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The model best performance is also highlighted by the dispersion diagram. As shown in Figure 4.81 below, 

the behaviour is much more akin to a linear trend. 

 

 
Figure 4.81 - Predictions vs Label with DecisionTree 

 

The score attributed to the features should also be examined for this algorithm, which has produced acceptable 

results (Figure 4.82). 

 

 
Figure 4.82 - Score attributed to the features (DecisionTree) 

 

It is easy to see that one of the pressures (PS) is located between the first features in order of importance, 

whereas the others are not considered particularly significant by the model in question. 

4.7.2.7. Random Forest regressor  

The Random Forest regression algorithm has highlighted the best performance for micro-stops and thus, 

presumably, among those evaluated, is what he has shown to better interpret the specific types of data object 

of the analysis. Figure 4.83 depicts the algorithm’s application to the mechanical faults causalisation. 
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Figure 4.83 - Execution of Random Forest (mechanical faults) 

 

Also in this case, the regressor produces acceptable results that are the best among those related to the analysed 

models. So, even in this case, the best fitting can be considered (Figure 4.84). 

 

 
Figure 4.84 - Results of the execution of the algorithm Random Forest 

The dispersion diagram between predicted and test values in Figure 4.85 visually demonstrates that the result 

is the best of the previous ones. 
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Figure 4.85 - Predictions vs Label with Random Forest 

 

In particular, it is worthwhile to examine the trend of errors (with sign) between predicted and test values (see 

Figure 4.86). 

 

 
Figure 4.86 - Trend of errors between predicted and test values for mechanical faults 

 

Specifically, the trend of errors in the immediate proximity of 0 is of particular interest: as shown in Figure 

4.87, in the 60 cycles (30 minutes) preceding the machine stop, the prediction error on the test data is roughly 

understood (except for exceptions) to be between -20 and + 25 cycles, or an error of 10-15 minutes about the 

time committed to approaching the subsequent mechanical fault. 
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Figure 4.87 - Detail of trends of errors close to the 0 

 

Furthermore, the model’s overall score is 0.84 based on the score of the features attributed by the model (R2). 

There is the option of determining how much this score is affected by each of the features. Because the Random 

Forest model reported a significant score, calculating the Permutation Feature Importance for this model makes 

sense. The ranking is shown in Figure 4.88. 

 

 
Figure 4.88 - Permutation Feature Importance for Random Forest 

 

This rating reveals a high sensitivity of the model obtained from the T1 feature, and thus, to a lesser extent, 

from FC and PF. It is worth mentioning that FC and T1 were among the features with a higher score even 

when the decision tree regression algorithm was used. 

4.7.2.8. Gradient Boosting regression 

The regressor named gradient boosting is the last regression algorithm that has been evaluated. In this case, a 

parameter grid is also created, and the Cross-Validation method is used to determine the optimal algorithm 

parameters.  
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Figure 4.89 depicts the algorithm’s application to the mechanical faults causalisation. 

 

 
Figure 4.89 - Execution of Gradient Boosting (mechanical faults) 

 

Performing with the optimal parameters so determined in Figure 4.90 

 

 
Figure 4.90 - Results of the execution of the algorithm Gradient Boosting 

As a result, the algorithm generates a model with performance comparable to that obtained with Ristress 

Random Forest. The dispersion diagram in Figure 4.91, which compares predicted and expected data, exhibits 

similar behaviour to the previous one. 
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Figure 4.91 - Predictions vs Label with Gradient Boosting 

 

Even the trend of the errors is very similar (Figure 4.92). 

 

 
Figure 4.92 - Trend of errors between predicted and test values 

 

In this case, we can also measure the variation of the model’s deviance (Figure 4.93) to change the number of 

iterations (the deviance being a dispersion index of the values obtained in relation to the average value). 
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Figure 4.93 - Deviance 

 

As a result, it is worth noting that the statistical deviance remains substantially stable over 30-40 iterations, 

both in the set-set test and in the training set, implying that increasing the number of iterations in the hope of 

achieving the best result is pointless. Another measure that we replicate in the case of gradient boosting is the 

relevance of the features, which is evaluated using both the model’s score and the permutation importance 

technique that we saw previously for Random Forest regressor. The results in Figure 4.94 show that the most 

significant features in both cases are T1, PS, PF, and FC, which constitute results that are consistent with what 

was previously obtained.  

 

 
 

Figure 4.94 - Feature and Permutation importance with Gradient Boosting 

4.7.2.9. Outliers 

Python provides a method called “LocalOutlierFactor” that can be used to find and assess the impact of 

outliers.   

To assess the impact of possible outlier removal from the dataset, we assume that the quantile that defines the 

1 percent threshold is elevated, resulting in the threshold -2054. This threshold determines 50 outlier values 

that will be removed from the data’s features, as well as generating a new label for the features X2 dataset and 

an array of labels Y2. It then proceeds as before, determining the set of tests and training and training the 

model (using the Random Forest with the previously determined optimum parameters) on these data. The 

following metrics values are displayed as a result of the analysis. 
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That is, the model’s performance is slightly worse than that determined by the previous paragraph using the 

same hyperparameter values and the same dataset cleaned of the 50 records identified as outliers. It concludes 

that the values we previously considered outliers actually provide information to the model, which the model 

uses to refine predictions, and thus must be maintained of the metrics. 

 

4.7.3. Equipment Fault 

The third accidental machine stop case is represented by Equipment Fault (Causalisation 115), which will be 

the subject of this paragraph’s analysis. The methodology used in this case company is completely different 

from that used in the previous cases. 

4.7.3.1. Feature selection 

The Random Forest regressor is used once more to search for the most significant features, which, as we have 

seen in previous cases, has the best performance for the specific type of data. The algorithm is executed using 

the documented procedure shown in Figure 4.95, and the results are shown in Figure 4.96, where it is 

highlighted that PS, T1, and FC are the most significant features for the cases in question. 

 

 
Figure 4.95 - Feature selection with Random Forest regressor (equipment fault) 
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Figure 4.96 - Feature Ranking (equipment fault) 

 

The following analysis, like the previous one, refers to the application of various regression algorithms to the 

current causalisation in order to determine which one best predicts the event of equipment fault. 

4.7.3.2. SVC regressor 

The performance of the regression algorithm based on Support Vector Machine is evaluated using the cross-

validation method (Figure 4.97). 
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Figure 4.97 - Execution of SVC algorithm (equipment faults) 

 

The algorithm’s execution yields the results shown in Figure 4.98. 

 

 
Figure 4.98 - Results of the execution of the algorithm SVC 

How to understand that the results of this algorithm are not particularly satisfactory. 

4.7.3.3. Gradient Boosting regressor 

Another algorithm’s performance is evaluated, which has given good performance of previous causalisation 

using a completely similar procedure to the previous one. The results are reported to Figure 4.99 below. 
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Figure 4.99 - Execution of Gradient Boosting (equipment faults) 

 

The execution of the algorithm produces the following results in Figure 4.100: 

 

 
 

Figure 4.100 - Results of the execution of the algorithm Gradient Boosting 

In contrast to the SVC, the outcome this time is acceptable. 

4.7.3.4. Random Forest regressor 

The performance of the Random Forest regression algorithm, which has previously produced the best results, 

is evaluated (Figure 4.101). 
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Figure 4.101 - Execution of Random Forest (equipment faults) 

The results of the algorithm’s execution, as shown in Figure 4.102, are interchangeable to those obtained at 

the previous point with the gradient boosting algorithm. 

 

 
Figure 4.102 - Results of the execution of the algorithm Random Forest 

 

The mean absolute error of the prediction is approximately 34 cycles (about 17 minutes). Figure 4.103 depicts 

the differences between the aforementioned values and the actual test data values. 
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Figure 4.103 - Prediction deviations compared to test data 

 

4.7.4. Electric Fault 

The fourth c accidental machine stop case is represented by Electric Fault (causalisation 113) which will be 

the subject of this paragraph’s analysis the methodology used is a completely similar procedure to the previous 

one, equipment fault. 

4.7.4.1. Feature selection 

The Random Forest regressor is used once more to search for the most significant features, which, as we have 

seen in previous cases, has the best performance for the specific type of data. The algorithm is executed using 

the documented procedure shown in Figure 4.104, and the results are shown in Figure 4.105, where it is 

highlighted that T1, SM, and FC are the most significant features for the cases in question.        
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Figure 4.104 - Feature selection with Random Forest regressor 

 

 
Figure 4.105 - Feature Ranking (electric fault) 
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The following analysis, like the previous one, refers to the application of various regression algorithms to the 

current causalisation in order to determine which one best predicts the event of electric fault. 

4.7.4.2. SVC regressor 

The performance of the regression algorithm based on Support Vector Machine is evaluated using the cross-

validation method (Figure 4.106). 

 

 
Figure 4.106 - Execution of SVC (electric fault) 

 

The algorithm’s execution yields the results shown in Figure 4.107: 

 

 
Figure 4.107 - Results of the execution of the algorithm SVC 
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4.7.4.3. Gradient Boosting regressor 

Another algorithm’s performance is evaluated, which has given good performance of previous causalisation 

using a completely similar procedure to the previous one. The results are reported to Figure 4.108 below. 

 

 
Figure 4.108 - Execution of Gradient Boosting (electric fault) 

 

The execution of the algorithm produces the following results in Figure 4.109 

 

 
 

Figure 4.109 - Results of the execution of the algorithm Gradient Boosting 

The outcome is acceptable. 
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4.7.4.4. Random Forest regressor 

The performance of the Random Forest regression algorithm, which has previously produced the best results, 

is evaluated (Figure 4.110). 

 

 
Figure 4.110 - Execution of Random Forest (electric faults) 

The results of the algorithm’s execution, as shown in Figure 4.111, are interchangeable to those obtained at 

the previous point with the gradient boosting algorithm: 

 

 
Figure 4.111 - Results of the execution of the algorithm Random Forest 

The mean absolute error of the prediction is approximately 25 cycles (about 12 minutes). Figure 4.112 depicts 

the differences between the aforementioned values and the actual test data values. 
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Figure 4.112 - Prediction deviations compared to test data 

4.7.5. Comparison and summary of results 

The findings of the performance metrics of the analyses done on the four primary causalisations that describe 

the die-casting process of investigation are shown in Table 4.8 below. Forecasts made on Microstops and 

mechanical faults yielded the best outcomes. It is not surprising given the amount of data available for training 

was significantly greater than that of equipment faults and electric faults, which analyses returned performance 

metrics with lower values, but it is satisfactory in light of all the assumptions described in the preceding 

paragraph. Given that the beginning dataset had a high level of variability and that the causalisations were 

impacted by the operators' activities, it is plausible to conclude that the random forest regression technique is 

the best fit for this sort of dataset. 

Table 4.8 - Test case regression performance metrics 

  MAE MSE R2 

Microstop 

Random Forest 54.14 6814.63 0.66 

Decision tree 36.84 3422.25 0.82 

SVC 77.84 4523.09 0.55 

Gradient Boosting 35.79 4987.31 0.76 
     

 
 MAE MSE R2 

Mechanical fault 

ElasticNet regressor 82.47 11734.83 0.36 

Linear regressor 82.61 11747.1 0.36 

SVC regression  82.06 11997.86 0.35 

Decision Tree  41.28 3838.22 0.79 

Random Forest 36.06 2950.96 0.84 

Gradient Boosting  35.09 3046.37 0.83 

     

  MAE MSE R2 

Equipment fault 

SVC regression  56.01 6072.4 0.6 

Gradient Boosting  36.69 3307.7 0.78 

Random Forest 34.33 3220.6 0.79 
     

  MAE MSE R2 

Electric fault 

SVC regression  40.53 3256.3 0.38 

Gradient Boosting  28.53 1797.7 0.66 

Random Forest 25.46 1478.9 0.72 
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Instead, the outcomes of the application of classification approaches are provided in Table 4.9, which is always 

separated by the four primary causalisations. The characteristics (and hence the process parameters) that are 

associated to each other are the most accidents on that single causal for each causalisation. 

