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Sintesi della tesi (ITALIANO)

La presente tesi di dottorato & stata realizzata grazie alla supervisione e collaborazione tra Universita degli
Studi della Basilicata, Politecnico di Bari e I’azienda Master Italy s.r.l. (Conversano, Italia).

| principali filoni di ricerca approfonditi e discussi nella tesi sono: la sostenibilita in generale e, piu
specificatamente, quella manifatturiera, il paradigma dell’Industria 4.0 legato alla smart (green)
manufacturing, le tecniche di valutazione dei processi manifatturieri basate sui modelli (model-based) e le
tecniche di valutazione derivate dall’analisi dei dati (data-driven). Nella tesi, queste tematiche apparentemente
a sé stanti sono sviluppate in modo tale da dimostrare quanto siano fortemente interconnesse e caratterizzate
da trasversalita.

Lo scopo del programma di dottorato € stato quello di implementare e convalidare i modelli di valutazione
innovativi per esaminare la natura dei processi di produzione e razionalizzare le relazioni e le correlazioni tra
le varie fasi del processo. Questo modello composito pud essere impiegato come strumento nel processo
decisionale politico sullo sviluppo sostenibile dei processi industriali e sul miglioramento continuo dei processi
manifatturieri. L'obiettivo generale di questo lavoro di ricerca & proporre tecniche basate su modelli ibridi
termodinamici del primo e del secondo ordine e quelli basati sui dati e I’apprendimento automatico per il
monitoraggio in tempo reale delle performance e della sostenibilita manifatturiera. 1l modello proposto é testato
su un caso studio industriale reale attraverso un approccio sistemico: le fasi di individuazione dei requirements,
I’inventario dei dati (materiali, energetici, geometrici, fisici, economici, sociali, qualitativi, quantitativi), la
modellazione, I’analisi, la regolazione ad hoc degli algoritmi (tuning), I’implementazione e la validazione,
sono sviluppate per il processo di pressofusione delle leghe di alluminio di una PMI situata nel sud Italia,
Master Italy s.r.l., la quale progetta e produce accessori e componenti metallici per gli infissi dal 1986.

La tesi affronta il tema della sostenibilita dei processi industriali intelligenti a 360 gradi, guardando sia alla
quantita di risorse impiegate, sia alla qualita del loro utilizzo durante tutto il ciclo di vita del processo di
produzione. Ai modelli di analisi tradizionali della sostenibilita (come I’analisi del ciclo di vita, LCA), vengono
integrati metodi basati sul secondo principio della termodinamica (analisi exergetica); a questi vengono inoltre
affiancati modelli basati sulla tecnologia dell’informazione (big-data analysis). Per ciascun metodo
implementato singolarmente o in maniera integrata, viene presentata una dettagliata review che ne illustra il
potenziale. Dopo una descrizione delle metriche utili a qualificare il grado di sostenibilita dei processi
industriali, viene illustrato il caso studio con la modellazione e analisi dettagliata dei processi, in particolare
quello della pressofusione delle leghe di alluminio. Dopo la valutazione della sostenibilita dei processi
produttivi basata sull’approccio model-based si passa all’applicazione in tempo reale delle analisi basate sul
machine learning in cui si punta all’identificazione di fermi e guasti durante il ciclo produttivo e alla possibilita
di prevederne I’accadimento con giusto anticipo a partire dai valori dei parametri termodinamici di processo
raccolti in tempo reale e all’apprendimento automatico. Infine, a dimostrazione della multidisciplinarieta e la
trasversalita di tali tematiche, la tesi propone 1’applicazione dei modelli integrati su alcuni casi studio quali i
processi di deposizione laser e la riqualificazione del patrimonio edilizio esistente, sempre in chiave
sostenibile.

Il lavoro di tesi presenta interessanti spunti derivanti dall’applicazione di un approccio ibrido alla valutazione
di sostenibilita dei processi produttivi, combinando insieme analisi exergetica e valutazione del ciclo di vita.
industriale, coniugando approcci classici model-based con approcci innovativi basati sulla raccolta di big data
e sulla loro analisi con le piu adatte metodologie di machine learning La tesi presenta una applicazione molto
promettente delle metodiche di machine learning a dati raccolti in tempo reale allo scopo di individuare
eventuali problemi alla linea di produzione partendo da metriche di sostenibilita derivate dall’analisi exergetica
e dall’analisi del ciclo di vita. Come tale, presenta indubbiamente un avanzamento rispetto alle conoscenze
pregresse ed illustrate nello stato dell’arte introduttivo. Infatti, le aziende manifatturiere che ad oggi
implementano strategie di business basati su modelli smart e tecnologie abilitanti hanno un valore maggiore
sul mercato globale in termini di qualita, personalizzazione, flessibilita e sostenibilita.



Summary of the thesis (ENGLISH)

This doctoral thesis is the result of the supervision and collaboration of the University of Basilicata, the
Polytechnic of Bari, and the enterprise Master Italy s.r.l.

The main research lines explored and discussed in the thesis are: sustainability in general and, more
specifically, manufacturing sustainability, the Industry 4.0 paradigm linked to smart (green) manufacturing,
model-based assessment techniques of manufacturing processes, and data-driven analysis methodologies.
These seemingly unrelated topics are handled throughout the thesis in such a way that it reveal how strongly
interwoven and characterised by transversality they are.

The goal of the PhD programme was to design and validate innovative assessment models in order to
investigate the nature of manufacturing processes and rationalize the relationships and correlations between
the different stages of the process. This composite model may be utilized as a tool in political decision-making
about the long-term development of industrial processes and the continuous improvement of manufacturing
processes. The overarching goal of this research is to provide strategies for real-time monitoring of
manufacturing performance and sustainability based on hybrid thermodynamic models of the first and second
order, as well as those based on data and machine learning. The proposed model is tested on a real industrial
case study using a systemic approach: the phases of identifying the requirements, data inventory (materials,
energetic, geometric, physical, economic, social, qualitative, quantitative), modelling, analysis, ad hoc
algorithm adjustment (tuning), implementation, and validation are developed for the aluminium alloy die-
casting processes of Master Italy s.r.l., a southern Italian SME which designs and produces the accessories and
metal components for windows since 1986.

The thesis digs in the topic of the sustainability of smart industrial processes from each and every perspective,
including both the quantity and quality of resources used throughout the manufacturing process's life cycle.
Traditional sustainability analysis models (such as life cycle analysis, LCA) are combined with approaches
based on the second law of thermodynamics (exergetic analysis); they are then complemented by models based
on information technology (big-data analysis). A full analysis of the potential of each strategy, whether
executed alone or in combination, is provided. Following a summary of the metrics relevant for determining
the degree of sustainability of industrial processes, the case study is demonstrated using modelling and
extensive analysis of the processes, namely aluminium alloy die casting. After assessing the sustainability of
production processes using a model-based approach, we move on to the real-time application of machine
learning analyses with the goal of identifying downtime and failures during the production cycle and predicting
their occurrence well in advance using real-time process thermodynamic parameter values and automatic
learning. Finally, the thesis suggests the use of integrated models on various case studies, such as laser
deposition processes and the renovation of existing buildings, to demonstrate the multidisciplinarity and
transversality of these issues.

The thesis reveals fascinating findings derived from the use of a hybrid method to assessing the sustainability
of manufacturing processes, combining exergetic analysis with life cycle assessment. The proposed theme is
completely current and relevant to the most recent developments in the field of industrial sustainability,
combining traditional model-based approaches with innovative approaches based on the collection of big data
and its analysis using the most appropriate machine learning methodologies. Furthermore, the thesis
demonstrates a highly promising application of machine learning approaches to real-time data collected in
order to identify any fault source in the manufacturing line beginning with sustainability measures generated
from exergetic analysis and life cycle analysis. As such, it unquestionably represents an advancement above
earlier information depicted in the initial state of the art. In actuality, manufacturing companies that implement
business strategies based on smart models and key enabling technologies today have a higher market value in
terms of quality, customisation, flexibility, and sustainability.
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INTRODUCTION

The shift to sustainability is becoming increasingly important in manufacturing, particularly in resource and
energy-intensive industries. Furthermore, the Industry 4.0 (14.0) paradigm gives up new prospects for
sustainable growth. In recent years, the subject of sustainability in industrial contexts has taken an essential
point on the legislative agendas of many governments and in public opinion, with the latter becoming
increasingly sensitive to companies’ commitment to this problem (Misopoulos et al., 2018). For this reason,
manufacturers have included new sustainability routes into their production processes and raised the amount
of communication about these practices to consumers and stakeholders. 14.0 technology have made production
processes more efficient and less impactful for manufacturing companies (Hong et al., 2019), moving from
centralised to decentralised production. To make things even better, the new 14.0 management and data
collecting technologies, which are able to gather timely process data, can assist companies in reviewing the
sustainable measures adopted. However, the company’s value creation strategy must be considered as part of
this sustainable transformation process, which is assisted by the 14.0 paradigm. Implementing sustainability is
generally a complicated process that involves a medium-long-term strategic vision and efficient
communication between senior management and operational business divisions, as well as between the
company and its stakeholders in order to be effective (Garcia-Muifa et al., 2020).

Manufacturers are joining the massive digital transition and are working to implement 14.0 innovations. 14.0
is a series of different innovations, Internet of Everything (1oE), Cyber-physical Systems (CPS), Digital Twin,
and Smart Factories, that work together to build the next wave of production plants. This movement seeks to
turn factories into “smart factories” that have to be flexible, decentralized, and integrated in order to reach
greater level of automation and versatility (Kusiak, 2018).

Data is a key enabler in smart manufacturing (Siddiga et al., 2016). However, data in its native format is not
particularly useful for providing knowledge. This data must be transformed into something more meaningful,
which is normally achieved in steps.

According to McKinsey and Company, 86% of companies surveyed felt that the data and analytics program
was only partially effective in meeting its primary goal. They also discovered that the main technical challenge
impeding success is data management (McKinsey and Company, 2016).

The aim of the doctoral program is to implement and validate innovative assessment models to examine the
nature of as-is manufacturing processes and rationalize the relationships and correlations between the various
phases of the process. The dual strategy of top-down research and bottom-up experimentation must guarantee
that models-based become a tool and a guide for the development of ad hoc measurement and monitoring
systems. The structured data provided will be processed (potentially in real-time) using a data-driven
methodology and machine learning techniques to deliver more precise and sophisticated information than the
ones that a single operator could manage alone, only with his expertise. In complex systems such as
manufacturing processes, data-driven modelling methodologies enable the integration of parameters from
several domains (e.g., product, process, and logistics) into models that would be impossible to design using
purely mathematical theoretical models.

In order to achieve this goal, a functional model that can integrate and analyse large sets of heterogeneous data,
that is, data with different characteristics such as different time scales, discrete data and continuous data, data
derived from different technological or physical phenomena, will be required (Monténs et al., 2019). This
model must be capable of producing analytical results with scientific, physical, and technical importance, as
well as serving as a tool in policy decision-making on the sustainable development of industrial processes.
There are two kinds of models: quantitative models and empirical models. The quantitative model is made up
of an integration of linear models of the first order and non-linear models of the second order. Specifically, the
Life Cycle Assessment (LCA) is characterized by a logic additive consumption of resources, based on the
principle of mass and energy conservation, and the exergetic analysis (EA) takes into account not only the
typical quantitative allocations of a linear model such as LCA, but also the quality of resource use, yielding a
more accurate and faithful vision of sustainability and production performance (Selicati and Cardinale, 2020).




The models based on thermodynamic analysis of manufacturing technologies are based on the study of discrete
and continuous variables and represent an interesting and entertaining advanced element for maximizing the
sustainability and performance of the individual process and, thus for the synergistic implementation of the
entire manufacturing process. The EA technique is the gold standard for industrial sustainability. With a
holistic view but a broader context, the goal of decreasing Exergy Losses promotes the maximizing of the
intelligent use of resources within the manufacturing process (Abadias Llamas et al., 2019). The second-law
thermodynamics assessment of energy has the benefit of being applicable to natural resources, fuels, and
products using a standard measuring scale. It is applicable to individual processes, industries, and entire
national economies. It provides a solid foundation for evaluating the impact of policy actions aimed at
increasing energy, resource, and climate efficiency.

The company test case on which process modelling, analysis, tuning, testing, and validation are performed is
for an SME in southern Italy. Master Italy is a company that is designing and manufacturing accessories and
components for aluminium window frames since 1986. It follows that the most important process to investigate
is definitely the die-casting aluminium alloys. The project entitled "Smart Energetic Manufacturing: Master
Twin” has the ultimate goal of researching innovative and sustainable solutions for the efficiency of industrial
manufacturing processes within the 14.0 and Smart Manufacturing paradigm, starting from the laws of
thermodynamics, up to an integrated Cyber Physical System (CPS). Master Italy is an extremely dynamic and
constantly developing SME. Although it has management platforms for production and quality control, the
human influence (of operators) on all processes is still very strong.

'Increasing performance processes' usually refers to the practice of lowering energy consumption and materials,
waste, the speed of the time cycle, and the ideal relationship between good and discarded pieces. However, the
proposed model, which analyses the state variables used, enables to interpret the processes in the logic of
product and process optimization and thus recognize the end of the interpretation of operational reality via the
Key Enabling Technologies (KETs) of 1.40, obtaining a true predictive production. The definition of
innovation is precisely the achievement of an automatic continuous improvement. The models that define this
paradigm must be consistent in their analytical formulation, empirical relationships, discrete and continuous
analysis, and probabilistic analysis (Wynn and Clarkson, 2018).

The question is whether, given enough data, machine learning algorithms generated from the data-driven
method may provide additional insight into process parameters or combinations of process variables useful in
forecasting casting quality or performance metrics from production process data. The industry requires
technology capable of detecting patterns that are too fine for humans to identify. The capacity of machine
learning algorithms to discover patterns and correlations between inputs and outputs for high-dimensional
datasets is a critical feature The data from the casting process is multidimensional, with various inputs like as
temperatures, velocities, pressures, timings, and chemical composition. More dimensions can be added
(Blondheim, 2021), but having too many adds confusing noise to the data. There is a need to start studying the
data that the sector is now gathering and determine which metrics are important and which are not. Experts
believe that adopting machine learning into automation is critical for organizations to maintain and improve
their competitiveness (Wang et al., 2018). However, in real-world applications, this will take time. One issue
is that gathering the necessary data might be difficult, owing to the associated costs in both collecting data in
production systems and manually preparing it for training purposes (the definition of training data known as
labelling). The data might also be noisy, i.e. not exact enough. Another reason is that incorrect predictions may
arise, resulting in system faults. This might have serious consequences, such as equipment damage, full failure,
or, worse, danger to individuals engaged in the manufacturing process. As a result, a number of needs that are
crucial for incorporating machine learning into automation technologies have recently arisen.

This study discusses some of the techniques that can be used to construct a method that can assist with greater
control over the die-casting process while also adding benefit to the production process. This, in fact, could
improve data-driven decision-making policies. The aim is to provide a system that can convert a large volume
of data into knowledge that can be used by plant operators in particular. As a result, in keeping with the goals
of the current Industry 5.0 (15.0) model (European Commission, 2021a, p. 0), this work focuses on and




encourages both the automation aspect as well as the human learning process. Furthermore, since the workflow
starts with data collection from a completely or partially automated process, data processing is dependent on
the details of a precisely defined use case. As a result, domain knowledge, or the experience of field operators,
is still critical.

The work is structured as follows: the first section investigates the connection between the concepts of
sustainability, 14.0, and Smart Manufacturing. A reference to the upcoming 15.0 paradigm is made. In the
second section discusses the model-based approach (specifically Life Cycle Assessment, Exergetic Analysis,
and hybrid methods of them), as well as the difficulties of integrating such models through a systemic view of
the problem, and the data-driven approach, with a focus on big-data and the most common Machine Learning
techniques to process and extract knowledge from them. The section concludes with a consideration of the
Research Gaps that characterize both methods. The third section contains a state-of-the-art on performance
metrics, which are used to understand the findings of the analysis as well as to evaluate the models developed
gualitatively and quantitatively. The fourth section covers the whole test case, from the operational context
through the implementation of both model-based and data-driven approaches, as well as a discussion of the
outcomes of the analyses and tests performed. The fifth section is a synthesis of different applications that
highlight the transversality and multidisciplinarity of the knowledge acquired during the PhD program. Finally,
the overall conclusions bring the dissertation to a close.




1. IN THE ERA OF INDUSTRY 4.0, WHAT DOES IT MEAN TO BE SUSTAINABLE?

Sustainability has had many definitions over the years from a broad variety of disciplines. We utilize the
intergenerational philosophy based on meeting the needs of current generations without compromising the
ability of future generations to meet theirs (WCED, 1987). We also rely on the multidimensional concept of
the triple-bottom-line (TBL) (Elkington, 1998), depicted with his main features in Figure 1.1. The three main
pillars of TBL are economic, environmental, and social dimensions. We also link sustainability to the United
Nations Sustainable Development Goals (SDGs) (United Nations, 2015).
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Figure 1.1 - Three pillars of sustainability concept (TBL)

While it describes a noble goal, this concept of sustainable development gives no instruction on how to
accomplish it. Furthermore, a plethora of concepts, processes, standards, and metrics have been created to
assist organisations in approaching sustainability (Lozano, 2008; Seliger et al., 2011), yet what “sustainability
is” is indeed open to debate (Clifton and Amran, 2011; Eslami et al., 2020).

1.1. 14.0 AND SMART MANUFACTURING

The German government coined the term "14.0" (14.0) in 2011 to describe a set of technological changes in
manufacturing systems brought about by automation and ICT (Information and Communication
Technologies), such as Cyber-Physical Systems, Internet of Things, Simulation and Modelling, Big Data
Analytics, Augmented Reality, Additive Manufacturing, Robotics, Cloud Computing, and now Blockchain. It
aims to assist in the incorporation and merging of autonomous devices, humans, physical objects, and
processes through operational stages in order to create various forms of digital data, functional, and high agility
value chains throughout the entire life cycle of a product, process, or activity (Tay etal., 2018). To that purpose,
(Liao et al., 2013) conducted a complete systematic literature review of 14.0 in all of its aspects, with 224
publications out of 346 prospective ones proceeding to the data collecting stage for qualitative and quantitative
analysis. Smart manufacturing is also focused on the product, in fact another statement worthy of note is that
date from (Doyle-Kent and Kopacek, 2020) about the product made by this new industrial time in history:
production will be automated, digital, and data driven, not only agile and lean. Products will be of exceedingly
high quality and more reasonably priced. These items must be of the highest quality, and the supply chain must
be optimized to facilitate manufacture.

The 14.0 paradigm is performed in three dimensions (Vaidya et al., 2018):

Horizontal integration across the full network of value production. It refers to the integration of numerous IT
systems utilized in various phases of manufacturing and business planning processes, involving the interchange
of goods, resources, and information;




End-to-end digital integration across the whole product life cycle. It enables the incorporation of smart business
processes throughout the supply chain, including the production floor and CPS services. Intelligent cross-
linking and digitalization include the use of an end-to-end solution based on ICT integrated in the cloud:;
Vertical integration and networked manufacturing systems. It refers to the integration of various IT systems at
the company's many hierarchical levels during the production process, from product development to
manufacture, logistics, and sales.

A collection of essential principles of the 14.0 paradigm that lead to smartness follows (Lasi et al., 2014;

Hermann et al., 2016):

a) automation of repetitive activities, implying that employees must concentrate on innovative, inventive, and
communicative tasks. It is required to halt manufacturing in order for production to stay continuous. It
entails outfitting each machine or assembly line with a system that supports them. Each worker must be
able to cease the production process as soon as the support-aided system detects an anomalous status;

b) decentralization, as the capacity of enterprises, operations department, and even equipment to make
decisions on their own rather than relying on a centralized computer system of a decision-making body.
This idea promotes quicker decision-making and more flexibility. It is an ideal organizational structure for
meeting the increased demand for highly customized services;

c) real-time data acquisition, processing and communication, as big data technologies improve organizations'
capacity to operate in real time. The big data collected from plants about machines, equipment, and
products, as well as customer data collected from various sources such as social media, direct selling points,
and data received from suppliers, when analysed in real-time, changes the way decisions are made and has
an impact on the industry's profitability;

d) virtualization, referring to the process of generating a virtual duplicate of the physical system. Process
monitoring and machine-to-machine communication are aided by virtualization. The sensor data is
integrated to these simulation-based virtual models. The virtualization aids in warning the human of system
malfunctions and improves safety requirements;

e) modularity, referring to modular manufacturing systems that can be easily customized by changing and
extending specific components. System flexibility allows for capacity adjustments in the event of seasonal
variations or changes in product increase in output. Modularity also allows for the simulation of multiple
manufacturing processes, such as product design, production planning, production and production
engineering, and services, as separate processes and then tightly integrating them to provide
interchangeability;

f) flexibility, Ad hoc networking based on CPS allows for the dynamic setting of many elements of business
operations such as quality, time, risk, resilience, price, and sustainability. This allows for ongoing material
and supply chain optimization. It also implies that engineering processes can be made more flexible,
manufacturing processes can be modified, momentary shortages (due to supply concerns, for example) may
be compensated for, and massive increases in output can be accomplished in a short period of time;

g) agility, as a company dynamic capability that enables it to manage change and uncertainty in the
environment. There are two kinds of agility (Mrugalska and Ahmed, 2021): facility agility and flexibility
agility. The capacity of a production facility or shop floor to handle any unpredictable change in product
manufacturing preference is characterized as facility agility. While agility refers to the organizational
competence required to work on many tasks at the same time. Smart manufacturing, cyber-physical
systems, big data and analytics, cloud computing, and loT enable businesses to improve their agility in both
value and supply chains;

h) efficiency, providing the greatest feasible output of products from a given volume of resources (resource
productivity) and utilizing the fewest resources possible to produce a certain outcome (resource efficiency).
It enables case-by-case optimization of manufacturing processes across the whole value chain. Furthermore,
rather than needing to halt production, systems may be constantly optimized throughout production in terms
of resource and energy usage, as well as emissions reduction;




i) interoperability, as the capacity to execute the same activity even after switching machines and equipment
from various manufacturers creating a trustworthy environment by connecting numerous networks in a
production line;

J) service orientation, as the entities in the production system are all interconnected, making the establishment
of the product-service system easier. Because of the flexibility and agility gained as a result of service
orientation, companies can adjust to market changes more rapidly. This enables the businesses' many
stakeholders to collaborate and co-create value for their customers. It refers to Manufacturing-as-a-Service
(MaaS) and Product-as-a-Service (PaaS) concepts (Kusiak, 2020).

14.0 is now supported in all fields, not only manufacturing. Examples include logistics, construction,

transportation, medical and surgery, food production, home automation, and so on, as well as cell phones and

watches in our daily lives.

While it is difficult for researchers to settle on the appropriate and cohesive notion of 14.0 and its related

supporting technologies, the research affirms that the large network of useable and open to everyone sensors,

as well as Cloud Computing, is at the heart of this paradigm.

It is clear that the driving ideas of 14.0 were first focused on boosting efficiency and profitability rather than

proposing answers to the environmental concerns created by manufacturing.

The associated benefits are numerous (Kiel et al., 2017), including reduced pollution and environmental

dangers, as well as improved financial performance as a result of new overseas market opportunities. In reality,

an environmentally conscious firm would be able to gain environmental certification, as well as the
corresponding rise in status. 14.0 would be a step forward in the creation of more competitive manufacturing
value. This phase is primarily characterized in contemporary literature as a dedication to the environmental
element of sustainability. The distribution of services, such as products, supplies, electricity, and power, may
be made more efficient by utilizing smart cross-linked value creation modules (Stock et al., 2018). To yet, the

gualitative assessment of the potential for long-term value creation in 14.0 has not been addressed in a

systematic and formal approach (Kamble et al., 2018).

(Bonilla et al., 2018) undertook an intriguing prospective study on both positive and negative cause-effects

that all of the elements of 14.0 would bring in the short and long term in the manufacturing area, using the ideal

point of sustainability as a threshold. In general, the trends of long-term environmental consequences as a

result of 14.0 implementation are stage-dependent, with the tendency being negative during the deployment

stage and positive during the operating stage. In the long run, and to summarize ideas, smart manufacturing
would bring some positive aspects on environmental sustainability (Selicati and Cardinale, 2021a), such as :
o Creating significant effects on sustainability throughout the entire supply chain;
e Increasing the productivity with cost reductions;
¢ Inventory reductions through real-time smart inventory management and traceability;
o Real-time supply chain optimization & supplier’s integration that will enhance the development of a
circular economy.
e Decentralization of the collection of goods and services;
o Development of strategies and goods that take into account customers' lifestyles;
e Acquisition of new ecological market awareness;
e Achievement of shorter production time cycles;
e Processing an amount of production calibrated to predicted needs, without further depletions;
e Monitoring and control of CO, emissions.
In the Figure 1.2 below it is schematized the context that turns around the 14.0 paradigm
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Figure 1.2 - 14.0 context (Ghobakhloo and Fathi, 2021)

Within the 14.0 paradigm, let us briefly describe the key enabling technologies (KETSs) of 14.0, as depicted in
Figure 1.3:

Internet of Things (1oT) (Brous et al., 2020). This technology allows companies to connect several remote
devices utilizing sensors and microprocessors driven by software systems capable of relaying data across
networks. In this regard, it is necessary to emphasize that such devices are internal to production machines and
that they can be built even after the latter has been completed, owing to the idea that, in the era of 14.0, any
physical entity has the potential of being smart with the intention of sharing information on its own state and
the state of the world in which it is located. The Internet of Services (10S) is related with the strategic use of
the Web and a novel method of generating demand via the materialization of the PaaS business model.
Currently, manufacturers of commercial products are attempting to establish a clear relationship with
customers and strengthen their strategic advantage by providing complementary services and generating new
revenue streams, and 10S is providing the necessary technical infrastructure.

Big Data Analytics (Belhadi et al., 2019) refers to a new wave of technologies and architectures that enable
enterprises to economically extract value by detecting, collecting, and analysing massive amounts of data. Big
data analytics helps modern businesses to extract more value from the huge volumes of data they currently
have by predicting what will happen next and determining what actions should be done to obtain the best
results. It eventually leads to Artificial Intelligence (Al).

Cybersecurity (Junior et al., 2021). 14.0 requires access to the environment in order to facilitate integration of
various processes. While it is critical to re-establish communication methods in order to exchange information,
it is also critical to monitor this sharing in order to secure data flows. Companies require cybersecurity
measures to better safeguard a device or a device collection in terms of knowledge exchange and data privacy.

Blockchain (Khanfar et al., 2021). Often referred to as distributed ledger technology, it serves as the foundation
for cryptocurrencies such as Bitcoin and Ethereum, although its capabilities extend well beyond that.
Blockchain is permanent, decentralized, and redefines trust by enabling open, secure, efficient, and timely
public or private solutions.

Augmented reality (AR) (Posada et al., 2015). Virtual reality is being touted as one of the most revolutionary
uses in 14.0 using 3D modelling, CAD, and projection technologies. A three-dimensional model capable of




housing a human operator is mentioned, with the purpose of evaluating the process in order to enhance it
throughout the design and commissioning phases, as well as to assist worker training. In the case of Augmented
Reality, however, mention is made to the concept of leveraging unigque viewers to gain additional information
about the object merely by framing it. In 14.0, this notion translates into the possibility of gaining access to
automated and intelligent product logistics, which aids in finding them in the production and tracking order
enforcement in real time. This approach allows for the testing of items from an aesthetic and functional
standpoint, as well as the simulation of their placement in the reference environment.

Robotics and Advanced Manufacturing Solutions (Matheson et al., 2019). One of the primary triggers is and
should be robots, which are viewed as human operators' collaborators. Such technologies have the potential to
improve production processes and boost the productivity of organizations who adopt them. Human
engagement in operations involving interactions between automatic and manual systems aids integrated and
automated techniques. Throughout this example, robots are true interactive gadgets capable of sharing
knowledge with other devices and humans while remaining autonomous and configuring paths based on the
output flow's demands.

Additive manufacturing (Hernandez Korner et al., 2020). It is a technique that can print a product by adding
material after starting with a computer drawing (assisted by a CAD) of the thing to be manufactured. To
construct any shape, the nozzle may melt tiny layers of powder and put one layer of material, either plastic or
metal, on top of another. The great potential of this advancement is thus the ability to travel directly from the
digitally codified concept to the product without having to go through intermediary steps, so making way for
new business models where pieces may be produced on demand.

Simulation and modelling techniques (Barkanyi et al., 2021). Simulation is a term that alludes to the notion of
a digital twin, which is defined as a mathematical model capable of modelling a process, product, or service
in order to conduct an analysis and use predictive performance strategies. This is the development of an actual
process model in order to collect useful knowledge that may help businesses cut production costs, improve the
efficiency of the end product, and shorten time-to-market. Simulation and modelling would be necessary in
smart factories to use real-time data to mimic the actual environment in a simulated model that may include
computers, products, and humans.
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Figure 1.3 - 14.0 KETs




1.2. SUSTAINABLE SMART MANUFACTURING

In contrast to the linear model of industrial economics, in which a resource is used and the remainder is
discarded, the circular economic system undermines the vision of mass consumerism through new inputs.
Reuse and recycling are good places to start avoiding wasting a lot of resources and thus reduce the negative
externalities on the environment (Stahel, 2016). Contamination, pollution, and conflicts over supply control
have all been prevalent throughout the history of industrialization. All manufacturing processes reduce the
availability of future resources, resulting in a reduction in future production capacity. To protect tomorrow,
we must pay attention to the proper use and application of what we have today (WCED, 1987).

Technology and its evolution are having an ever-increasing impact on our world in the social, economic, and
environmental dimensions. This paragraph will provide an overview of the current phenomenon, as well as
examples of the changes it has caused. Many aspects of the industrial and economic fields have changed as a
result of the fourth industrial revolution, such as the creation of new production models, new organizational
forms of work, and, as a result, an evolution of the professional figures involved. The potential for
manufacturing unemployment as a result of the trend to replace workers with machines is one of the nerve
centres affecting the already underway 15.0 (Longo et al., 2020), along with the various approaches with which
the European Union and its members are dealing with changes. The shift in the relationship between business
and consumer on one hand, and consumer and product on the other, as new technologies enable greater product
customization. Innovations are changing the way we think about products, characterizing them with
technologies that aim to simplify the consumer’s life while also protecting the environment. One of the
difficulties that smart production is facing is efficiently managing the trade-off between profitability and
sustainability (Lao et al., 2014).

The term “smart industry” refers to a new concept of intelligent industry. This characteristic has come to life
and joined entrepreneurship in recent years as a result of new, more cautious, and efficient technologies. The
concept of intelligent industry is closely related to the sustainability and sustainable development with which
the company must deal, as well as technology and process efficiency (Ellen MacArthur Foundation, 2017).
The industry takes advantage of the benefits that technological progress provides.

The Internet of Things enables innovation in industrial processes by interconnecting processes, using
intelligent machines, collecting, storing, and sharing data (big data and cloud), and transforming them into
smart, intelligent ones. There is “smart production” through interactions between machine and human, “smart
services” through integrated systems aimed solely at customer needs to which they should respond as
efficiently as possible, and “smart energy” which focuses on consumption, monitoring cycles of use, and waste
of energy resources. The new intelligent entrepreneurship will strive to maximize results by meticulously
controlling every variable in its value chain, achieving a balance of economic results and sustainability through
efficiency (Youssef et al., 2017).

The new industrial progress 4.0 calls for the centralization of information, its preservation, and its application
as a starting point for new programming. The intelligent industry employs machines that learn on their own
and improve their performance by collecting, analysing, and using data as a foundation for learning and
implementing their activities. Digitization is a critical tool for industrial responsibility. Interactivity is a
significant development line in the design of new intelligent production processes, where the workflow is
facilitated toward clean, effective, but most importantly efficient, and sustainable enforcement (Stock and
Seliger, 2016). The 2030 Agenda, a plan of action signed by the governments of the 193 UN member countries
in September 2015, includes 17 Sustainable Development Goals (SDGs) addressing people, the planet, and
prosperity (Rosa, 2017). It is appropriate, according to point 9.5 of the 2030 Agenda: “Enhance scientific
research, upgrade the technological capabilities of industrial sectors in all countries, in particular developing
countries, including, by 2030, encouraging innovation and substantially increasing the number of research and
development workers per 1 million people and public and private research and development spending”. The
new Smart Industry is aimed squarely at achieving these goals. The 2030 Agenda identifies the guidelines for
addressing the problem of unsustainable development, which has received far too much attention in the past




(e.g., UN conferences in Stockholm in 1972, Rio de Janeiro in 1992, and Johannesburg in 2002), but has yet
to yield implementation directives and deadlines. The integrated solutions agreed upon at previous summits
are now being directed toward the targets to which they can respond, owing to the new technological-industrial
progress we are witnessing. In terms of innovation, the combination of circular economy goals and 14.0 appears
to provide excellent answers. Goal 12 in particular aims to ensure “sustainable production and consumption
patterns”. Consumption and sustainable production are aimed at doing more and better with less, increasing
the benefits in terms of well-being derived from economic activities while reducing necessary resources,
degradation, and pollution throughout the production cycle, thereby promoting the improvement of life quality.
In this regard, technology has the potential to make a significant contribution to this change. The equipment
of 14.0 enables the strict control of production cycles, with optimal use of each production source. As a result,
the model of planned obsolescence has become unbalanced, forcing the transition from the old to the new.
Furthermore, reusing is possible thanks to many technologies designed for the new Industry model. To enhance
production while preserving environmental, economic, and social sustainability, manufacturers have access to
a wide range of information and learning techniques. This is not the first time that data analysis has been used
to enhance goods and processes, though. Instead of people being unable to interpret huge volumes of data and
computers being better at analysing large amounts of data, big data analytics in manufacturing allows
practitioners to extract inherent knowledge utilizing this current approach based on computer analysis
techniques. Horizontal integration also allows to create a sustainable industrial environment (Ejsmont et al.,
2020), in addition the pull concept is used in the smart factory’s logistics, which ensures that raw materials or
semi-finished manufacturing materials are demanded on request (Waibel et al., 2017). There are numerous
research papers in the literature that link sustainability to the 14.0 paradigm. Process and information flow
integration is one of them (Carvalho et al., 2018).