Table 4.9 - Importance ranking of the most significant features for each causalisation 

Causalisation 
Importance 

ranking 
KBest 

Random 

Forest 

Microstops 

1 SM T1 

2 T1 FC 

3 V1 SM  

4 CC PM 

Mechanical Faults 

1 PF T1 

2 PS FC 

3 PM PF 

4 SM PS 

Equipment Faults 

1 PS PS 

2 T1 T1 

3 FC FC 

4 C2 F2 

Electrical Faults 

1 T1 T1 

2 SM FC 

3 FC SM  

4 C2 C2 

 

In terms of data-driven methodology, due to the complexity and variety that define production systems, a single 

technique cannot be fitted to all of the many uses. To address issues such as defect detection and diagnosis 

(Zhang and Hoo, 2011), prediction or classification accuracy (Ghosh et al., 2011), hybrid techniques (Tidriri 

et al., 2016) have been developed. This indicates that modelling patterns must be created and established in 

order to accomplish a modular approach. Indeed, modularity is concerned with the transition from rigid 

systems and stiff production models to a smart and agile system. 

 

4.8.  FUTURE PERSPECTIVES ON THE COMPANY TEST CASE 

Master Italy is a very active and ever-expanding SME. Although it has production and quality control 

management systems, the human effect (of operators) on all processes is still quite significant. A single 

technique cannot be applied to all of the numerous applications due to the complexity and variety that define 

production systems. To address issues like as defect detection and diagnosis, prediction, and classification 

accuracy, hybrid techniques have been created. This indicates that modelling patterns must be created and 

established in order to accomplish a modular approach. Indeed, modularity is concerned with the transition 

from rigid systems and inflexible production models to a smart and agile system. 

The Master can choose between two paths in order to design an integrated and effective model aimed at 

improving the sustainability performances of a technological process and facilitating the management of smart 

manufacturing processes, thereby driving the company implementing an information structure for predictive 

manufacturing toward a transformation into an autonomous factory. The first is the development of an 

automated and invariant, customizable and ad hoc algorithm that is also applicable to various sorts of parameter 

sets resulting from the installation of additional sensors on the machine or from wholly other process types 

(e.g., painting) Figure 4.113 depicts the concept of a brand-new Master FoF, that is, a whole plant that is 

integrated and as automated as feasible.  
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Figure 4.113 - Master FoF 

The second option is to purchase a license for a platform that fits our standards and allows any practitioner to 

deploy any ML approach that is required. 

There are various AI platforms on the market, some of which are more user-friendly and plug-and-play, while 

others necessitate more programming knowledge. For each of them, the benchmark was based on trial versions, 

user manuals, and use cases to find: 1) Type of Data Acquisition System 2) Is it equipped with Data 

Transformation/ETL tools 3) Cloud or on-premises accessibility; 4) Memory accessible; 5) The quantity of 

data it can handle; 6) ML Algorithm that can be deployed; 7) Modelling performance measures; 8) Pricing; 

and 9) Case or tutorial availability.  

For the sake of brevity, only the key platforms examined are listed: 

- Microsoft Azure Machine Learning (https://azure.microsoft.com/en-us/overview/ai-platform/) 

- SAP Leonardo Data Intelligence (https://www.sap.com/italy/products/data-intelligence.html) 

- GE Predix Essential/Edge (https://www.ge.com/digital/iiot-platform) 

- AWS Amazon SageMaker (https://aws.amazon.com/it/sagemaker/?c=ml&sec=srv#sm_studio) 

- Salesforce Einstein Analytics (https://www.salesforce.com/eu/products/einstein/overview/) 

- IBM Watson (https://www.ibm.com/it-it/watson/products-services) 

- Dassault 3D Experience (https://www.3ds.com/products-services/biovia/products/data-science/pipeline-

pilot/analytics-machine-learning/) 

- PTC ThingWorx (https://www.ptc.com/-/media/Files/PDFs/ThingWorx/ThingWorx-Analyze-Brochure.pdf) 

- Oracle Analytics (https://www.oracle.com/it/business-analytics/) 

The benchmark directs the choice between two platforms currently available: Microsoft Azure Machine 

Learning or IBM Watson, which are the most comprehensive and integrated with the company's existing 

management systems, as well as the IoT architecture, which may be designed to monitor and control all 

processes in real-time. 
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5. OTHER APPLICATIONS 

The know-how gained during the doctoral program, as described in previous chapters, was useful for the 

realization of cross-disciplinary projects, making the doctorate itself extremely multidisciplinary. 

5.1. ADDITIVE MANUFACTURING: DIRECT LASER DEPOSITION 

Among the I4.0 Key Enabling Technologies, Additive Manufacturing (AM) is seen as a major element in the 

deployment of a new production paradigm (Chiarello et al., 2018; Ruppert et al., 2018). AM is one of the 

Advanced Manufacturing Systems that significantly contributes in the Factory 4.0 network for the creation of 

prototypes or the production of custom components. The parallel development of hardware and software, as 

well as intensive research for the adoption of new materials (metals, polymers, ceramics, and multi-material 

composites), has been critical to the success of AM technologies, resulting in an extension of application 

sectors. 

In terms of sustainability, AM technologies are usually regarded as “greener” than traditional manufacturing 

techniques. In reality, these adhere to some of the sustainability principles (Ford and Despeisse, 2016), such 

as "reduction" or "reconfiguring," as well as other advantages linked to possible societal consequences, such 

as new opportunities from the circular economy. Several investigations have found that the long-term viability 

of AM technology is not always guaranteed (Faludi et al., 2015). It should be evaluated from many angles in 

order to take into account all process factors such as machine tool life cycle, tooling supply chain, energy 

management, product use impacts, end-of-life concerns, recycling rates, disposal costs, pollutions, and so on. 

Various techniques have been developed throughout the years to facilitate the examination of the 

aforementioned components of manufacturing processes for sustainability. With such a broad range of 

emerging technologies, it is important to investigate which approaches are most suited for qualitative and 

quantitative assessment of their long-term viability.  

The strategy adopted in this application entails developing a real-time monitoring framework for the Direct 

Laser Metal Deposition (DLMD) process, beginning with a description of its general technological features 

and defining the thermodynamic model for the sustainability criteria. The DLMD is a high-tech AM technique 

that is mostly used in high-tech industrial areas (Taddese et al., 2020). It is mostly used for fixing and refitting 

old components, but it is now being utilised to create 3D parts from scratch using a variety of metallic materials 

(Ahn, 2016).  

 

5.1.1. The technology 

The DLMD is a sub-category of the Direct Energy Deposition (DED) family of technologies, in which a laser 

is used as an energy source. The laser beam is focused on a metal substrate, producing extremely high 

temperatures that cause the workpiece's interested region to melt. In the shape of wire or powder, material is 

introduced to the molten pool. The latter is carried by means of an inert carrier gas (Ar, He, N2), which also 

serves to protect the molten pool from corrosion. A single-track deposition is generated by moving a nozzle, 

and the final component is produced layer by layer by following particular pathways and methods. The laser's 

extraordinarily high-power density dictates its remarkable metallurgical characteristics. Temperature control 

during the process is critical for achieving acceptable component quality and increasing process efficiency. 

DLMD, like other AM technologies, can process a variety of materials, including steel alloys, aluminium 

alloys, titanium alloys, nickel alloys, and superalloys. The DLMD includes several process factors, and careful 

design is necessary to generate components that meet increased standards (Singla et al., 2021). 

The laser source, which may be identified by the active medium used to create the laser beam, is at the heart 

of the system. All of these sources have rather low efficiency, turning a significant amount of electrical energy 

into wasted heat, which may jeopardise laser source functioning. As a result, heat exchangers and chillers are 

used to promote heat dispersion into the environment (Zobler and Mantwill, 2018). To dose and warm the 
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powders, the filler material is often delivered via specialised powder feeders. These are carried to the end of 

the deposition head by a carrier gas via a piping system. The toolpaths are carried out by 3- or 5-axis CNC 

machines, or, in more modern designs, by anthropomorphic robots (DebRoy et al., 2018). 

 

5.1.2. State-of-art of Additive Manufacturing technologies sustainability assessment 

This work focused on thermodynamic analysis with the EA as a major added value of the traditional and 

overused LCA. The reference to strategic coupled EA-LCA modelling is also justified by the fact that only 

two works have been found in the literature on EA on AM. The first, (Jiang et al., 2019), consists only of an 

Em-LCA implementation for AM sustainability evaluation. Critical problems and possible improvements are 

identified, but always from a sustainability-only perspective. Nagarajan and Haapala in (Nagarajan and 

Haapala, 2018) attempted to identify and characterize the factors affecting the systemic environmental 

performance of additive manufacturing, using EA, LCA and CExD as the final use of energy. There is no 

mention on prospective process modelling.  

About LCA on AM, in (Jiang and Ma, 2020) a state of art of AM technologies is presented regarding the path 

planning strategies to improve printed qualities, saving materials/time and achieving objective printed 

properties. Another approach of using the LCA in additive manufacturing technologies is used by (Paris et al., 

2016). In the early design phase, they made a comparison of alternatives for decision making, i.e. the LCA is 

used to choose the most sustainable solution (Guarino, 2019). No modelling was carried out. (Ribeiro et al., 

2020) used three different impact assessment methods of LCA to explore the literature on AM sustainability 

on the three-bottom line assessment framework and its three dimensions (environmental, economic and social). 

A similar work has been conducted by (Arrizubieta et al., 2020) in which LCA was used to discuss on the 

advantages and disadvantages of AM technologies. They stated that, although AM is considered an 

environmentally friendlier process than traditional manufacturing systems, there are not enough LCA studies 

to prove it, to highlight that this technology is still little explored. They make no mention of process modelling 

via LCA. A research involving a technique roughly similar to the one that will be used in this paper is presented 

in (Meteyer et al., 2014), where a unit-process level model is created to provide a complete parametrical LCI 

for a further LCA of their additive manufacturing process. 

To assess the long-term viability of this new disruptive technology, the EA was chosen as the best method 

among a number of options. It should be noted that no such thermodynamic modelling technique has been 

used to the DLMD process in the literature to date, making this work unique. 

 

5.1.3. Sensing system for DLMD 

To maximise overall process performance, a thorough understanding of all data relating to materials, energy, 

machinery, and auxiliary equipment is required. It is critical to integrate an adequate sensing and monitoring 

system into industrial equipment. Finally, the volume of technical data obtained in ad hoc structured datasets 

enables a multi-model solution to the challenge of prognostic health management (Jimenez, 2020). It may be 

accomplished, through the interoperability of a physics-based model, a knowledge-based model, and a data-

driven model, which structures process knowledge to provide a smooth transition to I4.0 smart manufacturing 

modelling.  

Figure 5.1(a) shows a schematic representation of the prototype system located at the Polytechnic University 

of Bari, consisting of: 

− a fiber laser source with a nominal power of 4 kW and a wavelength of 1.070 μm (YLS 4000 IPG 

Photonics Ytterbium Laser System) 

− a 5-axis machine equipped with a deposition head and a coaxial nozzle 

− a 11.57 kW chiller system for the laser source (chiller for core from now on) 

− a 1.4 kW chiller system for the nozzle and the optics (chiller for nozzle from now on) 
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− a 600 W chiller system for the fiber optics cables (chiller for fiber from now on) 

− an external pre-heated powder feeder   

− a 2.2 kW powder suction system and a gravimetric dispenser. 

 

 

 
Figure 5.1 - (a) DLMD machine, (b) deposition head and (c) single-track deposition. 

 

The working space is encircled by a glove-box chamber to protect the operators and avoid environmental 

contamination. In addition to the laser deposition head illustrated in Figure 5.1(b), which it has monitoring 

equipment such as a coaxial camera and a pyrometer. An AISI 316L stainless steel powder was placed on a 

substrate of the same material for this study. Argon was used as a powder transport gas as well as a shielding 

gas to avoid clad oxidation. A single-track deposition was carried out in order to test the viability of the 

suggested thermodynamic model and monitoring system, as represented in Figure 5.1(c).  

The most complicated deposition patterns are built on single-track depositions, and their analysis is critical for 

the DLMD process. Table 5.1. shows the major process parameters utilised for the deposition test, which were 

chosen based on prior work on the viability of DLMD (Mazzarisi et al., 2020a), which investigated numerous 

materials and settings. 

Table 5.1 - DLMD process parameters. 

Process Parameter Value Unit 

Laser power 600 W 

Laser spot diameter 1.50 mm 

Scanning speed 500 mm/min 

Powder feed rate 10 g/min 

Argon gas flow rate 10 l/min 

 

 

 
 

 

 

 

a b 

c 
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5.1.4. Thermodynamic modelling for the DLMD sensing system 

The thermodynamic model of the protype DLMD system was created, as well as its optimum sub-unit 

partitioning and all specific in/out flows. The model produces a collection of parameters that may be examined 

in real-time or at a high enough sample rate to detect patterns in energy/exergy consumption and losses that 

make the process less efficient and less sustainable (Selicati et al., 2021b). 

Figure 5.2 depicts the design of the DLMD process model. This graphical form is also effective for 

emphasising the linkages within the complicated network of sub-units that comprise the model and the 

parameters that EA analyses. The major sub-unit is the glove-box (which is chilled by the nozzle chiller) within 

which the laser deposition process takes place. The laser beam is produced by a laser source that is linked to 

two chiller systems (chiller for core and chiller for fiber). The powder feeder regulates the powder flow in 

parallel. Finally, there is the suction system, which cleans the post-deposition environment. Furthermore, the 

image delineates what would eventually be the system boundaries for a potential LCA combined with the EA. 

 
Figure 5.2 - DLMD thermodynamic model. 

Table 5.2 shows the set of important thermodynamic parameters to be measured (M) and monitored (C) using 

thermodynamic laws based on the EA (and eventually a combined LCA) data inventory of the whole process, 

connected to the functional unit. 

A network of sensors is required to create a database containing the values of all the parameters required for 

the study. A monitoring system has been developed based on Raspberry Pi (“Raspberry Pi 4 Model B 

specifications – Raspberry Pi,” n.d.) and Python v. 3.8 (“Welcome to Python.org,” n.d.) to meet the 

thermodynamic model requirements. The first has numerous advantages, including compact size, low cost, and 

high flexibility owing to the extensive range of software and hardware capabilities available 

 



 

200 

Table 5.2 - Essential thermodynamic parameters of DLMD process. 

Material/Energy Data flow in Data flow out M/C 

Metal powder 
mass flow [kg/s] mass flow [kg/s] M 

temperature [K] temperature [K] M 

Gasses 
volume flow [l/s] volume flow [l/s] M 

temperature [K] temperature [K] M 

Cooling fluid 
volume flow [l/s] volume flow [l/s] M 

temperature [K] temperature [K] M 

Electricity  electric power [W] M 

Heat  heat loss [J] C 

Exergy  exergy loss [J] C 

Environmental Impact  GWP100a [kgCO2eq] or EDIP2003 C 

 

. The latter is a relatively new multiplatform interpreter that is widely utilised in real-time applications, 

robotics, deep learning, image processing, database servers, and monitoring systems by the scientific 

community. It has risen to the top of the most widely used scientific software in the recent decade, owing to 

its simple, straightforward syntax and flexibility. In this specific application the Raspberry Pi 4 has been 

selected, showing the following specifications: 

− Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC at 1.5 GHz 

− 2 GB, 4 GB or 8 GB LPDDR4-3200 SDRAM (depending on the model) 

− Gigabit Ethernet. 

This option ensures both hardware and software flexibility in order to carry out the EA. Specifically, the 

process temperature was measured using an off-axis pyrometer (CellaTemp®, Keller ITS) connected to the 

deposition head to record the thermal characteristics of the whole process. The emission spectra for AISI 316L 

stainless steel was determined using prior works and laser processing literature data (Waqar et al., 2021). To 

monitor the melt pool during the deposition process, a coaxial CCD camera (IDS®, uEye RE) incorporated 

into the deposition head was used. It is important to evaluate the uniformity of the procedure and identify the 

size of the treated area with a maximum frame rate of 40 Hz. 

Electrical energy was measured using a set of energy metres (Siemens Sentron PAC 3200). More than 200 

parameters were stored as float numbers in the power meter. Active power [kW], reactive power [kVAr], active 

energy [kWh], reactive energy [kVArh], voltage and current harmonics are among the variables collected. 

Actual power measurement accuracy is in the order of 0.5% (Siemens, n.d.). 

To determine the maximum acquisition rate, the monitoring system's communication capability was evaluated 

using the Siemens Sentron PAC 3200 smart meter. Following a first test, the monitoring system was able to 

acquire a number of 100-word registers at 149 Hz from a Modbus TCP device. This outcome was achieved as 

a result of a suitable acquisition strategy. To expedite the acquisition process, the Python script first constantly 

read data from device port 502, and then the data were elaborated and saved in a database. Figure 5.3 depicts 

a schematic drawing of the system architecture. 
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Figure 5.3 - Sensing units and monitoring system architecture. 

 

In addition to the major sensors described above, the monitoring framework used numerous sensors integrated 

within each process unit. These were helpful for EA reasons since they allowed for the monitoring of secondary 

factors like as temperatures and water flows in chiller systems. Because these parameters exhibited smaller 

fluctuation regimes than the major parameters, they were treated as constants throughout the investigation. 

Although these have a little influence on the overall evaluation, they are critical for assessing the efficiency of 

each process unit. The largest measuring challenges were discovered in the real-time assessment of the powder 

flow during the deposition process. This parameter is critical for assessing the quality and sustainability of the 

laser deposition process since it has a significant influence on the deposited track. Real-time measurement of 

this parameter remains an open problem in the literature (Whiting et al., 2018) , in part because there are few 

commercial equipment capable of monitoring it. Due to the lack of a suitable sensor, the powder flow 

evaluation was performed through a preliminary set of flow experiments. These allowed for the calculation of 

the powder mass flow rate, which was kept constant throughout the deposition process. Table 5.3 summarises 

the key EA variables and the corresponding sensing units utilised to measure them. 

 

Table 5.3 - Measured parameters of DLMD process. 

Material/Energy Parameter Variable Equipment 

Metal powders 
Mass flow [kg/s] ṁPowder

in  ;  ṁPowder
out  Mass flow test  

Temperature [K] TPowder
in  ;  TPowder

out  Thermal sensor 

Gases 
Volume flow [l/s] ṁArgon

in  ;  ṁArgon
out  Flow meter 

Temperature [K] TArgon
in  ;  TArgon

out  Thermal sensor 

Cooling fluids 
Volume flow [l/s] ṁH2O

in  ;  ṁH2O
out  Embedded Flow meter  

Temperature [K] TH2O
in  ;  TH2O

out  Embedded Thermal sensor  

Electricity Electric power [W] Ẇel Energy meter 

Deposition track 
Temperature [K] 

TPowder
in  ;  TArgon

in   

TPowder,loss
out  ;  TPowder,dep

out  ;  TArgon
out  

Pyrometer 

Volume [mm3] 𝑉dep  CCD camera 

 

Temperature, pressure, and specific heat values for argon, AISI 316L metal powder, and water for chiller 

systems are listed in Table 5.4. The thermal equilibrium between the system and its environment is represented 

by the dead state. 
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Table 5.4 - Materials properties. 

State functions Symbol Unit Metal powder Argon Water 

Dead state temperature T0 K 298.15 293.15 293.15 

Dead state pressure P0 atm 0.987 4.935 0.987 

Specific heat cp J/kg K 500 520 4186 

 

These data were collected in a variety of methods for each component of the system: directly, through the use 

of main monitoring devices such as pyrometers or monitoring systems embedded in the subunits, and 

indirectly, through literature, data sheets, and simulations.  

 

5.1.5. Outcomes and discussion of the implemented EA 

Regarding the graphs in Figure 5.4(a) and (b), the argon flow was deemed fully required for the creation of the 

deposition clad, and so, despite the fact that it is not a material component of the final component, its output 

quantity was not considered a loss. In contrast, according to the deposition efficiency calculation published by 

(Reddy et al., 2018) the powder was judged 60% usable for cladding and 40% wasted inside the glove-box and 

therefore considered lost mass for a coaxial nozzle. 

Some assumptions have been made to simplify the process analysis: (a) the system runs under steady-state 

conditions, (b) pressure reductions due to all losses along the system are minimal, and (c) each processing unit 

is insulated, thus heat transfer to the environment is minimal. Figure 5.4 displays the outcomes of the mass 

balances of material flows.  

 

 

Figure 5.4 - Mass balances of (a) argon and (b) AISI 316L powder. 

Taking as a reference the differentiation between exergy out (Exout) and exergy loss (Exloss), the amount of 

energy useful for the production of the final product (Enout,dep) and the amount of energy unnecessary for 

manufacturing the component and thus destinated to wasted materials and emissions (Enout,waste) have been 

defined. Figure 5.5 reveals that almost 70% of the entering energy (see Figure 5.5(a)) was converted to heat, 

which was wasted in the environment during the process and was worthless for the creation of the deposition 

track, and nearly 92% of the incoming exergy (see Figure 5.5(b)) was also lost. The input percent was 

determined by the electrical and material fluxes, which contribute to the balance via enthalpy, depending on 

both the specific heat and the temperature difference between the dead state and the entering temperature. The 
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lost percentage represents all of the scattered energy that was not helpful throughout the deposition process. 

The three chiller systems appear to be the most energy-demanding devices, as seen by the graphs. In terms of 

exergies, the scenario looks to be slightly different, since the chiller for core appears to be the most active 

processing unit, followed by the laser source. 

 

Figure 5.5 - Energy (a) and exergy (b) balances. 

Figure 5.6 shows the exergetic efficiency of each processing unit; it also shows the overall efficiencies of the 

entire process. The laser source has an efficiency of about 21%, consistent with the literature on solid state 

laser sources. As could be expected, the efficiencies of the chillers turn out to be low, as these absorb more 

electrical power than the power needed to produce the useful work for the process. The devices are oversized, 

related to the process under consideration, as the system is multipurpose and must also cover the needs arising 

from different processes, such as laser welding. 

Figure 5.6 depicts, on the right, the exergetic efficiency of the actual deposition process, which takes place 

within the glove-box but merits more investigation since the temperature differential of the materials may vary 

rapidly at this point. The value represents the energy (related to the laser beam) provided to the deposition 

point to create the track, but also wasted to heat up other elements involved in this phase of the process, such 

as the powder dispersed in the glove-box, the substrate, and the argon dropped out by the suction system. 

Temperatures were recorded using a pyrometer, however a reference was made to (Mazzarisi et al., 2020b) to 

estimate substrate overheating and quantify energy loss during deposition. 

Exergetic efficiencies are more complicated than energy efficiencies because they take into account the useful 

work created during the process and how it relates to the maximal work of the Carnot cycle. Controlling energy 

yields results in greater and more consistent values: for example, the energy efficiency of chiller systems ranges 

from 25% to 40%. 
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Figure 5.6 - Process units, deposition phase and overall process exergetic efficiencies. 

Analysing the energy balance reveals that a greater proportion of the spent energy may be dedicated to the 

production of the laser beam. This finding is consistent with earlier studies (Kellens et al., 2017) , which 

identify the DLMD technique as the most energetic AM method currently available (considering an average 

energy demand of 7,779 MJ per every kg of deposited mass).  

Another point to examine in light of the findings is the scarcity of bibliographical research on the 

environmental effect of DLMD systems that take into account all system components involved in the process. 

There is nearly no research on the influence of chillers on the efficiency of laser beam production and the entire 

process, for example. Exergetic modelling work has the benefit of analysing both the overall influence of the 

laser deposition process as well as the breakdown of the system into processing units in order to determine the 

energy and exergetic contribution for each of them. Furthermore, the efficiency of specific devices may be 

defined in order to plan for improvements on the most energy-intensive processing units and therefore prioritise 

the components that needed to be upgraded. 

 

5.1.6. Conclusions 

In conclusion, a suitable system for storing, collecting, and analysing a complete set of parameters was 

established. The new system framework, which was used for the first time in the field of additive 

manufacturing, proved to be successful in carrying out an accurate quality and sustainability evaluation of the 

DLMD process under consideration. The following were the major findings of the exergetic analysis: 

1) The energy and exergy balance revealed that over 70% of the energy and 92% of the exergy injected 

into the system were lost during the process. 

2)  Chiller systems were the most energy-intensive sub-units of the system, requiring 88 percent of the 

total incoming energy and 64 percent of the incoming exergy.  

3) The deposition process had a very low exergy efficiency (about 10% of net and 22% of general), while 

the DLMD system's efficiency fell to 5% of net and 8% of general efficiency. 