It should be noted that the approach to sustainability convergence in 14.0 is changing. Indeed, 14.0 began by
concentrating solely on increasing efficiency and productivity in order to maximize profits and
competitiveness. Since now, even with the many obstacles that this sector faces, such as the unification of
laws, corporate protocols, the competition for trained labour, and the introduction of a compliant regulatory
system, the current technological transition has centred on manufacturing rather than an environmentally
friendly framework (Rajnai and Kocsis, 2018).

(Ghobakhloo, 2020) clarified the relationships between various sustainability functions of 14.0 in order to
understand the opportunities for sustainability provided by the digitalization.

(Vrchota et al., 2020) in their extensive review concluded that 14.0 technologies are an auxiliary tool for
achieving sustainability in all three dimensions, environmental, economic, and social. Furthermore, the most
important enabling technologies for achieving high levels of sustainability are identified. (Miller and Hopf,
2017) suggest a concept focusing on the TBL, which is a model that includes the problems and opportunities
involved with the implementation of 14.0. (Olah et al., 2020) have deepened the link between 14.0 and
sustainability from a different perspective: they have not evaluated the usefulness of enabling technologies in
the development of sustainable manufacturing, but they have observed how these technologies can have a
negative impact on environmental sustainability due to the immeasurable use of non-renewable resources and
pollution. Another method for assessing the relationship between 14.0 and sustainability is the one used by
(Bai et al., 2020) who tested the enabling technologies as well as their intended application using an evaluation
scheme focused on the triple-bottom-line principle. Another interesting contribution is provided by (Kamble
et al., 2018) who, following a special review, have proposed a personal Sustainable 14.0 framework that relates
the KETs to the sustainable outcomes for the sustainable manufacturing decision-making policies in
accordance with the foundation principles of 14.0.

From this brief literature examination, it is clear that most of the authors are confident about the fact that there
is an important and positive relationship between the application of 14.0 and its environmental benefits so that
companies tend to adopt this technology more given its benefits and regardless of the company size and
industry sector.
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14.0 is an excellent option for long-term manufacturing sustainability. The architecture necessitates massive
amounts of data processing, retrieval, and examination on cloud computing. As an optimal starting point,
practitioners suggest Starting with a historical data approach to training the experience provided by ERP, MES,
PLC systems and then also integrate sensing, actuation, and specific levels of real-time tracking and regulation.
Predictive analytics and automation are viewed as vital technologies needed for sustainable manufacturing in
R&D (de Sousa Jabbour et al., 2018; Ren et al., 2019).

If all goes as planned, such positive prospects may be capitalized on and be profitable in the long run. Enhanced
production effectiveness is directly proportional to enhanced sustainability (Tiwari and Khan, 2020).The
choice of Long Run is no accident. Considering a hypothetical life cycle of an 14.0 application, it is useful to
split the design part, the installation of the equipment, which undoubtedly have a negative impact on
sustainability, and the operating part, in which technologies are now ridden and become in effect Tools for the
efficiency of process performance, both at the quality and sustainability points.

The challenges and opportunities associated with implementing 14.0 are, however, for the moment unknown,
as environmental sustainability technologies associated with this sector have not been adequately explored,
because new technologies still exist; thus, gaps exist in the way in which we can integrate effective use of
scarce resources, raw materials and other resources.

1.3. THE DAWN OF INDUSTRY 5.0 PARADIGM

Despite the fact that the Industry 4.0 Paradigm is still being deployed, particularly for small company realities,
the notion of Industry 5.0 (15.0) has been proposed since last year.

This notion arose from a question that began when all contingent technologies to the 14.0 phenomena
threatened the function and utility of human inside the smart factory: are we certain that the human will
continue to play a valuable role within the industrial value chain? The wave of change in industry will have
long-reaching consequences that will extend well beyond the technical changes on the production floor. A
revolutionized industry will also have a disruptive effect on society. This is especially true for industrial
workers, whose jobs may be altered or even endangered. However, no matter how advanced technology
becomes, people will always play a critical role. To function, data analysis necessitates the use of human skills
and interpretation in order to make intelligent decisions at the end of the analysis. Companies must strike the
proper balance between self-organizing and autonomous systems and the human capital they already have.
Humans are then reintroduced into the spiral in this new paradigm, boosting their collaboration with intelligent
machines to the point of working side by side on the production floor. 15.0 may provide the best of both worlds,
combining the well-known benefits of robots with improved cognitive skills of humans in areas such as critical
thinking. Production lines may become even smarter in this more complex environment, with people able to
oversee far greater degrees of product customisation. That's an interesting concept in industries as diverse as
automotive, consumer electronics, and jewellery, or even for items like craft beer, where subtle labelling
touches may result in increased customer appeal. From the first industrial revolution to the current day, the
significance of humans in industry, particularly in manufacturing, has been emphasized (i.e., the Taylorism in
USA (Taylor, 2003)). The 15.0 paradigm is essentially an extension of the 14.0 paradigm, with a concentration
on automation and robotics: Multi Robot Systems are made up of cooperative, industrial, mobile, and
humanoid intelligent robots that work together to perform basic functions. Collaborative robots are not
intended to replace people, but rather to assist them (Durakbasa and Gengyilmaz, 2021). It is a description of
a human-centered system. There are those who speak of 14.0 Joint to Society 5.0 (Polat and Erkollar, 2020).
The Figure 1.4 depicts a comparison of 14.0 enabling technologies and their advancements with the
introduction of 15.0.
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Figure 1.4 - Improved principles and technology as a result of the 15.0 paradigm revolution (Hibbert, 2020)

It is undeniable that the operator who will interact with the robot must be suitably skilled, say digitally
competent, to adapt to a highly automated, ever changing workplace; he must be an expert in mechatronics, so
that the figure of man is still useful in the smart factories, it will have to take the role that according to the i5.0
will be defined as "Robocollaborator " or" Coboter” (Doyle-Kent and Kopacek, 2021). Education is crucial in
this regard. This new operator falls between a traditional operator and one who has some mechatronic
competence. Furthermore, due of the significant advancement in this subject, they should be taught on a yearly
basis. This, in turn, entails significant costs for the company (much more to SMESs), which will be required to
implement continuous updating courses for all employees. Based on what has been discussed, the initial pillars
of the 15.0 paradigm that can be counted will be: Organization (management), Technology (cobots), People
(coboters), and Tasks (job specification). Considering factors from a social standpoint, greater automation has
resulted in higher worker safety as the 14.0 production environment has substantially improved. Ergonomically
built workstations enhance working conditions. Collaboration increases when consistent data is available.
Resource optimization, such as more energy-efficient machinery operation, also improves environmental
protection.

The European Commission also spoke out over the 15.0 paradigm (European Commission, 2021a): “I5.0
provides a vison of industry that aims beyond efficiency and productivity as the sole goals, and reinforces the
role and the contribution of industry to society. It places the wellbeing of the worker at the centre of the
production process and uses new technologies to provide prosperity beyond jobs and growth while respecting
the production limits of the planet. It complements the existing 14.0 approach by specifically putting research
and innovation at the service of the transition to a sustainable, human-centric and resilient European industry”.
In fact, these are the three keywords, and Figure 1.5 schematizes them. For industry to become the provider of
true prosperity, the definition of its true purpose must include social, environmental and societal considerations.
This includes responsible innovation, not only or primarily aimed at increasing cost-efficiency or maximising profit,
but also at increasing prosperity for all involved: investors, workers, consumers, society, and the environment (Xu
etal., 2021). As already stated, a human-centric strategy places essential human demands and interests at the centre
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of the manufacturing process. Instead of asking what we can accomplish with new technology, we ask what it can
do for us. Rather than asking workers in the industry to adapt their abilities to the demands of quickly expanding
technology, we want to utilize technology to adapt the production process to the needs of the workers, such as
guiding and training them. It also entails ensuring that the use of new technology does not jeopardize employees'
fundamental rights, such as the right to privacy, autonomy, and human dignity. This description clearly reports the
fundamental definition of sustainability; in particular, the factory of the future (already one of the 14.0 paradigm's
pillars) must be sustainable: generate circular manufacturing systems for reusing, repurposing, and recycling natural
resources, reducing waste and environmental effect. Lastly, a resilient industry refers to the requirement to improve
industrial production's robustness, equipping it better against interruptions and ensuring it can offer and sustain key
infrastructure in times of crisis; it should be balanced by building sufficiently robust strategic value chains, adaptive
manufacturing capacity, and flexible processes, particularly in value chains that support essential human needs such
as healthcare or security.

Industry 5.0

Society 5.0

Q"duct'\o“

Communicatio 2265

Leadership s WU
Education | g
8, <
stem T

Figure 1.5 - The fundamental elements upon which the notion of Industry 5.0 is centred

However, such an approach must take into account society's diverse perceptions of values and requirements, as
assessing and quantifying environmental and, especially, social worth remains problematic.

When life sciences technologies are coupled with engineering and computer technology disciplines, a more
systematic innovation strategy that combines multiple views and takes a holistic view of complete ecosystems is
required. Furthermore, the systems created will be very sophisticated, interconnected, and interdependent, as well
as dealing with heterogeneous data sets. Economic goals such as productivity and competitiveness must not be
overlooked, but must be established within the context of agreed-upon ecological and social objectives. This may
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be accomplished through economic models that place a premium on the development of ecological and social value,
as well as through legislative incentives.

Apart from terminology and issues originating from complexity or technology concerns, such a notion must
incorporate society and the majority of the industrial landscape. Customers and whole supply chains, all the way up
to SMEs, must thus be better connected to guarantee broad-scale application and value development toward
prosperity.

For the sake of brevity, and because this thesis does not deal with the emerging 15.0 paradigm, refer back to
the European Commission's Report (European Commission, 2021b) for further insight, particularly on the
KETs that characterize this trend.

14



2. MODELS OF ASSESSMENT: STATE OF ART

Manufacturing systems necessitate effective techniques to modelling the complexity of industrial systems and
the performance criteria associated with them. Several techniques and tools for modelling complex systems
have been proposed and developed in the literature. Model-based methods and tools provide a way to use
models to design and formalize the behaviour of a real physical system; data-driven methods provide a way to
detect patterns from data, intrinsic and explicit features of a real system; and combined approaches that merge
models and data to emulate the physical real system with intelligent models (Tidriri et al., 2016). taking into
account a systemic thinking of manufacturing processes (which characterizes the guideline of the topics
discussed in this dissertation), Figure 2.1 depicts the relationship between data-driven, stated as a bottom-up
approach, and model-based, stated as a top-down approach, implemented on the process/machine under study.
While the first leads to problem solution of the issue from a local to a global scale (e.g., using the invariant
and automated model), the second begins with a problem description based on the company's needs to answer
the question "what do we need to meet these requirements?". The two techniques, when integrated and applied
simultaneously, cross right at the model design phase, when the required model (the automated model) must
mirror as accurately as possible the physical model that represents the actual behaviour of the process/machine.
Despite the benefits and promise of hybrid techniques, the biggest limitation is a lack of a general framework
for hybrid approaches.

GLOBAL
Business
Requirements Problem
. Solving
Decision Model O Target Model
Domain Knowledge . Analysis
Data Model P
Data
LOCAL

Top-Down
MODEL-BASED

Bottom-Up s
DATA-DRIVEN APPROACH

Figure 2.1 - Bottom-up (data-driven) approach integration scheme with top-down (model-based) approach

2.1. MODEL-BASED APPROACH

Model-based has recently garnered a lot of attention in the manufacturing industry. In a manufacturing
environment, this notion refers to the development of items utilizing a form of digital model from which
additional outlying actions to manufacture the product may be derived. A model is a depiction of an actual
thing’s structure, object, operation, or idea. Model-based engineering is a way of putting into action a collection
of interconnected models that allow for the definition, design, and documentation of a system under
development. Until recently, most engineering and manufacturing techniques depended on conventional ways
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of transmitting engineering data and driving production processes, such as hardcopy and digital documents.
Model-based approach is essentially an application of modelling principles, design, analysis, validation, and
verification procedures. It provides a comprehensive best value solution for studying and documenting a
system’s attributes. Models, though not an ideal depiction of a physical system, produce the necessary
information as well as quick feedback (Frechette, 2011). Fortunately, with the introduction of contemporary
industrial data handling and powerful engineering programs, it is now possible to accomplish the majority of
production tasks using data models. Model-based engineering is a modern way of handling production data
that relies on models rather than traditional papers for all production procedures throughout a product’s life
cycle. Recently, the manufacturing sector has been focused on addressing the factors related to model
implementation utilizing computer simulation experiments, in order to close the gap between model definition
and simulation program (software).

Models based on thermodynamic analyses, for example, provide a novel and fascinating method for assessing
and optimizing the sustainability of manufacturing system performances, therefore easing the management of
smart manufacturing processes. The goal of this study is to provide an understanding of how thermodynamic
principles may assist improve energy efficiency while also providing methodological support to develop
towards a smart sustainable process.

2.1.1. Life Cycle Assessment

The LCA is an objective and reliable methodology to get a comprehensive and holistic approach of assessing
environmental damage related to the building even when it is used to support decision making for the definition
of policies strategic in this sector. However, because a detailed LCA study can be costly in terms of economics
and time, as well as complex to carry out (a significant amount of environmental data must be acquired during
each phase of the life cycle, as well as knowing in depth both the standardized methodology and the support
tools such as software and databases), researchers are increasingly developing "Simplified LCA" tools (Oregi
et al., 2015) that allow an immediate assessment of the life cycle of the products even by those who are not
experts (Christiansen, 1997).

The LCA may be traced back to the early 1960s, with the release of studies on energy loads associated with
various industrial outputs. During this time, a concept that encompasses the full life cycle, known as
"Environmental Life Cycle Thinking," began to gain traction. The challenge of raw material and energy
resource exhaustibility prompted more research in the next decade, with a primary focus on improving energy
resource management. Between the late 1960s and the early 1970s, there was a gradual shift from analysis that
focused primarily on energy use to analysis that examined both raw material and energy resource usage. Two
major publications from this time are "The Limits to Growth™ by Meadows et al. in 1972 and "A Blueprint for
Survival" by Goldsmith et al. in 1972, both of which attempted to forecast the consequences of an increasing
global population on the demand for raw materials and energy. During this time, the "from cradle to grave"
concept was also adopted, which quantifies the consumption of resources and the discharge of contaminants
into the environment throughout the product life cycle. The measurement of resource consumption and
environmental consequences of goods was established in the United States under the acronym REPA
(Resource and Environmental Profile Analysis), while in Europe it was known as eco-balance.

In the late 1970s, the concept of "sustainable development” emerged, and at the same time, the "Handbook of
Industrial Energy Analysis" by Bounstead and Hancock (1979) was published in Europe, marking a watershed
moment in the history of LCA methodology in that it was the first document to offer a description of an
operational nature of the analytical procedure, which is to be considered a fundamental part of the current
technique (Dealy, 1980).

The most comprehensive description of LCA was offered by SETAC in its article "Guideline for Life-Cycle
Assessment: a Code of Practice” (Fava et al., 2014): “A process to evaluate the environmental burdens
associated with a product, process, or activity by identifying and quantifying energy and materials used and
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wastes released to the environment; to assess the impact of those energy and material uses and releases to the
environment; and to identify and evaluate opportunities to effect environmental improvements”.

At the European level, the European Platform on the Evaluation of the Life Cycle was formed in 2005,
supervised by the Institute for Environment and Sustainability of the European Commission's JRC (Joint
Research Center) and the Directorate-General for Environment.

Among the most significant works of this collaboration is the publishing in 2010 of the ILCD Handbook
(International Reference Life Cycle Data System) (Chomkhamsri et al., 2011), which promotes the application
of 1SO standards in the field of LCA by exploring many elements of the approach.

A suitable instrument for detecting key environmental features is expressly stated in the COM 2001/68/EC
Green Paper and the COM 2003/302/EC on Integrated Product Policy, and is implied, at least indirectly, in the
European EMAS (1221/2009) and Ecolabel (66/2010) regulations.

The ISO standards series regulates the LCA. The initial edition of ISO standards was revised several times,
the most recent in 2006. In reality, the following 14040 series standards are presently the international
regulatory reference for the production of LCA studies:

- UNI EN ISO 14040:2006 (“UNI EN ISO 14040,” 2006) Environmental Management - Life Cycle Evaluation
- Principles and Frameworks, which provides a general framework for the practices, applications, and
limitations of the LCA, and is aimed at a wide range of potential users and interested parties, even those with
limited knowledge of life cycle evaluation;

- UNI EN ISO 14044:2006 (“ISO 14044,” 2006) Environmental management - Life cycle evaluation -
Requirements and guidelines, which was developed for the preparation, management, and critical assessment
of the life cycle and serves as the primary support for the actual execution of an LCA research.

Furthermore, the two technical studies stated below are available to support the UNI EN 1SO 14040 standards:
- ISO/TR 14047:2003 (“ISO/TR 14047,” 2003a) "Environmental management — Life cycle impact assessment
Examples of 1SO 14042 implementation”.

- ISO/TR 14049: 2000 (“ISO/TR 14049,” 2000b) "Environmental management — Life cycle assessment —
Examples of ISO 14041 application to goal and scope formulation and inventory analysis".

The technical specification ISO / TS 14048:2002 (“ISO/TS 14048,” 2002¢) "Environmental management —
Life cycle assessment — Data documentation format" is also available. Its purpose is to provide the
requirements and structure relating to the format of the data, which is used for the documentation and exchange
of these during the inventory phase, as well as during the evaluation of the life cycle itself.

The standards are provided by the 1SO describe the four main phases of an LCA (Figure 2.2):

Life Cycle Assessment Framework
resources
/ \ Damages to
Goal & > / ecosystem
Scope ] quality

Interpretation |

Impact

Assessment r Damages to
\ human health

Figure 2.2 - Scheme of the phases of the LCA
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Impact assessment
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While the following Figure 2.3 depicts the entire life cycle of a product, process, or activity, including raw
material extraction and treatment, manufacturing, transportation, distribution, reuse, recycling, and final
disposal, as well as input flows and outputs that are typically considered during the inventory phase.

| Data collection procedure |

| Calculations algorithms |

\ Allocation |
inguts Raw Materials outputs
_ Acquisition

: — Principal Products
Materials Processing and

Manufacturing — Coproducts
Energy Transportation — Water effluents
Water —"| | Use and Manteinance — Airborne emissions
Air > — Solid wastes

Recycle or Dismission

= Other releases

Waste Management

Figure 2.3 - Life cycle of a generic product, process or activity with its inlet and outflows.

LCA is an iterative process that allows to refine things along the analysis. For example, the initial phase of
analysis may indicate that more data is required. Alternatively, the evaluation results or interpretation may
suggest to change the goal and scope. In this manner, each LCA not only provides vital recommendations for
making changes in organization, but it also shows how to effectively adjust the LCA to learn even more.

There are several varieties of LCA. The general rule is that the more detail you desire, the more detailed your
LCA must be (Production Engineering, 2019). A report for internal usage has fewer criteria than a report for
marketing or other forms of external communication. There are also several LCA-related evaluations, such as
Environmental Product Declarations (EPDs), studies that are compliant with product- or sector-specific
standards, single-issue analyses such as the carbon or water footprint, social LCA, and long-term monitoring
studies. The wonderful thing about a life cycle model is that it can be used to undertake a number of
assessments, depending on what your organization requires right now. Every phase of a product's life cycle
(extraction of materials from the environment, production of the product, use phase, and what happens to the
product after it is no longer used) can have a significant impact on the environment. LCA allows to assess the
environmental impact of your product or service from the beginning to the end, or from cradle to grave.

STEP 1 - Goal and scope definition

This initial phase is critical because it emphasizes the fundamental rationale for doing this study, permits
understanding of how the data will be used, and specifies the amount of information sought. First, it must be
thoroughly described: 1) the desired use; 2) the motives for conducting the study; 3) the sort of audience for
whom it is intended; and 4) if the results are to be utilized to perform comparison statements for public
dissemination. Before any data is gathered, the purpose and scope of the study are determined (Curran, 2017).
It should also be noted that when new information about the product system is collected during the analysis,
the purpose and scope will need to be revisited and revised. Issues and facts that were unknown or could not
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be predicted at the start of the project would necessitate rewriting the target. For example, the initial target
established for the test could not be met. This exemplifies LCA's iterative nature (Villares et al., 2017).

SUB-STEP 1.1 - Functional unit definition

The functional unit (FU) is defined as the performance of a system's functional outputs (“UNI EN ISO 14040,”
2006). A valid functional unit should be physically quantifiable and accompanied with an appropriate unit of
measurement, which might be a unit of time or a well-defined amount if product durability is required. In other
words, the coherence of the FU selection must be compatible with the baseline situation and transformation
objectives. The significance of a clear definition of the functional unit cannot be overstated, because it is
required for the right development of scenarios and the correct normalizing of all reference flows, and therefore
for the final outcomes. The FU definition should make it simple to compare the evaluation findings to other
values regarded as benchmarks.

SUB-STEP 1.2 - Reference flow and system boundaries

A reference flow is the quantity and kind of energy and materials required by a product, process, or activity to
generate the functional unit's performance (Weidema et al., 2004). Several authors (Cooper, 2003; Reap et al.,
2008a; Gandiglio et al., 2019) believe the reference flow definition to be inextricably linked to the functional
unit definition. The problems concern the specification of product lifespan, performance, and interdependence
of the product, process, or activity under consideration. The suggested technique begins with designing and
defining the system using a process flow diagram that depicts the links between the unit-processes and the
reference flows. System boundaries ((European Committee for Standardization, 2011)) depicted in Figure
2.4.define which processes and activities will be included or omitted from the evaluation. Boundaries have an
influence on the breadth and depth of the evaluation, as well as the dependability of the results (Liu and Miller,
2012). The exclusion (cut-off) of factors, i.e. features of the process, product, or activity to be analysed, that
are not regarded to affect the impact of the system on the scope of the analysis (Goedkoop et al., 2016), is the
determination of system boundaries. The cut-offs should be determined based on the results of a sensitivity
analysis of the process or activity's impact on the LCA results (L’Abbate, 2018). The problems in including
economic and social components into the LCA are mostly the result of: Social (Dreyer et al., 2006) - dispute
on measurements, contextual techniques, and reliance not just on the life cycle but also on company conduct.
Economic (Guinée et al., 2011) - lack of scientific or procedural consensus on terms, methodology, and so on;
challenges in dealing with externalities, cost allocations, system border compatibility, and possible cost
forecast.
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Figure 2.4 - System Boundaries of an LCA according to EN 15978

STEP 2 — Life Cycle inventory analysis

The most challenging step of an LCA is the life cycle inventory (LCI). LCI analysis is the computation of all
raw materials, energy resources, and machinery (inputs) utilized in the process, as well as the estimation of
their emissions to air, water, and soil (outputs) created across the whole life cycle, using the functional unit as

a reference.
Figure 2.5 illustrates the questions (requirements) that must be asked in order to obtain a full inventory of input

and output data (information) flows.

Raw Materials Manufacturing
extraction and packaging

Transportations End of life

What is needed to What is needed to ‘What is needed to What is needed to ‘What is needed to
extract raw make and package distribute the product use the rlo duct? dispose the parts of
materials? a product? leaving the factory? sethep ' the product?

« Machinery » Waste materials + Equipments * Encrgy + Disassembly
« All emissions * Packaging (trucks, vans...) * Maintenance * Energy
produced + All emissions « Distance * Parts * Transportation
« Energy used produced * Storage * Emissions by * Landfills
* Energy used * Retailers \_ normal use * Recycling/reuse

Figure 2.5 - Requirements for a LCI

SUB-STEP 2.1 - Choice of the database

The LCI must give the most accurate and objective picture of reality possible [21]. The accuracy of the data is
critical in the model's implementation. An LCI analysis necessitates a thorough examination of each process
flow and the emissions that emerge from it. Numerous databases have been developed over the years to assist
the collecting of data on raw materials and auxiliary materials, energy, transportation, machinery, and so on
by research centers (e.g.,, ELCD (Mathieux et al., 2013)), organizations, and volunteers (e.g., Ecoinvent
(“Ecoinvent,” 2019) or WorldSteel (World Steel Assoctiation, n.d.)). Some existing datasets have formerly
been incorporated into LCA tools such as SimaPro® or GaBi®. The database enables the selection of raw
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materials, transportation networks, energy mixtures, and even complete processes. Each item on the list already
includes a set of information (Input/output matrix) regarding the steps of raw material extraction and
processing, making inventory analysis a lot easier. The availability of data at the local and sectoral levels is
very important. Before beginning the real inventory analysis, it is best to pull every data point to be included
to the inventory from the database that best suits its context, keeping in mind the declared purpose and scope
of the evaluation. Considering the production procedures of items. Table 2.1 provides a selection of the most
useful databases. It is important to emphasize that, in order to justify any lack of consistency in the data (which
reflects on the results of the analysis), specifying the version of the reference database is essential during the
Inventory phase, because the Input/output matrices are constantly updated and can drastically influence the
magnitude of the emissions and environmental impacts.

SUB-STEP 2.2 - Allocation

The allocation refers to techniques for allocating the environmental load of operations with several outputs.
To prevent allocation, I1ISO 14040 suggests separating operations into sub-processes or widening system
boundaries. In LCA, consequential modelling avoids allocation, whereas the allocation technique is known as
attribution modelling. See (Schrijvers et al., 2016) for further approaches. Attributional LCA tries simply to
reduce the product's worldwide environmental effect. The purpose is to explain the relevant physical flow in
the environment. It is necessary to utilize average data. Consequential LCA tries to record changes in
environmental effect caused by a specific activity and, as a result, create information on the consequences of
activities. It is necessary to use marginal data.

SUB-STEP 2.3 - Local technical unigueness

Disparities in location can represent differences in extraction, production distribution, and end-of-life
technology. These changes in geography, businesses, facilities, and production lines might have a significant
influence on the Inventory phase and ultimately the LCA outcomes. To have as little uncertainty as possible,
the data for the LCI should be geographically characterized (see, for example, (Nilsson et al., 2010)). Countries
all across the world have produced a diverse set of rules and regulations. The preceding are well-known
country-specific standards (British Standards Institution, 2011; European Commission and Joint Research
Centre, 2010; “Requirements for the EcoLeaf PCR,” n.d.), which give clear definitions and criteria to reduce
choice flexibility and support the accuracy of LCA outcomes and quality assurance related to these throughout
their life cycle.

According to ISO 14040, the inventory analysis in conducted following the equation:

Amount X Emissions X Characterisation factor = Equivalents Eq. 2.1
(MJ or Kg) (o/MJ or g/kg) (from databases) (9-eq)
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Table 2.1 - Benchmark of databases for LCI in manufacturing context up to the end of 2020

. Last  Open . Nr of data
Database Name Link update source Category of materials and processes items
Ecoinvent https://www.ecoinvent.org 2020 no Met_a IS’. aluminium, paints, energy, transports, ~17.000
textile industry, waste management
ICE http://www.bath.ac.u_k/ mech- 2019 yes  Construction materials ~1.700
eng/sert/embodied
ELCD | https/eplcajrceceuropa.ew/ELCD3/ | 2013  no | 12nsports, wastes, organic and inorganic ~500
materials, wood, semi-metals
USLCI https://www.nrel.gov/Ici/ 2009 yes Processing _m_etals, finishing,  washing ~100
processes, paintings
AusLCl http://www.auslci.com.au/ 2016 yes  Agricultural products, energy, fuels ~400
IDEA http://idea-Ica.com/?lang=en 2016 no Forestry, - Mining, ceramics, gas, water, ~3.900
sewerage
Material Universe https://grantadesign.com 2019 no Polymers ~3.700
Plastics Europe https://www.plasticseurope.org/it 2010 no Plastics ~85
WorldSteel https://www.worldsteel.org/ 2018 no Steels ~45
Industry Data
http://erasm.org/index.php/about- .
ERASM P g kb 2016 yes Detergents, surfactants, chemicals ~70

surfactants/value-chain
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STEP 3 - Life cycle impact assessment

The goal of life cycle impact assessment is to establish a link between the right burdens and the right
affects at the right time and location (Reap et al., 2008b).

Three matrix equations can be used to represent life cycle assessment (LCA) (Heijungs and Sun, 2002):
The first equation is used to convert process data into a manufacturing system:

s=A"1-f Eq. 2.2

Where

A: database of process flows and manufacturing processes

f: final demand vector, or the intended output from the system

s: scaling vector, which represents the intensity of manufacturing processes

The scaling vector derived from the first equation is used to calculate the intensity of emissions from
unit processes

g=B-s Eq. 2.3

Where

B: unit emission matrix (a database of process values)

g: emission inventory vector detailing the emissions produced by the entire system

The third equation is used to convert emissions into environmental consequences (e.g., CO emissions
into climate warming potential)

h=Q-g Eq. 2.4

Where

Q: matrix of characterisation (impact intensity characterization values)

h: a vector indicating the system's environmental impacts.

To make the obtained affects more understandable, they might be normalized by dividing by a
geographical reference impact vector (e.g., The climate change potential of the EU countries in 2004).
Finally, the normalized results may be weighted using value-based weights to provide a single
environmental performance indicator.

The data is transformed from inventory to potential impact (EP(j);) by multiplying the input/output of
a specific substance (Q) with its equivalent factor (EQ(j)i) (characterisation):

EP(j)i = Q x EQ(): Eq. 2.5
While the total emission is the sum of every potential impact during each phase of life cycle:
2 EP()i = Q x EQ() Eq. 2.6

SUB-STEP 3.1 - Impact category selection

This stage involves associating data acquired during the LCI with the appropriate effect category, such
as global warming, acidification, human toxicity, waste resource use, and so on. The main challenges in
selecting an impact category are the absence of standardization, the disuse, and the selection of a mid-
/end-point.

SUB-STEP 3.2 - Space characterization

The computation of impacts and their impact on the environment might be heavily reliant on spatial
characterization. The characterization of meteorological, topology, hydrology, and land use status all
influence the estimation of consequences, such as acidification, eutrophication, and health implications.
(Bartolozzi et al., 2013) provides an example of environmental uniqueness consideration. For example,
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the outcome of resource extraction or pollution might vary based on the distinctiveness of the local
environment, such as soil characteristics or population density.

SUB-STEP 3.3 - Time characterization

This problem is about the temporal characterization of transformations and the effect evaluation criteria.
During the analysis, the duration of the transformations in each unit-process and, ultimately, the useful
life of the functional unit should be considered as a change in emissions caused in narrow or prolonged
time arcs, thereby also altering potential environmental damage in the short, medium and long term.

STEP 4 - Life cycle interpretation

The life cycle interpretation process entails the study of inventories and the implications to support a
product/process selection, an enhancement of some product feature or process element, and so on
(Hellweg et al., 2005). According to ISO 14044 (“ISO 14044,” 2006), the interpretation means to: a)
identify significant issues based on the LCI and LCIA phases; b) critically evaluate the overall analysis
itself, how complete it is, and if it is done sensitively and consistently to the goal and scope and the
determined requirements; and ¢) provide conclusions, limitations, and recommendations.
Understanding the precision of the data and ensuring they achieve the study’s objective are the first steps
in interpreting LCA findings. This is achieved by determining the data elements that relate significantly
to each effect group, determining the importance of these significant data elements, assessing the
completeness and accuracy of the analysis, and drawing conclusions and guidelines based on a detailed
view of how the LCA was performed and the findings were developed (Hauschild et al., 2018).

2.1.2. Exergy Analysis

2.1.2.1. Real thermodynamic systems and their irreversibility

To evolve, life has always taken use of whatever resource that the Earth has offered, even if it has been
compensated by solar energy, creating trash with a higher entropy content than the starting state. Outputs
can become more resources, but this cycle cannot be infinite since the gap between initial and final
availability becomes too large at some point, i.e., the necessary resources are no longer sufficient for
further transformation.

Real transformations are distinguished by irreversibility: if a system undergoes a transformation that
moves a state variable from state A to state B (Figure 2.6), it can be returned to state A, resulting in a
thermodynamic cycle. The system will be returned to its previous level of entropy, but the environment's
entropy will grow.

— A

Figure 2.6 - ldeal transformation (in continue line) and real transformation (in dotted line) from state A to state B

Time appears to be unimportant in the study of the first law of thermodynamics; but, in thermodynamics,
we deal about variables and state functions that vary and transform so quickly that in irreversible
thermodynamics, considerable emphasis is paid to the ‘speed of a process’ (Petrescu et al., 2016). Real
processes change with the largest variation in entropy in the quickest period, therefore designing a




sustainable process implies creating the least amount of entropy (and hence causing the least number of
environmental difficulties) over its life cycle.

Entropy increase principle is equivalent to the extropy decrease principle formulation of the Second Law
(Martinas and Frankowicz, 2001): imagine the Earth as a reservoir containing material resources,
energy, and the ecosystem, as shown in Figure 1.

i-.(\‘l“oom
Figure 2.7 - Theoretical model of the system and the environment interactions

The reservoir is classified as an open system in thermodynamics because it exchanges energy and matter
with its surroundings (Bertalanffy, 1950). Following a particular transition over time, the reservoir
would contain matter and energy in states other than the initial ones, causing an imbalance in the
environment that would have an effect. In an open system, there is no possibility of thermodynamic
equilibrium; instead, it is all about thermodynamic non-equilibrium (Martinas, 1997).