The thermodynamic process modelling, as well as the analysis itself, enabled the identification of outstanding 

issues and criticalities linked to the monitoring and control system established in this study, with the goal of 

developing a further real-time monitoring and control method for the DLMD process: (a) The problem of 

synchronisation of sampling frequencies, as well as the possibility of integrating data from new devices into a 

single database, will be thoroughly investigated; (b) the analysis of complex deposition strategies, with a focus 

on the idle time between contiguous subphases throughout the process to detect variations in energy/exergy 

loss for each sub-unit, will be thoroughly investigated; (c) the analysis could even focus on environmental 

sustainability through the implementation of a full EA-LCA model; (d) in order to be well suited for the 

proposed holistic multi-sensor approach, the monitoring system architecture should combine the capabilities 

of all sensing units while also being effective in terms of flexibility and adaptability.  
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Given the advantages of combining EA and LCA for this type of process assessment, the thermodynamic 

model to be applied may be far more effective if connected with the LCA: At first, this can give more objective-

oriented evaluation findings; later, this can become a useful tool for decision-making policies targeted at 

generating evolutionary solutions, allowing the process to automatically avert any potential failure. 

Furthermore, with a suitable sensing and monitoring system, the entire EA-LCA model may enable any 

practitioner to rebuild both process hardware and software to smart I4.0 standards virtually in real-time, 

boosting cost efficiency.  

 

5.2. HISTORICAL HERITAGE: RETROFIT INTERVENTIONS AND LCA 

In the EU the construction industry is responsible for about 42% of the final energy consumption and 50% of 

raw materials, produces approximately 35% of greenhouse gas emissions and 50% of waste (European 

Commission, 2007; Hauschild et al., 2018). 

In this regard, the European Union "is committed to developing a sustainable energy system that is competitive, 

secure, and decarbonized by 2050," according to Directive n. 2010/31/EU on building energy performance 

(EPBD recast). The construction sector is crucial because it has the greatest influence on the environment in 

terms of resource usage, energy consumption, emissions, and waste. Also in the latest review of the Directive 

(July 2018) (Europan Parliament and European Council, 2018) it is clear that each UE member is tasked with 

developing a long-term strategy to support the renovation of residential and non-residential buildings, both 

public and private, in order to achieve a decarbonized and energy efficient real estate stock by 2050, facilitating 

the cost-effective transformation of existing buildings into nearly zero energy buildings, which translates into 

the need to implement solutions that reduce energy needs and wastes, particularly in the built environment. 

(Sartori and Hestnes, 2007).  

The AiCARR (Italian organisation for air conditioning, heating, and refrigeration), which released a handbook 

in February 2014, was the first to emphasise the relevance of energy diagnostics in ancient structures. In 

compliance with new laws, for the evaluation and improvement of the energy performance of historic 

structures (de Santoli, 2015).  

Following the broad concentration of energy efficiency, the market's and operators' focus shifted to 

environmental sustainability. The desire for accurate, easy-to-use indicators for building environmental 

evaluation has resulted in the creation of numerous tools with quite varied approaches in recent years. The 

first, voluntary method, in particular, resulted in the development of multi-criteria rating systems (Green 

Building Rating Systems) that assign a score to each criterion based on its performance. The ratings are based 

on a low level of sustainability, with the final evaluation based on the concept that worse environmental 

performance in one category can be compensated by higher environmental performance in another. 

However, the regulatory path is based on a Life Cycle Thinking approach, i.e., the quantification of synthetic 

environmental indicators using the Life Cycle Assessment method, which is internationally recognised as a 

method to evaluate the environmental profile of products, encoded in international regulations, and promoted 

by European environmental policies. This method emphasises strong sustainability in order to demonstrate the 

elimination of all environmental effect at each step of the building's and its components' life cycle (Pombo et 

al., 2019). In this vein, the scoring systems are gradually including environmental factors into the LCA.  

The aim of this work was to develop and complete previous analyses on sustainability led on historical heritage, 

highlighting all the issues that are still unresolved and the possible solutions to be undertaken. The historical 

building case of study named “Palazzo del Sedile” is located in the old town of Matera, Basilicata, Italy.  

This research was funded by FESTA Project from EU Horizon 2020 research and innovation programme: 

Fostering Local energy investments in the Province of Matera, which promotes local energy investments for 

public buildings and disseminates the PPP (Public Private Partnerships) approach through innovative Energy 

performance contracts in the regions. The main partners were and still are the Province of Matera, which had 

the role of leader and coordinator of the project’s activities, University of Basilicata - DICEM which had the 
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role of technical partner for the scientific definition of ways and means, also innovative, that have been 

developed during the project and Local health care company of Matera (ASL Matera), owner of the hospital 

of Policoro.  

Deep understanding of the energetic-environmental skills of the historical heritage of the Mediterranean area 

of southern Italy is critical in order to preserve their uniqueness and the original reason for being constructed. 

While managing to enhance thermo-hygrometric wellness and environmental quality in the context of 

environmental sustainability and the design of the best intervention methods. In literature, few are the data 

related to the sustainability or to the energy performance of the buildings that belong to the historical patrimony 

of the city of Matera (Gizzi et al., 2016). 

In fact, there are only studies related to the evolution history of the City (Rota, 2011) or related to the structural 

preservation of the “Sassi” (Cardinale et al., 2013), or simply manuals (Restucci, 1998).  

 

5.2.1. LCA regulations in construction field 

The strategic importance of adopting the LCA methodology as a basic and scientifically suitable tool for 

identifying significant environmental aspects is clearly expressed within the COM 2001/68/EC Green Paper 

and the COM 2003/302/EC on Integrated Product Policy, and is suggested, at least indirectly, also within the 

European EMAS (1221/2009) and Ecolabel (66/2010) regulations. 

For instance, a promising possibility is the integration of building systems LCA data per functional unit in the 

Building Information Modelling (BIM) platform (Bueno and Fabricio, 2018).  

The ISO series represents the majority of national and international standard advice for LCA studies: 

1) UNI EN ISO 14040 (2006) “Environmental Management - Life cycle assessment - Principles and 

framework”; 

2) UNI EN ISO 14044 (now updated to 2018) “Environmental Management - Life cycle assessment - 

Requirements and guidelines”; 

3) ISO 21931-1 (2010) “Sustainability in building construction-Framework for methods of assessment of the 

environmental performance of construction works Buildings”; 

4) UNI EN 15978 (2011) “Sustainability of construction works-Assessment of environmental performance of 

buildings - Calculation method” (Thibodeau et al., 2019).   

 

5.2.2. Case study: methodology and resources 

The LCA on the case study of this work has been executed using the software SimaPro® by PRé Consultants 

v.8.5.2.0 on energetic retrofit interventions assumed for an historical building in Matera named “Palazzo del 

Sedile”. 

The data on energetic performances, particularly throughout the assembly and usage phases of the life cycle, 

were obtained from previous realistic and accurate experiments conducted on the same building. 

The information associated with the end-of-life phase was obtained from actual information and other related 

studies in the literature (Eberhardt et al., 2019; Goldstein and Rasmussen, 2017; Moslehi and Reddy, 2019; 

Schiavoni et al., 2017). 

Palazzo del Sedile (Figure 5.7) is an historical building located in the old town of Matera, a southern city of 

Italy.  It was built in 1540 and now is owned by the Province of Matera.  It was constructed around 1540 and 

is presently held by the Province of Matera. In 1944, it underwent a transformation that transformed it into a 

focal point for the city's musical heart, becoming the primary venue of the conservatory dedicated to the 

composer "Egidio Romualdo Duni." Since the early 1980s, the building's basement floors have housed a 

contemporary theatre with a seating capacity of around 450 seats. As a result, Piazza del Sedile may be called 

the living room of Matera's old town, lively and active all year. It is now a site of identity, gathering, and 

sociability. The current construction dates from 1779, when the mezzanine level was built from scratch and 

the subterranean floor was restored. The mezzanine floor is shaped like a pentagon. The rooms on the ground 
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floor are linked to those on the first storey by an atrium. The mezzanine floor has seven rooms, all of which 

are administration services and toilets.  

 

  

 
Figure 5.7 - Entrance façade of Palazzo del Sedile in Sedile’s Square and a view from above 

The plant covers around 345 m2; the heights ranging from 2.40 m up to 5.05 m (where there are vaults). A 

similar scenario exists on the first level, which consists of thirteen rooms separated into classrooms and toilets. 

The building has a total of ninety persons, including students and employees. Its total area is about 590 m2 and 

the heights ranging from 2.60 m up to 6.70 m at the top of the vaults. The rooms with flat floors have a ceiling 

height of 3 m.  

The mezzanine floor facing west has different characteristics from the central body of the building, as it shown 

in Figure 5.7 and in the 3D model in Figure 5.8: the two portions were built at various times and in different 

styles, thus their energy performance is fairly different. 

The building's bearing structure is made up of thick masonry septa (net of plaster) with varied widths ranging 

from 80 cm to 100 cm for the external walls and 40 cm to 60 cm for the interior ones. The interior floors are 

made of limestone blocks, as is the roof covering. Waterproofing is done using tar and bricks on walkable 

floors and tiles on pitched roofs. 

The general parameters reported in earlier research and important in implementing the LCA are presented in 

Table 5.5. 

Table 5.5 - General parameters of Palazzo del Sedile 

Floors Total height Gross volume 

[n.] [m] [m3] 

3 13 5,550 

 

Total area Floor area Opaque walls 

[m2] [m2] [m2] 

1,500 595 1,144 

   

Transparent walls Dispersant surface A/V 

[m2] [m2] [m2/m3] 

67 2,217 0.17 
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Figure 5.8 - DesignBuilder model of Palazzo del Sedile 

The energetic retrofit on the building case of study consists in interventions on the envelope, air conditioning 

and heating systems and lighting, which complies with the minimum requirements imposed by Ministerial 

Decree June 26, 2015 (Corrado et al., 2016).  

Table 5.6 depicts the hypothesised retrofit actions on the building as well as the new energy consumption 

reductions. With the combination of these interventions, energy savings in kWh/year are anticipated to be over 

70% when compared to current use. This estimate is extremely realistic because the research was conducted 

in situ using data collecting and inquiry, a modelling and dynamic simulation mode provided by Designbuilder 

software (see Figure 5.8) and EnergyPlusTM. 

Dynamic simulation is a very advanced calculating approach that allows to analyse the energy performance of 

a structure while accounting for the inertial impacts of the casing and plants. and has a higher level of 

accreditation in energy certification (Selicati et al., 2019). 

The process of defining the limits of the system object of research is dependent on the objective of the study 

itself: the same system examined with various bounds yields different findings. 

The technique utilised for the case study is "from gate to cradle," also known as the "downstream module," 

which is the module that contains the product scenarios from the time it leaves the manufacturing company's 

gate until it concludes its "life" in transportation, usage, and disposal. Only the retrofit operations were 

subjected to LCA. According to EN 15978 specifications (European Committee for Standardization, 2011) in 

Figure 5.9, the stages A2 to D: the whole life cycle was evaluated, not only the raw materials stock and their 

assembly. The life cycle begins when the window or insulating panel is delivered to the construction site. 

 

 
Figure 5.9 - Stages of the life cycle of a building in accordance with EN 15978 (Kylili et al., 2016). 

As functional unit it was decided to use the m2 floor area. 
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This step is defined in SimaPro under the section "Goal and scope," which is visible in the left portion of the 

software's GUI, and includes the following: a description of the LCA analysis that defines the author, 

developer, study objective, functional unit, and the library (database) with its own specific field of application. 

Ecoinvent3, ELCD, and Industry Data 2.0 were the datasets used for the case study (Goedkoop et al., 2016). 

In terms of inventory analysis, the system in the case study is split into four subsystems, which correspond to 

opaque walls, floors, windows, and the heating system. The lighting system is solely assessed in terms of 

energy consumption during the use phase (see Table 5.6). 

 

Table 5.6 - Retrofit interventions and energy consumption savings 

Element Before interventions After intervention 
Savings  

[%] 

Opaque Walls 
Limestone wall of 45 - 90 cm and inner 

plaster of 2 cm   U = 0.63-1.12 W/m2K 

Covering wall insulation with inner coat of 

5 cm Kenaf plate (λ = 0.038 W/mK).         

U = 0.31 W/m2K 

4 

Roof slab 

Limestone roof of 45 cm externally 

covered with tiles of 1 cm and internally 

covered with plaster of 2 cm                      

U = 1.042 W/m2K 

Covering roof insulation with inner coat of 

9cm Kenaf plate (λ = 0.038 W/mK).           