In an ideal world, the entropy of the system under study and the entropy of the system with which it
interacts are identical in form but have opposite signs, because one emits heat and the other absorbs it.
As a result, the system's cumulative shift is zero. In practice, the net increase in entropy is positive
because the entropy value of the system that produces work (which is positive) is larger than that of the
system under examination (which is negative). As a result, in the actual world, a change that occurs in
a non-isolated system generates a decrease in entropy in the physical system and an increase in entropy
throughout the universe. Because manufacturing processes are artificial non-equilibrium systems, the
same idea applies. The process or product are closed systems in and of themselves, but because the
production pulls resources from the environment in which it operates and returns losses and waste to it,
it must be regarded an open system.

Combining this principle with sustainability thinking, while entropy is not a natural state variable and
contains statistical assumptions in its definition (Martinas and Grandpierre, 2007), extropy is more
'physically sound' because it quantifies the distance from equilibrium, i.e. the degree of irreversibility
(Podr, 2005). Because thermodynamic reactions have a preferred path to achieve equilibrium, this
distance is not regular. Extropy is closely connected to exergy: the creation of extropy is a measure of
the extent of a process's irreversibility. For a steady-flow process, entropy generation is expressed as
(Prasad et al., 2009):

Sgen = Zoutme "Se — Zinmi "Si— Zl% =0 Eq. 2.7
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The first two terms on the right are the sums of exergy outputs and inputs, and the third is the rate of
entropy transfer over the part of the control surface where the instantaneous absolute temperature is T.
EXioss = To-Sgen May be used to calculate the exergy. Extropy is a measure of the entropy produced by
the fictive process that brings a physical system into balance with its surroundings. As a result, it is equal
to the difference between the maximal entropy of the system and the total entropy of the system and the
environment:

I1=S:S+SeF-S5-SE Eq. 2.8

Because manufacturing processes are artificial non-equilibrium systems, the same idea applies. The
process or product are closed systems in and of themselves, but because the production pulls resources
from the environment in which it operates and returns losses and waste to it, it must be regarded an open
system. These considerations allow to define the efficiency indicator (n) as the outcome of a linear
analysis (shown below as the horizontal line in Figure 2.8): a simple ratio of output to input, final state
to beginning state (state B and A as described above). While the vertical arrow, which represents the
conceptual model of the transformation under consideration, investigates the dynamic features of the
transformation and subsequently investigates its thermodynamic laws (which would mean constructing
the real trajectory of the transformation).
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Figure 2.8 - General scheme of linear and non-linear features in an industrial process

Complex systems' non-linear dynamics make it exceedingly difficult to anticipate their evolution over
time. Hybrid evaluation models, such as those provided in this paper, generally depict the dynamics of
a system and may be used to forecast multidimensional system trajectories by working on a wide range
of parameters. As a result, the transformation's probable consequences may be predicted.

2.1.2.2. Exergetic Analysis

When we think about energy, we think in terms of quantity. However, in a resource-constrained reality,
energy must also be valued in terms of quality, which is basically a measure of its utility, or capacity to
do labour. Exergy must be measured in order to account for the quality of energy rather than just the
amount. Exergy analysis may be applied to individual processes, companies, and even whole national
economies (Sousa et al., 2017). It provides a solid foundation for evaluating the impact of policy actions
aimed at increasing energy, resource, and climate efficiency. In the future, consumers may be told about
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items and services based on their exergy-destruction footprint in the same manner that they are educated
about carbon emissions (Brockway et al., 2016).

The notion of exergy and its application to energy efficiency was discussed in 2015 at (Science Europe
Scientific Committee for the Physical, Chemical and Mathematical Sciences, 2015). In doing so, the
Committee appealed to policymakers to establish an International Exergy Panel to: bridge the gap
between energy science and energy policy, resulting in the systematic use of the concept of exergy where
appropriate; provide an evidence-base for interrelated energy-climate change and economic policies;
and drive interdisciplinary research and development on the causes of exergy destruction and how we
can minimize this destruction, from the molecular to the global scale; direct the development of exergy
footprints for commodities and services; and engage with the Intergovernmental Panel on Climate
Change (IPCC).

The idea of exergy is intricately linked to the fundamental laws of thermodynamics. These laws must
not be disregarded: they are vital. First law: energy is preserved. Second law: heat cannot be completely
turned into useful energy. The second law deals with the idea of exergy. Exergy is destroyed in every
energy-conversion process.

Exergy is defined as the maximum amount of work which can be delivered by a system or a flow of
matter or energy when it reaches the equilibrium with a reference environment through a sequence of
reversible processes in which the system can only interact with (Rant, 1956). Due to the irreversibility
of the process, some of the exergy is wasted or destroyed during the process (Kotas, 2013). Exergy
Analysis in a manufacturing system seeks to find and analyse thermodynamic flaws (irreversibilities)
and to reveal opportunities for improvement. Furthermore, exergy efficiency is an essential criterion for
determining the sustainability of a process or product. According to (Duflou et al., 2011) and (Renaldi
et al., 2011), the application of exergy in manufacturing systems allows for the detection and evaluation
of thermodynamic flaws as well as the identification of possibilities for improvement. The measurement
of resource consumption and the consequences of emissions may be represented on a single objective
scale using the second law of thermodynamics, distinguishing it from the LCA, which examines the
diverse effects by quantifying them on several scales.

While exergy destruction is never zero in any process, it may be minimized. Every process leaves a
distinct exergy destruction footprint. This footprint may be used to rationalize resource selections before
to production and to monitor the usage of energy and resources throughout production. It may be utilized
in a whole life-cycle approach to examine a product's overall energy and resource 'cost’: basically, its
exergy destruction footprint. It is critical to remember that there can be no output without an exergy
destruction footprint. When designing more environmentally friendly technology, a deliberate attempt
to decrease exergy degradation to a bare minimum is a goal to strive towards.

Given the triple approach to sustainability (TBL), even exergetic analysis bridges well this concept; in
fact, (Morosuk and Tsatsaronis, 2012) graphically depicted some conceivable interdependencies among
exergy, economics, and environment already in 2012. These dependencies are shown in Figure 2.9
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Figure 2.9 - Interdependencies between exergy destruction and the three dimensions of the TBL paradigm

A first approach may appear to be that exergetic analysis provides a more abstract interpretation of
concepts already known as the thermal efficiency of a thermodynamic cycle, but exergetic analysis is a
useful investigation tool to identify which They are the causes that determine the plant's thermal
efficiency reduction. The use of exergetic analysis is exactly in its capacity to detect exergy to the extent
The potential to create work and, thus, as a measure of energy quality. The other significant attribute is
its relationship with thermodynamic properties (such as pressure and temperature), for which it is also
a thermodynamic property. It is therefore feasible to measure the exergetic loss owing to the
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irreversibility of the Transformation in complex systems, offering indications on its origin and impacts
on the whole process, in order to pinpoint the components on which intervention is most suitable.

The fundamental principle of thermodynamics affirms the ultimate conservation of energy: it, like
matter, cannot be generated or destroyed; nevertheless, it may be controlled to change the form in which
it appears. In actuality, throughout thermodynamic processes, entropy is generated, and as a result, the
quality of energy is degraded, as defined by the second thermodynamic principle. Consider the energy
of a material flow as a measure of its potential utility, and you will be more easily induced. If you
examine the same energy term of electricity and hot water, they have a very different quality of energy:
unlike the electric current flow, the utility that can be gained from the scope of hot water is principally
subject to its temperature and environment of reference. In reality, while it is theoretically conceivable
to transform a full electrical flow into mechanical work, the same cannot be said for hot water, from
which reversible work may be derived based on its Carnot limit (Boateng, 2016).

T-T
Winax = Q * — Eq. 2.9

For these reasons, exergy, defined as "equivalent reversible work," has become a standard for measuring
not only the quantitative but also the qualitative aspects of energy exchanges between many systems or
between a system and the environment over the years.

Figure 2.10 depicts a generic open system in equilibrium, the state of which is characterized by specific
values of its physical and chemical attributes. The system interacts with its reference environment, which
has certain physical and chemical features.
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Figure 2.10 - Generic open system control volume

In addition, a generic system, such as the one seen in Figure 2.10, can interact with its reference
environment in two ways:

1) Non-material interaction: any interactions that do not include a flowing flow rate. Because exergy
is defined as the reversible work that may be taken from a system, mechanical work and exergy are
equivalent. They can be further subdivided into:

» Thermal interactions: the system can exchange heat via conductive, convective, or radiative
modes on its second side. In this scenario, the maximum work done by a thermal exchange
may be specified. It is feasible to acquire from the thermal flow studied, utilizing the
reference environment as a thermal tank with an unlimited thermal capacity; heat is the word
given to exergy associated with a thermal flow. Considering the environment as a thermal
well at the reference temperature To, with a given thermal power Q and a given control

surface temperature T, heat exergy is computed as Exq = Q - d, where 4 it is referred to the
Carnot factor, or non-dimensional exergetic temperature. When the temperature of the
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control surface through which the heat exchange occurs is T, the heat exergy describes the
transfer of exergy associated with the transmission of heat. The direction of the flow of heat
exergy will be determined by the following factors: 1) the sign of d: the Carnot factor will be
positive if T > Ty, and negative if T < To; I1) the direction of the thermal flow Q: positive or
negative according to the signed conventions employed.

» Mechanical interactions: As a result of the work transfer, exergy transfers can be characterized
in the direction and form to which they correspond.

The work exergy is defined as Ex,, = W — P, - 3—:. According to the signed conventions, an

emphasis on the system has a positive sign and corresponds to outbound exegetic power,
which is likewise positive. If the system is rigid, the second-term is null, and the work is
completely accessible, matching to exergy. Mechanical work can take many forms, including
system volume fluctuation work, shaft rotation work, electrical work, magnetic work, and so
on. If the system is not rigid, it can mechanically interact with its surroundings by modifying
its volume. Interactions between mechanical elements can, however, occur in the presence
of a non-rigid system, such as spinning trees or electricity fluxes;

2) Material interaction: it occurs whenever a state material flow and chemical composition different
from those of the ambient pass through the system, interacting by work, heat, or chemical species
exchanges. In the absence of nuclear, magnetic, electric, and surface tension effects, exergy
associated with a material flow is a property of the system; it can be expressed as the sum of
kinetics, potential, physical, and chemical exergy. Because it is related to a moving mass, exergy
may also be represented as a specific measure.

The interaction between a system and its reference environment can thus occur through the system
control surface in different modes: energy exchanges (decreased in work or heat) or mass exchanges.
Each of these interactions is associated with a certain quantity of exergy, which represents the amount
of reversible work that may be achieved from the interaction or as a group of interactions considered in
the analysis. The overall exergy associated with the system is therefore sum of three contributions
associated with work, heat and mass flows.
Instead, in the case of manufacturing systems, which is the major issue of this thesis, it is conceivable
to neglect specific potential and kinetic exergy contributions and focus just on specific chemical and
physical exergy (referring to material and energy flows).
The foundation of EA is stated by the first and second principles of thermodynamics. The first law deals
with energy conservation, while the second deals with the quality of energy and materials. These
thermodynamic rules underlying the EA are critical for tracing the set of parameters that must be
measured and monitored throughout the process, as well as the variables that may be derived. According
to Szargut's research (Szargut et al., 1987), reference flows can be uniquely recognized in the balancing
equations below.

Eqg. (4)'s mass flow balance explains the balance for the investigated system of in and out material flows.

Vit = e g Eq. 2.10

Energy flow balance is reported in Eq. 2.11. Because energy is a broad variable, the energy of a system
in a given state equals the sum of the energies of all subsystems that can be identified as being a
component of a particular system (Bakshi et al., 2011). The entire energy content of an isolated system
cannot change, as stated by the first rule of thermodynamics: energy is conserved (Terzi, 2018). As a
result, energy may only be transformed or converted from one kind to another, with no regard for energy
quality loss. To identify and quantify the irreversibility, an EA must be performed. Closed material and
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energy flow balancing with energy interactions (work and heat) between incoming and outbound flows
from the system boundaries must be performed to accomplish it.

ZCHé+ZdWé+Zin) =ZCH2 +Zdwé) +Zp ‘g,tot Eq- 211

Exergy flow balance is stated in Eq. 2.12. Because it is neither visible or even feasible in nature, the idea of
equilibrium is frequently questioned. Unlike energy, exergy is not preserved. In any genuine process, it is instead
consumed or destroyed to some extent. As a consequence, the quantity of exergy destroyed by the system may be
calculated by accounting for all of the exergy streams in the system. The exergy loss is proportional to the entropy
created; the lost exergy, or produced entropy, is responsible for the system's less-than-theoretical
efficiency. When work is exchanged or heat transfers occur, the exergy destruction rate (Ex;,ss) may be
calculated by balancing the exergy between inbound and outgoing flows.

.. .. T . . . T . .
Selixt + TaWh +Zp (1-72) Qp = Zebx? + ZaWg + Zp (1~ 72) Qf + Extoss Eq. 2.12

In the term (1 - ?) To is the dead state reference temperature and T is the equilibrium temperature,
as defined in Eq. 2.13.

i o
2

T, = Eq. 2.13

The following equations are used to compute the enthalpy flow rate (Eq. 2.14), specific entropy (Eq.
2.15), and exergy (Eg. 2.16):

H=m-c (T-T,) Eq. 2.14
— T

s=c-In (T—O) Eq. 2.15
EX - m " [}_l - }_10 - TO " (§ - §0)] Eq 216

The process or its components' performance indicators are stated in the following net and general
efficiencies (Eq. 2.17 and Eg. 2.18), depending on whether the goal is to assess the percentage of
relevant exergy for the realization of the final product or the total exergy of the process:

3 Exproduct

e =220 Eq. 2.17
_ ZEXOUt
g = 22 Eq. 2.18

The optimization criteria entail minimizing the term Exloss, which is the source of the process's less-
than-theoretical efficiency. Temperature changes are important in the exergetic equilibrium. The bigger
the temperature difference between two transition phases, the more energy is generated. The energy
balance in Eqg. (6) is also significant for optimizing product quality. This means that energy analysis
makes possible at the same time to increase the quality of the finished product, to control its
characteristics and to reduce the energy costs of the process (Kamps et al., 2018).

Each complex manufacturing system is distinguished by the combination of multiple elementary
subsystems. Attention should be made to its subsystems as well as the overall system in order to evaluate
it from an energy standpoint. It is an issue of accurately identifying the control volume each time, since
the object of the research varies: the writing of the exergetic budget and the computation of its efficiency

31



are consequences and functions of the control volume choice. It's worth noting that, while the energy-

type efficiency yield or characteristics allow to compare machines of the same kind; the exergetic yield,

which also expresses energy quality, allows you to compare machines of various types.

The following are the primary benefits of using exergetic analysis:

1) The ability to compare different energy systems, such as direct cycles and inverse cycles;

2) Possibility of locating and quantifying the real sources of system inefficiency, giving helpful
information, and properly resolving the resource expenditure to improve the system's effectiveness.

To summarize and conclude, exergy is a unit of measurement for usable energy. The true efficiency of
an energy system or process is referred to as exergy efficiency. In this regard, the second-law exergy
technique, when contrasted to standard first-law thermodynamics energy approaches, can uncover and
quantify the reasons of inefficiencies. Exergy is thus the appropriate statistic for valuing energy
consumption and resource scarcity. However, the practical implementation of exergy for resource
evaluation meets numerous challenges: first, any exergy accounting involves the establishment of a
reference environment that is in thermodynamic equilibrium (Gaudreau et al., 2012). This proves to be
rather difficult: can the planet in its current condition (not in equilibrium) be used as a reference setting,
or should a hypothetical earth in thermodynamic equilibrium/maximum entropy be assumed? Second,
because chemical exergy comprises both enthalpy and resource concentration, exergy combines the two
characteristics of energy content (formation enthalpy/heating value) and availability (concentration).
This is consistent with the nature of exergy, but it might be deceptive when used to resource estimation
(Finnveden et al., 2016). Energy resources have a high exergy value, whereas even rare but very inert
(= low enthalpy) substances have a low exergy value that can only be estimated by looking at their
concentration exergy. Although exergy continues to be of relevance for resource depletion accounting,
being a scientific thermodynamic method with few assumptions, it is objective (Peters, 2021).

2.13. Hybrid Exergy-Life Cycle Assessment

Sustainability is defined by a dynamic multidimension, and no apparent, simple solution appears to be
capable of dealing with its entire complexity. To collect detailed knowledge from a manufacturing
process in terms of productivity, performance, quality, and reversibility, a variety of evaluation
approaches are used independently or in a hybrid way throughout the multidimensional sense of
sustainable development. Hybrid modelling is another viable option for balancing bottom-up and top-
down evaluation methodologies.

According to the preceding paragraphs, while traditional LCA tools place a strong emphasis on
emissions, EA focuses on resource and product availability and utility, and is thus efficiency oriented
(Moya et al., 2013). Each approach reflects on the same problem: integrating two distinct points of view
may lead to the usage of the combined methods' strengths while decreasing the flaws of the individual
ones (Milanovic et al., 2017).

The following issues were raised concerning hybrid methods: how are they employed in case studies?
What is the advantage of a hybrid analysis over a traditional one? How effectively are LCA and EA
mathematically and in terms of the flows to be evaluated integrated? Which starting hypothesis governs
the selection of the best hybrid method? Is there a superior one than the others?

The dictionary definition of “Hybrid” (as a noun in the early 17th century) is: "from Latin 'Hybrida,'
meaning 'bastard,’ of unclear derivation.” Something created by merging two or more distinct parts.
Characteristics that are conflicting. A term made from of components from other languages, such as
television (tele from Greek, vision from Latin). A vehicle powered by both a gasoline engine and an
electric motor" (Cambridge English Dictionary, n.d.). Composite, cross-bred, interbred; compound,
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combined, blended, mongrel, impure are synonyms. As a result, a hybrid technique of evaluation entails
combining, merging, or cross-breeding one or more approaches to offer a comprehensive picture of the
same system or phenomena defined by diverse data types and dynamics. Otherwise, it may be thought
of as a model involving linked approaches based on many methodologies, each expressing one aspect
of the system in the most appropriate way in relation to reality, with a level of interconnection ranging
from basic comparison to entire fusion (Vincenot et al., 2017).

2.1.3.1. Hybrid models state of art

Since now, there have been several hybrid techniques that integrate EA and LCA that are available in
the literature. In Figure 2.11, the hybrid techniques indicated below, together with their respective
authors, are shown in sequential sequence.

Exergoenvironmental Analysis
I, )
Thermodynamically based-LCA Qeyepiet abi 2009/ Gemony)
(Dewulf and Langenhove, 2002, Belgium)
CEENE (Dewulf et al., 2007, Belgium)

Exergoeconomics ELCA and Zero-ELCA B
(Tsatsaronis, 1984, Germany) (Cornelissen, 1997, Netherlands) ECEC (Hau and Bakshi, 2004, Ohio) TCExL (Stougie et al, 2013, Netherlands) 1

1990 2000 2010 2020

Thermoeconomics EEA (Sciubba, 1998, Italy) TEC (Szargut and Stanek, 2007, Poland) ExIO (Rocco, 2014, Italy)
(Valero, 1986, Spain)

LCEA (Gong and Wall, 2001, Sweden) CExD (Bosch et al., 2006, Switzerland) Emergy based-LCA
CExC (Szargut and Morris, 1987, Poland) (Reza et al,, 2013, Canada)

Figure 2.11 - Timeline of hybrid EA and LCA methodologies discovered in the literature

e (\Valero, 1986) developed Thermoeconomics (TE), a monetary costing system that blends the ideas
of the second law with traditional cost accounting methodologies. He began by considering that the
economic dimension, because it involves matter, energy, entropy, and other externalities, should
also be modelled as a thermodynamic process, and thus integrates thermodynamics and cost
accounting principles, measuring the expense of the product or process with either exergy
accounting. Exergy is referred to as TE because, according to the 'exergy costing theory,' exergy
represents the true usage value of goods. The objective is to establish the optimal balance between
system performance and overall costs. One disadvantage of TE is that the costs of environmental
restoration are inconsistent since the exergy of an outflow and its toxicity may not have a
thermodynamic-physically determined relationship (Sciubba et al., 2012).

e (Szargut and Morris, 1987) made the first attempt to merge EA and LCA in 1987, developing the
Cumulative Exergy Consumption (CExC). This method, which is equivalent to VValero's exergy cost
method (as stated by (Stougie, 2011)), consists of a set of balance equations expressing the
cumulative consumption characterizing the process as a sum of the cumulative consumption
connected to the natural resources extracted directly from the environment. Szargut was able to
calculate the process's Cumulative Degree of Perfection (CDP) using this approach.

e The Cumulative Exergy Demand (CExD), created by (Bosch et al., 2007), is an analogous approach
of CEXC that is currently included as an effect assessment method in all main LCA software
packages. It calculates the overall exergy drawn from nature to produce a product by adding the
exergy (chemical, kinetic, hydro-potential, nuclear, solar-radiative, and thermal) of all energy
carriers used in the process. The last impact category is divided into eight resource groups (fossil,
nuclear, renewable, hydropower, biomass, water, minerals, and metals). Its interpretation entails
assessing both the quality and amount of the resources required by the process in order to produce
a certain functional unit. One of the fundamental disadvantages of this technique is that the social
need for a resource, as well as its technical supply or scarcity, are not taken into account in CExD.
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Exergetic Life Cycle Assessment (ELCA) and Zero-Exergy Emission ELCA (Zero-ELCA) methods
were developed by (Cornelissen, 1997) in his PhD dissertation. The ELCA uses the same structure
as the LCA, but is evaluated in terms of life cycle irreversibility, i.e., the exergy loss of a product
across its entire life cycle. ELCA's inventory analysis is more comprehensive than LCA's; there is
no need for classification during the impact assessment since the process allows for the computation
of energy and matter flow in a single unit of measurement. The ELCA is a time-based extension of
CEXC in which the material and energy streams are examined throughout the system's life cycle,
including maintenance and deconstruction. In Zero-Exergy Emission ELCA, the primary exergy
cost is calculated while additionally taking into account the environmental effect of pollutant
emissions from emission abatement techniques. CExC, ELCA, and Zero-ELCA, like CExC, do not
contain labour and capital fundamentals.

Another remarkably interesting concept is Emergy. Emergy analysis describes a product or process
in terms of solar energy equivalents, or how much energy would be required directly or indirectly
to generate an output if solar radiation were the sole input. Because emergy is thought to be
embodied in the product or processes, the term embodied energy was simplified to emergy. (Odum
and Odum, 2000), who was concerned in environmental and energy quality issues, established this
notion. Matter and energy flows are quantified in solar equivalent joules (sej) using a conversion
factor known as 'Solar Transformity' or Unit Emergy Value (UEV), which is the amount of Emergy
necessary to produce one unit of a specific product or service. Transformity is important because it
allows for a hierarchical structure between energy flows and different sub-systems. The superior
output energy flow is hierarchically superior. The higher an energy flow's hierarchical rank, the
more transformations are required to obtain it (Odum, 1988). Because of its ability to capture the
dynamics of large open systems, Emergy is a viable accounting tool for supporting environmental
management initiatives (Jiang et al., 2019). Emergy reflects the energy costs of a system in terms
of solar power throughout each transition in the life cycle, and it is easily comprehended in
monetary terms as well. Several publications in the literature link Emergy directly to LCA; one of
these hybridizations is called Emergy Based-LCA, and it is formally provided by (Reza et al.,
2014a), who say that Emergy is a beneficial supplemental tool to LCA rather than an alternative
technique. Actually, it has been explored about coupling emergy analysis with LCA since (Li and
Wang, 2009)but the technique known as Emergy Based-LCA was better formalized in 2013.
Because the Emergy study is capable of systematically evaluating the role of environmental,
economic, and social impacts in an energy-based framework, the indirect effects of raw materials
and energy carriers as environmental support for the production of any output, including monetary
capital, can be measured and identified using a single metric.

(Wall and Gong, 2001) introduced a method called Life Cycle Exergy Analysis (LCEA) to solve the
disadvantages of the LCA's multidimensional approach. The distinction between LCEA and ELCA
is ephemeral: it is at the level of aggregate. The first combines all exergetic contributions at each
stage (high level of aggregation), whereas the second disaggregates any exergetic input at each
stage of the life cycle to emphasize local irreversibilities. Another contrast is the separation between
renewable and non-renewable resources.

Extended Exergy Accounting (EEA) by (Sciubba, 2001) is an approach to performing design and
configuration optimization of a system evaluating overall resource consumption because it enriches
the energy and matter flow with some other 'externalities’ (Rocco et al., 2014) as capital flow,
environmental damage remediation costs flow, and labour flow, always in exergetic terms, where
the calculations are done along all system's Life Cycle phases. All terms of the production cost
function are translated into exergy flows in order to generate an exergy cost function in a single
measure. One disadvantage of this technique is that substantial assumptions must be made in the
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computation of the conversion factors since they must be viewed as primary resource flow. EEA,
like ECEC, allows for the provision of economic data in primary exergy equivalents. The extended
exergy cost function produced from EEA may be used to replace the economic cost function across
the Thermoeconomics framework to identify and optimize the utilization of a system's natural
resources. Therefore, should be noted that EEA is a newer approach than others that are well
established, and it requires more validation before it can be considered a standard assessment
method.

(Hau and Bakshi, 2004) suggested an extension of CEXC termed Industrial/Ecological Cumulative
Exergy Consumption (ICEC/ECEC). The primary distinction between ICEC and ECEC is that the
former does not take into account the exergy losses of ecological processes in its calculations, but
just the non-renewable natural resource use in terms of exergy losses. ECEC is specifically related
to Emergy Analysis and consists in including in the assessment the exergy consumed by ecological
processes for the processing of raw materials, the dissipation of pollutants, and the operation of
industrial systems, whereas CEXC focuses solely on natural resources, ignoring ecological products
and services. The ECEC analysis is predicated on the concept that ecosystems produce all products
and services at the cost of one solar equivalent Joule. With the ECEC, it is feasible to evaluate the
system from a monetary standpoint thanks to emergy balances. (Yang et al., 2013, 2015) were
successful in including economic and environmental considerations into ECEC computation.
Currently, the model based on ecological LCA considers three factors: resource use, economic
capital, and environmental effect. Because ECEC is a very advanced technology, information about
it is still evolving, and it has limited use in the industrial area. Another flaw in ECEC analysis is
the unpredictability in emergy transformities.

Another more recent technique that deviates significantly from the CExC is the Cumulative Exergy
Extraction from Natural Environment (CEENE), which adds the cumulative exergy expenses of
land occupancy to standard CEXC accountings. According to this theory, land usage is just as
significant as other categories since the land uses solar irradiation (represented in exergetic effects)
to exist and sustain itself, hence occupying areas of land reduces the odds of capturing solar energy.
(Dewulf et al., 2007) created this technique and immediately offered the methodological support to
integrate it with LCA,; in fact, it was born with the intention of being compatible with current LCA
datasets.

A different method presented by (Dewulf and Van Langenhove, 2002) is termed
Thermodynamically Based-Life Cycle Analysis, and it presents a framework for measuring all of a
process's or product's effects on the Ecosphere and population on a single objective scale. The
authors propose an open system in which the Ecosphere, Technosphere, and society interchange
exergy created by solar energy, resources, products, wastes, and a fraction of the heat irradiation
associated with process irreversibility through time. This method integrates life cycle impact
assessment, exergy analysis, and socio-economic aspects into one large exergetic equilibrium of
pollution and related human and ecotoxicological impacts across the entire life-cycle in terms of
exergetic losses, i.e., the risk of opportunity depletion for current and future generations.

(Szargut and Stanek, 2007) later proposed the Thermo Ecological Cost (TEC). They expanded the
Exergy Analysis into the environmental dimension based on CExXC to account for the cumulative
consumption of natural resource costs in terms of environmental consequences. This technique
specifies environmental costs in order to limit the adverse effects of pollutants discharged into the
natural environment (Stanek et al., 2014). The original TEC was concerned with the investigation
of the single operational phase under the Life Cycle concept. The first TEC investigated the only
activity inside the Life Cycle thinking. In recent years, TEC has been partnered with or integrated
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into LCA in a number of works to quantify the worldwide impact of a given manufacturing process
(Dominguez et al., 2014; Stanek, 2018).

Exergoenvironmental Analysis, pioneered by (Meyer et al., 2008), evaluates the environmental
effect of each component of a system as well as the true sources of the impact by integrating exergy
analysis and LCA. The Exergoenvironmental Analysis incorporates both traditional exergy analysis
and environmental analyses such as LCA to assess the impact of exergy losses and exergy
destruction on environmental sustainability. The first step is to do an exergy analysis on all of the
material and energy sources. The second stage includes the LCA of each component or subprocess
all the way up to the input streams to the overall system. The environmental implications of LCA
are assigned to the exergy streams in the third and final stage (Tsatsaronis, 2007).
Exergoenvironmental Analysis is frequently used in tandem with Exergoeconomics, which was
introduced earlier than the latter by (Tsatsaronis, 1984). Exergoeconomic analysis combines
thermodynamics and economics to determine the cost of a product or process. It correlates exergy
losses with capital expenses in order to build an economically viable efficient system that is not
possible with traditional solitary energetic or economic analyses. (Aghbashlo and Rosen, 2018a)
dubbed the integrated framework of exergy analysis, economic principles, and environmental
evaluation 'Exergo-econo-environmental analysis'. Advances have been made by integrating
Emergy with traditional Exergoenvironmental and Exergoeconomic Analysis (Aghbashlo and
Rosen, 2018b): the monetary term and the environmental impact score are substituted by the solar
emergy joule (sej) going to standardize the metric of their outputs. This allows to better understand
and interpret the results e provide an accurate picture of the same phenomenon in both
environmental and economic dimensions.

(Stougie, 2012) introduced the Total Cumulative Exergy Loss (TCEXL) procedure, which was
previously known as CExL. The TCEXL is a technique that combines or extends the CEXC,
CEENE, and ELCA approaches. The system, which is based on basic mathematical concepts, has
been designed to take into consideration as many aspects of sustainability as feasible. By analysing
the net total exergy loss emerging from a technical system, the TCExL method indirectly addresses
resource degradation and scarcity, exergy loss produced by waste flow and emissions management
systems, and land use systems. One benefit of TCEXL, according to (Stougie and van der Kooi,
2016), is its independence from time and weighting considerations. It would reduce the objectivity
of the overall process since it involves factors and equations that are not derived from
thermodynamic rules. As a result, it does not expressly strive to combine the economic and social
components of sustainability, but they are regarded indirectly since they represent a certain degree
of indirect exergy flow.

(Rocco, 2014) defined an integrated technique termed Exergy based Input - Qutput analysis (ExIO)
in his doctoral dissertation. Its theoretical foundation is based on Leontief's Input-Output Analysis
(10A) (Bjerkholt and Kurz, 2006), which is one of the most widely used methods in both
Environmental Impact Analysis and Economics, as well as Exergy Analysis, which is applied in a
Life Cycle perspective. The fact that the creation of products and services in modern economies
may result in significant indirect resource depletion or other externalities that are missed by
traditional methodologies was the spark. The ExIO is unusual in that it has numerous unique
‘extensions' cantered on the case study's features, one of which is the Hybrid Exergy-based Input-
Output Analysis (H-ExIQ), in which the exergy is utilized to characterize both external resources
and the foreground system. As a result, the system boundaries include direct primary exergy
requirements as well as indirect primary exergy requirements due to the system's supply chains,
i.e., the estimation of the product or process's primary exergy costs as well as the associated costs
of exergy losses throughout the transformation.
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2.1.3.2. Integration modelling degree

The assessment techniques listed above each propose a hybridization strategy between traditional
methodologies in their unique way. Their integration levels differ, and this issue has never been
discussed previously. Because the review was done from a different point of view than other studies,
the findings of this part reflect the heart of this study as well as an upgrade to the literature's state-of-
the-art. In the generic functional system model shown in Figure 2.12, the structure of an analysis is
always determined by the context in which it is performed, i.e., the purpose and scope of the analysis,
as well as the specification of the functional unit to be studied. It also relies on the type of streams to be
studied, the data available, and the amount of depth of the study. To this purpose, EA-LCA hybrid
methodologies were used to examine the following for each case study:

- The fundamental aspects of any assessment, namely the starting assumptions, the functional unit,

system boundaries, operating context, and related goal and scope definition;

- The types of input and output streams considered in the analyses (which have been generalized and
schematized in Figure 2.12) as well as the reference units of the streams to comprehend their physical

nature;

- The databases that were utilized during the inventory phase;

- What characteristics of sustainability were taken into account in the analyses;
- What dimensions of sustainability were taken into account in the analyses;
- The approximations made throughout the analyses and how they were justified;

- The mathematical equations on which each evaluation is based, the analysis of which has permitted
the most consistent formalization of interoperation models;

- The metrics used to depict the results;

- Where applicable, the indicators and/or multi-criteria analyses utilized to deal with the finding’s

interpretation phase.

CONTEXT

e

GOAL AND SCOPE
FUNCTIONAL UNIT
REFERENCE ENVIRONMENT
DATA INVENTQORY

-

Initial status MANUFACTURING Final status

Figure 2.12 - Generic functional system model

ASSESSMENT

QUALITY
EFFICIENCY
REVERSIBILITY
IMPROVEMENT
DECISION-MAKING

—

The examined characteristics indicated four recurring degrees of integration. Let us add an auxiliary
notation to focus on the integration models (schematized, to be clearer, in Figure 2.13): within the
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framework of the analysis (braces), round brackets indicate the LCA contribution, and square brackets
reflect the EA contribution.