U = 0.25 W/m2K 

13 

Windows 

Wooden windows with double glass 4/6/4 

or 6/12/4     

U = 3.15-1.78 W/m2K 

PVC windows with low emissive double 

glass 4/8/4 with 8mm of argon interspace.  

U = 1.71 W/m2K 

20 

Heating system Boiler on the rooftop ηnd = 0.81 

Stainless steel compression heat pump    

COP = 3.08 and P = 20 kW and installation 

of thermostatic valves 

58 

Lighting 
Metal Iodide spotlights, Neon 1x36 W; 

Neon 2x36 W; Incandescent lamps 
LED technology lamps 91 

 

It has been estimated that the envelope will last 35 years, while the heating system and lights would last 15 

years. This decision was taken due to the fact that the proposed retrofit interventions on Palazzo del Sedile are 

non-invasive and tend to just improve the energy component of this ancient structure that is obsolete. 

Without thoroughly researching any possible conflict between old and new materials, it was chosen to shorten 

the lifespan before the necessity for additional treatments (Vilches et al., 2017).  

In SimaPro, there is a process and product stage for each material or constituent that makes up the subsystem. 

These steps are contained in the SimaPro GUI feature Inventory. The procedures that are already in place in 

software are classified into categories and subcategories based on the specific area to which they pertain. 

During the case study's use phase, the energy consumptions associated with the lifetime of each of the 

previously stated subsystems, including lighting, were taken into account. In terms of disposal, it has been 

proposed that the windows and heat pump be disassembled. The PVC material will be disposed of, the glass 

will be recycled, and the stainless-steel pump will be melted and repurposed. All other waste by-products are 

disposed of at a landfill. Clearly, energy consumptions for disposal and transportation of the item to be disposed 

of were also taken into account. 

The impact assessment phase of the life cycle attempts to determine the number of possible consequences on 

human health and the environment based on the LCI results. The inventory data, in particular, is linked to 

specific categories of environmental effects and category indicators. Furthermore, LCIA offers information 

for the following step of interpretation, which seeks to provide meaningful recommendations in connection to 

the study's goals and objectives. 
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5.2.3. LCA Results and interpretations 

The interpretation step may result in an iterative process of reviewing and revising the field of application of 

LCA, emphasising the limitations and possibilities of the LCA approach used in this situation. Figure 5.10 

displays the tree that expresses emissions in terms of energy consumption (red lines) or energy savings (green 

lines) for each phase and sub-phase, with matching line thicknesses that qualitatively indicate the incidence of 

consumption or savings in relation to the entirety of the intervention: the LCA evaluation of the case study in 

all three methods of evaluation highlighted how the phase of use is the most significant, as it is considered a 

duration in years definitely longer than assembly and subsequent disposal phases, as expected from the 

behaviour of a historical building like Palazzo del Sedile. It follows the disposal phase because a greater 

proportion of the retired materials are disposed of in landfills; it concludes the list with the transport and 

assembly of the elements because the interventions to be carried out are, as previously stated, non-invasive 

and solely aimed at energy efficiency.  

 

 

Figure 5.10 - Tree representation of the entire LCA with Eco-indicator 99 method - cut off 0.1% 

The assessment methods implemented in SimaPro for the case study are (PRé, various authors, 2019): 

In terms of primary energy, the assembly phase has an energy consumption of 7.15%of the total, the usage 

phase has an energy consumption of 75.65%, and the disposal phase has an energy consumption of 17.20% of 

the total. The normalised characterisation for impact categories based on the Italian energy mix supplied by 

Italian GSE for the year 2017 is displayed in Table 5.7, and the normalisation for impact categories is illustrated 

and the normalization for impact categories is shown in Figure 5.11. 

 

 

Table 5.7 - Impact categories of CED method 

Category Unit Total Assembly Use Disposal 

Non-renewable, fossil MJ 7.73E+7 5.55E+6 5.85E+7 1.33E+7 

Non-renewable, nuclear MJ 5.07E+6 3.64E+5 3.84E+6 8.72E+5 

Non-renewable, biomass MJ 1.03E+6 7.42E+4 7.82E+5 1.78E+5 

Renewable, biomass MJ 3.97E+6 2.85E+5 3.00E+6 6.83E+5 

Renewable, wind, solar MJ 1.74E+7 1.25E+6 1.31E+7 2.99E+6 

Renewable, water MJ 3.31E+7 2.38E+6 2.50E+7 5.69E+6 
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Figure 5.11 - Normalization of CED method 

Eco-indicator 99: the assembly phase has an energy consumption of 2.83% of the total, the usage phase has an 

energy consumption of 70.17%, and the disposal phase has an energy consumption of 27% of the total. These 

results differ significantly from those obtained using the CED method. Table 5.8 a depicts the characterisation 

of impact categories, whereas Figure 5.12 depicts the normalisation of impact categories. 

 

Table 5.8 - Impact categories of Eco-indicator 99 method 

Category Unit Total Assembly Use Disposal 

Carcinogens DALY 1.64 0.14 1.3 0.21 

Resp. organics DALY 3.19E-3 5.78E-5 1.75E-3 1.38E-3 

Resp. inorganics DALY 4.03 0.1 2.79 1.14 

Climate change DALY 1.34 0.01 1.03 0.3 

Radiation DALY 0.04 0.02 0.02 1.4E-3 

Ozone layer DALY 7.31E-4 3.83E-6 5.54E-4 1.73E-4 

Ecotoxicity PAF*m2yr 5.53E+6 3.18E+5 3.87E+6 1.34E+6 

Acidification/Eutrophication PDF*m2yr 1.13E+5 1.92E+3 8.76E+4 2.3E+4 

Land use PDF*m2yr 1.3E+5 1.62E+3 7.4E+4 5.43E+4 

Minerals MJ surplus 2.09E+5 4.52E+4 8.56E+4 7.86E+4 

Fossil fuels MJ surplus 8.47E+6 5.3E+4 5.72E+6 2.7E+6 
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Figure 5.12 - Normalization of Eco-indicator 99 method 

EDIP2003: in terms of primary energy, the assembly phase has an energy consumption of 2.32E+3 Pt (9.75% 

of the total), the usage phase has an energy consumption of 1.7E+4 Pt (71.43% of the total), and the disposal 

phase has an energy consumption of 4.47E+3 Pt (9.75% of the total) (18.78% of the total). Even though the 

effect categories are somewhat different, the findings are fairly comparable to the CED approach. The 

characterization for impact categories is shown in Table 5.9. In the table are considered only the relevant values 

for the interpretation of the results. The normalization for the relevant impact categories is shown in Figure 

5.13.   

 

Table 5.9 - Impact categories of EDIP2003 method 

Category Unit Total Assembly Use Disposal 

Global warming 100a kgCO2eq 6.44E+6 6.07E+4 4.94E+6 1.44E+6 

Ozone depletion kgCFC11eq 0.76 3.69E-3 0.59 0.17 

Ozone formation  m2.ppm.h 3.11E+7 5.16E+5 2.19E+7 8.67E+6 

Acidification m2 4.87E+5 9.49E+3 4E+5 7.67E+4 

Terrestrial eutrophication m2 4.66E+5 7.24E+3 3.66E+5 9.33E+4 

Ecotoxicity soil chronic m3 1.94E+8 1.47E+8 3.44E+8 1.45E+8 
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Figure 5.13 - Normalization of EDIP2003 method 

These three approaches are highly diverse, and a true numerical or statistical comparison is extremely difficult. 

In general, when evaluating the impact assessment of a specific product and its corresponding components, 

the evaluation of each impact category and the calculation of the final impact score points is given by a 

common mathematical equation, depending on each methodology and the way the study is conducted (basic 

level, or advanced level using software tools) (de Gracia et al., 2010). 

It is also true that the significant difference in the methodologies employed is due to the fact that two 

approaches to characterisation can take place along the effect route of an impact indicator within the LCIA 

step: midway approach and endpoint approach. Characterization at the midpoint level models the impact using 

an indicator located somewhere along the methodology mechanism but before the endpoint categories, whereas 

characterization at the endpoint level necessitates modelling until the endpoint categories described by the 

areas of protection (in most methodologies, the main areas of protection are eco system quality, human health 

and resources). EDIP 2003 is a midpoint-oriented technique, Eco-indicator 99 is an endpoint-oriented method, 

and CED is classified as "other based LCA methodology" since it is only concerned with energetic resource 

use. Table 5.10 compares the contributions of each sub-phase for each method under consideration. 

 

Table 5.10 - Comparison between the outcomes of the three implemented methods 

 
CED 

[%] 

Eco-Indicator 99 

[%] 

EDIP 2003 

[%] 

Assembly 7.15 2.83 9.75 

Use 75.65 70.10 71.43 

Disposal 17.20 27.00 18.78 

 

Looking at the percentages of energy impact allocated in the three major phases of the life cycle, there is a 

further demonstration of how much each method has a weighing system characterised by a quantitative factor, 

but also by a subjective factor: they give space to some aspects rather than others, which will affect the 

weighing system. 
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By comparing the percentage allocations of environmental effect for the three main stages, it is easy to see that 

there is a common framework in the calculations; otherwise, the usage phase would not have been predicted 

to be the most expensive. On the other side, there is no uniformity in the importance of affects being assigned. 

The variance is not enormous, but given that the percentages upstream of those are frequently quite large values 

of primary energy, a little percentage change equates to a significant energetic variation. 

The link between energy savings and economic initiatives including retrofit measures is an intriguing 

perspective worth emphasizing. Table 5.11, which depicts the system view, contains the normalised findings. 

This table serves as the most essential guideline for the interpretation phase of this work: it compares 

environmental sustainability to another form of sustainability that serves as the true standard for decision-

making, particularly if it pertains to public administrations.  

 

Table 5.11 - System view 

 Energetic savings 

[%] 

Economic efforts 

[%] 

η 

[%] 

Opaque envelope 12.29 48.27 3.23 

Windows 14.81 21.21 8.87 

Heating system 43.18 24.78 22.13 

Lighting system 29.72 5.74 65.77 

 

The rate, which quantitatively depicts the system view, indicates the percentage ratio between the economic 

effort required to carry out the above-mentioned interventions and the energy savings that would result from 

such interventions. The table demonstrates that the lighting system is the most helpful profit of all the 

interventions because it provides a good compromise between energy savings and the anticipated economic 

expenditure required to achieve it. On the contrary, it is evident that the anticipated expenditure to refit the 

opaque envelope is exorbitant in comparison to the potential energy savings. This system view demonstrates 

that even small measures studied at the design stage (for example, the type of insulation of a HAVC system, 

or the conscious choice of the type of lighting system) can greatly influence the efficiency of an entire retrofit 

intervention, both practically, energetically, and economically. It is consequently critical to retain an overall 

perspective of the system and its reaction in the short and long term on the life cycle timeline. 

 

5.2.4. Conclusions  

To conclude, the environmental assessment tools (regulations, databases and software), in addition to the 

dynamic simulations of the building itself, are an excellent companion for achieving a sustainable result at 360 

degrees. LCA has been proven to be a reliable tool: it allows for the identification of environmental criticalities 

in the selection of materials and building elements, as well as the calculation of built-in energy and its various 

contributions to global impact; this allows for the comparison of different components, evaluating the true 

environmental benefits of alternative design solutions. It was easy to highlight how the processes of material 

derivation recycling and reuse allow for significant environmental advantages at the disposal phase. 

However, when comparing additional techniques, it is observed that subjectivity plays a major part in the 

findings, resulting in variability of the assessment, which lowers the comparability of the LCA results and, as 

a consequence, a difficult univocal interpretation of the assessment. The limitations of LCA with SimaPro 

include the prototypical nature of the building sector, an increasing complexity of the process and its phases, 

as highlighted by interactions between the building and external factors, including the environment; as well as 

the number of mini sub processes involved in a building's life cycle and the difficulties in retrieving data 

compatible with reality (Selicati et al., 2020). It is important to emphasise once more how the availability of 

an accessible and up-to-date database of materials and processes relevant to the Italian setting would improve 

the credibility and importance of the results produced.  
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Furthermore, a growing number of case studies pertaining to historical structures in Italy would allow for 

improved results comparability and the development of environmental sustainability benchmarks at the 

national level.  

Finally, the reader should understand that the system perspective is a crucial guideline to be utilised throughout 

each decision-making step since it provides environmental sustainability with an extra interpretation key that 

is simpler to comprehend by any stakeholder. 