[ —y——1[1
—y— 01

Qualitative — { context ( ) ‘ } Summative — {Context ( : }
- - -7 (1

Interlaced — {Con‘[ext ( ) * } Implicative = { context ( )—»[ ]}

Figure 2.13 - Scheme of the integration models. Exergy is [ ] and LCA is ()
QUALITATIVE MODEL

The weakest integration occurs following the qualitative model, in which EA and LCA are carried out
independently. During the interpretation step, their outcomes are simply compared. This model is
typically used when the goal of the research is to acquire a more detailed knowledge of the effective
utilization and loss of resources and wastes in order to establish the best approach for optimizing both
the process and the product. Furthermore, because of the well-known variability of the presented results
and their poor comparability, auxiliary multi-criteria evaluation approaches are frequently used, see
(Wang et al., 2015) for results using a multi-objective optimization model; (Mejia et al., 2012) for
decision-making using the PROMETHEE-GAIA multi-criteria model; (C. Zhang et al., 2019) for multi-
factor evaluation and decision making method for trans-critical ORC through a Fuzzy Analytic
Hierarchy Process; and (Arnal et al., 2020) Another option is to extract dimensionless indications from
both approaches and then compare them (Medyna et al., 2009a; A.F.C. Fortes et al., 2018).

There are various situations in the literature where this approach has been used. (Beccali et al., 2003)
conducted an ELCA on the production process of two different plaster products. Throughout the
interpretation phase, the impact categories derived from the LCA were supplemented by an exergetic
index to produce a thorough multi-criteria summary of effective resource consumption and the
associated environmental impacts (with LCA) and the extent of wastes and depletions along the
processes (with EA). (Mejia et al., 2012) did a similar case study. The authors were able to select the
best alternative material to conventional plastic for shopping bags and bottles using a multi-criteria
method that included LCA's GWP and EA's exergy loss. (Contreras et al., 2009) and (Moya et al., 2013)
compared the LCA results from dominant impact categories of Eco-Indicator 99 and CExC of four
different cane sugar production processes for by-products valorization in order to gain information both
on their environmental impacts and the resources consumption efficiency. Another very similar study
was performed by (Shirkhani et al., 2018) to determine the environmental sustainability of the Iranian
cement production plant, which studied the effects and risk parameters based on CML baseline,
IMPACT 20021, CEXD, and Eco-indicator 99 methods. (Milanovic et al., 2017) made the first effort to
utilize ELCA in a mobile communication network by comparing the solar-powered hybrid base
transmitter with the standard model, but the study is insufficient owing to a lack of reliable and consistent
data for disposal situations. In this case, eleven CML-IA LCA and CExD effect categories were
compared. (Finnveden et al., 2016) focused their research on the effective use of resources and wastes
on two case studies: ferrous waste recycling and the manufacturing and usage of a laptop computer.
They argued that the contrast between CEXD and EA may lead to better interpretations if CEXD is a tool
that quantifies all sorts of resources in exergetic terms and the thermodynamic approach is based on
strong research and gives conclusions that are useful to decision-making. CExD and EA are also
compared to other LCA evaluation methods such as ReCiPe, Eco-Indicator 99, CML-IA, and CED in
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order to give a holistic picture of environmental consequences and resource depletion. The similar
strategy may be observed in (Khanali et al., 2017)'s study of the Iranian saffron production process.
CML and CEXxD effect categories were analyzed to determine the major hotspot during cultivation.
(Mehmeti et al., 2018)'s work is unique in that they included information regarding the economic
elements of the procedure in a 'multi-impact assessment'. The findings of the LCA ReCiPe procedure's
environmental evaluation of the molten carbonate fuel cell system (MCFC), the findings of the CEENE
research to calculate the MCFC resource footprint in an exergetic method, and the leveling cost of
energy to analyze the process's economic feasibility are compared. (N. Faleh et al., 2018) did a thermo-
environmental LCA study on the biodiesel production system by transesterification of mutton tallow to
choose the optimal mixture of different biodiesel structural components. The results of the process
simulation using the Aspen Plus™ software were used for the EA as well as inputs to the Life Cycle
Inventory Analysis and, finally, the LCA. Finally, the results of standard EA and LCA were compared
to thoroughly evaluate the process from thermodynamic and environmental perspectives. (Stougie et al.,
2018) evaluated the environmental sustainability of three different biomass power production systems
using the ReCiPe impact categories and the exergetic sustainability using the TCEXL. This technique
may compare not only the systems, but also the assessment procedures, based on the data gathered.
Furthermore, the authors investigated how the various ways in which the goods were assigned and
avoided in the research may have an impact on the outcomes. Another example of a qualitative technique
is the use of Thermoeconomic Analysis. (A.F.C. Fortes et al., 2018) conducted an illustrative example.
The goal of this research was to divide the environmental consequences and costs of food dehydration
and water generation by a heat pump among its components. LCA was performed to examine the
emissions connected with the process. EA was performed to identify the components with the biggest
exergy losses, and economic analysis was performed to determine the monetary cost. The outcomes of
each component were then compared. (Dominguez et al., 2011) conducted a combined economic and
environmental analysis (ELCA) of various energy sources for electric power generation in order to
evaluate the relationship between non-renewable and renewable resources over the entire life cycle of
each energy source considered, including economic aspects. They began with a traditional LCA using
Eco-Indicator 99 effect categories. The overall investment expenditures of each energy system were
then compared to the Demand of Exergy Accumulated (DExA), which indicates the complete removal
of exergy from nature throughout the creation of a system product. The authors were able to select the
optimum alternative method for electric power generation by comparing all of the outcomes.

According to what has been discussed so far, the findings of the impact categories in LCA assessment
methodologies (for example, Eco-Indicator 99 or ReCiPe) and the EA outcomes in such studies are not
precisely similar. Aside from the many units of measurement that can be standardized and transformed
into non-dimensional units, the exergy analysis does not explicitly account for the impacts of emissions
or analyze land use. On the contrary, LCA does not include information on the quality of processes or
the true efficiency of resource consumption, but rather focuses on their repercussions. ELCA is always
applied via a gentle interface between Exergy Analysis and current LCA tools and databases.

SUMMATIVE MODEL

The summative integration model is the second. The technique is slightly different from the previous
one in that the EA is conducted at each step of the life cycle, which is included in the system boundaries
of the specific analysis to be performed. In this case, the economic dimension may be easily included as
long as it is turned into energy flow, as detailed in the first place in (Cornelissen and Hirs, 2002) and
afterwards in more recent ways such as (Agikkalp et al., 2018). The exergetic losses at each step of the
life cycle may be examined separately, summed collectively, or combined, depending on the scope of
the analysis. The same is true for the efficiency indices. This method should be used while doing
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research to determine which stage of the process or product's life cycle is the most energy-efficient. In
the event of an early design phase, the process system or the product itself may have already been
enhanced; in the case of an existing analysis, efficiency interventions on the plant or production cycles
may be planned.

The summative model is commonly used with ELCA. (Cornelissen and Hirs, 2002), for example, did
an ELCA on four different types of wood waste treatment to evaluate both the usage and depletion of
the natural resources necessary for the procedures. The scientists were able to pinpoint where and when
natural resource depletion occurred by estimating the quantity of exergy losses for each component at
each life cycle stage. The ELCA results were also compared with traditional LCA results in this study
to better understand the environmental implications of waste and natural resource depletion. (Wang et
al., 2011) implemented ELCA on a CO2-zero-emission energy plant comprised of a coal-fired power
system and a CO. abatement system using a very different architecture. The goal of using exergy as a
basic physical parameter of energy and resource consumption and environmental impact management
in the inventory analysis and impact assessment rather than the conventional LCA is to use exergy as a
basic physical parameter of energy and resource consumption and environmental impact management
in the inventory analysis and impact assessment. The authors computed the CEXC and pollution
abatement (AEXC) of the facility during the phases of building, operation, and decommissioning.
(Aleksic and Mujan, 2016) used ELCA on electrical devices in smart grids. They computed the
embodied and operational exergy losses of each component of each sub-process, as well as the losses
during each life cycle step. Encourages the presence of the most influential material/component in smart
grid equipment and at the most consuming stage. As a result, it is simple to select the most appropriate
policies for improvement. (Rocco and Colombo, 2016) used the ELCA to an electrical production
Waste-to-Energy system. They calculated the basic energy expenses as well as the monetary costs of
the life cycle during the building, operating, and maintenance stages. When describing the stages of the
life cycle in the evaluation, (Dincer and Rosen, 2013) took a different approach than Rocco and Aleksic.
Their EXLCA was evaluated using fossil fuel supply, dividing exergy consumption into direct exergy
lost during transformation and indirect exergy loss from embodied exergy released by construction
materials and machinery during all life-cycle stages. The economic ramifications of indirect exergy
losses are also included in this research, along with an independent capital investment efficiency factor.
The authors adopted the exergy technique in this research to reduce the irreversible character of the
manufacturing life cycle, but it is important to note that the exergy is also impacted by a certain degree
of uncertainty due to the irreversibility and non-linearity of the real system itself. (Lettieri et al., 2009)
created a set of advantages and cons for using exergy in LCA using the Life Cycle Exergy Analysis
(LCEA) framework in 2008. Among the benefits, the most important is that this information will identify
circumstances in which urgent technological improvements may be made, which should be allocated to
maintenance processes, efficiency improvements, or optimizations. The authors offered a demonstration
by applying this strategy to Computer Servers in a Data Center as a case study. They measured the
server's exergy consumption at each stage of its life cycle, from raw materials extraction to disposal and
recycling. (Wall, 2011), who used LCEA to a wind power facility, found the same benefits highlighted
by Lettieri et al. a few years earlier. His LCEA framework consisted of computing the exergetic balances
of the wind power plant's key life-cycle stages, from turbine production through destruction and
sanitation. LCEA's application to various wind generating systems provided an excellent description of
the exergy fluxes involved.

The inclusion of exergy in the LCA in analyzing the use of natural and non-natural resources, renewable
and non-renewable resources, allows the evaluation to be more objective and robust, which is a
noteworthy consequence of this study.
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Aside from (Hau and Bakshi, 2004), (Yang et al., 2015) and (Wang et al., 2019) conducted ECEC
analyses on a Chinese raw-coal manufacturing facility and an Organic Rankine Cycle for waste heat
power generation, respectively. The former used their new expanded ECEC, which included ecological,
environmental, and economic considerations, to determine the best optimization method for the process.
The authors emphasized, particularly in terms of economics, that this technique supplements traditional
economic analyses such as the Life Cycle Cost (LCC). Because this was the first attempt to adopt
expanded ECEC, there were ambiguities and difficulty in organizing all of the data (information). (Wang
et al., 2019) also attempted to adapt ECEC analysis to the ORC system in order to examine the
environmental, resource consumption, and economic implications of 1 kWh of energy generation over
the whole life cycle. The outputs of the thermodynamic (energetic), economic, and sustainable (resource
and environmental) goals managed to place the emphasis on diverse optimization goals and their
viability in each of the works described above. EEA takes a very different approach to merging LCA
and EA than the previous example study, owing to its differing monetary cost methodology. (Rocco et
al., 2014) tested the practical use of EEA on an electric power transmission line with three different wire
diameters. In the assessment they summed up energy and materials flow assessed with CEXC, the
environmental remediation costs of the pollutant pollution estimated by LCA and the labor and capital
equivalents by exergy. The building, operating, and dismantling phases of the life cycle have been
analyzed in this approach and according to the functional unit. The authors were able to estimate the
ideal diameter using this technique, which gave the best compromise for a decrease in overall energy
consumption, an environmental balance, and a large monetary savings throughout the operating period.
The authors also discussed the benefits and downsides of the EEA technique in comparison to standard
LCA or ELCA. (Dai et al., 2012) used EEA to elucidate thermodynamically the environmental-social-
economic link between the key seven Chinese industrial sectors. Their objective was to demonstrate that
the EEA is applicable to all generic manufacturing systems, not simply energy generation processes.
The data identified the most influential sector as well as a network of hierarchical reliance among these
seven sectors. Throughout 2014, they released a number of particular indicators for the EEA-based
sustainability assessment of key Chinese industrial sectors (Dai et al., 2014).

IMPLICATIVE MODEL

The strategy entails doing an LCA evaluation on a substance or method first, and then conducting an
exergetic review just on the component or sub-process that has caused the greatest environmental effect
amount. Such intervention is explained by the idea that increased usage of resources and energy has a
higher environmental impact. This model is useful when it is necessary to simplify the analysis owing
to the various sub-processes or multiple components of the product manufacturing. To date, this
technique has been used in two works (Dassisti et al., 2019; Selicati and Cardinale, 2021a). The authors
used traditional LCA on die-casting process at an Italian industrial SME. The LCA research conducted
allowed for the identification of the most essential product in terms of resource usage and emissions.
The Exergy Analysis was then performed to the chosen completed product, determining the exergy loss
for each sub-component. The system boundaries in measuring mass flow and energy flow in the LCA
were different, which was fascinating. The implicative path in this study became a strategic framework
to discover process optimization options, as well as prospective enhancements to the manufacturing
process, and to establish an 10T monitoring strategy on the technologies.

INTERLACED MODEL

The final model, the interlaced one, incorporates LCA and EA the most. Integration can be accomplished
in a number of ways. As demonstrated by (Portha et al., 2010) and (Hamut et al., 2014), it is feasible to
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integrate LCA characteristics with Exergy or Emergy traits in a unique formulation or method. In this
case, the conclusion is frequently expressed in energetic terms, although assumptions and
approximations must nearly always be made (Dewulf and Van Langenhove, 2002). Furthermore, no
case studies exist in which the exergy is transformed into the effect categories that characterize the LCA
(e.g., Human Toxicity or Global Warming Potential). It is a one-sided change. The second strategy is to
combine LCA and EA elements in a single indicator, as (Casas-Ledon et al., 2017) and (Gao et al., 2018)
have done. Socioeconomic factors may be incorporated into the formulation as well as the indicators
using the interlaced model. (Dewulf and Van Langenhove, 2002) provided one of the most complete
frameworks recognized in the literature for the thermodynamic treatment of emissions and their human
and ecotoxicological consequences. The authors examined several synthetic organic polymers for
building insulation over time to establish their sustainability in terms of global exergy lost in the
ecosphere, the technosphere, and the population, showing the rate of loss of possibilities for current and
future generations. The authors presented a formulation in which renewal rates and particular exergy
contents are assessed in time using a single thermodynamic measure. The former is derived from a life
cycle evaluation of resource consumption and emissions, while the latter is derived from a phrase that
measures the exposure to ecological and human damaging consequences. The latter is derived from an
exergy study that includes some statistical thermodynamics to account for complicated biological
systems. The main constraint of this study is the many assumptions and approximations made in the
evaluation and application of statistical input data, particularly for society and biodiversity, but the case
study indicated that it may be utilized in practice. (Portha et al., 2010) applied a coupled Exergy-LCA
to two petrochemical processes to generate fuel and energy. They argued that when assessing a process
involving the transfer of energy carriers, exergy is the ideal supplemental technique to LCA since it
identifies process irreversibilities that LCA cannot solve on its own. They estimated the effects of
greenhouse gas emissions by combining direct and indirect emissions. The former is produced by a mass
balance of pollutants represented in CO.eq of the GWP of the LCA. The latter are derived from the
guantity of exergy lost in the considered system as a result of unit creation or disassembly, electricity,
and heat usage. Aside from this computation, the authors devised a 'quality factor' to assess the economic
worth of the flows under consideration. Combining exergy with LCA allows you to compare two
alternative processes with the same purpose in terms of resource depletion, climatic change, and
monetary value.

The literature has a number of case studies in which Exergoenvironmental research is conducted,
frequently in conjunction with an Exergoeconomic evaluation. Following the first publication of the
Exergoeconomic and Exergoenvironmental analysis by (Tsatsaronis, 1984), (Tsatsaronis and Morosuk,
2008a, 2008b) proposed a 'advanced' Exergoenvironmental and Exergoeconomic analysis implemented
on a gas-turbine based cogeneration system in order to evaluate the real energetic and economic potential
for improving the system and its components by splitting capital costs, environmental impacts, and
exergy destruction into end Because the unavoidable components cannot be further decreased owing to
technological limits of the system or the reference environment, the authors have concentrated on
decreasing the avoidable-endogenous parts. Because the unavoidable components cannot be further
decreased owing to technological limits of the system or the reference environment, the authors have
concentrated on decreasing the avoidable-endogenous parts. The endogenous component represents the
efficiency of the actual system. The authors conducted and contrasted both ordinary and advanced
exergoeconomic and exergoenvironmental analyses in the case study. The main disadvantage that they
emphasized in the advanced study was the use of more or less arbitrary facts and assumptions, which
were necessary for the division of the subsystems into avoidable and unavoidable components. Also
(Buchgeister, 2010) used only traditional Exergoenvironmental analysis to generate electricity from a
high-temperature solid oxide fuel cell, with the goal of demonstrating that this approach is a powerful
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support tool for detecting the interdependencies between thermodynamic behavior of process
components and environmental impacts. He stated that while this approach can be applied to a variety
of processes (chemical, manufacturing, etc.), a unique and more practical method for conducting this
analysis is still required. (Hamut et al., 2014) performed the first Exergoenvironmental analysis on a
hybrid electric vehicle's thermal management system. Furthermore, the LCA is performed using
SimaPro software and the Eco-Indicator 99 evaluation technique to identify the component with the
greatest environmental effect. The authors indicated that the study needed to be improved by introducing
a multi-objective optimization phase into the advanced framework to provide more objective data and
information on trends and design improvements. (Cavalcanti et al., 2019) calculated exergy efficiency,
specific cost, specific environmental impacts, and exergoeconomic and exergoenvironmental impact
factors in order to evaluate a diesel engine with five diesel-biodiesel blends and three different load
capacities and achieve the best conditions for electricity production. They proved that the choice of the
optimal fuel is greatly impacted by the desired purpose, rather than being offered immediately and
unequivocally by the comparison of outcomes.

Because solar energy has gained tremendous interest in both electricity and heat generation over the last
ten years, and because solar energy is one of the largest sources of renewable energy with no
environmental impacts (Dincer and Rosen, 2017), many authors have focused their attention on this
field, attempting to improve the efficiency of generation systems through environmental and economic
analysis. (Casas-Ledodn et al., 2017) were the first to apply the Exergoenvironmental study to the
integration of municipal solid waste gasification with a combined power system in Chile (waste-to-
energy system). The system and its components were simulated using the Aspen One v9.0 program,
however several assumptions were made in order for the simulation to operate. The research is
complemented for these aspects by a sensitivity analysis, which also attempts to provide insight into the
most significant concerns discovered at the component level during the evaluation of the
Exergoenvironmental results. (Gao et al., 2018) performed exergy and Exergoeconomic evaluations on
a coal-fired combined heat and power plant, focusing on better residue and CO, allocation
methodologies. The authors examined the cost of flue gas cleaning in the study for the first time,
however the waste heat recovery system owing to recycling potential was not addressed. The following
year, and similarly to Gao et al., (C. Zhang et al., 2019) conducted the same study on the coal-fired
combined heat and power plant, including the waste heat recovery system. In the same year, (Yang et
al., 2019) conducted the same study on the refrigeration, heating, and power system, focusing on a dual-
fuel CCHP device based on biomass and natural gas and analysing the system's thermodynamic
efficiency and stream costs. (Montazerinejad et al., 2019) did the same thing on a novel CCHP hybrid
solar system. A novel and fascinating research was carried out by (Okonkwo et al., 2019), which
provided added value to the established studies on parabolic trough solar collector by evaluating the
impact of its irreversibilities from an economic and environmental point of view via an
Exergoenvironmental and Exergoeconomic analysis. The purpose of the work was to compare the
traditional absorber tube with the innovative characterized with a converging-diverging geometry.
(Aghbashlo and Rosen, 2018b) recast the Exergoenvironmental and Exergoeconomic studies in terms
of emergy to unify the unit of measurement of their outputs and produce more ecologically sound
conclusions. The authors also used the innovative framework to a cogeneration system based on a gas
turbine. They employed the specific exergy costing (SPECO) approach to establish the conversion
factors for each flow of matter, energy, and money in solar emergy joule, and then performed
Exergoenvironmental and Exergoeconomic studies.
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2.1.3.3. Integrated EA-LCA Highlights

As previously said, EA and LCA are two recognized and documented feasible sustainability estimators,
each with potential and limitations, similarities and distinctions. This work is far from a complete
discussion of their theoretical basis, instead focusing on the most relevant practical aspects in order to
explain why the two techniques should be integrated.

Life Cycle Assessment is goal and scope oriented and based on steady-state calculations (ISO 14040,
2006), Exergy Analysis is goal and scope oriented too, but its empirical usefulness varies whether the
approach is product-specific or process-driven analysis (Liao et al., 2013); EA talks about dynamic
equilibrium. LCA is a linear method while EA is a non-linear method due to process irreversibilities.
Both procedures are time-dependent, although even the time range evaluated during an LCA is often
greater than that considered during an EA. It is critical to create the framework of the research
throughout the LCA and the EA, for which the LCA is titled "System Boundaries" and the EA refers to
the defining of the reference environment. Both LCA and EA involve mass and energy balances, but
LCA does not have a single measure; in fact, many writers regard it as a multidimensional approach.
EA has a single measure, which improves practitioner comparability and comprehension of
outcomes(Romero and Linares, 2014). LCA is based on cause-and-effect linkages and seeks to
comprehend the environmental effects of occurrences (Hellweg and Mila i Canals, 2014). However, it
is insufficient to define indirect consequences such as the connection between goods, processes,
services, sectors, and so on and their surroundings (social, economic, environmental, and innovative
goals) (Onat et al., 2017). On the other hand, according to (Hammond, 2004), the relationship between
exergy consumption and resource efficacy is not yet direct, hence exergy analyses are insufficient to
establish whether a system is sustainable or not. According to (Gaudreau et al., 2009), "despite various
attempts, there is no empirical proof that there is a direct link between the quantity of exergy contained
in the wastes of a process and the potential harm that this exergy is capable of inflicting on the
environment." According to (Cleveland et al., 2000), subjectivity affects LCA outcomes owing to too
many assumptions and approximations throughout the assessment, whereas EA ignores human
preferences and needs. The consistency of the reference databases for the design of input and output
flows greatly influences the accuracy and completeness of the LCI phase. The dependability of the
databases has been extensively debated in the literature, see (Hellweg et al., 2001; Edelen and
Ingwersen, 2006). The same is true for the EA, which is accompanied with databases. (Alvarez, 2013)
and Szargut before her conducted research on similar databases, however his research was limited to
chemical Exergy (Szargut and Morris, 1987)

It is clear from this brief summary of the primary functional elements of LCA and EA that they are
complimentary techniques. Other writers, see, agree with this assumption (Pati et al., 2009; Portha et
al., 2010). It would be beneficial to apply these two methodologies in tandem, using hybrid approaches,
for a systematic and fair assessment of sustainability.

According to the literature, there are strong perspectives on the utility of exergy in conjunction with
LCA as a measure of sustainability. Exergy inefficiencies are frequently employed as an extra effect
category in the existing LCA paradigm; however, these impact categories are not directly comparable
(Stougie and Weijnen, 2014). (Ozbilen et al., 2012; M.A. Rosen et al., 2012) shown the possibility of
adopting EA as a single indicator in tackling environmental sustainability concerns. According to
(Hernandez and Cullen, 2019), EA is a holistic, flexible, integrated, and transparent method that
evaluates both quantity and quality of energy and resources and can be seen as an added value to
traditional life cycle assessment; however, no simple guides, training, or software tools exist to facilitate
its wider use. (Alvarenga et al., 2013) provide another point of view, focusing on another major aspect
of LCA: the completeness of the characterization elements. They developed new exergy-based spatial
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characterisation parameters for land usage as a resource within man-made or natural systems in this
work, allowing for greater geographical distinction without double-counting resources. Characterization
factor issues can also be encountered in (Zarei, 2020).

Because sustainability may be assessed not just in environmental terms, but also in economic and social
ones (Purvis et al., 2019), and because these dimensions are not immune to change over time, these other
two aspects can be included in the evaluation.

Nonetheless, economic and, notably, social issues are less studied in literature than environmental ones.
A business, a technique, or an environmental alteration have all had a societal impact. The social factor
is rarely analysed in the context of sustainable development strategies, or it is evaluated with a
statistically incomplete, confusing, or incomplete weak connection (Assefa and Frostell, 2007). The
reason is that there is a lack of knowledge about its implications in environmental and economic
performances. (Clarke-Sather et al., 2011) offer an insightful perspective on the societal, environmental,
and economic aspects of SMEs. Because economic consequences are critical to decision-making, it is
helpful to take account of the reality that exergy efficiency is directly linked to the costs of the operating
process or activity. EA is prone to be combined with economic considerations to find cost-effective and
realistic improvement options (Salehi et al., 2018).

Concerning the other aspects of sustainability, the economics may be an essential feature for a factory's
production system, but an economic input-output analysis alone does not show how to accomplish low-
cost cleaner manufacturing. Exergy, on the other hand, is one of the pure thermodynamic metrics, but
its interpretations are insufficient to address mitigating issues that are compatible with its laws. Exergy,
emergy, and LCA seldom cover social aspects, despite the fact that society is one of the foundations of
sustainability, and when they do, substantial approximations are made during the early and intermediate
phases, resulting in unscientifically and inconsistent findings. Alternatively, the socioeconomic issues
are handled using entirely different methodologies, such as in (Svajlenka and Kozlovska, 2020).

Table 2.2 summarizes the case studies examined in this review: The relationship between the EA-LCA
hybrid techniques and their respective integration model is classified, as is the functional system model
of assessment (e.g., the general kind of streams that each approach analyses) and the sustainability
dimension.

This part allows you to respond to some of the questions raised in the paper's opening paragraph. All of
the hybrid techniques studied utilised neither a unique computational model nor a shared calculation
framework. Sometimes the authors' answers are too specialized for each case study, and a common
approach will result in a large number of assumptions and hence not an adaptable model. This remark
is especially pertinent since the review discovered that a high level of collaboration between EA (or
Emergy) and LCA led to stronger and more strict hypotheses both early in the assessment and
throughout. The same thing does not happen when EA, Emergy, or LCA are regarded to be separate
contributions.

Most hybrid techniques find it simpler to refer to Szargut for EA, to utilize Eco-indicator 99 for LCA,
or to examine simply life cycle phases for EA, or to make supplemental use of emergy balances to add
economic or social flows to the evaluation.

It is unclear if the interlaced model is sufficiently integrated to ensure a full knowledge of a system
process or product's sustainability and quality. As a result, we may conclude that there is no better hybrid
approach than any other because each has its own set of advantages and disadvantages. It is more crucial
to understand all of the ways and how to select the one that best meets company demands each time.
The discrepancies are inherent in the chosen interoperation paradigm. This is the novel outcome that has
been highlighted in this paper. One notable characteristic that considerably restricts the arbitrary
selection of the optimal assessment technique is that the stronger and more restricted the assumptions
are at the outset, the higher the interaction between EA and LCA.
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Because LCA is based on linear assumptions while EA is based primarily on non-linear assumptions
(such as the second law of thermodynamics), only one way of interaction appears to be possible: LCA
to EA. Furthermore, the disadvantages of hybrid techniques are overcome by an ad hoc interpretation
arrangement (e.g., multi-criteria analysis). It is insufficient since important information is lost during
these procedures. It is considerably simpler to locate studies in the literature on how to optimize
traditional LCA on several dimensions for assessing emerging technologies (for example,(Cucurachi et
al., 2018) or (van der Giesen et al., 2020)) than research on optimizing the frameworks of more extensive
hybrid methods.

Based on all of the methodologies discussed, it can be concluded that a perfect union of exergy and life
cycle thinking is still difficult to achieve. The idea of developing a standardized and consistent
assessment system capable of providing a comprehensive, detailed evaluation of process reversibility
and its environmental implications is still a long way off.

Exergy Analysis remains a viable tool for optimizing production processes in the absence of a
standardized, comprehensive, and rigorous method of assessment. When a quality problem emerges, the
first step is to trace the physical and dynamic nature embedded in those variables by checking
controllable and non-controllable characteristics. It will also allow greater efforts to be made to
strengthen the specific EA-LCA approach as a standard, expand both EA and LCA databases, and, as a
result, eliminate some operational uncertainties.

To conclude and summarize: neither of these have been carried out from the perspective of the authors
of this review, i.e., to investigate the degree of integration, completeness, and effectiveness of hybrid
methods in line with the objectives of the analyses themselves through a plethora of case studies
addressing these methodologies. The evaluation identified further issues regarding the total integration
and interoperability of EA and LCA, which would necessitate further examination, as well as additional
research into the complicated topic of indicators as an interpretative model of hybrid analytic findings.
This review will encourage both researchers and practitioners to choose the best model approach for
their goals, the streams to be considered, interpret the findings, and build a transdisciplinary
understanding of the case study system's information in order to determine the best approaches for
process enhancements.
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Table 2.2 - A summary of hybrid approaches, the degree of integration of EA and LCA, the streams considered, and the sustainability dimension addressed

Method

Integration
Model

Reference

Streams

Sustainability Dimension

Matter

Energy Capital

Others

Environmental

Economic

Social

Indicator
provided?

Multi-criteria
Analysis

ELCA/Zero-ELCA

Qualitative

Implicative
Interlaced

Summative

(Ayres et al., 1996, 1998)
(Cornelissen, 1997)

(Beccali et al., 2003)
(Dominguez et al., 2011)
(Mejia et al., 2012)
(Milanovic et al., 2017)
(Dassisti et al., 2019)
(Portha et al., 2010)

(Rubio Rodriguez et al., 2011)
(Cornelissen and Hirs, 2002)
(Wang et al., 2011)

(Ozbilen et al., 2012)

(Marc A. Rosen et al., 2012)
(Dincer and Rosen, 2013)
(Koroneos and Stylos, 2014)
(Rocco and Colombo, 2016)
(Aleksic and Mujan, 2016)

x

X

x

LCEA

Summative

(Gong and Wall, 2001)
(Lettieri et al., 2009)
(Wall, 2011)

Exergoenvironmental
Analysis

Qualitative

Interlaced

(Meyer et al., 2009)
(Buchgeister, 2010)
(Tsatsaronis, 2011)

(Morosuk and Tsatsaronis, 2014)
(Restrepo and Bazzo, 2016)
(Nahla Faleh et al., 2018)
(Hamut et al., 2014)

ExI0O/H-ExIO/B-ExIO

Summative

(Rocco, 2014)
(Rocco et al., 2017)

CExC/CExD

Qualitative

Summative

(Szargut and Morris, 1987)
(Bosch et al., 2007)

(Medyna et al., 2009a, 2009b)
(Finnveden et al., 2016)
(Khanali et al., 2017)
(Shirkhani et al., 2018)
(Moya et al., 2013)

(T. Gulotta et al., 2018)

ICEC/ECEC

Qualitative
Summative

(Wang et al., 2005)
(Hau and Bakshi, 2004)
(Yang et al., 2013)
(Yang et al., 2015)
(Wang et al., 2019)

X X X X X

X X X X X

CEENE

Qualitative

(Dewulf et al., 2007)

X [X X X X X[X X X X X X X X|X X[X X X X X X X[X X X[X X X X X X X X X X X X X X X X

XX X X X X[X X X X X X X X|X X[X X X X X X X[X X X[X X X X X X X X X X X X X X X X

XX X X X X[X X X X X X X X|X X[X X X X X X X[X X X[X X X X X X X X X X X X X X X X
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(Mehmeti et al., 2018) X X X X X
Summative  (Huysveld et al., 2013) X X X
TCExL Qualitative  (Stougie, 2012; Stougie and van der Kooi, 2016) X X X X X
(Stougie et al., 2018, 2019) X X X
TEC Qualitative  (Stanek et al., 2015, 2018) X X X X X
Summative  (Dominguez et al., 2014) X X X X X
EEA Qualitative  (Sciubba, 2001) X X X X X X
Summative  (Sciubba, 2012) X X X X X
(Rocco et al., 2014) X X X X X X
(Dai et al., 2012, 2014) X X X X X X
'klj'::er(Tngamlcally Interlaced  (Dewulf and Van Langenhove, 2002) X X X
Exergoeconomics Interlaced  (Groniewsky, 2013) X X X X X
(Agikkalp et al., 2018) X X X X X X
(Grisolia and Lucia, 2019) X X X X X X
Thermoeconomics Qualitative  (Gonzalez et al., 2003) X X X
(Anderson Felipe Chaves Fortes et al., 2018) X X X X X
Summative  (Sieniutycz and Salamon, 1990) X X X
(Bakshi et al., 2011) X X X X X X
Exergoenvironmental + Interlaced  (Tsatsaronis and Morosuk, 2008a, 2008b) X X X X X X
Exergoeconomic Analysis (Casas-Ledon et al., 2017) X X X X X
(Aghbashlo and Rosen, 2018a, 2018b) X X X X X
(Gao et al., 2018) X X X X X
(Q. Zhang et al., 2019) X X X X X X
(Montazerinejad et al., 2019) X X X X X
(Okonkwo et al., 2019) X X X X X
(C. Zhang et al., 2019) X X X X X X
(Cavalcanti et al., 2019) X X X X X
Emergy based-LCA Interlaced  (Reza et al., 2014a, 2014b) X X X X X
Qualitative  (Li and Wang, 2009) X X X X
Summative  (Niccolucci et al., 2009) X X X
Full Overall
[ Integrgted LS X X X X X Reversibility?
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2.1.4. Exergetic-Life Cycle Assessment Heterogeneities addressed with the System Thinking

The goal of any sustainability assessment approach is to quantify the environmental, social, and economic
harm caused by product, process, or activity life cycles. Thus, the comparability of numbers is a vital problem
for guiding informed decision-making.