 

5.3. INDOOR AIR QUALITY MONITORING AS A PILOT PROJECT FOR HEALTHY 

SUSTAINABLE HOMES 

Air pollution is commonly associated with car emissions or industrial plants, but the air inside our homes is 

often far more polluted than the outdoor air. Given that we spend 90% of our time indoors, and 65% of that 

spent at home, a sick house can have detrimental effects on occupant health. Numerous studies have found 

strong links between housing and health. Rudolf Virchow, a famous researcher, warned in the mid-nineteenth 

century that indoor pollution was associated with the highest rates of transmission of virus diseases, such as 

the cholera epidemic that occurred in the 1930s in the United States. 

After nearly a century, the problem resurfaces with the COVID-19 pandemic, which has exposed the flaws 

and critical issues of Italy's real estate heritage, which is characterised by old, energy-intensive, small buildings 

with high management costs. A property has a useful life that rarely exceeds 50 years and ages in the same 

way that a human being does (Passaro, 2019). As a result, it exhibits age-related symptoms. A property, a 

house, suffers from pathologies of various kinds over time: construction technology becomes obsolete, 

building materials wear out, systems lose efficiency, and air quality in the indoor environment changes due to 

the concentration of dangerous agents released by the building itself, the exhibition, the furniture, and the daily 

practises of its tenants. Getting sick in the building, for the population exposed to such environments, the risk 

of contracting chronic diseases increases in the long run, as people spend the majority of their time indoors 

throughout the day (indoors) (General (US), 2009). Numerous studies have found that the concentration of 

indoor pollutants is frequently higher than the optimal regulatory limits (Istituto Superiore di Sanità, 2014). 

Sick Building Syndrome (SBS) (Passarelli, 2009) and Building Related Illness (BRI) (Seltzer and Diego, 1994) 

are the most well-known indoor pollution-related diseases. Indoor pollution is frequently more prevalent than 

outdoor pollution. Indoor air pollution levels are 5 to 10 times higher than outdoor air pollution levels 

(European Environment Agency, 2013). Indoor air quality is one of the leading causes of illness, both directly 

and indirectly affecting the health sector. Indoor Air Quality (IAQ) (US EPA, 2014) It is determined by 

contamination with outside air, but more importantly by the presence of internal sources of emission and 

diffusion of chemical and biological contaminants. It should be noted that the health risks associated with 

indoor air pollution are also dependent on personal exposure and the sensitivity of each individual due to 

microclimatic parameters, completely random factors such as high levels of stress, and other specific 

discomforts that can also vary with seasonality.  

According to more recent research, chronic exposure to a suboptimal indoor microclimate promotes virus 

spread (European Environment Agency, 2020). NO2, PM2.5 and/or ozone concentrations in the air have been 

linked to an increase in the number of COVID-19 cases, the number of severe COVID-19 infections, and the 

risk of death from COVID-19 in China (Zheng et al., 2020), United States (Cole et al., 2020) and Europe 

(Travaglio et al., 2020). PMs, in particular, can act as a physical vector for the virus (Morawska and Milton, 

2020), s particularly when indoors or indoors, and especially when crowded and with insufficient ventilation. 

The growing emphasis on sustainability and environmental performance does not address this issue, which 

remains an inherent risk of living. In this context, the work presented by the World Health Organization (WHO)  

(World Health Organization, 2010), is extremely useful, as it has developed guidelines for indoor air quality 

for some specific air pollutants present in confined environments for the first time at the European level.  
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Indoor and outdoor air pollution was identified as a major risk factor for noncommunicable diseases in 2018, 

highlighting a wide range of side effects ranging from sensory distress, irritation, headache, and asthenia to 

serious health damage, including chronic diseases and carcinogenic effects (United Nations, 2018). Despite 

recent campaigns to reduce outdoor and indoor air pollution, the latter continues to have a significant impact 

on human health, lowering quality of life and life expectancy. It also has a significant socioeconomic impact 

because it increases health costs for medical visits, hospitalizations, and medication use, as well as indirect 

costs because psycho-physical and thermo-hygrometric malaise reduces worker productivity at work.  

However, as is well known, Italy lacks legislation governing the issuance of a certificate or certification of 

"healthy house". Unrelated studies are being conducted by public institutions, such as the ISS in collaboration 

with “Gruppo di Studio Nazionale Inquinamento Indoor” (“Istituto Superiore di Sanità: Benvenuti,” n.d.), 

ISPRA (Istituto Superiore di Sanità, 2014),) and private projects that have made technical contributions and 

emergency prevention or reduction strategies but are still sectarianized in well-defined applications. 

An investigation of the sector critical issues reveals that: 

• The construction sector, characterised by small realities, has not favoured the use of eco-sustainable materials 

and technologies;  

• Current state incentives for redevelopment interventions are oriented toward energy savings (Ecobonus), with 

the result of worsening indoor air quality (Air Quality Index);  

• Many buildings in our area lack a certificate of viability, and those issued, dating back decades, do not take 

into account the current environment. 

Politically, the problem of healthy housing has not been addressed, despite the fact that an increase in chronic 

diseases is reflected in an overload of the national health system, both in terms of higher costs for medicines 

and increased use of hospital facilities. On the other hand, as a result of today's Pandemic, people's perception 

of the dangers of indoor pollution in unhealthy buildings has grown. 

As a result, it is possible to see the opportunity, as well as the need, to grasp systemic aspects within the 

building technologies recurring in the last century, to allow an integrated vision of a process that can lead to 

obvious improvements in terms of optimisation of the real estate market performance, allowing to grasp the 

critical points of habitability in relation to the healthiness of confined environments and human health, all in a 

sustainable way. 

 

5.3.1. Socio-economic aspects 

Regarding the purely socio-economic aspect, while significant progress has been made in recent decades to 

make confined environments healthy and safe places, the problem of socio-economic repercussions on both 

the individual and the entire community remains unsolved. It is difficult to determine the exact costs associated 

with this issue, let alone the potential benefits of good management and prevention. Information and 

forecasting of future effects expressed in monetary terms contribute significantly to policy decision-making 

(Camoletto, 2017).  

Numerous socioeconomic studies have been conducted to date that link SBS with the health sector and the 

BRI, as well as the economic impact of this link. It should be noted that the majority of the research has focused 

on the effects of air pollution (in general) on health. 

The cost of air pollution could be described as "social costs." In economic terms, social costs are the private 

costs borne by those directly involved, which are added to the external costs borne by third parties who are not 

directly involved (Health-Sanity) (CE Delft, 2020). 

It is responsible for 2.7% of global disease burden (World Health Organization, 2009), with 30% attributable 

to childhood deaths from acute respiratory infections. 

In 2011, the WHO, in collaboration with the OECD, conducted the first study on the economic cost of 

atmospheric pollution's effects on human health at the European level (World Health Organization, 2015). The 

WHO has calculated the costs of premature deaths caused by prolonged exposure to atmospheric pollution. In 

2010, 600,000 premature deaths were recorded as a result of diseases caused by outdoor and indoor air 
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pollution, amounting to approximately $1,600 billion (on average one tenth of the total European GDP). In 

this case, the cost in Italy is estimated to be around 4.7% of national GDP. The economic cost of a mortality 

impact is calculated by multiplying the estimated atmospheric VSL (value of statistical life) by the number of 

premature deaths. As a result, the economic benefit of a mitigator or prevention action in this context would 

be calculated using the same VSL value but multiplied by the number of premature deaths avoided. 

The European Commission conducted a study on the economic impact of indoor air quality (Theakston and 

Weltgesundheitsorganisation, 2011) , evaluating the main pathologies attributable to indoor pollutants such as 

asthma, pulmonary carcinoma, chronic obstructive bronchitis, infections/symptoms respirators, acute 

poisoning, and quantifying the impact attributable to indoor pollution in approximately 1.6 million DALY 

(Disability-Adjusted Life Year). 

In Italy, the Indoor Commission conducted a preliminary calculation of the annual direct costs attributable to 

health damage caused by indoor pollution in 2001, which came to around 234 million euros per year. This 

report only addresses a small number of pollutants that had a more visible and serious impact on health: 

Allergens, benzene, carbon monoxide, radon, and passive smoke are all potential hazards (Ministero della 

Salute, 2014).  

To summarise, in addition to workplace prevention and safety, even living prevention should not be viewed as 

a cost to be sustained. Despite the fact that several methods and tools have been developed in recent years to 

establish health costs related to Indoor Air Quality, there is still no real estimated tool available due to the 

complexity and multiplicity of factors to be considered, particularly locally. As a result, a focus on the balance 

sheet for prevention is required through the development of models for estimating costs with cost items at the 

individual and single pollutant level, at the level of real estate, immobile, and society as a whole. We must 

prioritise prevention, property investment, and maintaining optimal indoor quality. The Ministry of Health has 

already taken action in this regard (Ministero della Salute, 2020).  

 

5.3.2. Goals 

The first goal is to be able to respond to the question, "How safe are the places where we live?" in a timely 

fashion. The search for the correct characterization of specific indoor / outdoor pollutants that influence the 

health of a property, of any kind, is a critical component for achieving a result of improvement for potential 

built-in recovery interventions in a sustainable key. This goal translates operationally in monitoring the 

concentration levels of the most common indoor pollutants, as well as the levels of concentrations of 

pathogenic agents that these pollutants drag with them (consider the current Covid-19 emergency), via a 

network of sensors that allows to evaluate the building's "sickness" in an adequate time arc. We want to identify 

the level of correlation between the age of the building, its geolocation (translated in terms of outdoor 

environment) and any human health pathologies through the analysis of data derived from sensors and the 

analysis of the real estate market in the area. 

Expected to increase the need for digitalization and technological innovation of processes in accordance with 

the I4.0 paradigm, technologies such as the IoT and CPS are also emerging in the field of buildings (Jo et al., 

2020; Saini et al., 2020; Tong, 2020; Xiahou et al., 2019), this strategy aims to represent an excellent 

interpretative model of the operational reality to set information flows and thus calibrate a smartness model 

that allows the real estate sector to promote the transition to the I4.0 paradigm by inducing companies operating 

in the sector to deal with new challenges both at an organisational and technological level. 

The second phase consists in providing the private know-how required to identify the most appropriate strategy 

time to the redevelopment and reclamation of the built, up to the achievement of a "Healthy House" certificate 

recognised at European and released levels. From the same company that provided the analysis and subsequent 

implementation of the building interventions. The condition sine qua non inherent in the realisation of a project 

of this magnitude is citizen awareness of a so delicate issue that is never explicitly discussed, neither among 

sector operators nor through public opinion. 
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HSH aspires to standardise a method for continuously monitoring physical well-being in a restricted 

environment, improving it over time with a 360° sustainable, innovative, and in line with the increasingly 

pressing need to live in a secure environment, owing to its multidisciplinary and cross-disciplinary nature. 

 

5.3.3. Innovation degree  

Consistent with the objectives stated, there is still no single body in Italian territory that provides 

comprehensive advice from the preliminary monitoring and analysis phase to the redevelopment and issuance 

of an official "Healthy House" certification. Furthermore, with regard to the Indoor Air Quality, which is 

directly related to human health (US EPA, 2014), there is currently no integrated and effective model to assist 

in the management of smart monitoring and control systems and to guide the real estate market. In the direction 

of the I4.0 world. The most critical point is the definition and selection of a comprehensive set of parameters, 

as well as the associated effective control logic of production processes in terms of predictability, leading to 

an automated improvement of the property's performance from a technological standpoint, including So 

economy, environmental impact, and, not least, sociality. 

The LCA approach , which is used during the monitoring system selection phase and in greater detail during 

the design phase of the redevelopment interventions, aims to minimise the environmental impacts of the 

interventions to be carried out (Jönsson, 2000; Wu and Apul, 2015). Consistent with the proposed objectives, 

the LCA allows for a long-term key assessment, eroding the symbiotic relationship between a healthy 

environment and a sustainable environment. 