The consistency of the sustainability assessment results stems from a variety of practitioner decisions and
assumptions, which vary depending on materials, technical processes, and geographical environment, all of
which can be causes of variability. Addressing the sources of heterogeneity in sustainability assessment
resulting from data contexts, procedural decision-making methods, and measurement procedures is critical,
given that all existing methodologies, such as Life Cycle Assessment, Exergy Analysis, and methods derived
from their combinations, leave a significant role to the practitioner's subjective judgment. Heterogeneity is
thus related to the possibility of different perspectives in decision-making, which may, for example, reflect in
the selection of dissimilar inventorying for the impact evaluation as well as in the selection of the most
appropriate impact category: the effect is uncertainty in the final results. The issue of heterogeneity can be
ascribed to a variety of factors, including data sources, indicators, and subjective perspectives.

At this stage of the thesis, it is almost evident that both LCA and EA have similar aims, both focusing on
process sustainability and relying on observable data. Both strategies might be complimentary if they work
toward the same aim of producing sustainability measurements but from different perspectives. Indeed, several
attempts have been made to hybridize the two methods thus far, see the previous paragraph 2.1.3. However,
current methodologies are either distant from the original thermodynamic idea of exergy or considerably too
wide and unsuited for resource accounting (Peters, 2021). However, there are challenges with identifying the
best suited approach based on the purpose, i.e., more than one procedural alternative option that leads to distinct
outcomes. As a result, two practitioners evaluating the same system may arrive at different conclusions. The
EA performed in tandem with the LCA encourages the practitioner to make more strict procedural decisions,
eliminating subjectivity difficulties that might arise throughout each phase of the analysis (Bakshi et al., 2011).
Because of its multidimensional character, heterogeneity is an imprecise phrase that applies to a variety of
contexts. A system's heterogeneity is defined etymologically as a composite of varied pieces that are typically
incomparable (“Heterogeneity. A Dictionary of the English Language - Samuel Johnson,” 2017). It refers to
any discrepancy in analysis in terms of procedural activities that results in disparities in ultimate environmental
impacts (Higgins and Thomas, 2019). The heterogeneity issue in sustainability assessment is widely discussed
in the literature, and is sometimes referred to as "unresolved problems"” (Reap et al., 2008b), "limitations"
(Curran, 2014) or "ambiguities” (Werner, 2005), "technical emerging challenges" (Hellweg and Mila i Canals,
2014), and "granularity" of data (Ross and Cheah, 2019), all of which refer to the same procedural and
interpretative issues. In this paragraph, we seek to define the meaning of disparities in timeframe references,
data context (temporal, geographic, economic, social), procedural decision-making processes, and
measurement procedures. As a result of heterogeneity, various subjective options may emerge, resulting in
multiple decision-making outcomes at each stage of the EA and LCA. As a result, the quality and validity of
the outcomes of the two distinct practitioners' analyses might be quite questionable. If LCA and EA are used
as practical frames to answer the question of ‘how to classify and quantify emissions’, the system design view
is proposed as a conceptual frame to answer the question of ‘how they can be strategically applied’ to create a
context-specific sustainable strategy. In this paragraph we discuss the causes of heterogeneity in sustainability
assessment, with a focus on LCA and EA, using system thinking to allow the evolution of practitioner's
subjective decisions into coherent best choices, as well as to provide a possible procedural guideline for
reducing heterogeneity. As a consequence, the practitioner's subjective viewpoint and other sources of
variability may be reduced. System thinking is useful for delving into complex situations. It comprises a
methodical approach that utilizes a variety of methodologies to investigate the activities of wholes and the
numerous relationships between the components. Any of these ways is rigorous and ordered, but systematic
thought is more typical in the reductive approach, where situations are broken down into constituent elements
and mostly fundamental, linear cause and effect linkages are explored. The literature has a variety of system
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ideas, the most important of which are given in (Kumanyika et al., 2010). In general, system design or system
thinking is a method for determining how things (components and systems) are linked and how they impact
one another. This strategy needs easy framing as well as the ability to describe what and how is investigated
while maintaining consistency and transparency (Cabrera and Cabrera, 2019). As stated in the introduction,
seeing systematically refers to a means of organizing and making sense of our thoughts about what is
conceivable. The aim is to demonstrate why LCA and EA approaches are used to reduce the variability of
sustainability evaluations. Essentially, the notion is that employing system thinking to apply both
methodologies in parallel and simultaneously can minimize the variability of the sources. Following, we will
discuss some essential notions beneficial for this goal known as "procedural choices." A system is a static
model that simulates a real product or industrial process (Andersson, 2013) by utilizing unit-processes, each
of which represents one or more activities (e.g., manufacturing, assembly, transportation, etc.) and the initial
assumptions. These system requirements define its boundaries (Curran, 2012). The reference flows connect
the unit-processes: the quantities of particular product flows required by each of the compared systems to
create one unit of the function. The reference flow then serves as the foundation for developing product system
models (“UNI EN ISO 14040,” 2006). We define scenario S at time tx (S(tx)) as "a description of a hypothetical
future condition useful for certain sustainability analysis applications, based on specified future assumptions,
and (where applicable) also containing the depiction of the progression from the present to the future™ (Pesonen
et al., 2000). Within system thinking, a transformation is defined as any process or action that resulted in a
change in the state of a system, such as from S(t.) to S(t,).

The system is referred to in order to facilitate the development of various transformation pathways from S(to)
to S(tx). Each system able to meet the requirements can be considered an alternative solution. Each system
capable of meeting the requirements might be regarded as an alternative option. See Figure 2.14 for a schematic
explanation of a generic system Each alternative system has a needed transformation (from S(to) to S(tx)) and
one or more criteria that are used to evaluate the alternative systems. This evaluation helps you to choose the
best alternative analytical path. To make each alternative comparable, practitioners must follow the same
transformation path.

SYSTEM THINKING or SYSTEM VIEW

Functional Unit

Figure 2.14 - The model of a generic system within the system thinking

The primary cause of heterogeneity in sustainability assessment is subjectivity generated from procedural
decisions made during each phase of the evaluation, which is not an easy problem to overcome. Due to this
subjectivity, comparing two or more LCAs of the same system (product, process, or activity) may be
impracticable. The influence of any procedural option is dependent on the 1) initial scenario while
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contemplating a sustainability evaluation in a system thinking (S(to)), the 2) transformation objectives (S(tx))
and the 3) criteria for choosing the finest makeover. As a result, a comparison is only conceivable if the
processes, products, or activities being compared have the same identical beginning context, transformation
objectives, and assessment criteria (coherence criteria). The EA method, on the other hand, makes this
definition easier by utilizing the exergy-loss measure as a unique reference, with the optimal alternative being
the one that decreases this term as much as feasible. By combining LCA and EA methodologies, a well-posed
assessment framework should be offered, provided that this is a bottom-up approach directed by product
advancement along the production settings. Thus, the challenge of heterogeneity is to provide an efficient
impact measurement in which the acceptable measurement error is less than the uncertainty of the total
computed value (Giovannini, 2015).

The paragraphs that follow are grouped in accordance with paragraph 2.1.1 as s generic actions to be taken
when implementing an LCA and EA sustainability evaluation. Thus, heterogeneity sources will be explained
and treated through system thinking. In conclusion, system design allows practitioners' judgments to be turned
into system design activities that fulfil the demands of stakeholders. Stakeholders formalize their demands via
the formulation of a list of requirements. The requirements reflect the limits that the system must follow. In
this context, the EA aids in limiting the LCA's inherent heterogeneity sources that are not directly dependent
on this set of requirements.

STEP 1 - Goal and scope definition

The system view encourages practitioners to share the same way of reasoning by answering what, where, and
when to measure questions in a unique and unequivocal manner, reducing the sources of heterogeneity related
to functional unit and reference flow choices, the scenario, system boundaries, and temporal and geographical
boundaries.

SUB-STEP 1.1 - Functional unit definition

The FU must be compatible with the initial scenario concept and transformation objectives. The significance
of precisely defining the functional unit cannot be overstated. It is evident how different FUs produce distinct
LCA findings, explaining the resultant heterogeneity.

Adopting exergy, on the other hand, significantly reduces this difficulty because EA may look at any period
of the life cycle, but only via energy measures, necessitating the examination of very particular physical phases
that do not entail heterogeneities in data selections. Examples for several industrial domains may be found in
(Hischier and Reichart, 2003)or (Panesar et al., 2017; Gandiglio et al., 2019).When LCA and EA are combined,
their FU must be the same, which implies that the input and output data gathered during the inventory stage
must be compatible with both LCA and the EA metrics, as well as the performance to be measured in line with
the criteria.

SUB-STEP 1.2 - Reference flow and system boundaries

Main criticisms of the 1SO 14040 and 14044 recommendations have been raised, primarily by (Raynolds et
al., 2000; Jolliet et al., 2015): 1) the definition of the boundaries is influenced by data availability or ease of
retrieval, but the approach of excluding or including unit-processes in the analysis would result in respectively
incomplete assessment and a false sense of completeness with insignificant added information; and 2) the
approach of excluding or including unit-processes in the analysis would lead to respectively incomplete
assessment and a false sense of (without considering the time loss by the practitioner in analysing extra data
and processes). 2) The ratio between mass and energy in terms of environmental effect. 3) Selecting between
process-based and input/output LCA. The former has a high rate of truncation mistakes and excludes capital
goods. The latter has issues with data resolution and the unjustifiable shortening of recycling industrial sectors
and process life cycle phases (Majeau-Bettez et al., 2011). 4) The ISO ignores the economic and social
consequences. Once the functional unit, the reference flow, the system boundaries, and the beginning scenario
S(t0) have been identified inside the system thinking, it is feasible to unambiguously determine the set of unit-
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processes to consider in order to satisfy the objectives S(tx) out of S(to).

Furthermore, EA, like LCA, requires a system boundary definition that corresponds to the description of the
reference environment. The reference environment is chosen based on the system under consideration. The
reference environment must be immediately accessible to the system and its attributes must not change as a
result of interactions with the system. The exergetic performance of the system as a whole may be viewed by
establishing the reference environment. Each subsystem functions within these parameters, with exergy input
and output dictated by the potential in relation to the surrounding environment (Lozano, 2008). Gaudreau et
al., in (Gaudreau et al., 2012) conducted a comprehensive investigation of the reference environment to have
a better grasp of how exergy influences decision-making. EA addresses the heterogeneity issue mentioned
above by focusing on the unique flows of material, work, and energy that occur throughout every
process/activity, as it is required to construct mass, energetic, and exergetic flow balances. When EA is
combined with LCA from a system thinking perspective, the LCA system boundaries must correspond with
the reference environment in EA.

STEP 2 — Life Cycle inventory analysis

Even if LCA is combined with EA, the life cycle inventory (LCI) is the most onerous step in which material
and energy flows are collated and measured.

Because the information acquired will aid in the anticipated effect assessment, the inventory review should be
guided by the selection of impact assessment metrics. If the effect computation is an exergy research, the data
acquired may be appropriate, implying that gathering a large amount of pollution data may be overlooked since
they are either toxic or greenhouse gases but do not contribute significantly to exergetic losses.

LCI analysis is the computation of all raw materials, energy resources, and machinery (inputs) utilized in the
process, as well as the estimation of their emissions to air, water, and soil (outputs) created across the whole
life cycle, using the functional unit as a reference.

SUB-STEP 2.1 - Choice of the database

Both LCA and EA suffer from the quality of available data (mainly related to specific data, i.e., derived from
the physical site of the system analysed), driven from databases, in the reasoning about heterogeneity of
sustainability assessment, because the nature of these methods has a subjective component. Several difficulties
have been highlighted in LCA studies including data quality and a lack of understanding (Edelen and
Ingwersen, 2006). It is standard practice to fill gaps in inventory data with assumptions or statistical data.
Problems with data quality can arise from either the practitioner's access to data (e.g., confidentiality) or an
impartial lack of understanding of the whole system (e.g., available measures of process parameters,
measurement quality. This, in turn, may cause uncertainty in analysis results: this should be maintained less
than the tolerance permitted for the criteria employed in the LCA research (specified as starting assumptions
or restrictions on the analysis) or the total tolerance admitted in the exergy calculation. The availability of data
at the local and sectoral levels is very important. Although there is still a need for a database that is universally
consistent and dependable for the LCI phase of a wide range of diverse manufacturing processes (Kellens et
al., 2017). In the absence of databases belonging to the country or geographical region in which the assessment
must be addressed, the practitioner who is obliged to utilize databases of other nationalities must pay attention
to the data source. The databases, in fact, may exhibit a great diversity of impact outcomes, even if they are
identical or even if they are two distinct update versions. As a result, the decision can entirely alter the LCA
research and become a source of additional subjectivity in the evaluation, whilst, realistically, it translates into
a range of variability in the dependability owing to a random-error created and transmitted along the LCI and
the LCIA.

SUB-STEP 2.2 - Allocation

To prevent allocation, 1ISO 14040 advises breaking operations into sub-processes or widening system
boundaries. Obviously, the independence of the sub-processes determines the quality of the physical and
economic process decomposition (Ekvall and Finnveden, 2001). The system boundary expansion, on the other
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hand, results in a bigger and more intricate model. This latter strategy necessitates a thorough understanding
of the causalities underlying processes, since utilizing alternative causality principles for allocation can result
in considerable disparities in LCA outcomes. The decision between consequential modelling and attributional
modelling, according to system thinking, is determined by the purpose and scope. EA is also susceptible to
allocation, such as appropriately allocating the amount of electrical energy required annually by a specific
machine that generates a variety of goods over the course of a year, and it is also subject to periodic power-on
and power-off cycles.

SUB-STEP 2.3 - Local technical uniqueness

Neglecting technical uniqueness is equivalent to ignoring system attributes that might affect system costs. The
challenges with local uniqueness are caused by a lack of accuracy in the characterization of the qualities of the
transformation to be assessed. To have as little ambiguity as feasible, the data for the LCI should be
geographically characterized (see, for example, (Nilsson et al., 2010)). On the contrary, unless the economic
implications of energy consumption assessed by the analysis are taken into account, EA is not subject to
geographical classification.

STEP 3 - Life cycle impact assessment
SUB-STEP 3.1 - Impact category selection

This problem is caused by a practitioner's or an impact's lack of information. Distinct information might lead
to different system options while starting with the same purpose and scope. As a result, differing bodies of
knowledge for the LCA will always result in incomparable LCA outcomes, as demonstrated by (Mller et al.,
2005).

The lack of consistency across the many proponent groups of these categories is a significant source of
variation in the LCA findings. The modest discrepancies between the suggested groups are mainly due to the
modelling technique used, e.g., midway versus endpoint. Endpoints are less comprehensive and have greater
degrees of uncertainty (UNEP, 2003), whereas midpoints are more difficult to understand since they are not
immediately tied to an area of protection (Haes et al., 2002). Unfortunately, even in a system thinking, EA
does not tackle this issue, because the final exergy flow analysis accounts for the quality of natural resource
degradation but not the character of output goods or the possible harm to the environment.

SUB-STEP 3.2 - Space characterization

As for the system boundary definition, the issue here is the establishment of a tolerance value for the
transformation to take into account, as well as its long-term performance. This element has no bearing on EA
since its methods are not dependent on the time or spatial characterization of the process under investigation;
hence, EA with LCA will avoid both spatial variation and geographical characterization.

SUB-STEP 3.3 - Time characterization

Even 1SO 14042 (“ISO 14042,” 2000) admits that failing to include the dynamic nature of industrial and
environmental factors might diminish the usefulness of LCA results. The decision is impacted by the declared
objective and scope, therefore temporal characterization of the transformation should be regarded part of the
limitations contained in the specification of S(tg) and S(tx). As a result, various temporal characterizations
require distinct transformation characteristics to be considered, resulting in incomparable LCA outcomes.
Time characterisation by the unit control volume is a common feature of EA.

The time-dependency of the affects refers to the irregularity of emissions across time, repercussions that take
years to manifest, and impact comparisons that have resulted in such changes throughout the studied time
horizon (Field et al., 2000). This time-dependence is usually neglected, and the effects are averaged. (Hellweg
et al., 2005)demonstrated how the selection of two distinct time periods might influence the environmental
effect profile of the same operation, namely trash incineration and groundwater pollution.

53



STEP 4 - Life cycle interpretation

The interpretation is a process that implies a work of subjectivity because when a decision must be made, the
type of aggregation of the results, possible weighting and normalization are thus inevitable. To this aim,
significant is the table 12.1 in Hauschild et al. book section (Hauschild et al., 2018). Depending on how the
results are shown and argued, a practitioner can interpret them in one or multiple forms, and they condition
the interpretation of the results by emphasizing the importance of certain phenomena rather than others, for
example the formation of the ozone layer depletion rather than acidification.

In the case of an LCA, identifying a unique criterion for comparing alternatives is a more difficult task than in
EA. The clear specification of the stakeholders' needs in a system thinking allows the selection between the
system alternatives to be reduced to a question of production costs if the performances of the system
alternatives fulfil the criteria equally.

On the other hand, EA provides an ideal framework for evaluating this work since it is a measure of the
reversibility of the processes, possibly decreasing the interpretation heterogeneities inherent in the LCA. The
material, energy, and other streams all participate in the process and are changed into the product and waste
streams. The exergetic yields associated to the exergetic balances of the process/activity itself provide the
performances (or yields) of a specific process or activity. To summarize, it is typically difficult to analytically
express the many types of uncertainty outlined in LCA. Probability distributions may be used to characterize
random variability in input parameters, missing or incomplete data, and other sources of uncertainty in LCA,
which are likely the most prevalent sources of uncertainty. A variety of LCA uncertainty analysis strategies
have used probability distributions (Geisler et al., 2005; Guo and Murphy, 2012; Ross and Cheah, 2019; Lima
et al., 2020). So far, no LCA uncertainty analysis approach has been devised to assist the characterization of
this trade-off in order to make the evaluation as comprehensive as possible while being tractable in terms of
decision making. The analysis of uncertainty on EA, on the other hand, on the other hand, is faster since the
major source of error propagation is related to the sensitivity of the measuring devices of the in and out flows,
and missing or incomplete data-sets are unlikely to occur. Using efficiency reports also substantially simplifies
the comprehension of the Overall Analysis. In this scenario, there are additional assessments of uncertainty
and sensitivity in Exergy Analysis in the literature (Ege and Sahin, 2014; Boyaghchi and Molaie, 2015; Javadi
et al., 2020).

To summarize and conclude, addressing variability in sustainability assessments is an appealing issue, and
eliminating it is a lofty goal. The job is mostly useful to the business partner and stakeholder. The problem of
heterogeneity and subjective decisions is addressed by attempting to use system thinking as a procedural
guideline. Systemic thinking provides a fresh method of thinking about existing problems by removing the
traditional glasses of mental models, assumptions, and beliefs that allow us to perceive problems from the
same perspective all of the time. To begin looking at situations holistically, it is a process of discovery that
takes time. We demonstrated that including Exergy-based Analysis in Life Cycle Thinking is a useful method
for reducing sources of variability throughout the whole process design. While introducing EA into the LCA
approach helps to reduce sourced heterogeneity, it does not guarantee comprehensive coverage of the system
under evaluation. Recommendations have been developed as a series of actions to take, resulting in a kind of
reference operational framework that may decrease decisional inconsistencies that arise from several
practitioners examining the same system.

Using the system thinking, that systems of different types with varied beginning circumstances and/or aims
might be similar. By formalizing the links between the many unit-processes and the overall process and their
proportional impacts, it is feasible to harmonize the data. The causes of heterogeneity have been identified
owing to system thinking, which provides a cohesive holistic perspective on the manufacturing processes. This
viewpoint appears to address the subjective practitioner's choices, which raises a coherence issue between the
decision at each stage of sustainability assessment and its inputs (the initial scenario, the objectives of the
transformation and the sustainable performances to be assessed). The work has also offered useful fuel for
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thought, which may improve the interpretability of current 1SO standards. Furthermore, the study could be
expanded and refined with a quantitative assessment (rather than only qualitative, as has been done thus far in
this work) of the interactions between the system's components and the impact they have on the degree of
uncertainty in the final results, and thus on sustainability.

2.2. DATA-DRIVEN APPROACH

Each research and development path is a dynamic journey of learning through study and experience of the
environment, from which we gather property details, often readily quantifiable, often qualitative. Observation
also allows one to link events to property records. It is through repeated interactions that we can deduce certain
patterns that link events to data and data into actions. In the case of scientific discovery, these patterns and
relations are formalized as rules and equations, the data as properties and factors, and the results as event
measurements.

Because of the different operating needs and limits of the underlying industrial processes, the design of model-
based process monitoring and fault detection systems has been a fascinating research issue for several decades.
The well-established model-based methodologies have been effectively deployed to a variety of processes for
industrial electronics (He et al., 2013), automatic control systems (Kuestenmacher and Pldger, 2016), and so
on, based on physical and mathematical understanding of the industrial processes. Model-based systems need
significant physical and mathematical understanding of the process. The well-established model-based
methodologies might be successfully utilized after the design of the process model based on the fundamental
principles. On the other hand, a data-driven approach helps to extrapolate further knowledge from reality that
human experience alone is not able to capture, and has the added benefit of checking associations between
various variables and findings, learning unforeseen trends in nature, and helping one to uncover new science
laws or, still more, performing predictions in the absence of those laws (Montéans et al., 2019). Data-driven
approach have been used for some years in industrial processing both for monitoring, maintenance and for
predicting (Solomatine and Ostfeld, 2008; Ding et al., 2011; Sutharssan et al., 2015; Bousdekis et al., 2021).
There is considerable overlap between data-driven techniques and data mining (Clarke et al., 2009). Data
mining is the analytical stage in the "knowledge discovery in databases" (KDD) process, which entails using
data analysis and discovery algorithms to uncover patterns in big data sets (U. Fayyad et al., 1996). Data
mining is the process of extracting useful information from massive volumes of data contained in databases.
It is the extraction of knowledge from data. Data-driven techniques relate to the capacity to teach computers
to learn without explicitly programming them.

Data, which are generated by sensors, measuring devices, machinery, and quality control tools, can be
transformed into powerful tools for improving production planning, optimizing operational processes, and
influencing decision-making by accurately analysing all available data. Data analysis has always been a key-
activity in the management of a typical manufacturing process, and its importance has grown as the number of
flows and sources responsible for generating them has increased. Sensors, measuring devices installed along
production lines, industrial plants, and quality control tools all contribute to their creation today: a plethora of
sources capable of producing data so important to businesses that it can influence not only production planning,
but also operational process optimization and decision-making process correction through accurate analysis.
In terms of production planning, Enterprise Resource Planning (ERP), Programmable Logic Controller (PLC)
systems and Manufacturing Execution Systems (MES) can now provide extremely detailed views of all
industrial processes, reaching previously unthinkable levels of granularity (Khan et al., 2017).

With the rapid growth of automation and information, data collecting devices are extensively utilized in smart
factories, and manufacturing data in factories are becoming larger (Volume), fast (Velocity), and diverse
(Variety) (Katal et al., 2013). In general, factories are motivated by a causal relationship and use factory
simulation models and algorithms to increase production efficiency, product quality, and other workshop
performance.
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To gain adaptive control of a manufacturing process, knowledge of both the process and the environment must
be gained. This expertise can be gained by mining vast quantities of data gathered during the production
process monitoring. This allows for the investigation of process parameters as well as the correlations of
process parameters, environmental parameters and machine faults. This allows for the establishment of
information about the process and its relationship to the environment, which can then be used for adaptive
process management.

The data culture has gone through various “ages” of development and innovation, with each subsequent phase
incorporating the previous technology. Figure 2.15 contains a summary. On the horizontal axis, there is a
timeline marked in years with two types of related references: manufacturing-related technological solutions
(for example, 14.0 around the year 2012) and technological information solutions (such as, for example, loT
around 2000). On the vertical axis data’s increasing volume, variety, and complexity are showed. The graph’s
dial has four sets, one inside the other, that distinguish the sequence of ages over time. In addition, the types
of data that characterized each age are indicated. As can be seen, this evolution includes the digitalization
process.
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Figure 2.15 - Evolution of data in manufacturing (Tao et al., 2018)

Companies who do not process data limit their access to the very data that might sharpen their competitive
edge and provide important business insights. That is why it is critical for all businesses to grasp the importance
of processing all of their data, as well as how to do it.

Every data-driven approach starts with data in its raw form and converts it into a more readable format by the
specific algorithms. Data processing methods for big data analytics involve (Bhatnagar, 2018):

1. Data gathering. The type of raw data collected has a huge impact on the output produced. Hence, raw
data should be gathered from defined and accurate sources so that the subsequent findings are valid
and usable.

2. Data storage. The data must be stored in a data warehouse, data vault, or data lake. Here, data and
metadata are stored for further use. This allows for quick access and retrieval of information whenever
needed, and also allows it to be used as input in the next data processing cycle directly.

56



3. Data preparation or data cleaning. Involves improving data quality. It is the process of sorting and
filtering the raw data to remove unnecessary and inaccurate data. Raw data is checked for errors,
duplication, miscalculations or missing data, and transformed into a suitable form for further analysis
and processing. This is done to ensure that only the highest quality data is fed into the processing unit.
Quello che si deve andare a verificare é che i

4. Data input. Clean raw data are converted into machine readable form and fed into the processing unit.
This can be in the form of data entry through a keyboard, scanner or any other input source.

5. Data analysis. Raw data is subjected to various data processing methods using machine learning and
artificial intelligence algorithms to generate a desirable output. This step may vary slightly from
process to process depending on the source of data being processed (data lakes, online databases,
connected devices, etc.) and the intended use of the output.

6. Data presentation. data is finally transmitted and displayed to the user in a readable form like graphs,
tables, vector files, audio, video, documents, etc. This output can be stored and further processed in
the next data processing cycle.

2.2.1.  Coping with Big Data and their Heterogeneities

When it comes to gathering data for industrial 10T in the manufacturing world, it’s not just about quantity. It
all comes down to the accuracy of the data being collected from various machines; data that allows for
interpretation and decision-making now boosts both productivity and strategic edge in the long run (World
Manufacturing Foundation, 2020).

Because we observe the temporal evolution of a system, real manufacturing processes are dynamic, not static.
The added richness of dynamic data allows for better understanding and intrinsic knowledge, but it can be
difficult to figure out how to use the richer temporal data to gain new insights into a system’s behaviour and
structure (Hu, 2020).

The development of advanced calculation instruments has given rise to new forms of data collection. As a
consequence, data often have dynamic dependency structures. These dynamic systems usually necessitate non-
standard statistical methods that are computationally intensive (McGoff et al., 2012). Conventional tools
usually assume that the data, or any appropriate transformations of it, obey a normal distribution. This
presumption no longer holds expressly in these situations. There have been remarkable advances in
mathematical methods for analysing such data over the last twenty years. Unfortunately, the advancement of
computational applications and devices has not remained static with these methodological advancements, but
practitioners now have a plethora of highly advanced methods at their disposal for dealing with complicated
results. This has enabled their acceptance and implementation in the solution of important substantive problems
in a variety of disciplines, especially engineering and finance, as well as medicine and health. Multivariate
data, which consists of a combination of discrete (i.e., categorical, binary, count) and continuous variables, is
an especially typical example of non-standard correlated data in use. (de Leon and Chough, 2013).
Furthermore, as measuring methods develop, data collection becomes less expensive and simpler. Data is often
obtained from various channels or networks on the same sample collection, and is referred to as multi-view or
multi-modal data. One of the main challenges associated with the analysis of multi-view data is that
measurements from different sources may have heterogeneous types, such as continuous, binary, and count-
valued.

In the manufacturing sector, big data analysis aids in the correction of parameters that underpin individual
production processes. In the case of complex operations, i.e., those influenced by a large number of parameters,
manufacturing companies can actually use the data provided in real time by sensing systems to modify these
same parameters, thereby improving productivity, quality, and operational efficiency (Nagorny et al., 2017).
Companies must be able to integrate all types of information (which may cause heterogeneities in the
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construction of an all-inclusive database) in order to conduct comprehensive analyses, regardless of the
geographical location of the machinery and plants that generate it.

If we wish to extract valuable information and knowledge from a manufacturing process, we must first address
data integration issues so that we can apply effective empirical techniques to detailed and uniform data. This
type of practice is referred to as data process knowledge discovery (U. M. Fayyad et al., 1996).

Dealing with structured, semi-structured, and unstructured data at the same time is referred to as data
heterogeneity. The ultimate goal of this task is often to obtain a coherent or cohesive understanding of the real-
world institutions described in the data sources.

Every stage of Big Data analytics has its own set of challenges. These involve real-time computation, dealing
with diverse data types, and parallel data processing, among other things. Big Data provides access to a vast
amount of dynamic, heterogeneous, and informative data that is not always reliable.

The emergence of too many data from various data providers opens up a plethora of new doors for knowledge
discovery. At the same time, it poses a new problem that can only be overcome if the data sources of interest
are analysed in a coherent and interconnected manner. Indeed, scientists have accepted that the study of single-
type datasets cannot explain the whole-science phenomena (Mandreoli and Montangero, 2019).

As a consequence, there are some critical problems to solve when dealing with Big Data, and new ideas are
needed. This issue is called 4Vs (Cappa et al., 2021):

1. the volume of data coming from various sources. This is true for the scale of the data collection. It’s
the most prominent characteristic associated with big data. The term “volume” refers to the massive
datasets that organizations are trying to use to improve decision-making policies;

2. the velocity at which data is generated and updated: data sources can be flexible and changing. This
applies to the rate at which data is obtained as well as the rate at which it should be analysed and based,;

3. the variety of data from multiple sources, even though they describe the same objects. This applies to
a data set’s structural heterogeneity. Companies will now use structured, semi-structured, and
unstructured data owing the know-how to technological advancements;

4. the veracity of data. This is a reference to data uncertainty. Since data sources may be in conflict and
data may be replicated from one source to another, the degree of authenticity associated with some
types of data is known as veracity (Chen et al., 2016). To reduce confusion, analysts shall create
context around the data.

In literature this issue has been deeply investigated such as the 4Vs enlarged to 10Vs, adding to the first four
(Khan et al., 2018):

5. the variability of data. It can refer to a variety of things. The number of inconsistencies in the data is
one. In order for any useful analytics to take place, they must be discovered using anomaly and outlier
detection tools. Big data is also changeable due to the plethora of data dimensions arising from a
variety of distinct data kinds and sources. Variability may also refer to the erratic rate at which huge
data is put into the database, as opposed to velocity;

6. the validity of data. It relates to how accurate and precise the data is for the purpose for which it is
designed. According to Forbes, data scientists spend an estimated 60% of their time cleaning their data
before performing any analysis (Forbes Press, 2020). The benefit from big data analytics is only as
good as its underlying data, proper data governance processes must assure uniform data quality,
standard definitions, and metadata;

7. the vulnerability of data. Big data brings new security concerns. After all, a data breach with big data
is a big breach;

8. the volatility of data due to the velocity and volume of big data. It is essential to define criteria for data
currency and availability, as well as to assure speedy retrieval of information when needed, because
the costs and complexity of a storage and retrieval procedure are increased with massive data;

9. data visualization. Current large data visualization solutions suffer technological issues owing to in-
memory technology restrictions, as well as insufficient scalability, functionality, and reaction time.

58



Combining this with the plethora of variables coming from big data's diversity and velocity, as well as
the intricate interactions between them, creating a meaningful representation is difficult;
10.data value. The primary purpose of any data analysis is to derive strategic value from data. Big data
may provide significant value in a variety of ways, including better understanding your consumers,
targeting them appropriately, streamlining processes, and boosting machine or company performance.
Before beginning on a big data plan, you must first comprehend the possibilities as well as the more
difficult qualities.
One method is data fusion, which involves merging several less reputable databases to produce a more precise
and usable data point, such as social comments appended to geospatial location information. Advanced
mathematics that accepts complexity, such as rigorous optimization methods and fuzzy logic approaches, is
another way to treat it.
Consequently to the 4Vs issue, there are following types of data heterogeneity (Jirkovsky and Obitko, 2014):
* Syntactic heterogeneity occurs when two data sources are not expressed in the same language.
« Conceptual heterogeneity, also known as semantic heterogeneity or logical mismatch, denotes the differences
in modelling the same domain of interest.
» Terminological heterogeneity stands for variations in names when referring to the same entities from different
data sources.
+ Semiotic heterogeneity, also known as pragmatic heterogeneity, refers to people’s differing interpretations
of events.
« Spatial-temporal heterogeneity happens more often while observing over a long period of time, or when the
time stamp is used to distinguish specific phenomenon within the method. It is thought that the instances are
structurally similar to one another in various spatial and temporal domains (e.g., different regions on the
machine but with different sampling frequencies). Ignoring these dependencies during data processing may
result in findings that are inaccurate and difficult to understand (Atluri et al., 2017).
« Data source heterogeneity draws attention to the fact that each data source can have a different data model.
Data with identical meanings can be represented differently in each data source. Furthermore, they can contain
contradictory information.
+ Dependency heterogeneity, which results from the assumption that data are always isolated elements that are
not optimized for use in a data integration framework. They cannot be compelled to behave in such respects.
As a normal result, they will alter their data or functionality without warning.
« Distribution heterogeneity that refers to spatial distribution of data sources. The required system
configuration should allow for the potential delay in communicating with data sources.