HSH positions itself as an environmentally advanced project. Not only does it have scientific implications, but 

it has the potential to transform an entire industry, such as the construction business, which is characterized by 

a high pulverization of operational enterprises and a low proclivity for innovation. The initiative is in keeping 

with the goals of the UN's 2030 Agenda for a More Sustainable Future. The opportunity to operate in the 

metropolis-tana city of Bari will let the spin-off to test its capabilities on a housing stock of over 1,000,000 

structures of various kinds, age of construction, and pathologies. HSH is highly scalable as a consequence of 

the many sensing and monitoring approaches, which are simple to install and inexpensive in cost, as it will be 

able to serve different sorts of stakeholders' and privates' expectations based on the varied types of buildings 

and pollution sources. Furthermore, unlike other short-lived academic spin-offs that are not market-oriented, 

the initiative is focused on a genuine need: ensuring a healthy environment that is not harmful to health. The 

targeted marketing, which will be created through events, publications, brochures, and citizen-science, will 

allow all prospective consumers of the 41 municipalities of the Metropolitan City of Bari to be reached and 

sensitized. This might be a trigger for improving the province of Bari's “Legambiente” ranking (Laurenti and 

Trentin, 2021), which now places it at the bottom of the list. 

 

5.3.4. Application field of the case study  

There are currently no national or European standards governing air quality in confined environments (Settimo, 

2012). Airborne concentrations found were compared to the ATSDR (Agency for Toxic Substances and 

Disease) Minimum Risk Levels (MRL) to identify problematic concentrations (ATSDR, 2021). The 

international literature (Sagunski and Mangelsdorf, 2005) was searched for hydrocarbons (C9-C10) and 

aliphatic (C10-C13), but no reference for the population was found. As a result, this study, in conjunction with 

field investigations into pollutant-symptom-disease correlations, could provide a database with limit values 

relating to the regional territory. 

This project's research and development will initially focus on the real estate market in the metropolitan area 

of Bari, the capital of the Puglia Region, before expanding to the entire national territory as a test-bed. As a 

result, the starting point is a preliminary analysis of the built, from a land registry, based on the year of 

construction of buildings, the related construction technologies, and the potential problems associated with 

these factors. Following that, citizens will be subjected to public awareness campaigns. It will also be beneficial 
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to increase the number of studio dwellings that will be subjected to preliminary technical and technological 

analysis, as well as sensing and assessing the health of the environment in relation to the symptoms identified 

by the tenants themselves. 

Chemical, physical, and biological agents are all capable of altering indoor air quality; they come from the 

outside (outdoor air pollution, pollen), but many are produced internally. The following are the primary internal 

sources of pollution: occupants (humans and animals), dust (an excellent receptacle for microorganisms), 

structures, furnishings, systems (air conditioners, humidifiers, plumbing), and outdoor air. As a classification 

criterion, we distinguish biological sources, combustion processes, and building materials, as well as 

ventilation systems. 

Several common contaminants and toxins contribute to a sick house (see Figure 5.14): 

- Volatile Organic Compounds (VOCs). VOCs are defined as any organic compound with a vapour 

pressure of 0.01 KPa or higher at 293.15 K (20° C) (“Legislative Decree 152/2006, art.268-11,” 2006). 

This class includes a wide range of chemical compounds such as aliphatic, aromatic, and chlorinated 

hydrocarbons, aldehydes, terpenes, alcohols, esters, and ketones. The most common in residential 

buildings are limonene and toluene, but formaldehyde is the most toxicologically and mutagenically 

important. VOCs can have a wide range of effects, ranging from sensory discomfort to serious health 

changes; at high concentrations in indoor environments, they can affect numerous organs or systems, 

particularly the central nervous system. Some of them are known to be carcinogenic to humans or 

animals (benzene). Indoor VOC pollution has been hypothesised to pose a carcinogenic risk to subjects 

who spend a significant amount of time in confined environments, though these assessments are not 

yet conclusive due to insufficient characterization of such pollution. 

- Mold. Mites, pet epidermal derivatives, cockroaches, and fungi are the most common indoor allergens. 

The presence of fungi in the environment is associated with high relative humidity, which promotes 

their growth. They can grow both inside and outside of structures. Inside, they are primarily found 

where there is excess moisture and poor ventilation, and they tend to develop more quickly in hot 

humid climates, such as summer, and in poorly lit places, on damp objects and materials, in humidifiers 

or air conditioning systems that are not subjected to regular cleaning and maintenance. It is important 

to keep in mind the possibility of certain fungal species developing in air conditioning systems. The 

Alternaria species causes a type of mold that grows on decaying fruits and vegetables and in 

particularly humid environments, releasing its spores particularly on wallpaper, carpets, and soil. Mold 

is one of the most common causes of allergic reactions such as asthma, conjunctivitis, rhinitis, and 

dermatitis. In particular, nocturnal and daytime cough, as well as the relationship with asthma and 

sensitization to inhalant allergens in the most crowded families. 

- Formaldehyde. Formaldehyde is an organic compound in the vapour phase with a strong odour. Aside 

from being a by-product of combustion (tobacco smoke and other combustion sources), it is also 

emitted by urea-formaldehyde resins used for insulation, as well as resins used for wood chipboard 

and plywood, upholstery, carpeting, curtains and other textiles anti-crease treatments, and other 

furnishing material. In most homes, the levels range between 0.01 and 0.05 mg/m3. Also, the indoor 

levels of this compound are generally higher than the outdoor levels. The levels in indoor environments 

are typically between 10 and 50 g/m3. The highest concentrations have been found in prefabricated 

houses, after building interventions, and in rooms with recently laid chipboard, parquet, or carpet 

furniture. Formaldehyde causes eye, nasal, and throat irritation, sneezing, coughing, fatigue, and skin 

erythema in susceptible or immunologically sensitised individuals; however, subjects susceptible or 

immunologically sensitised to formaldehyde may have adverse reactions even at lower concentrations. 

Formaldehyde concentrations detected in homes can be of the order of those that irritate the airways 

and mucous membranes, especially after building interventions or the installation of new furniture or 

furnishings. 

- Asbestos. Asbestos is a fibrous material made up of natural mineral fibres from the silicates and 

mineralogical series serpentine (chrysotile or white asbestos) and amphiboles (crocidolite or blue 
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asbestos). Mineral fibres include both natural fibrous materials, such as asbestos, and synthetic fibres, 

such as glass wool, stone wool, and other materials. Asbestos is typically found in a compact form, 

incorporated into a cement matrix (asbestos cement on the roof, chimneys, etc.) or other matrices 

(linoleum floors, walls, panels, etc.), but it can also be found in a crumbly, more dangerous form, when 

used as a soundproofing or insulating material on false ceilings and / or walls. Asbestos fibres can be 

released inside buildings where it is present due to slow deterioration of the constituent materials 

(insulators or insulators), direct damage to them by occupants, or improper maintenance. The use of 

asbestos is currently prohibited by law; however, the release of asbestos fibres from pre-existing 

structural elements inside buildings can occur due to slow deterioration of materials containing it, 

direct damage to them by occupants, or maintenance interventions. Even in the presence of few fibrous 

elements, the presence of asbestos fibres in the environment inevitably causes health problems. It is a 

carcinogen. The main dangers are associated with the presence of fibres in the air. When inhaled, the 

fibres can become lodged in the airways and pulmonary cells. The fibres that have been deposited in 

the deeper parts of the lung can remain in the lungs for many years, if not for the rest of one's life. The 

presence of extraneous fibres within the lungs can result in the development of diseases such as 

asbestosis, mesothelioma, and lung cancer. Its cases are strongly linked to the presence of asbestos 

geodispersal, and it manifests itself after 15-30 years. Also, if in a less severe form, intestinal tract 

pathologies and asbestos-related laryngeal exhibition have been discovered. 

- Particulates. There are two major classes that can be distinguished. Particulate is classified into two 

types based on size and composition: coarse particulate and fine particulate. The coarse particulate is 

made up of particles larger than 10 μm in diameter, such as pollen and spores. They are typically 

retained by the upper respiratory system (nose, larynx, and trachea), and particles with a diameter of 

less than 2.5 micrometres (PM2.5) penetrate deeply into the lungs, particularly when breathing through 

the mouth. The aero dispersed particulate has the ability to adhere toxic gases and vapours to its 

surface. This phenomenon contributes to increasing concentrations of gaseous pollutants, which are 

transported by PM10 and PM2.5 particles, reaching the deepest areas of the lung. Numerous studies 

have found a link between acute airborne particulate matter exposure and respiratory symptoms, 

changes in respiratory function, hospitalizations, and mortality from respiratory diseases. Furthermore, 

long-term exposure to particulate matter, beginning with low doses, has been linked to an increase in 

mortality from respiratory diseases and diseases such as chronic bronchitis, asthma, and reduced 

respiratory function. Furthermore, long-term exposure is likely to increase the risk of respiratory tract 

cancer. Cancer has been linked to exposure to combustion particulate (fine particulate); soot has 

carcinogenic properties, and numerous polycyclic aromatic hydrocarbons, some of which are 

carcinogens, are absorbed on the fine particulate that is deeply inhaled in the lungs. It should be noted 

that the World Health Organization has recommended that the concentration of this pollutant be kept 

as low as possible; there is no threshold level below which no health effects have been demonstrated. 

- Radon. Radon is a chemically inert noble gas that exists in the atmosphere as a monoatomic gas. 

Furthermore, because Radon has no odour or colour, his presence cannot be detected by the senses. 

Radon is found in nature as a result of the radioactive decay of uranium and thorium, both of which 

are abundant in the earth's crust. Because it is a radioactive gas, it disperses quickly in the atmosphere 

while concentrating in enclosed spaces and is thus considered a pollutant, typically indoors. It is 

primarily derived from rocks in the subsoil, particularly those of volcanic origin, or from building 

materials rich in natural radionuclides. Another source is water (which is soluble in it). Because the 

main source of Radon in a building is the soil on which it rests, the buries, basement, and all those on 

the ground floor are the most vulnerable to this type of pollution. The great variability of indoor radon 

concentration (from about 10 bq/m3 to several thousand bq/m3) is linked not only to power and 

physical characteristics of its main sources (soil and building materials), but also to microclimatic 

parameters (pressure and temperature), building construction techniques, and ventilation. Radon is 

thus a radioactive gas that originates primarily in the soil and is present in all buildings, albeit in 
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varying concentrations from one to the next. Radon produces a number of radioactive decay products, 

which attach to aerosol particles and only a portion of them remain free. When radon and its decay 

products are inhaled, they can decay inside the respiratory system, emitting high-energy ionising 

radiation, particularly alpha particles. In reality, radon serves primarily as a transporter and source of 

its decay products; the latter, particularly the particles, are primarily responsible for the health effects. 

Radon is the most important natural source of ionising radiation exposure for the population as a 

whole, and it is a significant risk factor for human health. The International Agency for Research on 

Cancer has classified radon gas and its decay products in the Cancerogenic Group 1, that is, in the 

group of substances for which there is Sufficient evidence of carcinogenicity based on human studies. 

Particles enter the lungs via breathing and can damage the DNA of pulmonary tissue cells, eventually 

transforming them into tumour cells. After tobacco smoke, radon is most likely the most important 

single agent inducing lung cancer. As a result, exposure to indoor radon in homes increases the risk of 

developing a pulmonary tumour, and it is estimated that radon is responsible for 3% to 14% of all 

pulmonary tumours. 

 
Figure 5.14 - A diagram depicting the most common contaminants and toxins, as well as their locations in a home. From (“Sick 

House Syndrome. Environmental Testing Products, Live Pure, Inc.” 2021) 

 

The main pollutants for each source of pollution are listed in detail in Table 5.12, to provide a more precise 

overview of the significant amount of both sources and pollutants emitted in our homes, as well as the problems 

caused by contaminated that can be found in homes with residential use and the period of development of the 

symptoms caused by pollution exposure. Symptoms can include headache, dry cough, itchy skin, dizziness 

and nausea, fatigue, difficulty concentrating, sensitivity to smells as well as eye, nose or throat irritation. The 

causes of the symptoms remain unclear. It can be short-term and manifests all of the symptoms that occur after 

a single exposure of the individual to the pollutant. 
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Table 5.12 - Pollutants of greatest concern for each source of pollution and their effects on health 

 

These are effects that are usually observed during or immediately following exposure to the pollutant, and they 

are treatable, short-lived, and easily eliminated by simply moving away from the source of pollution. The graph 

in Figure 5.15 depicts examples of these types of symptoms. The other type of disease develops over time after 

an individual has been exposed to one or more pollutants for an extended period of time, or if the exposure has 

occurred repeatedly. They usually do not occur immediately after exposure, but rather after some time, even 

years, and can have serious consequences involving the skin (dermatitis), the respiratory system 

(nasopharyngeal tumours, nasal cavities), and the cardiovascular system. 