2.2.2. Data Quality and Significance

To ensure that the data used is precise, consistent, and complete, data quality management is critical. To
compound the complexity of handling data quality, data is rapidly evolving, with increasing sizes, shifting
formats, and different distribution methods. Data may become obsolete and unusable if it is not properly

maintained. The following properties must characterize high-quality data (Madhikermi et al., 2017):

o Validity — a measure of how well data conforms to required value attributes and ensuring that data
obtained are in the proper format and style. An example metric for validity is finding the percentage of
data that have values within the domain of acceptable values.

o Completeness — data monitoring to ensure that data requirements allow for lost or insufficient data. The
measure of completeness can be assessed in two ways: at the record level or at the attribute level. An
example metric for completeness is the percent of data fields that have values entered into them

e Accuracy — sufficient accuracy for the intended purpose when taking into account expense, usage, and
effort. Data accuracy is critical in large organizations, where the penalties for failure are high. An example
metric for accuracy is finding the percentage of values that are correct compared to the actual value.

59



e Relevance — entails being appropriate for the intended reasons, as well as having a proper feedback
mechanism and quality assurance.

e Integrity — to maintain all the data quality metrics when they are moved or merged between different
systems. Typically, data stored in multiple systems breaks data integrity. An example metric for integrity
is the percent of data that is the same across multiple systems.

e Consistency — to maintain synchronicity between different databases. An example metric for consistency
is the percent of values that match across different records/reports.

¢ Reliability — a continuous data collection method over time and within systems.

o Timeliness — reflects the accuracy of data at a specific point in time, that is, being available at the
appropriate frequency to allow for timely decision making. An example metric for timeliness is the
percent of data you can obtain within a certain time frame, for example, weeks or days.

e Auditable — modifications to a collection of data must be traceable, and data transformation must be
verifiable.

o Replicability — allowing a data operation to be reproduced, either by the same practitioner or by another
as well.

The term Data Quality refers to activities and procedures that are aimed at analysing (and possibly improving)
the quality of a data collection. To that end, the size of the data quality is proposed as a tool (qualitative) for
evaluating data quality. First, the logical structure used to represent the data is examined to ensure that it is
adequate and appropriate for obtaining a provided with the requisite quality characteristics (Batini et al., 2009).
First, the logical structure used to represent the data is examined to ensure that it is sufficient and appropriate
for obtaining data with the necessary quality characteristics. Similarly, the process-level analysis ensures that
the method used to observe or collect data is appropriate. Data-level analysis, on the other hand, analyses
stored data directly, without regard for the type or manner in which it was obtained. It is critical to emphasize
that the quality at the scheme level influences the quality at the process level, which in turn influences the
quality of the final data. However, analysing and correcting qualitative inconsistencies at the model or process
level is not always feasible. In these situations, data-level analysis is thus the only viable option.

Before handing over the dataset to the algorithms, various techniques should be used to preserve data quality

and guarantee that any erroneous data is found as soon as feasible and then manually or automatically repaired
(Mills, 2009).

- Data discovery is a frequently disregarded and undervalued component of any data-related activity.
People frequently make incorrect assumptions about their data since most people only see the facts
from their own point of view. Data discovery, on the other hand, is an important aspect of the design
process since it gives input for scope definition and project estimates. Discovery is a rigorous
investigation of the data itself, with the goal of discovering correlations inside and between datasets.
All applications that use the data and need to be adjusted or updated must also be considered, especially
in the event of data migrations. As a result, data discovery in bigger businesses may be a multi-team
effort that frequently crosses departmental boundaries.

- Data cleansing is the process of cleaning "dirty" data in its original place before using it in any data
transformation. The data cleaning process is frequently integrated into the business logic, with the data
being cleaned in the transformation but remaining intact in the source system. During data discovery,
you will frequently realize that the data cannot be used in its present state and must first be cleaned.
Low data quality may be caused by a variety of factors, ranging from basic ones (anything involving
human data entry is likely to contain mistakes such as typos, missing data, data abuse, and so on) to
complicated difficulties caused by incorrect data handling techniques and software defects.

- Data validation, which works hand in hand with data cleansing, is a key procedure in ensuring
appropriate data quality in the target system. Any data that does not fulfil the validation requirements
is flagged by the validation process. Data that fails the validation phase is flagged for clean-up. It
might be either a manual or an automated procedure. Of course, for bigger systems, a high degree of
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automation is desired, if not required. With automated data validation, the great majority of data may
be rectified without the need for human interaction, resulting in fewer mistakes and the elimination of
bottlenecks. Nonetheless, some manual validation may be required, particularly for the most critical
data that cannot be permitted to pass without human inspection or correction.

- Reporting is an important aspect of ensuring data quality. Well-executed reporting guarantees that
stakeholders receive all status information immediately and can respond in a timely manner. This, in
turn, reduces the time required to rectify any data quality concerns and improve any processes that
consistently result in bad quality data, allowing to manage the bad data that are inevitably in the
systems.

To sum up all the gaps and challenges related to the big data features, (Zhang et al., 2015) and (Wang, 2017)
schematized a complete picture that is reported and adapted in the following Table 2.3

Table 2.3 - Big data issues, gaps and challenges

Big data 10Vs issues Gaps Challenges
1. Volume
. . - Data Scale
2. Velocity a) Data Consistency
. . - Incomplete Data
3. Variety b) Data Integrity . - .
: e - Data Usefulness in decision making
4. Veracity ¢) Data Identification . .
C . - Data Processing and Parallel Processing
5. Variability d) Data Aggregation Data Quality
6. Validity e) Data Confidentiality -
. - - Data Durability
7. Volatility f) Data Interpretability .
- . - Structured, Semi-structured, Unstructured Data
8. Vulnerability g) Data Complexity Hlegally T d Dat
9. Visualization h) Data Heterogeneity egally ampere_ ata
- Human Collaboration
10.Value

(Zhou et al., 2017) provided an outstanding review, and the next part examines each of the aforementioned
pre-processing difficulties, as well as the obstacles and recommended methods to decrease the risk associated
with them.

An application for discussing and resolving some of these difficulties is in (Stief et al., 2019) in a case study,
they attempted to fill the gap with a heterogeneous benchmark dataset based on an industrial-scale multiphase
flow facility. The study gathered data from varied operational situations, both with and without generated
faults, to create a multi-rate, multi-modal dataset and highlight the relevance of the pre-processing step in big
data aggregation and analysis.

The Internet of Things (loT) is directly connected to big data and their life cycle in industrial process
management. The advancement of internet technology enabled the possibility of a more extensive and robust
network communication between the items. Every object in 10T is recognized as a node and is connected to
each other in a network; this type of system enables information sharing such as receiving and transmitting.
The design and implementation of 10T for unique applications may vary, but there is a common architecture
approach to be followed for 10T project execution. The best, fast, reliable, and secure convergence of the
information technology and communication technology will only happen when an effective loT architecture
layer is built. (Kumar and Mallick, 2018) in their work illustrated how the layer architecture of 10T changed
over time and produced a graphic comparison (see Figure 2.16): One of the first and most fundamental loT
designs introduced is three-layer architecture. It is really handy and simple to apply. The perception layer,
network layer, and application layer are the three layers present in the architecture. The stated three levels
describe the operation of 10T; however, they cannot provide a trustworthy solution due to the higher aspects
of loT.
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Figure 2.16 - 10T architecture layers evolution (Kumar and Mallick, 2018)
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Cloud computing (FOG Layer in Figure 2.16) appears to be the tipping point: it is a more flexible and scalable
method that enables numerous services for 10T systems. These services include data storage choices, software
tools and analytics, an appropriate platform, and core development infrastructure. With the cloud facility, users
may have visualization, machine learning, and data analytics choices for larger volumes of data. Because of
the ambiguity of the information detected and produced in the form of data by 10T sensors, cloud-based
architecture became popular in IoT systems. Most 10T architectures use cloud-based data processing
technologies to provide centralized control over data. In this sense, it emerged as a basic layer inside the loT
architecture as a specialized layer between data sources and the structured database: a data integration layer
that handles ETL processing (pre-processing layer in Figure 2.16).

To conclude, it is critical to implement effective big data cleaning methods in order to increase data quality.
Data virtualization and data lakes are effective methods for facilitating data integration. In Big Data analytics,
traditional data mining and deep learning approaches have drawbacks. Deep learning can analyse and learn
from vast volumes of unsupervised data; hence, it has potential in Big Data analytics where raw data is mainly
unlabelled and un-categorized.

The following figure closes this paragraph with an overview to the life cycle framework of manufacturing
data, highlighting the 10T layers and each phase/operating level to reach data quality in big data analytics.
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Figure 2.17 - Life cycle framework of manufacturing data

2.2.3. Machine Learning techniques for Manufacturing Systems

Machine Learning (ML) is the most growing field in Computer Science. Everyone is now talking about ML-
based solution techniques for a specific issue set. ML is a subset of Al in which computer algorithms are used
to learn independently from data and information.

ML is a critical component of smart manufacturing since it provides accurate insights for better decision
making. As illustrated in Figure 2.18, ML has been extensively researched at many phases of the manufacturing
lifecycle, including concept, design, evaluation, production, operation, and sustainment (Zhang et al., 2017).
(Harding et al., 2006) examined data mining applications in industrial engineering, focusing on several areas
such as production processes, operations, defect detection, maintenance, decision support, and product quality
enhancement. (Esmaeilian et al., 2016; Kang et al., 2016) examined the evolution and future of manufacturing,
highlighting the role of data modelling and analysis in manufacturing intelligence. To satisfy present and future
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demands for efficient and reconfigurable production, smart manufacturing also needs prognostics and health
management (PHM) capabilities (Vogl et al., 2019).

Concept
Development

Sustainment

Design &
Performance
Test &
Evaluation

Operation &
Maintenance

Figure 2.18 - Typical application scenarios of machine learning in smart manufacturing (Wang et al., 2018)

What are the mathematical foundations at the base of ML? In summary, it starts with a non-parametric model
trained on existing data. The training data is supplied into an untrained or partially trained model, and then
computations are done to calculate the deviation from the expected outcome.

ML techniques are defined as discovering a target function (f) that optimally maps input variables (X) to output
variables (Y).

Y = f(X)

This is a common learning problem in which the aim is to predict the future (YY) given new instances of input
variables (X). The function (f) is unknown as well as how it looks like or what its form is. If we did, we would
utilize it directly rather than learning it from data through machine learning methods. It's more difficult than
that. There is also error (e), which is unrelated to the input data (X).

Y =f(X)+e

This issue might be due to a lack of characteristics to adequately define the optimum mapping from X to Y.
This error is known as irreducible error since it cannot be reduced no matter how proficient the model is at
predicting the target function (f). To put it another way, learning a function from data is a challenging
challenge, which is why the discipline of machine learning and ML algorithms exists.

The most frequent form of ML is learning the mapping Y=f(X) in order to predict Y for fresh X. This is known
as predictive modelling or predictive analytics, to create the most accurate forecasts possible. As a result, the
practitioner is less concerned with the shape and form of the function (f) and more concerned with the fact that
it produces correct predictions. To learn more about the relationship in the data, we may discover the mapping
of Y=f(X). This is known as statistical inference.

When learning the function (f), it involves estimating its shape based on the facts supplied. As a result, there
will be some inaccuracy in this estimate. It will not be an exact estimation of the underlying hypothetical
optimum mapping from Y onto X. Much work in applied machine learning is spent attempting to improve the
estimate of the underlying function and, as a result, the performance of the model's predictions.

The error is reduced by altering the model's parameters in accordance with predefined mathematical criteria.
In ML, the training process is essentially an error minimization procedure in which the model parameters are
defined in such a way that the model can duplicate the training data as precisely as possible. However, the
underlying model will also be capable of predicting input data that was not included in the training data. In
other words, the model has the ability to generalize. The talent in ML is in picking a suitably sophisticated but
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not too huge model that can accomplish good generalization across the complete range of relevant input data
with only a little quantity of training data.

Some prominent ML techniques/methods include dimensionality reduction (Richter et al., 2015), clustering
(Dietrich et al., 2015), association rules (Dietrich et al., 2015), classification (Mikut and Reischl, 2011),
regression (Mikut and Reischl, 2011), topic modelling (Dietrich et al., 2015), time series analysis (Dietrich et
al., 2015) and collaborative filtering (Twardowski and Ryzko, 2014). These are used to do analytics and
forecast future trends based on current patterns and correlations between data in a particular dataset.

(Fahle et al., 2020) performed an extensive review of the potential uses of ML algorithms in manufacturing
for handling particular issues such as scheduling, cost and energy projections, quality control, predictive
maintenance, logistics, and so on.

There is a significant distinction between classification and regression problems. Basically, classification is
concerned with predicting a label, whereas regression is concerned with predicting a quantity. A classification
problem can be turned to a regression problem in some instances. A label, for example, can be turned into a
continuous range. Some algorithms already achieve this by forecasting a probability for each class, which may
then be scaled to a given range. If the class labels in a classification issue do not have a natural ordinal
connection, converting from classification to regression may result in unexpected or bad performance because
the model may learn a false or non-existent mapping from inputs to the continuous output range.

While Supervised Learning, Unsupervised Learning, Semi-supervised Learning, Reinforcement Learning, and
Deep Learning are the primary categories into which ML approaches may be classified (Zhou et al., 2017).

e Supervised learning: Occurs when an algorithm learns from example data and associated target
responses that can consist of numeric values or string labels — such as classes or tags — in order to
later predict the correct response when posed with new examples. The supervised approach is, indeed,
similar to human learning under the supervision of a teacher. The teacher provides good examples for
the student to memorize, and the student then derives general rules from these specific examples.

e Unsupervised learning: Occurs when an algorithm learns from plain examples without any associated
response, leaving the algorithm to determine the data patterns on its own. This type of algorithm tends
to restructure the data into something else, such as new data features that may represent a class or some
new values helpful for additional analysis or for the training a predictive model.

e Semi-supervised learning: it is a learning issue with a few labelled instances and a huge number of
unlabelled examples. Learning issues of this sort are difficult to solve because neither supervised nor
unsupervised learning algorithms can effectively employ combinations of labelled and untellable data.
As a result, semi-supervised learning algorithms with particular features are required. The purpose of
semi-supervised learning is to understand how mixing labelled and unlabelled input affects learning
behaviour and to create algorithms that take advantage of this combination.

e Deep Learning: in terms of feature learning, model design, and model training, it differs from
classical machine learning. Deep learning combines feature learning and model creation in a single
model by using different kernels or tuning the parameters through end-to-end optimization. Its deep
neural net design with multiple hidden layers is essentially multi-level non-linear computations. Deep
Learning and Neural Networks are computing systems inspired by the human brain. Health
assessment, performance prediction, and defect detection are the key applications of utilizing neural
networks and deep learning in manufacturing. Its goal is to make complex manufacturing fully
autonomous.

e Reinforcement learning: Occurs when you sequentially present the algorithm with examples that
lack labels, as in unsupervised learning. The machine is placed in an environment where it is constantly
trained through trial and error. The learning agent, in particular, interacts with an environment and
learns the best policy on the fly based on feedback from that environment. At each time step, an agent
examines the state of the environment, selects an action, and monitors the input it receives from the
environment. There are several key components to the feedback from an agent's activity. The ensuing
condition of the environment after the agent has acted on it is one component. Another factor is the
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reward (or penalty) that the agent receives for executing that specific action in that specific condition.
The incentive is carefully set to coincide with the goal for which the agent is being trained. The agent
modifies its decision-making policy based on the state and reward to maximize its long-term reward.
In contrast to supervised and unsupervised learning approaches, the machine learns from the past and
attempts to capture the greatest available information in order to make appropriate business judgments.
Reinforcement learning is connected to applications for which the algorithm must make decisions (so
that the product is prescriptive, not just descriptive, as in unsupervised learning), and the decisions
bear consequences.

o Ensemble learning: it is an approach used because of its shown improvement in performance in terms
of predictions. It uses the idea of using several weak learners and combining them to form a strong
learner. It takes a majority vote approach in terms of classification, and this is what makes the approach
more robust as compared to using single classification algorithms independently. There are different
types of ensembles learning approaches, mainly Bagging and Boosting. Bagging is a method in which
multiple trees are being built over different subsets of the data. These subsets are drawn from the
original dataset, with replacement. Hence, Bootstrapping is done and a model is built on each of the
subsets individually. Boosting, on a high level uses algorithms that use weighted averages to convert
weak learners into strong ones.

According to what has been described above, Figure 2.19 depicts a grouping of the key ML methods and the
corresponding main algorithms, with the goal of schematizing and summarizing the universe of ML. There are
obviously many alternative algorithms, but they are not relevant to the topic of this dissertation. A more
complete list of ML algorithms can be found in (Brownlee, 2016).
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The next subsections will conceptually discuss the approaches and algorithms that are most commonly used
in manufacturing sector challenges.

2.2.3.1. Classification

Classification modelling is the task of approximating a mapping function (f) from input variables (X) to
discrete output variables (). The output variables are frequently referred to as labels or categories. For a given
observation, the mapping function predicts the class or category. For example, a text email can be categorized
into one of two categories: "spam™ or "not spam™. A classification assignment involves categorizing instances
into one of two or more groups. It may accept input variables that are either real or discrete. A multi-class
classification issue is one that has more than two classes. A multi-label classification issue is one in which one
example is allocated to many classes. Classification models frequently forecast a continuous value as the
likelihood of a given example belonging to each output class. The probabilities represent the likelihood or
confidence that a particular example belongs to each class. By picking the class label with the highest
likelihood, a projected probability may be transformed into a class value. A classification process is determined
by:

* Input: a training dataset including objects with characteristics, one of which is the class label;

* Output: a model (classifier) that assigns a specific label to each item (classifies the object in one category)
depending on the other attributes.

There are several methods for estimating the quality of a classification prediction model, the most frequent of
which is to compute classification accuracy. The classification accuracy is the proportion of successfully
categorized instances among all predictions. In paragraph 3.2 of this dissertation there is a more extensive
discussion.

The Table 2.4 covers some of the issues and approaches for selecting the most suitable classifier.

Table 2.4 - Overview for selecting the most suitable classifier

Issue Algorithm
In addition to class labels, the classification output should

1 . . Logistic Regression, Decision Tree, K-NN
provide class probabilities g g

2 Analysts seek to understand how the factors impact the model  Logistic Regression, Decision Tree

3 The issue is multidimensional Naive Bayes

4 The variables in the data are of several sorts Logistic Regression, Decision Tree
Nonlinear data or discontinuities in the input variables would -

5 o ISCONTINUITIES 1N The INpUT variables WOUld e sision Tree, SVM, K-NN
impact the outcome
The information incl rical variables with - .

6 e information includes categorical variables with a Decision Tree, Naive Bayes, SVM

significant number of levels
7 Some of the input variables may be connected to one another Logistic Regression, Decision Tree
8  Some of the input variables may be irrelevant Decision Tree, Naive Bayes

Support Vector Machines (SVM)

The goal of support vector machines is to find the line that maximizes the minimum distance to the line of the
instances (Figure 2.20).

Optimal margin classifier, Hinge loss and Kernel There are three types of conditions that the model must
respect.

The optimal margin classifier (h) is such that:

h(x) = sign(wTx — b) Eq. 2.19

where (w,b) € R* xR is the solution of the following optimization problem: min%||co||2 such that
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support vectors

Figure 2.20 - SVM

The line is definedas w™x — b = 0 Eq. 2.21
The hinge loss (L) is used in the setting of SVMs and is defined as follows:

L(zy) = [1 — yz], = max(0,1 — yz) Eq. 2.22
While, given a feature mapping ¢, kernel (K) is defined as:

Kxz) = ¢X)T - d(2) Eq. 2.23
In practice, the kernel K defined by K(x,z) = exp(— %) is called the Gaussian kernel and is commonly

used to compute the cost function using the kernel since we don't need to know the exact feature mapping ¢,
which is frequently highly difficult. Rather, just the values K(x,z) are required.

Decision Trees

A decision tree classification approach uses a training dataset to stratify or split the predictor space smaller
and smaller subsets while at the same time an associated decision tree is incrementally developed. Each of
these areas only comprises a subset of the training dataset. The final result is a tree (like the one shown in
Figure 2.21) with decision nodes and leaf nodes. A decision node has two or more branches. Leaf node
represents a classification or decision. The topmost decision node in a tree which corresponds to the best
predictor called root node. Decision trees can handle both categorical and numerical data.

To anticipate the outcome of a certain (test) observation, first determine which of these zones it belongs to.
Once discovered, its outcome class is predicted to be the same as the mode of all training observations included
in that region. The ideas employed to stratify the predictor space may be described visually in a tree-like
flowchart, thus the algorithm's name. The primary distinction is that these decision trees are drawn in the other
way. (Quinlan, 1986) introduced the 1D3 technique for generating decision trees performs a top-down, greedy
search across the space of feasible branches with no backtracking. ID3 builds a decision tree using Entropy
and Information Gain.

l Decision Node ’

] |  Sub-Tree
Decision Node Decision Node
4|7 —
v v }
Leaf Node Decision Node Leaf Node Leaf Node
Leaf Node Leaf Node

Figure 2.21 - Decision Tree
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ID3 algorithm uses entropy to calculate the homogeneity of a sample. If the sample is completely homogeneous
the entropy is zero and if the sample is an equally divided it has entropy of one. To build a decision tree, two
types of entropy must be calculated as follows:

a) Entropy using the frequency table of one attribute:

E(S) = Xi-1pilog,p; Eq. 2.24
b) Entropy using the frequency table of two attributes:
E(T,X) = XcexP(c)E(c) Eq. 2.25

The information gain, on the other hand, is based on the decrease in entropy when a dataset is divided on an
attribute. Creating a decision tree is all about determining which attributes provide the most information gain
(i.e., the most homogeneous branches).

The procedure involves: (1) Calculating entropy of the target. (2) The dataset is then segmented based on the
distinct properties. Each branch's entropy is computed. The total entropy for the split is then added
proportionately. Before the split, the resultant entropy is deducted from the entropy. The consequence is an
increase in information or a decrease in entropy. (3) Using the property with the highest information gain as
the decision node, divide the dataset into branches and repeat the method on each branch. (4) If a branch's
entropy is equal to zero, it is a leaf node; otherwise, the procedure continues with additional splitting. (5) The
ID3 algorithm is run recursively on the non-leaf branches, until all data is classified.

Without the requirement for dummy variables, decision tree classification algorithms can effectively
accommodate qualitative predictors. Missing values are also not an issue. Surprisingly, decision tree
techniques are also employed in regression models. The same library that you would use to develop a
classification model may also be used to generate a regression model when some parameters are changed.
Although decision tree-based categorization models are simple to understand, they lack robustness. The huge
variance of decision trees is a key issue. A little modification in the training dataset can result in a completely
different decision tree model. Another drawback is that they have lesser prediction accuracy than other
classification models, such as Random Forest models (for which decision trees are the building blocks).

Naive Bayes
Naive Bayes is one of the most common machine learning algorithms that is often used for classifying text
into categories. Naive Bayes is a probabilistic classification algorithm as it uses probability to make predictions
for the purpose of classification. Naive Bayes is one of the easiest classification algorithms. The Bayes
Theorem underpins the Naive Bayes Classifier (Bishop, 2016). According to the Bayes Theorem, the
conditional probability of a result may be estimated using the conditional probability of the outcome's cause.

P(BJA)-P(a)

P(AIB) = "L

Eq. 2.26

Where

P(A) is the prior probability of A, i.e., the likelihood of the occurrence without taking the B into account. The
event is also known as the marginal probability of A.

P(B) is the prior probability of B, i.e., the likelihood of event B without taking event A into account. It is also
known as the marginal probability of B.

P(A|B) is the event's conditional probability given the information about the B event. It is also known as the a
posteriori probability of the occurrence since it is affected by the value of B.

P(B|A) represents the conditioned probability of event B given the knowledge about event A. It is also known
as the a posteriori likelihood of event B since it is affected by the value of A. The Naive Bayes classifier selects
the class with the best posterior probability based on the input variable.

Because it makes an assumption about the distribution of the data, the method is referred to be naive. Gaussian,
Bernoulli, or Multinomial distributions are all possible. Another disadvantage of Naive Bayes is that
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continuous features must be pre-processed and discretized by binning, which might result in the loss of
important information.

2.2.3.2. Regression

Regression predictive modelling is the task of approximating a mapping function (f) from input variables (X)
to a continuous output variable (y).

A real-value, such as an integer or a floating-point value, is a continuous output variable. These are frequently
numbers, such as amounts and sizes. A regression problem necessitates the estimation of a quantity. Real-
valued or discrete input variables can be used in a regression. A multivariate regression issue is one that has
several input variables. A time series forecasting issue is a regression problem in which the input variables are
sorted by time. Because a regression predictive model predicts a quantity, the model's skill must be expressed
as a prediction error.

There are several methods for estimating the quality of a regression prediction model, but one of the most
frequent is to compute the root mean squared error, abbreviated as RMSE (see paragraph 3.2.3 for a better
explanation).

The difficulties associated with classification predictive modelling differ from those associated with regression
predictive modelling. Regression is the process of predicting a continuous gquantity. For example, there is some
overlap between classification and regression techniques: A continuous value can be predicted by a
classification method, however the continuous value is a probability for a class label. A regression approach
can forecast a discrete value, but only as an integer number. Some approaches, such as decision trees and
artificial neural networks, may be utilized for classification and regression with little modifications. Some
approaches, such as linear regression for regression predictive modelling and logistic regression for
classification predictive modelling, cannot or should not be used for both types of issues.

In some circumstances, a regression problem can be converted to a classification problem (Salman and
Kecman, 2012). The quantity to be anticipated, for example, might be translated into discrete buckets. This is
known as discretization, and the resulting output variable is a classification with an ordered connection
between the labels (called ordinal).

Linear Regression and Logistic Regression are the most common algorithm for regression.

Linear Regression

Linear regression is a method of modelling the connection between a continuous dependent variable y and one
or more predictor variables X. One fundamental assumption is that the connection between an input variable
and an outcome variable is linear. Although this assumption may appear to be restrictive, it is frequently
feasible to alter the input or result variables in order to obtain a linear connection between the adjusted input
and outcome variables. The relationship between y and X may be represented linearly as follows (MathWorks,
2020a):

Given the training examples {x;, y;}X-,, the parameter vector B can be learnt.

y=PBo+ X B X +e¢ Eq. 2.27

where:

y is the outcome variable

xi are the input variables, fori =1, 2,...,i-1

Bi is the change in y based on a unit change in xi fori=1, 2,...,i-1

¢ Is a random error term representing the difference between the linear model and a specific observed value y.
The Ordinary Least Squares (OLS) method is a popular methodology for estimating parameters. The
Regression line is a straight line that best fits the data, with the total distance from the line to the dots (variable
values) depicted on a graph being the shortest. The Figure 2.22 describes all of the definitions for linear
regression.
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Figure 2.22 - Linear Regression

The best-fitting regression line has the equation
y =a+ bx,

where:

a is the y-intercept.

b is the slope of the line

X is an explanatory variable.

y is a dependent variable

Logistic Regression

If the dependent variable is not continuous but categorical, linear regression can be transformed to logistic
regression using a logit link function (Subasi, 2020).

Logistic regression is based on the logistic function f(y), as given in the following equation.

In the meantime, in Figure 2.23 is depicted how logistic regression works.

1  0-8-8-8——
—» S-Curve
y=0.8
0|5 - ... L I
Threshold Value
y=0.3
0 e ) —
Figure 2.23 - Logistic Regression
y
f(y) = 1jey for—o0 <y < 400 Eq. 2.28

That means when y — +oo, f(y) = 1 and when y — -oo, f(y) = 0. That's why the range is between 0 and 1.
Because f(y) has a range of (0, 1), the logistic function looks to be an acceptable function to predict the
likelihood of a specific result occurring. As the value of y grows, so does the likelihood of the result occurrence.
To forecast the likelihood of a result in any given model, y must be a function of the input variables. y is stated
as a linear function of the input variables in logistic regression.
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When the input variables are continuous or discrete, including categorical data types, but the result variable is
continuous, linear regression is appropriate. Logistic regression is a preferable alternative if the outcome
variable is categorical. Both approaches require that the input variables are linear additive functions. If this
assumption is not met, both regression approaches perform badly. Furthermore, the assumption of normally
distributed error terms with a constant variance is significant in linear regression for many of the statistical
conclusions that might be explored. If the different assumptions do not appear to hold, the data must be
transformed appropriately. Although a set of input factors may be a reasonable predictor of the end variable,
the analyst should not conclude that the input variables are directly responsible for the outcome.
Multicollinearity occurs when multiple of the input variables are substantially connected with one another.
Multicollinearity frequently results in coefficient estimates that are relatively big in absolute magnitude and
may be pointing in the wrong direction (negative or positive sign). When feasible, eliminate the bulk of these
correlated variables from the model or replace them with a new variable that is a function of the associated
variables. In the situation of multicollinearity, it may be necessary to limit the magnitudes of the calculated
coefficients.

Ridge regression, which penalizes the magnitude of the coefficients, is one strategy that may be used. The goal
of fitting a linear regression model is to determine the coefficient values that minimize the sum of the residuals
squared. A penalty term proportionate to the sum of the squares of the coefficients is added to the sum of the
residuals squared in ridge regression.

A comparable modelling approach is lasso regression, in which the penalty is proportional to the total of the
absolute values of the coefficients. In the usage of logistic regression, only binary outcome variables were
investigated. Multinomial logistic regression can be used if the result variable has more than two states.

2.2.3.3. Clustering

Clustering techniques are unsupervised in the sense that the labels to be applied to the clusters are not
determined in advance by the data scientist. The data structure specifies the things of interest and dictates how
the objects should be grouped. Clustering is a technique that is frequently used in exploratory data analysis.
There are no predictions made during clustering. Clustering algorithms, on the other hand, discover similarities
between items based on their qualities and arrange the comparable objects into clusters. Clustering methods
are used in marketing, finance, and a variety of scientific fields. A popular clustering method is k-means.
K-means

Given a collection of items, each having n quantifiable properties, k-means (Tan et al., 2019) is an analytical
approach that discovers k clusters of objects based on their closeness to the centre of the k groups for a given
value of k. The arithmetic average (mean) of each cluster's n-dimensional vector of characteristics is used to
calculate the centre. This section discusses the algorithm for calculating the k means as well as how to apply
this technique to various use situations. After identifying the clusters, labels may be applied to each cluster to
categorise each group depending on its features. To explain the procedure, consider each item that corresponds
to the location (X, y), where x and y signify the two qualities and i = 1, 2,... M. A centroid is the location that
corresponds to the mean of a particular cluster of m points (m ~ M). A centroid is a location in mathematics
that corresponds to an object's centre of mass. The k-means approach for finding k clusters may be broken
down into six parts. (Figure 2.24). (a) The data points to be clustered (solid blue circles) in a bidimensional
feature space. (b) For random cluster center placements (aqua, green, and red hollow circles), each data point
can be assigned to the nearest center. (c) Three decision boundaries split the bidimensional space into three
parts (black dashed lines). (d) Each center advances to the centroid of the data points allocated to it at the time
(movements shown by the black arrows). (e) The data points' revised cluster assignments are derived based on
the new center positions. Steps (c) and (d) are repeated until convergence is reached. (f) finally, the cluster
allocations.
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Figure 2.24 - k-means steps with a bidimensional example (Chen and Lai, 2018)

To extend to n dimensions, consider M objects, each of which is characterized by n characteristics or property
values (p1, pz,...pn). Then, for i =1,2,...,M, object i is described by (pi1, piz,...pin). In other words, there is a
matrix with M rows for the M objects and n columns for the attribute values. To extend the previous procedure
of locating the k clusters from two dimensions to one dimension, the following equations offer formulae for
determining the distances and positions of the centroids for n > 1. For a given point, pi,at (pi1, Piz,...pin) and a
centroid, q, located at (g1, gz,...qn). Equation expresses the Euclidean distance, d, between p; and g.

d(pi,q) = \/Z}Ll(pi,— —q,—)2 Eq. 2.29

Equation shows how to determine the centroid, g, of a cluster of m points (pi1, Piz,...pin)-

Yil,Pi1 2ieqDi YiZ1 Pin
(ql'qZ""qn)= ( 1p1’ 1p2l"'l 1p )

m m m

Eq. 2.30

The value of k can be determined by a reasonable guess or a predetermined criterion. The structure of the data
would be explained by k + 1 clusters. Following that, a heuristic based on the Within Sum of Squares (WSS)
metric is evaluated to get a relatively optimal value of k. WSS is defined as shown in Equation using the
distance function given in Equation.

) i1\ 2
wss = 3, d(pi,a®)” = T, T (pyga”) Eq. 231

WSS is the sum of the squares of the distances between each data point and the nearest centroid. The term q®
refers to the centroid that is closest to the ith point. The WSS is modest if the points are substantially near to
their respective centroids. As a result, if k + 1 clusters do not significantly lower the value of WSS compared
to the situation with just k clusters, adding another cluster may be of little advantage.

The k-means method is sensitive to the first centroid's starting position. As a result, it is critical to conduct the
k-means analysis numerous times for a given value of k to guarantee that the cluster results represent the
overall minimum. WSS

Other functions to consider are the cosine similarity and Manhattan distance functions. The cosine similarity
function is frequently used to compare two papers based on the frequency of each word in both publications.
Equation expresses the Manhattan distance, di, between p and g.

di(p, @) = XjLi|pj — g Eq. 2.32

If the Manhattan distance is required for a clustering study, the median is a better choice for the centroid than
the mean.

Hierarchical Clustering

Hierarchical Clustering is an alternative approach to k-means clustering that uses the approach of finding
groups in the data such that the instances are more similar to each other than to instances in other groups. This
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measure of similarity is generally a Euclidean distance between the data points, but Citi-block and Geodesic
distances can also be used.

The data is broken down into clusters in a hierarchical fashion. The number of clusters is 0 at the top and
maximum at the bottom. The optimum number of clusters is selected from this hierarchy. Hierarchical
partitions can be visualized using a tree structure (a dendrogram). It does not need the number of clusters as
an input and the partitions can be viewed at different levels of granularities (i.e., can refine/coarsen clusters)
using different K.

To measure the dissimilarity between two or more clusters of observation, a number of different cluster
agglomeration methods (i.e, linkage methods) have been developed to answer to this question (Scikit-learn,
2020). The most common types methods are explained and then depicted with 2-clusters example in Figure
2.25:

- Maximum or full linkage clustering: It computes all pairwise dissimilarities between elements in cluster
i and elements in cluster j, and uses the biggest value (i.e., maximum value) of these dissimilarities to
calculate the distance between the two clusters. It produces more compact clusters.

- Minimum or single linkage clustering: This method computes all pairwise dissimilarities between
elements in cluster i and elements in cluster j, and uses the least of these dissimilarities as a linkage
criteria. It produces lengthy, "loose" clusters.

- Mean or average linkage clustering: This method computes all pairwise dissimilarities between elements
in cluster i and elements in cluster j, then uses the average of these dissimilarities to calculate the distance
between the two clusters.

- Centroid linkage clustering: This method computes the dissimilarity between the centroid of cluster i (a
mean vector of length p variables) and the centroid of cluster j.

- Ward's approach of minimizing variance: It reduces the overall within-cluster variance. Each phase, the
pair of clusters with the shortest between-cluster distance is merged.
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DBSCAN

Partitioning methods and hierarchical clustering work for finding spherical-shaped clusters or convex clusters.
In other words, they are suitable only for compact and well-separated clusters. Moreover, they are also severely
affected by the presence of noise and outliers in the data. When the number of clusters, k, is not specified,
DBSCAN (density-based spatial clustering of applications with noise) (Ester et al., 1996) can be used to link
samples using density diffusion. A dense zone is formed by points that are x distance apart and create a
collection of core points. A cluster is formed by points that are x distance apart, both core and non-core. Points
that cannot be reached from any of the core points are referred to as noise points. It is a clustering technique
based on density that detects dense regions in data as clusters. Dense regions are described as places where
points may be reached from one another. The method employs two variables: € and minpts. & defines the
neighbourhood around a data point while minpts is the minimum number of neighbours (data points) within &
radius. Larger the dataset, the larger value of minpts must be chosen. Figure 2.26 shows an example of the
DBSCAN functioning.

Border point

Maoise paint

Core point

MinPts=a

Figure 2.26 - DBSCAN

As a general rule, the minimum minpts can be derived from the number of dimensions D in the dataset as,
minpts >= D+1. The minimum value of minpts must be chosen at least 3.If the distance between two data
points is less than ¢, they are within reach of each other. A cluster must also have a certain number of points
in order to be termed a cluster. Core points are those that have the fewest number of points within ¢ distance.
Noise points are spots that cannot be reached by any cluster. The density-based nature of DBSCAN makes it
resistant to outliers. It does not, however, perform well when dealing with clusters of varied density.

2.2.3.4. Anomaly Detection

The technique of discovering outer points or observations that diverge significantly from the rest data is known
as anomaly detection, sometimes known as outlier identification. Anomaly detection can range from simple
outlier detection to complex machine learning algorithms trained to uncover hidden patterns across hundreds
of signals. Usually, these outer points have a fascinating history to tell, and by analysing them, one may grasp
the system's severe functioning conditions. It is a useful technique to deal with imbalanced data sets in which
anomalies are often difficult to detect visually from raw data The dataset is trained on a single class (normal
or majority class), and the method draws a line along this class. During the training, the other class is entirely
ignored. Anything discovered outside of this decision threshold is referred to as a novelty or an outlier (Lee
and Cho, 2006). To minimize too many false positives during the anomaly discovery process, proper anomaly
detection should be able to discern signal from noise.
Several approaches to designing anomaly detection algorithms require little or no anomalous data
(MathWorks, 2020b):
- Thresholding. Thresholding detects anomalies when data crosses a certain threshold on a statistical
indicator. Examples include calculating the standard deviation over recent windows in time series data,
applying a control chart to a signal, detecting abrupt changes in a signal using change point detection,
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and obtaining robust estimates of the data distribution and identifying anomalies as samples on the
distribution's fringes. Thresholding on statistical measures is an excellent place to start, but it is more
difficult to apply to multivariate data and is less robust than machine learning techniques to anomaly
identification. Statistical estimates that are resistant to outliers, such as robust covariance, will produce
superior results.

- SVMs with a single class. Support vector machines with a single class find separation hyperplanes
that minimize the distance between classes. Training only one class produces a model of data that may
be deemed normal, allowing you to identify anomalies in the absence of labelled abnormalities. This
method, like others based on distance, requires numeric characteristics as input and will not function
well with high-dimensional data.

- Isolation forests grow trees that isolate each observation into a leaf, and an anomaly score is calculated
as the average depth of your sample: normal samples make fewer judgments than anomalous samples.
This approach works with high-dimensional data and supports a combination of numeric and category
variables.

- Autoencoders. Autoencoders are neural networks that have been trained on normal data and seek to
recover the original input. A normal input will be properly reconstructed by the trained autoencoder.
A significant disparity between the input and its reconstruction might suggest an error. Signal and
picture data may both be encoded using autoencoders.

Depending on whether the data can be labelled, anomaly detection can be addressed in either a supervised or
unsupervised manner.

2.2.3.5. Random Forest

It is a tree-based approach that employs a large number of decision trees constructed from randomly chosen
sets of features. It is a combination of tree predictors such that each tree depends on the values of a random
vector sampled independently and with the same distribution for all trees in the forest (Sankhye and Hu, 2020).
A special case of random forest uses bagging on decision trees, where samples are randomly chosen with
replacement from the original training set. It is very uninterpretable, in contrast to the basic decision tree, but
its overall strong performance makes it a popular algorithm. Ensemble approaches include random forests. The
Figure 2.27 fully expresses the Random Forest's procedure and highlights the distinction between the classifier
and the regressor: once the nth Decision Trees are computed, the class with the highest number of votes is
determined for the classifier, whereas for the regressor, average votes are used to obtain the prediction.
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Figure 2.27 - Random Forest
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2.2.3.6. Dimensionality Reduction

Feeding a high number of features straight into a machine learning algorithm is often counterproductive since
some features may be useless or the "intrinsic" dimensionality may be less than the number of features. It is
one of the non-supervised dataset pre-processing techniques in automated learning. It is important in Machine
Learning to remove redundant (related) information from the dataset that is less or not very relevant to the
issue to be addressed. It is undeniably simpler and less expensive to train an algorithm with a smaller data
space. So it is a workaround for the curse of dimensionality (Chen, 2014).

Reducing data dimensionality entails not just removing some size (noise), but also integrating redundant and
relevant information.

Dimension reduction can be accomplished using Features Selection and Features Extraction (with Principal
Component Analysis (PCA) and Singular Value Decomposition (SVD)) (Huang et al., 2019; Velliangiri et al.,
2019).

Feature selection

Feature selection is used to remove characteristics that are irrelevant or redundant from your dataset. The
primary distinction between feature selection and extraction is that feature selection retains a subset of the
original characteristics while feature extraction generates entirely new ones. Some supervised algorithms, such
as Regularized Regression and Random Forests, already include feature selection. Feature selection can be
unsupervised (e.g., Variance Thresholds) or supervised as a stand-alone activity (e.g. Genetic Algorithms).
Variance thresholds exclude characteristics whose values do not vary much from observation to observation
(i.e. their variance falls below a threshold). These features are of limited use. Because variance is scale
dependent, normalization is required. Genetic algorithms (GA) are a large family of algorithms that may be
tailored to specific needs. They are evolutionary biology and natural selection-inspired search algorithms that
combine mutation and cross-over to rapidly explore huge solution spaces. GAs have two key applications in
ML. The first is for optimization, such as determining the ideal neural network weights. The second is for the
selection of supervised features. In this application, "genes" represent individual characteristics, whereas
"organisms" represent a potential group of traits. Each organism in the "population™ is assigned a fitness score,
which is based on model performance on a hold-out set. The most fit creatures survive and reproduce, and this
cycle continues until the population converges on a solution several generations later.

Feature extraction

Feature extraction is used to create a new, smaller collection of features that captures the majority of the
important information. Again, feature selection retains just a subset of the original features, whereas feature
extraction generates new ones. Some algorithms, such feature selection, already include feature extraction.
Deep Learning is the finest example, since each buried neural layer recovers progressively meaningful
representations of the raw input data.

PCA

PCA translates the original data space into a lower-dimensional space while retaining as much information as
feasible. The PCA simply selects a subspace that best preserves the data variance, with the subspace
determined by the data's covariance matrix's dominant eigenvectors.

SVvD

The SVD is linked to PCA in that it produces the dominating left singular vectors that form the same subspace
as PCA for the cantered data matrix (features against samples). SVD, on the other hand, is a more versatile
method since it can perform things that PCA cannot. It might be the most popular technique for dimensionality
reduction when data is sparse. Sparse data refers to rows of data where many of the values are zero. This is
often the case in some problem domains like recommender systems where a user has a rating for very few
movies or songs in the database and zero ratings for all other cases. Both techniques work on a linear mapping
but identify a completely different segment. Therefore, alternative and complementary solutions with pros and
cons. The PCA technique preserves the information while the LDA technique better distinguishes the two
classes.
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2.2.3.7. Deep Learning with Neural Networks

Neural networks spread in 1985 due to their parallel and distributed processing ability. However, research in
this sector has been hampered by the ineffectiveness of the back-propagation training technique, which is
extensively employed to optimize neural network parameters. In ML, SVM and other simpler models that can
be readily taught by addressing convex optimization problems rapidly supplanted neural networks.

New and improved training strategies, such as unsupervised pre-training and layer-wise greedy training, have
sparked renewed interest in neural networks in recent years. Increased computational capability, such as
graphics processing units (GPU) and massively parallel processing (MPP), has also fuelled the resurgence of
neural networks. The resurgence of neural network research has resulted in the development of models with
hundreds of layers. Shallow neural networks, in other words, have developed into deep learning neural
networks. Deep neural networks have had a lot of success with supervised learning. Deep learning performs
as good as, if not better than, humans in voice and picture recognition. Deep learning, when applied to
unsupervised learning tasks such as feature extraction, pulls features from raw pictures or voice with far less
human involvement. A neural network is made up of three layers: the input layer, the hidden layers, and the
output layer. The input and output layers are defined by the training samples. When the output layer is a
categorical variable, the neural network is a technique for dealing with classification difficulties. The network
may be used to do regression when the output layer is a continuous variable. When the output layer and input
layer are the same, the network may be used to extract inherent characteristics. The model complexity and
modelling capability are defined by the number of hidden layers. The activation function is a very important
feature of an artificial neural network, they basically decide whether the neuron should be activated or not. A
linear equation is simple to solve but is limited in its capacity to solve complex problems and have less power
to learn complex functional mappings from data. A neural network without an activation function is just a
linear regression model. The activation function does the non-linear transformation to the input making it
capable to learn and perform more complex tasks.
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Figure 2.28 - Simple Neural Network functioning

In the above Figure 2.28, (Xi,X2,...,xn) is the input signal vector that gets multiplied with the weights
(W1,Wo,...,wn). This is followed by accumulation (i.e., summation + addition of bias b). Finally, an activation
function f is applied to this sum.
Some activation functions are (Gupta, 2020):
- Identity activation function (linear function) with equation f(x) = x and range (-o0,+0). As shown in
the above figure the activation is proportional to the input. . This can be applied to various neurons

and multiple neurons can be activated at the same time.

1
1+e™*
the function curve looks like a S-shape. Sigmoid have major drawbacks and difficulties in application

than linear activation function.

- Sigmoid activation function (non-linear function) with equation ¢(x) = and range (0,1) so that

1-e~2
1+e~2%
optimization criteria is easier than Sigmoid, but it suffers vanishing gradient problem.

- Hyperbolic tangent activation function with equation f(x) = and range (-1,1). Here
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- Softmax activation function with equation o(z); = where z is a vector of the inputs to the

e

ZII§=1 e’k
output layer, j indexes the output units, so j=1, 2, ..., K. It is also a type of sigmoid function but it is
very useful to handle classification problems having multiple classes and it ideally used in the output
layer of the classifier where we are actually trying to attain the probabilities to define the class of each
input

Deep Neural Networks (DNN) are in the frontline of data-driven approaches. DNNs have also been shown to

be useful for predicting the potential state of dynamical systems (Raissi et al., 2017). The lack of

interpretability of the resulting model is a major drawback of DNNs and related data-driven methods; they are

based on estimation and do not have governing equations or easily interpretable models in terms of the original

variable collection.

2.2.3.8. Gradient Boosting

Gradient Boosting Regression Trees is one of the most effective machine learning models for predictive
analytics because they are a flexible, non-parametric learning strategy for classification and regression (Zhang
et al., 2021). The strengths of two techniques, regression trees and boosting approaches, are combined in
boosted regression trees. Boosted regression trees contain key benefits of tree-based approaches, such as
managing diverse types of predictor variables and accepting missing data. They do not require previous data
transformation or outlier removal, can fit complicated nonlinear relationships, and automatically handle
predictor interaction effects. Figure 2.29 shows the learning process through gradient boosting: (1) The first
distinguishing feature of gradient boosting is that it begins with a dummy estimator. Basically, it computes the
average value of goal values and generates preliminary projections. Calculates the difference between the
predicted and actual value using predictions. This is referred to as residues. (2) Instead of training a new data
estimator to forecast the target, train an estimator to predict the first predictor's residues. This predictor is often
a decision shaft with particular constraints, such as the maximum number of leaf knots permitted. If the
majority of the instance residues are in the same leaf knot, the leaf node value is taken from their media and
the USA. (3) To generate predictions, for each instance, add the value of the basic estimator to the predicted
residual value of the instance's decision shaft to get a new forecast. Then, compute the residues between the
predicted and actual values once more. (4) This procedure is continued until either a specified threshold is
attained or the residual difference is extremely tiny. (5) To forecast an unseen instance, it sends it to each
decision-making tree, sums their forecasts, and adds the value of the fundamental estimator.
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Figure 2.29 - Gradient Boosting (Zhang et al., 2021)

2.2.3.9. Other techniques

Bagging (or bootstrap aggregating) (Sutton, 2005) use the bootstrap approach, which samples a dataset with
replacement from a uniform probability distribution. "With replacement™ signifies that when a sample is
chosen for a training or testing set, it is maintained in the dataset and can be chosen again. Because of the
replacement sampling, certain samples may appear several times in a training or testing set, while others may
be absent. On each bootstrap sample, a model or base classifier is trained individually, and a test sample is
allocated to the class with the most votes.

Boosting (or Ada Boost) (Sutton, 2005), like bagging, utilizes classification votes to aggregate the output of
individual models. Furthermore, it merges models of the same type. Boosting, on the other hand, is an iterative
technique in which the performance of prior models influences the performance of the new model.
Furthermore, boosting gives each training sample a weight that indicates its value, and the weight can alter
adaptively at the conclusion of each boosting session. Bagging and boosting have been demonstrated to
outperform decision trees.

Using association rules, patterns can be discovered from the data that allow the association rule algorithms to
disclose rules of related items. The research of association rules started as early as the 1960s. Early research
by (Hajek et al., 1966)introduced many of the key concepts and approaches of association rule learning, but it
focused on the mathematical representation rather than the algorithm. The framework of association rule
learning was brought into the database community by (Agrawal et al., 1993). Apriori is the main focus of the
discussion of association rules. Apriori is one of the earliest and the most fundamental algorithms for
generating association rules. It pioneered the use of support for pruning the itemset and controlling the
exponential growth of candidate itemset. Shorter candidate item sets, which are known to be frequent item
sets, are combined and pruned to generate longer frequent itemset. This approach eliminates the need for all
possible item sets to be enumerated within the algorithm, since the number of all possible itemset can become
exponentially large. One major component of Apriori is support.

2.2.3.10. ML techniques comparison

The literature abounds with reviews or case studies that compare various ML techniques, both qualitatively
and quantitatively, also in production processes (Almanei et al., 2021; Amornsamankul et al., 2019; Baumann
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etal., 2019; Fahle et al., 2020; Karmaker Santu et al., 2020; Komputer et al., 2019; Rosalina, 2019; Stief et al.,
2019; Wuest et al., 2016).

Taking into account the primary techniques outlined above, Table 2.5 summarizes some of the most essential
characteristics that a practitioner must consider when selecting the most suitable algorithm.

Table 2.5 - Ranking of the main ML algorithm according to the most important characteristics

Training Prediction or  Quantity Tolerance to Tolerance to missing, Ease of Ease of
Algorithm Classification  of data . . unrelated, redundant . . Power
speed - noise/outliers - interpretation use
speed handling attributes
Linear Regression 9 9 9 5 8 9 9 5
SVM 7 7 5 6 9 6 6 8
K-NN 10 2 6 5 8 9 8 5
K-Means 7 7 7 4 8 5 6 6
Naive Bayes 9 8 9 8 2 8 7 4
Decision Trees 8 9 8 4 4 8 7 8
Gradient Boosting 6 6 7 6 6 6 6 9
Graph-based 4 4 3 8 6 9 3 7
Random Forest 3 2 9 7 4 4 6 9
Neural Networks 3 7 4 7 3 3 4 10

The comparison was performed using the literature and a summary of the primary benefits and drawbacks of
each of the following techniques. The chart illustrates that Linear Regression gets the highest score, whereas
Gradient Boosting and Neural Networks are powerful tools but are difficult to apply, tune, and interpret.

2.3. ADVANTAGES AND RESEARCH GAPS
2.3.1. Model-Based Approaches

The models based on thermodynamic analyses, thus based on discrete variables, represent an innovative and
interesting strategy for maximizing the sustainability of manufacturing system performances while facilitating
the management of new smart manufacturing processes, thus driving practitioners to employ a suitable sensing
system and information structure for real-time monitoring, thus combining model-based approaches with data-
driven ones and gathering a comprehensive picture.

LCA, described in paragraph 2.1.1, is regarded as a leading eco-design technique since it allows for in-depth
analysis of each component of a product or service, allowing for an exploration of the nature of the whole life
cycle. It aids in the identification of the most influencing systems and stages, as well as providing a clear image
of the issues that must be remedied by the action goals. It may be used to improve existing products or to guide
decision-making in the development of new ones (Alberto Navajas et al., 2017). Measurement of consumption
and effects, which enables ongoing development and improvement of goods and processes not only from a
technical but also from an environmental standpoint, is an expression of responsibility for all stakeholders.
Because it sums up quantities, this approach is based on linear equations. LCA has certain limitations as well.
The first is that it is more oriented toward the quantification of resources depleted during the process, but does
not provide information on efficiency and potential margins for improvement; the second is that it relies on
various datasets relating to general or generic results, regardless of the specific process assessed. If data
collection is inadequate or there aren't enough data accessible, the study won't be able to draw meaningful
results. The third point is that LCA evaluations are focused on assumptions and scenarios since they employ a
simplified model to represent the local environment.

The inventory phase is, undoubtedly, the most time-consuming and resource-intensive, as it may include both
upstream and downstream activities (resource collection, processing, and transport) (product consumption and
disposal). Upstream and downstream data might be available in opensource or payment databases, such as
Ecoinvent (payment, but the most extensive), ELCD (payment), USLCI (opensource), and so on, to enable
data gathering and full implementation of the LCA. SimaPro, Gabi, and OpenLCA software assist users in
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doing the evaluation in a more direct and straightforward manner (Dincer and Bicer, 2018). They obviously
require databases to function and are thus inaccessible to any practitioner.

With paragraph 2.1.2, the benefits of employing exergy for analysing efficiency, environmental effect, and
sustainability have been illustrated. Exergy ideas are thought to play an important role in assessing and growing
the usage of sustainable energy and technology. Although decisions about the design and modification of
energy systems are typically concerned with not only efficiency but also economics, environmental impact,
safety, and other issues, exergy should be useful to engineers and scientists, as well as decision and policy
makers, in design and improvement activities.

An improved knowledge of energy-related environmental concerns provides a substantial challenge, both in
terms of allowing problems to be handled and ensuring that solutions are beneficial to society and energy
policymaking. The potential use of exergy analysis in addressing and resolving energy-related difficulties is
enormous, and exergy can play a role in energy-related decision and policy making.

The paragraph 2.1.3 provided a method for analysing the benefits and drawbacks of both EA and LCA, as well
as their differences and similarities, as well as an analysis of the probable manner of interaction between the
two. It should be highlighted that none of the methodologies investigated are comprehensive in every area of
any industrial scenario. Both procedures cannot be substituted for one another; rather, they are complimentary
and should be carried out concurrently, or better, in an integrated manner. The most consistent approach is to
conduct both analyses in a systematic manner, including the same initial assumptions, objectives, phases,
processes, streams, boundaries, and so on, and then, if necessary, combine the results of both analyses to make
the fewest assumptions and approximations and lose as little information as possible. The hybrid EA-LCA
methods were developed to achieve a holistic view of the system/process to be analysed; however, the lack of
appropriate indicators and a well-established set of calculations, as well as the lack of complete and up-to-date
data to overcome uncertainty analysis, are frequently problematic, resulting in a poor scientific consistency in
the evaluation. However, discovered ambiguities and weaknesses can serve as a solid foundation for further
refining current procedures, making it simpler to select the best suited approach based on the practitioner's
needs. These types of data are not immediately deductible from a multi-criteria analysis or an individual
performance/sustainability indicator.

To be fully aware of the sustainability assessment, or rather, the environmental performance of the
process/system, it is necessary to strengthen the physical and mathematical concepts that tie the EA to the
LCA. The issue of EA's complete integration with LCA remains unresolved, and a solution appears to be a
long way off since a mathematical convolution of linear and non-linear laws (that does not need significant
assumptions and approximations) has not yet been resolved.

Consider the first law of thermodynamics and the generic system depicted in Figure 2.30:

dU =8Q - 8W Eq. 2.33

U |
INGw

Figure 2.30 - System status and its internal energy U

8Q \ — 8R

where d is an exact differential associated with state functions (the state functions do not rely on the route of
the transformation), and is a non-exact differential associated with values that are not state functions but are
dependent on the path of the transformation (Smith et al., 2001). U is the system's internal energy, Q is the
heat contributed to the system, W is the work done by the system, and R is the heat wasted owing to irreversible
processes.
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For a reversible process:

5Q = T-dS Eq. 2.34
and

SW = P-dV Eq. 2.35
SO

dU =T.dS - P-dV Eg. 2.36

According to the second law of thermodynamics, the entropy of every isolated system always rises. Isolated
systems grow spontaneously toward thermal equilibrium. This is referred to as the system's highest entropy
state.

dQ <T-dS Eq. 2.37

The first law of thermodynamics (dU = dQ + P-dV) and the second law of thermodynamics (dQ < T-dS)
(Feynman et al., 2011) may now be merged into a single mathematical statement known as the combined law
of thermodynamics (Eq. 2.38)

dU - T-dS + P-dV <0 Eq. 2.38

It is worth noting that these equations were developed for a reversible adiabatic process, but they only depend
on the final state, therefore the change in characteristics during a given change of state is the same for an
irreversible process as for a reversible process. As a result, they can also be utilized for irreversible processes.

dU - T-dS + P-dV + SR <0 Eq. 2.39

For increasingly complex systems, adding extra material to the system itself can also affect the status. When
generalized forces act or species migrate beyond the system border, the generalized combined law of
thermodynamics assumes the form (Gladyshev, 2015). The combined law of thermodynamics for complex
systems is the Eq. 2.40

T-dS =dU+P-dV + Zka'ka-l' Zkukdmk Eqg. 2.40

Here, T denotes temperature, S the entropy, U the internal energy, P pressure, V volume, Xy any other
generalized type of work except pressure, Xk any generalized coordinate except volume, w chemical potential,
mx the mass of the k-th substance, which can be replaced by the number of moles.

Starting from Clausius-Planck inequality for the definition of entropy (Eq. 2.41)

BdQ

AS > fA T Eq. 2.41
that in differential form it becomes
ps+V%—p% >0 Eq. 2.42

Where g denotes the internal energy transfer for conduction and r denotes the particular rate of energy supply
or energy loss by radiation. The Helmholtz free energy (a = u — Ts) and the first law of thermodynamics for
continuous systems (pu=-Vq—P: Vv + pr).

The differential form of the inequality becomes

D=—pla+sT)—P:V-12 >0 Eq. 2.43

The Clausius-Duhem inequality (Demirel, and Sieniutycz, 2003), depicted in Eq. 2.43, gives the general form
of the combined law of thermodynamics articulated for a continuous system, where D is the dissipation and
the three components reflect energy, mechanical, and thermic dissipation, respectively. The continuous form
can only be resolved in a punctual, distinct manner during a fixed time span.
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This inequality expresses the irreversibility of natural processes, particularly when energy dissipation is
involved. The dissipation inequality is only expressed for the entire system or for each control volume (sub-
components). Clausius inequality is a proposition that applies to closed systems. In his study (Bhalekar, 1996)
established that it is not possible to apply the Clausius inequality equivalent for open systems, but there is an
operational counterpart of the Clausius inequality at the local level that is clearly sufficient to build an
irreversible thermodynamic analysis. This implies that the inequality does not apply to all non-equilibrium
settings, a claim made by Meixner in 1975 (Meixner, 1973).

In an ideal case the entropy of the system under consideration and the entropy of the system with which it
interacts (and that it performs work on it) are equal in the form, but they have opposite sign, because one yields
heat and the other acquires it. As a result, the total change in the system is zero. In the real case, however, the
total change of entropy is positive, since the value of entropy of the system that performs work (which is
positive) is greater than that of the system under consideration (negative). Therefore, in a real case, a
transformation that takes place in a non-isolated system causes a decrease in entropy in the physical system,
and an increase in entropy in the universe.

In an ideal instance, the entropy of the system under study and the entropy of the system with which it interacts
(and on which it does work) are identical in the form, but have opposite signs, because one yields heat and the
other gains it. As a result, the overall change in the system is zero. In practice, however, the overall change in
entropy is positive since the value of entropy of the system that produces work (which is positive) is larger
than that of the system under consideration (negative). In practice, a transformation that occurs in a non-
isolated system generates a drop in entropy in the physical system and an increase throughout entropy in the
universe.

2.3.2. Data-Driven Approaches

Data-driven approaches allow to analyse parameters within different fields, e.g. product, process and logistics,
and enable the extrapolation of forms of cause-effect interactions that traditional methodologies (i.e. statistical
models, physical models) cannot identify on their own. In this way, quality issues may also be defined and
managed along with sustainability concerns.

While model-based approaches rely on equations of states and boundary conditions to describe reality, data-
driven approaches can discover many hidden relationships between data and gather previously unknown
knowledge. But yet, they have their drawbacks: the most significant disadvantage is the difficulty in
interpreting the results. So, these two approaches are not mutually exclusive, in fact more and more they are
used in conjunction to solve problems.

Among the benefits of using data-driven techniques in manufacturing businesses are the elimination of
mistakes and biases in decision-making, increased efficiency, improved communication, and the promotion of
transparency and understanding. These correspond to drawbacks, such as the fact that each model must be
customized for each project. There is currently no invariant model that can adapt to any environment without
human intervention. Furthermore, a data-driven business culture might cause people to underestimate their
own judgment and experience. During data analysis, it's crucial to maintain a healthy scepticism about results
that look too wonderful to be true, or, conversely, too bad to be real. If something appears to be off, it is a good
indication that it is. When you look at your data, you want to make sure that everything is in order and that
nothing is illogical. Mistakes happen, and data is no exception. A fully automated system complicates this
process and opens the door to possible misinterpretations of the procedure's reality. It takes time to learn the
ability to correctly read and analyse data, and the potential of working with low-quality data is extremely high.
It is, nevertheless, critical if you want your data to realize its maximum potential. Data visualization tools may
assist you in quickly identifying linkages, trends, and correlations in your data. It draws the most significant
information to the user's initial attention, allowing even individuals who are unfamiliar with data to better
properly grasp its meaning (Dahlin, 2021).
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Further issues address the economic factor: while it helps to increase the quality and efficiency of resource
production and consumption, the initial investment capital is costly. The development of these technologies
necessitates a significant investment. Each step along the process necessitates an investment to ensure success.
For starters, the algorithms must be created by a team of developers. Then there's the portion where you have
to teach new individuals on the machine learning language and the implementation process. Finally, you will
require industry-specific machinery. And all of this comes at a hefty price.

Among Smart Technologies, 10T and Al enable businesses to optimize the outcomes obtained from the data-
based approach. On a practical level, the application lines for Al technologies are primarily three: increased
operational efficiency, improved product quality and safety, and a lower environmental impact of the entire
production chain. The most complex challenges arise when it comes to having a non-intrusive architecture to
gather data from older industrial plants (Farooqui et al., 2020). Exploiting big data intelligence to gain a
competitive edge would necessitate addressing new problems, such as how to ensure data accuracy and
significance across lengthy and dynamic supply chains (Bogle, 2017).

10T technology has created exciting opportunities to develop powerful tools for monitoring and management
production through sensor systems. However, there are still difficulties in the application of this technology,
such as, for example, what kind of data needs to be collected and how to properly acquire it, because there are
multiple consumption points and lots of sub-processes in the system, and how to specifically analyse the data
collected from multi-sensors in order to determine the real operational state of the overall system and all the
sub-systems as well, as the data acquired by a single sensor (e.g. a power sensor, a temperature sensor) may
not provide sufficient information. For a hierarchical structure such as those developed by (Lee et al., 2015),
process inefficiencies and effect-relationships can be detected and optimized automatically.

Finally, there is no standardized method for organizing datasets, analytical models, and interpreted results.
More intelligence functions will be required to manage the algorithms and their input/output if the platform
presented in this work is used by other organizations. Concerning the algorithms, as the models evolved, they
got increasingly sophisticated. So, one looks at a model simply from a performance standpoint, neural
networks, Gradient Boosting, and so on are typically the best models since they are relatively new. However,
various models perform better with different types of data. For example, if features are very independent,
Naive Bayes will perform well. SVM is useful when there are too many characteristics and the dataset is
middling in size. If the dependent and independent variables have a linear relationship, linear regression,
logistic regression, and SVM are appropriate. k-NN can be implemented if the dataset is tiny and the link
between the dependent and independent variables is unknown. As a result, before deciding on which ML
method to utilize, one must first understand and analyse the data. If you can't decide on a single machine
learning algorithm, you can analyse all of them and compare their accuracies on training and test sets before
settling on one.

There are methods that can be used for multiple applications, such as regressors and classifiers, which may be
employed supervised or unsupervised. A beginner practitioner has a tough time determining what strategy to
take right away, especially if the goal of the study is not completely stated and the raw dataset does not provide
any information on the sort of data on which you must work. Many websites and platforms now offer free
cheat-sheets that can help to choose the best algorithm according to the requirements or to the properties of the
dataset.

However, the first implementations should not be considered as certain because an initially inadequate
approach may be appropriate if performed with the necessary data pre-processing and/or with the correct tuning
of hyperparameters.

The graphic in Figure 2.31 below is a Scikit-Learn cheat-sheet example, which is quite handy if you are in the
initial weaponry and dataset and know essentially the size and kind of target.

85



classification gy scikit-learn

approximation NOT
svVC . WORKING

algorithm cheat-sheet
Ensemble S )
Classifiers " SGD get
ok [§ KNeighbors Classifier gore
Classifier |
NO
Naive YES -
BLEED | /ﬁ" WORKING YES @K
\T/ . Linear sanees =
. sve . ﬁ“
ves categt? )

vor ﬂﬁm'
Spectral WORKING labeled Nus
Clusteri > data/
v R -
= ed
e m;e\r of
YES categories
clustering Vs
70K =
samples

Regressor

SVR(kernel="rbf")
e EnsembleRegressors

NoT /
WORKING

NO,

100k

samples

ﬁ;;ues

| should be

e YES important

mng a ¥ . RidgeRegression
uanti SVR

q p (kernel="linear’)

NO

|
NO Randomized
/_ S = PCA Isomap
<10K e Spectral
YES samples IOOkmg NOT edding
S WORKING

¥
NOT LLE

Meanshift
VBGMM

YES
10K ! . . .
W dimensionality
e SEETE)  reduction

Figure 2.31 - scikit-learn algorithm cheat-sheet (https://scikit-learn.org/stable/_static/ml_map.png)

WORKING
tough ,ﬂ;m
structy

Instead, figure 2 indicates which of the proposed methods performs better in terms of implementation speed
or forecast accuracy. It also considers dimension reduction to be a pre-processing phase if the amount of data
is large.

Unsupervised Learning: Clustering Unsupervised Learning: Dimension Reduction
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Figure 2.32 - Cheat sheet for ML algorithms depending on accuracy or implementation speed
(https://blogs.sas.com/content/subconsciousmusings/files/2017/04/machine-learning-cheet-sheet-2.png)

Because the world of ML is made up of so many tests, attempts, and adjustments to every single case study, it
is still impossible to talk about the approach and model being invariant and completely adaptive to a reality as
dynamic as industrial manufacturing. The same is true for various stakeholders, each of whom brings their
own set of skills, tools, methodologies, datasets, and objectives. The numbers are too sectoral and, at times,
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unable to speak with one another or derive a meaningful decision-making policy from their unique analyses
(Karmaker Santu et al., 2020).

It’s worth noting that smart manufacturing should focus not only on enhancing economic and environmental
sustainability, but also on improving social sustainability. As a result, process safety risk prediction can be an
integral part of smart process manufacturing (Gobbo et al., 2018; Moktadir et al., 2018). The risk evaluation
should be the first and most important phase in irregular situation management in order to develop a
preliminary profile of the risk situations to be handled. Alarm detection, workflow control, equipment fault
detection, and human activity tracking can all be effectively combined in the sense of big data analytics (Yuan
etal., 2017).