Source Pollutants Effects on health 

Gas or coal combustion 

processes for heating 

and/or cooking, fireplaces 

and wood stoves, vehicle 

exhaust gases 

Products derived from 

combustion (CO, NOx, SO2, 

Particulate) 

Increased occurrence of chronic respiratory 

symptoms, as well as a possible reduction in 

ventilatory respiratory function, sensitization 

thresholds to various allergens may be lowered, a 

higher risk of developing COPD 

Building materials and 

insulation 

Asbestos, synthetic vitreous 

fibres, particulate matter, radon; 

organic agents (due to the 

presence of moisture and/or 

powder) 

diseases such as asbestosis, mesothelioma and lung 

cancer, possible pathologies of the intestinal tract 

and for the larynx 

Carpets and coating 

materials 

Formaldehyde, acrylates, VOCs 

and biological agents (due to the 

presence of moisture and/or dust) 

Possible broncho reactive effects in asthmatic 

patients 

Furnitures 

Formaldehyde, VOCs and 

biological agents (due to the 

presence of moisture and/or dust) 

Possible broncho reactive effects in asthmatic 

patients 

Cleaning products and 

liquids 
Alcohols, phenols, VOCs 

sensory discomfort, effects on many organs or 

systems, in particular on the central nervous system 

Photocopiers Ozone (O3), toner powder, VOCs 

sensory discomfort, effects on many organs or 

systems, in particular on the central nervous system, 

irritative effects on the ocular mucous membranes 

and the upper airways, coughing, bronco obstructive 

phenomena and alteration of respiratory function 

Cigarette smoke 

Polycyclic hydrocarbons, VOC 

formaldehyde, CO, fine 

particulate matter 

sensory discomfort, effects on many organs or 

systems, in particular on the central nervous system, 

respiratory symptoms, changes in respiratory 

function, chronic bronchitis, asthma, anginal crisis, 

headache, confusion, disorientation, dizziness, 

impaired vision and nausea 

Air conditioning systems 

CO2 and VOCs (due to a low 

number of hourly spare parts or 

excess recycling), biological 

agents (due to lack of cleaning 

and maintenance) 

sensory discomfort, effects on many organs or 

systems, in particular on the central nervous system, 

chronic bronchitis, asthma 

Dust 
Biological agents (as indoor 

allergens like mites) 
asthma, conjunctivitis, rhinitis and dermatitis 

People 
CO2 and biological agents 

(bacteria, viruses, etc.) 

sensory discomfort, effects on many organs or 

systems, in particular on the central nervous system, 

headache, confusion, disorientation, dizziness, 

impaired vision and nausea 

Pets Indoor allergens (hair etc.) asthma, conjunctivitis, rhinitis and dermatitis 

Natural hot springs (lava, 

tuff, granite, etc.) 
Radon 

lung diseases such as emphysema, chronic 

interstitial pneumonia and pulmonary fibrosis 
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Figure 5.15 - Main symptoms of indoor air pollution 

5.3.5. Planning 

The project was scheduled to be completed in 18 months (Figure 5.16): 

Phase 1: raising awareness of the initiative through events and conferences; 

Phase 2: state-of-the-art techniques and problems to be realised on the field and in the literature; 

Phase 3: begin monitoring actions; 

Phase 4: results communication to the target, data analysis, and preliminary diagnosis; 

Phase 5: creation of registers to be used in future retrofit actions; 

Phase 6: implementation of planned retrofit interventions based on the results of the analysis and diagnosis; 

Phase 7: submission of the results obtained from the various competent territorial planning bodies in order to 

obtain healthy house certification. 

 

 

Figure 5.16 - HSH activities planning 
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CONCLUSIONS 

In the direction of sustainable manufacturing production, the fourth industrial revolution has been fully 

imposed. In the driving sectors of the industrial field, encouraging experiences are emerging from various 

organizations across the world, particularly from SMEs, where the best practices of smart manufacturing and 

digital fabrication have been introduced and applied (from the local scale to the global). As previously proven, 

these final two principles are at the heart of the (sustainable) predictive manufacturing paradigm. According 

to the scientific contributions present in the literature on the subject, a massive development of Maturity 

Models aimed at the qualitative and quantitative assessment of the maturity and smartness level of companies 

in the implementation of technologies related to the I4.0 Paradigm have been realized.  

The advent of the Internet of Things (IoT), based on major breakthroughs in sensor technology, has been the 

beginning point for most of this transition, resulting in smaller, cheaper, and better-performing sensors. These 

sensors, which have increased in performance, have been distributed across factory floors, allowing data to be 

collected from a greater range of industrial equipment. Because of pervasive connectivity, this data can be 

swiftly transmitted to the cloud, where it can be processed and analysed, increasingly utilizing technologies 

such as machine learning and artificial intelligence to provide real-time insights. This IoT-enabled process is 

a key element of I 4.0, where broad automation and data collecting may deliver significant commercial 

benefits. Manufacturing-economic sustainability is one of I4.0’s most urgent sustainability consequences. 

When successfully implemented, I4.0 manufacturing-economic sustainability features will lay the groundwork 

for I4.0’s continued commitment to environmental and socio-economic sustainability. 

In the I4.0 era, the modularity, flexibility, and agility of smart factories, as well as the product customization 

philosophy of manufacturing digitization, increase product cycles and hasten the obsolescence of products and 

services. This environmentally unfavourable situation could result in increased demands for energy and 

services, as well as increased pollution and waste generation. This situation necessitates international policies 

and multilateral negotiations to mitigate the unanticipated environmental protection impacts of I4.0 and 

industrial digitization. Smart and autonomous production processes can help employee health and safety by 

taking on monotonous and routine activities, resulting in higher employee productivity and motivation. 

However, I4.0 advances carry with them a slew of new problems and vulnerabilities for society. The 

introduction of smart manufacturing systems resulted in an increase in the market for information technology 

professionals. Qualified workers would be needed in the information technology industry to plan, create, 

manage, and sustain network systems. As a result, there will be an increase in career prospects in information 

technology. However, in manufacturing plants, the number of machine operators and laborers would be 

limited. In light of what has just been said, reduced jobs, information security challenges, data sophistication, 

electronic waste, and low consistency, for example, may occur. 

Automated systems, on the other hand, frequently struggle with low-quality data, resulting in more manual 

work or sub-optimal judgments with unfavourable financial effects. 

What was really accomplished, in accordance with the goals established at the beginning, is detailed below: 

- Continuous improvement of the entire production process and each sub-system at every stage of the 

life cycle, using innovative I and II order models (Life Cycle Assessment coupled with Exergy 

Analysis) and experimental models (Prognostic Health Management), using a top-down (model-

based) and bottom-up (data-driven) approach; 

- Definition of critical process parameters using a thermodynamic-technological model of the dynamic 

behaviour of the manufacturing process; 

- Measurement and monitoring of these parameters using an ad hoc sensor system and an extremely 

integrated IoT architecture for the construction of a fully structured database; 

- Big-data processing (very heterogeneous dataset) using Machine Learning algorithms optimally 

configured for such types of data available and centred on company requirements; 

- Investigation of both models' performance metrics; 
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- Interpretation of the findings of analyses and tests conducted in order to define the most automated 

and enhanced business strategies. 

Here are some general considerations arose following the dissertation work done. 

Sustainability is not explicitly one of the core keywords for I4.0. To order for sustainability to really fit under 

the I4.0 framework, it is necessary to add it to the KETs of the paradigm and to incorporate the Circular 

Economy as one of its key-features, not only as contingent benefit. In fact, resuming the review carried out by 

(Bonilla et al., 2018) on the effects that the implementation of I4.0 paradigm would have on the environment, 

the findings suggest that the features and the KETs provide a variety of possibilities for environmental 

sustainability when properly designed. On the other side, the long-term scenario of I4.0 is directly related to 

social responses as well as public policy, regulatory systems and homogeneous distribution. Heterogeneity 

between nations embracing I4.0 as well as between companies with different levels of digitalized technology 

may build market segments of disparity and non-sustainability trends. An effective combination of data-driven 

and model-based techniques will be necessary, with careful consideration of the advantages and drawbacks of 

both model-based and data-driven approaches. 

Advanced data-driven techniques should increase the applicability, capacity, and efficiency of basic data-

driven process monitoring methods under varied industrial operating situations without requiring complicated 

system design efforts. Demand for companies to reach the best decisions based on real-time data insights have 

never been greater. 

The modelling of complex technological systems serves as the foundation for enhancing process performance, 

including sustainability features (triple-bottom line). The proposed integrated model (Model-Based and Data-

Driven) provides an excellent interpretative prototype of industrial reality and a high degree of predictability, 

in contrast to the only linear model, which has significant limitations (for example, estimation of processes 

that occur through the use of non-specific standardized databases compared to the geographical and time 

location of the analysed systems, thus providing generic results subject to excessive free interpretation). The 

research has revealed that the most crucial step is the definition and selection of a comprehensive set of 

parameters, as well as the identification of the associated processing logic and effective control in terms of 

predictability. 

The latest cloud technologies, big-data, and IoT are exciting and promising for the present and future. 

However, in order for all of these technologies to be effective, they must be acknowledged, adapted to the 

specificity of the system under investigation, and a new style of thinking must be adopted (using an holistic 

approach, like the one followed in this work). Complexity is decreased as a result, and improvements can be 

easily seen. According, a data-driven company must view data management and analytics as a strategic pillar 

of the business rather than a technical factor. Being data-driven entails being guided by numbers, taking a data-

driven approach, and making informed decisions based on objective facts rather than personal feelings. As a 

result, transforming into a data-driven company requires more than just technology, but also a change 

management strategy capable of bringing data culture to all levels of the organization. In such a fast-paced 

world, it is not enough to focus on the past, to analyse metrics and KPIs based on historical data, to generate 

statistics and final reports, to conduct data analysis on user behaviour, or to identify technical problems or 

critical events. CEOs and managers today require information to help them understand what the future holds. 

It is critical to have accurate, up-to-date, and frequently collected data available. 

The challenges in implementing machine learning within existing manufacturing processes are: (1) data 

scientists must have access to an open interface (for example, for data collecting, training, and deployment) to 

enable interoperability across different frameworks; (2) machine learning must be easy enough to utilize 

without the need for specialized expertise; in other words, solutions must be able to integrate with current 

software infrastructure; (3) many machine learning algorithms are intrinsically inaccurate and should be 

handled as such. Unsuitable solutions must be modified or abandoned. This gives people confidence that the 

taught algorithms are trustworthy; (4) the training methods used must be somewhat robust, that is, they must 

operate even with tiny amounts of noisy data; (5) transparency and interpretability are critical for many 

businesses. The more complicated are their requirements, the more critical it is to fully comprehend the 
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methods to be employed. This is an area where research is still in its early stages; and (6) recognize which kind 

of data are available and that a predictive design solution is built using a chain of tunings and algorithms rather 

than a single pre-set algorithm. All of the preceding conditions must be accomplished in order for machine 

learning and real-time control to be successfully integrated.  

The activities conducted in this dissertation generates new vital awareness and cross-disciplinary knowledge 

that spans the macro-scopes of smart factory and I4.0, industrial applied thermodynamic-sustainability 

assessment, big-data analytics and machine learning, stationary and dynamic complex system holistic 

modelling. Developing A strategy for comprehensively defining the technological, social, environmental, 

diagnostic, and prognostic economic components that characterize the manufacturing process throughout its 

life cycle (including future forecasts) in order to assess more appropriate, intelligent, and fast policies for 

business planning and decision-making. 

It is finally clear from the preceding considerations that, because the Master Italy production context is 

extremely dynamic, it will certainly be necessary to perform maintenance activities on the algorithms 

developed where changes in the operating conditions of the machine, entry of new plants, or expansions of the 

data set collected by the same machine are required. In fact, the SCADA system is already being expanded 

with sensors for detecting environmental parameters (humidity, temperature, air speed, etc.), with the goal of 

generating enough data to investigate any correlations between phenomena of production defects and specific 

values of environmental parameters. This will result, for example, in a new model tuning or even a new 

adaptation of the algorithms. Finally, an interactive dashboard that connects with field operators in real time 

would create (completing the circle) an end-to-end framework for monitoring data analysis, problem diagnosis, 

and failure prognosis. This entails laying strong foundations in order to achieve a formal-compositional 

sophistication that legitimizes Master Italy business plus value on the global market in terms of quality, 

customisation, flexibility, and sustainability.  
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