While businesses are working to improve internal know-how, this first section of the dissertation demonstrated
that manufacturing engineers need a basic method for data analytics rather than complex algorithms. These
practitioners may need assistance in determining the algorithm is best suited to their problems, what kind of
data should be collected for the algorithm, and how the collected data should be pre-processed.
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3. INTERPRETING SUSTAINABILITY

The interpretability of the results provided downstream of thermodynamic and/or LCA analysis, as well as the
metrics returned by the implementation of machine learning algorithms on process datasets, was systematically
addressed during the doctoral programme. In the following two paragraphs, what can be deduced from the
state of art analysis will be examined in detail. Following that, in the case study, explanatory applications of
these metrics and the resulting interpretations will be reported to facilitate decision-making on the business
strategies to be implemented to improve the quality and sustainability performance of the analysed industrial
processes.

3.1. INDICATORS OF REVERSIBILITY

In manufacturing, sustainable development is the process of continuously improving environmental, social,
and economic (cost-benefit) performance through time.

The greatest challenge in adopting a sustainable strategy is from the difficulty of accurately assessing and
evaluating one's work's economic, environmental, and social effect. Measuring, monitoring, evaluating, and
communicating sustainability is an important step in policymaking.

The first step that a practitioner must do is to map all the sustainability components of the system to be
analysed. Once all relevant areas have been identified, the improvement targets must be established. These
goals include, for example, limiting resources consumed and, as a result, maximizing value through decreasing
energy consumption, optimizing the plant, lowering CO; emissions, and so on. The downstream interpretation
of these interventions, as well as the resulting strategic measures to be taken, may be carried out using suitable
indicators to measure the system's success versus its objectives (i.e., the level of performance to be achieved).
“Only what gets measured gets managed”, stated Peter Drucker (Klaus, 2015).

Environmental stewardship, economic growth, social well-being, technical innovation, and performance
management are the five factors to be evaluated in the manufacturing industry, increasing from three to five.
Technology advancement accounts for firms' propensity to foster technological improvement via R&D
conscription, investment, and high-tech items. Performance management is concerned with the execution of
sustainability initiatives and policies, as well as regulatory compliance (Joung et al., 2013).

Evaluation of various dimensions, both traditional and novel, need sophisticated evaluation methodologies,
and in this case, an Exergetic Analysis (EA) combined with a Life Cycle Assessment (LCA) yields a solid
implementation plan. Among the modelling and sustainability analysis approaches available in the literature,
this article focuses on the strategic coupling of thermodynamic laws, and therefore the Exergetic Analysis, and
the Life Cycle of the product, process, service/activity. These two methodologies had been hybridized in many
ways and on multiple levels, making it difficult to immediately evaluate the data in order to generate the best
decision-making strategies for the instance analysed. (Selicati et al., 2021a).

The goal of this paragraph is to first present a thorough analysis of all metrics linked to the hybrid or combined
usage of exergy and LCA, their significance, and their application in specific use scenarios. The second goal
is to give a broader definition of the measure as a tool to aid in the understanding of the assessment findings.
Many indicators or sets of indicators published in the literature appear to be designed to offer trustworthy
information on various parts of the global sustainability environment, but it is always a difficulty when
aggregation of findings is required as an integrated measure. Their accuracy in assessing environmental, but
mainly social and economic, factors is yet unknown. The absence of full and up-to-date data and uncertainty
analysis is frequently problematic, as is the lack of scientific consistency in the assessment's interpretation.
Manufacturing processes generate material riches for people, but they also generate a lot of waste and use a
lot of resources. Waste created throughout the production process, during product usage, and after the product
has reached the end of its useful life contributes to environmental damage. As a result, decreasing resource
consumption and the environmental effect of production systems has become increasingly crucial. As a result,
striving towards sustainable production is crucial for manufacturing businesses.
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To characterize the indicators in terms of their relevance and value to sustainable production, a thorough grasp
of sustainable manufacturing is essential. Although there is no common idea of sustainable manufacturing, the
US Department of Commerce explains it as follows: “The creation of manufactured products that use processes
that minimize negative environmental impacts, conserve energy and natural resources, are safe for employees,
communities, and consumers and are economically sound” (Howard, 2011).

Sustainable production is defined as a system that integrates product and process design issues with
manufacturing, planning, and control issues in order to identify, quantify, evaluate, and manage the flow of
environmental waste, with the ultimate goal of reducing the environmental impact of the Earth's self-recovery
capability while also attempting to manage it. As a result, the sustainable approach must be linked to a change
policy in order to attain this aim with a consistent effort in a realistic time frame for current and future
generations. The 6R technique might help to achieve this shift toward new linear thinking: Reduce, Reuse,
Recycle, Redesign (or Rethinking), Recover, and Remanufacture. Reduce especially relates to the
manufacturing process, when the quantity of energy, material, and waste should be kept to a minimum. This
is related to the reuse of components after their original life cycle in order to decrease raw resource usage.
Recycling waste materials is another technique to reduce the consumption of raw materials. Recover is a
method of extending a product's life cycle, which might be extended to remanufacturing, which is the process
of restoring the product to its original state. All of this can only be accomplished by rethinking the product and
the life cycle with a long-term goal in mind (Jayal et al., 2010). The ISO standards are arranged into four parts
based on a process-based LCA approach: aim and scope definition, inventory analysis, impact assessment, and
interpretation. Because this paragraph focuses on the interpretation of sustainability, the last step in the process
takes the results of the previous three processes and makes recommendations for improving the environment
of the product or process under examination. In an ideal world, this information would give direct guidance to
constructive measures, such as the development of environmental projects. EA is used to track processes or a
specific product from a thermodynamic standpoint.

Among the optimization parameters is the reduction of exergy loss owing to system irreversibilities. EA
combined with LCA provides significant benefits: first, they provide more objective evaluation results; second,
they become a valuable tool for decision-making policies aimed at creating a retrofitting solution, allowing the
system to automatically avoid any potential failure. Furthermore, they are important tools for understanding
process management options in order to enhance and develop industrial process technologies. Among the
optimization parameters is the reduction of exergy loss owing to system irreversibilities (Cornelissen and Hirs,
2002). The hybridization method is also quite effective for analysing the data. While most sustainability
indicators (such as Carbon Footprint or Global Warming Potential) must be contextualized within international
regulatory processes and frameworks in order to meet the requirements of scientificity, reproducibility, and
reliability, the indicators (or, in this case, efficiencies) returned by the exergetic analysis or when combined
with the LCA are self-explanatory and simple to understand.

3.1.1. Sustainable Manufacturing Indicators Aspects

Indicators have been identified in a variety of approaches in the literature. (see the reviews in (Heink and

Kowarik, 2010) and (Singh et al., 2009)). In most cases, the term indicator refers to a tool that may convey

information in a synthetic form that is simpler than a more complicated occurrence but has a larger

significance. As a result, it is a tool capable of bringing to light a pattern or phenomena that is not immediately

apparent. An indicator is a metric or aggregation of measurements that may be used to draw inferences about

the phenomena of interest based on the objective set.

In order to be scientifically legitimate, any indicator must have the following properties (United Nations,

2019):

o Ease and comprehensibility: if an indication is not instantly intelligible owing to extremely complicated
or inconsistent measurements, its use as an instrument of internal governance and a means of external
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communication is severely restricted. Furthermore, an unintelligible indication might lead to
misunderstandings.

e Importance and comprehension: an indicator should enhance decision-making by highlighting areas for
improvement. It should not include too many technical characteristics, nor should it be overly wide; it
should encompass all of the important aspects and relevant repercussions in connection to the purpose of
the study.

e Manageability and comparability: the performance standards of the indicators should be evaluated by
assuring their comparability and replicability, therefore providing a continual standard in the area to which
they belong.

e Controllability: a practitioner must be completely aware of what he is going to measure and calculate in
order to deliver precise and timely signals to stakeholders.

e Consistency: in order to prevent invalidating the analysis, the indicator must be regularly reviewed and,
if necessary, changed in reaction to changes.

o Efficiency: one of the most essential features, as an indication for which exorbitantly costly data gathering
is necessary, or data collection is technically impossible, has a negative influence on the whole
performance of the analysis, including the final phase of interpretation.

In general, and hence in terms of production sustainability, indicators can be defined in a variety of ways. The
first significant distinction is established between indicators that relate to immediately quantifiable events and
indicators that relate to phenomena that cannot be measured directly. Many of the phenomena that impact
sustainability may be measured. Some are directly measurable chemical and physical phenomena (for example,
CO. emissions); others, on the other hand, are characteristics for which we do not have direct measuring
instruments but which can always be expressed quantitatively by reference to an appropriate and considered
intensity scale (Boulanger, 2008). There is a distinction to be made between physical indicators, units of
measurement, and levels of variables designated as relevant; and multidimensional indicators or indices, which
consist of the aggregation of indicators and data of the same or different categories. In concrete terms, the
former provides basic information on the system's components, such as quantities and flows (for example,
annual waste generation in a region), whereas the latter allows the information presented to be condensed into
several parameters in order to better communicate and facilitate knowledge (e.g., coupling between waste
production and economic well-being measured by the ratio of the waste produced to the gross domestic product
of a region). Indices, for example, emphasize the link between system components; moreover, indices can be
given in absolute numbers via standardization and aggregation of the beginning information.
Indicators are commonly used to better evaluate and explain the results of a hybrid study, as well as to quickly
compare various production or multiple systems with different units of measurement. They can also give
aggregate data. They are simple to comprehend since their value may range from zero (worst case scenario) to
one (best case scenario) (ideal conditions). Indicators are a good method for swiftly and intuitively recognizing
changes in the energy efficiency and quality of time-dependent operations. In addition to satisfying a variety
of scientific problems, environmental indicators and the weighting system must represent the aims of the many
environmental issues, priorities that are clearly related to the belief system of individuals who define them and
thus subjective. Some nations have developed their own scale of environmental goals, allowing professionals
to develop an effective set of indicators.

3.1.2. State of Art of Sustainability Indicators in Manufacturing field related to Exergy and LCA

Many researchers stress the value of utilizing exergy losses as an indication since it gives a consistent metric
for comparing and evaluating diverse processes (Bakshi and Fiksel, 2003; M.A. Rosen et al., 2012). Exergy-
based indicators provide useful sustainability measures for assessing the exploitation of material resources and
energy, as well as evaluating the side effects of ecological and socioeconomic behaviours in complex systems.
The indicators from LCA presented following the characterization and normalisation of the assessment, on the
other hand, have traditionally been deemed erroneous due to the subjectivity that characterizes this stage
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(Cleveland et al., 2000), furthermore, only a handful of the LCA evaluation methodologies allow for the
generation of dimensionless indicators of the necessary effect categories. Many indicators or sets of indicators
have been proposed in the literature that are supposed to provide reliable information about various aspects of
the global context of sustainability, but it is always a problem when an aggregation of results, such as an
integrated index of LCA and EA results, is required: their accuracy as environmental, social, and economic
indicators is still not clear. (Bohringer and Jochem, 2007).

Material, energy, and other streams participate in the process inside the system, and they are changed into the
product and waste streams. The exergetic yields associated to the exergetic balances of the process/activity
itself provide the performances (or yields) of a specific process or activity. The classic exergy efficiency rate
informs about the ratio of benefits to expenses or losses. The losses are equivalent to the difference between
what is offered and how much is gained, and they are associated with the irreversible destruction of exergy
(Bakshi et al., 2011).

The formulations and meanings of the most typical metrics that we will examine are discussed in Table 3.1.
The traditional exergy efficiency rate provides information about the ratio between benefits and costs or losses.
The losses are equal to the difference between what is provided and how much it is obtained and identified
with the destruction of exergy due to irreversibility (Bakshi et al., 2011). The most often used exergetic
indicators are the output/input exergy ratio (for assessing efficiency) and exergy per unit of product (for
sustainability assessment). The performance metrics of the process or its components are defined in the
following net use and general efficiencies, depending on whether the goal is to evaluate the portion of useful
exergy for the realization of the final product or to evaluate the overall exergy of the process: output/input
exergy ratio (for efficiency assessment) and exergy for unit of product (for sustainability assessment). The
performance metrics of the process or its components are specified in the following net and general
efficiencies, respectively, depending on whether the goal is to assess the percentage of useable exergy for the
realization of the final product or to evaluate the total exergy of the process, respectively 1. and ng. The former
is the ratio of the system's useable exergy to the total exergy supplied to the system, whereas the latter is the
ratio of total exergy production to total exergy given to the system. The ratio is proportionate to the system's
intrinsic exergy destruction. The Global Warming Potential (GWP) was created to enable comparisons of the
global warming impacts of various resources (IPCC, 2006). It is a measure of how much energy a ton of a
resource may utilize over a specific time period in contrast to a ton of CO; emissions (CO2). The higher the
GWP, the more a particular gas heats the Earth in compared to CO; during the same time period. The most
frequent time span for GWPs is 100 years. GWPs provide a standard unit of measurement that allows analysts
to add up emissions figures for different gases (for example, to compile a national GHG inventory) and
policymakers to compare emissions reduction opportunities across industries and gases.

Cumulative exergy extracted from the natural environment (CEENE), introduced for the first time by (Dewulf
et al., 2007), is a resource accounting system that quantifies diverse types of resources per functional unit in a
single unit (exergy). The quantity of energy equivalent to each input in each process is computed by
multiplying the resource inputs by the CEENE factor of the reference flow. The CEENE model is based on
general global characteristics. It takes into account the depletion caused by the extraction of useful exergy
embedded in resources when they are extracted from their natural environment, such as abiotic renewable
resources, fossil fuels, nuclear energy, metal ores, minerals and mineral aggregates, water resources, land and
biotic resources, and atmospheric resources. Many authors have utilized CEENE in their studies, including
(Mehmeti et al., 2018) , which used CEENE to quantify the life cycle resource footprint (upstream effects) of
a Molten Carbonate Fuel Cell power plant, (Alvarenga et al., 2013) who proposed and implemented a new
framework for calculating exergy-based spatial explicit characterization factors (CF) for land as a resource,
which deals with both biomass and area occupied on a global scale by creating a schematic overview of the
Earth, dividing it into two systems (human-made and natural), allowing it to account for what is actually
extracted from nature, i.e., the biomass content was set as the elementary flow to be calculated We were able
to develop CF for land resources for these two separate systems using exergy. The novel CF's applicability
was evaluated for a variety of biobased goods. And (Taelman et al., 2014), who included the CEENE method
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in the LCIA method and was capable of analysing the environmental impact (and, more specifically, the
resource footprint) of marine area occupation in two case studies: comparing resource consumption of on- and
offshore oil production, and fish and soybean meal production for fish feed applications.

In their recent work (Lucia and Grisolia, 2019) introduced other two exergy-based indicators, a modification
of the classic exergy efficiency ratio, were introduced to quantify the technical level of a process in relation to
its unavailability. The goal was to assess the equivalent primary wasted resources, technological features, and
advanced level of industrial processes by calculating the cost of the wasted exergy required to support
workhours and generate capital flow, as well as the quantity of production expressed by mass and moles of
CO, for wastes. Also (Cleveland et al., 1984) adapted the exergy efficiency naming it Energy (Exergy) Return
on Energy (Exergy) Investment (EROEI or EXROI), which is defined as the ratio between the net exergy
generated by the system and the embodied non-renewable exergy necessary to develop the system itself. If the
ratio turns out to be less than the unit, the expenditure outweighs the gain. In the aforementioned study (Beccali
et al., 2003) created an ‘exergetic index’ by dividing the entire consumption of exergy (in MJ) by the mass of
the product that represents the functional unit of the case study (in kg). It is a particularly valuable tool for
assessing the potential for technological development of processes and gauging quality. In the context of multi-
criteria or multi-factor decision making, in their study (C. Zhang et al., 2019) calculated eight multi-factor
indicators representing exergetic, energetic, economic and environmental elements of the Organic Rankine
Cycle for water heat recovery in their study. The eight indicators are in the energetic context: net power output
(Whet) and thermal efficiency (nm); in exergetic context: total exergy loss (lot) and exergy efficiency (nex). In
the economic context: cost per unit of time (2), electricity production cost (EPC) and dynamic payback period
(DPP). In the environmental context: CO2-equivalent emissions (ECE). Weighting and normalisation were
used to construct the Feasibility Level, which represents the total influence of the eight indicators. Medyna et
al. conducted an early environmental evaluation assessment (Medyna et al., 2009¢, 2009a) comparing the three
major impact categories of Eco-Indicator 99 (Human Health, Ecosystem Quality and Resource Consumption)
with new three dimensionless indicators [] derived from EA (primary exergy conversion efficiency, material
and resource consumption efficiency and environmental impact efficiency), in order to offer a possible solution
to the heterogeneity metrics problem during the interpretation of the results. The difference of the meaning of
these three new indicators lies in the considered exergetic terms for the ratio. (Rubio Rodriguez et al., 2011),
in the energy systems context, presented a dimensionless sustainability index SIC in the context of energy
systems to assess alternative to various end services that imply distinct metrics and magnitudes but referred to
the same functional unit. The index indicates the environmental damage averted by selecting the best solution.
Another point of view is provided by (Dominguez et al., 2011), who introduced an indicator called the
'renewability factor' (FR) in order to evaluate the relationship between non-renewable and renewable resources
throughout the entire life cycle of each energy source considered for electric power generation. It represents
the ratio between the cumulative exergy demand for renewable resources to the cumulative exergy demand for
non-renewable resources. (Dai et al., 2014) in their work provided a list of six EEA-based indicator for the
evaluation of the effective use of resources and energy in complex systems of some industrial sectors including
environmental, social, and economic dimension. Another way to evaluate the sustainable use of the resources
is given in 2006 (Toxopeus and Lutters, 2006) and it was used also by Koroneos and Stylos in 2014 in their
implementation of an ELCA on polycrystalline photovoltaic system in energy generation context (Koroneos
and Stylos, 2014). They introduced an ELCA-based exergetic eco-efficiency indicator to account the efficiency
of consumption for both renewable and non-renewable sources along the Life Cycle of the product or process
under study. It relates the exergetic efficiency of total input and output flows to the distinction between
renewable and non-renewable flows throughout the Life Cycle. The large disparity between conventional and
new exergetic efficiency values is due to the amount of renewable exergy (solar radiation) in the production
of total incoming exergy, which the traditional indicator cannot capture. (Restrepo and Bazzo, 2016) addressed
the Exergoenvironmental study from a systematic approach on co-firing power plants in 2016. The writers
concentrated solely on the operational phase. They developed the Exergoenvironmental-based Global
Greenhouse Gases index for a variety of co-firing scenarios in order to assess the extent of the power plant's
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improvement. The index's objective is to compare the exergoenvironmental impact of the real process under
investigation to the impact of the identical ideal process (under Carnot cycle condition). A higher index value
indicates a more sustainable process. (T. M. Gulotta et al., 2018) integrated EA in the LCA in their study by
adding three new indices focusing on quality, irreversibility, and technical obsolescence to assist decision-
makers in comparing similar technologies. The Life Cycle Irreversibility Index might reveal potential exergetic
inefficiencies of the process or technologies and necessary retrofit measures by comparing the usable
cumulative exergy associated with all sub-processes and the total cumulative exergy demand. The Technology
Obsolescence index facilitates the comparison of identical processes and products that share the same
functional unit. Technology obsolescence may be a valuable criterion in policy decision-making to assess how
much more inventive one technology is than another by recognizing which new technology might lower current
irreversibilities from production through end-of-life, decreasing natural resource extraction. In general, the
feature of technology obsolescence is still visible in the examination of industrial processes.
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Table 3.1 - List of the most representative indicators found in literature for manufacturing-sustainability

Indicator’s name

Indicator’s ratio

Meaning

Coefficient of resources-use performance fxproduct The useful exergy produced by the system divided by the total exergy

(Bakshi et al., 2011) o = 75 d provided to the system.

Net use efficiency (Bakshi et al., 2011; Ozbilen et X Ex) Total exergy output divided by total exergy given to the system. The ratio

al., 2012) Ne = Y Exi is proportionate to the system's intrinsic exergy degradation.

Equivalent wasted primary resource (1) (Lucia ToSg The proportion of exergy lost to working hours per worker. It calculates

and Grisolia, 2019) El, = mn the cost of squandered exergy necessary to support work hours and produce
’ i capital flow.

Equivalent wasted primary resource (2) (Lucia EL = ToSgps 0 The exergy loss-to-wasted-product mass ratio expressed in CO2 and the

and Grisolia, 2019) AT Mg, | Product mass generated in a day.

Exergy Return on Investment (Cleveland et al., ExROI = EXpet The quantity of net exergy obtained from a process divided by the amount

1984) adapted by (Rocco, 2014) EXpeeded of exergy required (or its equivalent from another source) to produce it.

Exergetic index (Beccali et al., 2003)

ex, = =X [M/kg]
mpd

The ratio of entire exergy loss, including environmental emissions, to a
specific quantity of product representing the functional unit.

Global Warming Potential (IPCC, 2006)

S Fres(®dt

foyn Feoz(Ddt
or

GWP =

The impact of a resource over a given time period when compared to the
same amount of carbon dioxide (COZ2) over the same time period.

GWP = Y. (m; - IF;) [kgCO2eq]
Accounting for several sorts of resources (measured in different units) per
Cumulative Exergy Extracted from Natural CEENE, = Yi(X; -a.))  [MJeq]] functional unit, all represented in exergy terms with a reference factor. The
Environment (Mehmeti et al., 2018) J by extraction of usable exergy contained in resources results in resource
depletion.
X;
8 X X; € (En,Ex) Economic (Eco), environmental (Env), energetic (En), and exergetic (EX)
Feasibility Level (C. Zhang et al., 2019) FL = Z(Xi W) X = X"pt measures are all used to calculate the overall influence of eight
i=1 ;’ft X; € (Ex,Eco,Env)|  components.
1

Primary exergy conversion efficiency
(Tsatsaronis and Morosuk, 2008a, 2008b)

| | _ EXprod—i + EXbiprod—i
PECE EXmaterial + EXsupply

The ratio of the usable outcome to the sum of the inputs that worked
together to produce it.

Material and resource consumption efficiency
(Tsatsaronis and Morosuk, 2008a, 2008b)

EXprodi + EXenv—standard

1_[ MRCE EXmat + EXsupply + EXrecy + EXbiprodi

The output, minus the exergy loss, to the total of the inputs minus the
regenerated biproducts.




Environmental impact efficiency (Tsatsaronis
and Morosuk, 2008a, 2008b)

[,

EXenv—mixing

Exmat + Exsupply + EXrecy + EXbiprodi

The ratio of the sum of the inputs to the exergy of mixing.

Sustainability index (Rubio Rodriguez et al., S . = A_kE The ratio of the environmental exergetic cost of two alternatives to the
2011) €7 ke indirect exergetic cost.
Renewability Factor (Dominguez et al., 2011) FR = CEXDrep The ratig between cumulative exergy demand of renewable resources to
CExXDpon—ren cumulative exergy demand of non-renewable resources.

CEC. Exergy consumption structure in various productions, derived by

Exergy Structure Ratio (Dai et al., 2014) ESR = ﬁ comparing material-based exergy consumption to social supporting exergy
who o within sectoral size.
Social Exergy Conversion Rate (Dai et al., E,, + E, Net social exergy cgnversion level by i-ntaking. material-based exergy,
2014) SECR = STCEC, F:alcul_ated by the ratio of labour and capital equivalent exergy to exergy
input into the system.

S Ability in production sectors to deliver exergy into the system from the

Exergy Deliver Efficiency (Dai et al., 2014) EDE = CEC. environment, calculated by exergy output from production sector j divided
) by exergy input into production sector j from the surrounding.

CEC Ability of a process to exploit available locally renewable and non-

Environmental Yield Ratio (Dai et al., 2014) EYR = E renewable resources by investing outsider sources. The higher the value of
mn this index, the greater is the return obtained per unit of exergy invested.
Environmental Loading Ratio (Dai et al., 2014) ELR = En + CECy Ou.tside causes of disruption to the local drive are possible. The smaller the
Eg + CECy ratio, the lesser the environmental stress.

Extended Exergy Sustainability Index (Dai et EYR Index aggregation based on interaction with the surrounding environment
al., 2014) BESI=21R as well as renewability.

Exergetic Eco-Efficiency (Toxopeus and Lutters,
2006)

_ TNexergetic (Fn—r + Fr)

Neco =
For + Nexergetic Fp

The efficiency with which renewable and non-renewable resources are
used during the full Life Cycle of the product or process under
consideration.

Global Greenhouse Gases index (Restrepo and
Bazzo, 2016)

itotal
jGlobal _ GHG (carnot condition)
GHG stotal
GHG (real condition)

Degree of improvement in relation with the impact category (focused in
the GHG emission).

Life Cycle Quality Index (T. M. Gulotta et al., _ UCEx The ratio of the beneficial impacts of a process or product to the entire cost
2018) b= CExD of providing that process or product.
Life Cycle Irreversibility Index (T. M. Gulotta CExD— UCEx

X=1—-¢="-—-— I .
etal., 2018) U} CED Complementary to y

Which revolutionary technology, when compared to existing technologies,
Technology Obsolescence Index (T. M. Gulotta _ X . y g){ . p g d
etal., 2018) Xij = X has the potential to lower the irreversibilities of the process or product
" j

under consideration.
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The authors provide these indicators under a variety of titles, but the general pattern is a comparison of the
system's output flows with its input flows, with certain special idiosyncrasies for each case study. Furthermore,
their significance is stated in many ways as an indicator/index of quality, performance, efficiency, and
sustainability.

In this thesis, the ideal interpretation for this sort of indication is ‘indicator of reversibility’ (Selicati and
Cardinale, 2021b). The choice is endorsed first by the definition of sustainability as stated the Brundtland
Report in 1987 (WCED, 1987): “is the development that meets the needs of the present without compromising
the ability of future generations to meet their own needs”; second by Dewulf et al. in (Dewulf et al., 2000) who
argued that a technological process is sustainable only if its resource supplying, production and resource
depletion or wastes won’t damage the ecological balance in the ecosphere. This implies ensuring that the
process consumes raw materials from the environment at a rate lower than their potential to regenerate. Third,
by (Valero et al., 2013) that established an indicator called "exergy replacement cost," which is the amount of
exergy required to return the resources to their initial state (equilibrium).

To summarize this paragraph, sustainable manufacturing is the most crucial component that all production
engineers must identify, not because it is a cultural trend, but because it is a mandate as a duty to the
environment in which we live. The study of the product life cycle has become a popular tool for determining
the environmental impact of items, processes, or activities. To reach the goal of earth's self-recovery
capabilities, the three key ideas to be addressed are minimizing the use of resources in the process, using
environmentally friendly materials, reducing all sorts of waste, and reusing and recycling as much material as
feasible.

According to the findings of the state of the art and the case study, it is not feasible to establish an indicator
that individually and thoroughly assesses the degree of manufacturing sustainability, not one of the steel corner
production methods. Despite the lack of a defined, thorough, and widely used assessment model, Exergy
Analysis within Life Cycle thinking remains an effective technique for optimizing industrial processes.

The multidimensional nature of the measures described in this paper emphasizes how difficult the topic of
sustainable manufacturing is. The lack of suitable metrics and a well-established collection of equations for a
set of sustainability challenges, as well as a lack of complete and up-to-date data and uncertainty analysis, are
frequently troublesome, resulting in a poor level of scientific accuracy in the evaluation.

3.2. METRICS FOR DATA-ANALYSIS

Predictive models rarely predict everything perfectly, so there are many performance metrics that can be used
to analyse the models.

Aside from a simple comparison of the analysis findings and actual data from the factory, several
methodologies are necessary to evaluate the accuracy and performance of the generated algorithms.

The algorithm's performance may be measured in a variety of ways. Classifiers are frequently evaluated using
accuracy, precision, recall, and F1-score. Regression techniques can be scored using mean absolute error
(MAE) and mean squared error (MSE) metrics. While the Silhouette coefficient and Dunn's Index are the two
most often used metrics for evaluating clustering techniques. Regardless of the algorithm, the error on the
training data is often less than the error on the test data. The model is considered to be overfit to the training
data when the difference between the two is considerable. Over-fitting is a concern for data scientists since
such a model does not generalize. The model performs admirably on training data, but when fed fresh data,
the algorithm's predictions become untrustworthy.

3.21. Metrics for Clustering

The most commonly used type of unsupervised learning is clustering. The dataset contains no labels for
clustering, only a collection of observational characteristics whose objective is to build groups with similar
observations aggregated together and different observations separated as much as feasible. Evaluating the
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performance of a clustering method is more complicated than just calculating the number of mistakes,
accuracy, and recall, as is done with supervised learning algorithms.
The clusters' consistency is assessed using a similarity or dissimilarity metric, such as the distance between
cluster points. The clustering method has worked well if it isolates different observations and groups like
observations together.
The mean of the Silhouette Coefficients for each sample is used to calculate the Silhouette Coefficient for a
set of samples (scikit-learn, 2021).
b-a
max (a,b)

Where

* s is the Silhouette Coefficient

* b is the average distance between a sample and all other points in the closest cluster

* a is the average distance between a sample and all other points in a cluster
The score ranges from -1 for inaccurate clustering to +1 for robust clustering. Scores close to 0 denote
overlapping clusters. The score is greater when clusters are dense and well-spaced, which corresponds to a
conventional cluster idea.

Eqg. 3.1

Given the information of the samples' regression coefficients class assignments, conditional entropy analysis
may be used to establish any understandable measure.

The following two desired goals for each cluster assignment can be converted into scores:

» homogeneity: each cluster only contains members of one class.

» completeness: every member of a particular class is allocated to the same cluster.

which are both constrained by 0.0 (worst clustering) and 1.0 (best clustering):

Their harmonic mean, known as the VV-measure, is determined (Rosenberg and Hirschberg, 2007)

homogeneity - completeness
v=2. geneity - comp Eq. 3.2

homogeneity+completeness

Clustering with a poor V-measure can be qualitatively evaluated in terms of homogeneity and completeness
to get a clearer sense of the 'kind' of errors committed by the assignment.

There are no assumptions about the cluster structure: it may be used to compare the results of clustering
algorithms such as k-means, which assumes isotropic blob forms, with the results of spectral clustering
algorithms, which can identify clusters with "folded" shapes. As a disadvantage, the metrics are not
standardized in terms of random labelling: depending on the number of samples, clusters, and ground truth
classes, a totally random labelling will not always produce the same values for homogeneity, completeness,
and therefore v-measure. Random labelling, in particular, will not produce zero scores, especially when the
number of clusters is considerable. Furthermore, these metrics need knowledge of ground truth classes, which
is usually never accessible in practice or necessitates manual assignment by human annotators (as in the
supervised learning setting).

Another metric for assessing a clustering technique is Dunn Index (DI) (Stein et al., 2003). It is a metric for
evaluating clustering algorithms, is an internal evaluation scheme, where the result is based on the clustered
data itself. Like all other such indices, the aim of this Dunn index to identify sets of clusters that are compact,
with a small variance between members of the cluster, and well separated, where the means of different clusters
are sufficiently far apart, as compared to the within cluster variance. Dunn Index is calculated by dividing the
lowest inter-cluster distance by the maximum cluster size. It is worth noting that larger inter-cluster distances
(better separation) and smaller cluster sizes (more compact clusters) result in a higher DI value. A greater DI
indicates improved clustering. It is assumed that superior clustering implies that clusters are compact and well-
separated from one another. It also has some drawbacks. As the number of clusters and dimensionality of the
data increase, the computational cost also increases.
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Other metrics about clustering approach can be found in (Desgraupes, 2017)

3.2.2.  Metrics for Classification

The most important categorization statistic is accuracy. It is rather simple to grasp. And it's well-suited for
both binary and multiclass classification problems. The proportion of genuine outcomes among the total
number of cases studied is referred to as accuracy. Data can be divided into: true positives are data points
classed as positive by the model that are actually positive (meaning they are correct), whereas false negatives
are data points labelled as negative by the model that are actually positive (incorrect).

TP+TN

TP+FN+TN+FP Eq. 3.3

Accuracy =

Where

* TP is the number of true positives

* TN is the number of true negatives

* FP is the number of false positives

 FN is the number of false negatives.
Accuracy itself is misleading when it comes to finding metrics for classifier performance evaluation on an
unbalanced data set. This is so because, even if the classifier predicts all of the instances as the majority class,
even then the accuracy will be very high. However, in case of unbalanced datasets, identifying the more
important minority class is the goal. This can be tested and achieved by using balancing techniques and using
other performance metrics for classification evaluation, such as, precision, recall, area under the ROC curve.

The capacity of a model to detect all relevant cases within a data collection is the precise definition of recall.
It is computed mathematically by dividing the number of true positives by the number of true positives + the
number of false negatives.

TP
TP+FN

Recall = Eq. 34

Where
* TP is the number of true positives
* TN is the number of true negatives
* FP is the number of false positives
 FN is the number of false negatives.

Precision is defined as a classification model's ability to identify only relevant data points. It is defined
mathematically as the number of true positives divided by the number of true positives and the number of false
positives. False positives are casing the model incorrectly labels as positive that are actually negative,

TP
TP+FP

Precision = Eg. 3.5

While recall represents the capacity to locate all relevant occurrences in a dataset, precision expresses the
proportion of data points that our model said were relevant that were truly relevant.

The measures we pick to optimize, like most notions in data science, have a trade-off. In the case of recall,
increasing the recall reduces the precision. The idea underlying the precision-recall trade-off is that changing
the threshold for detecting whether a class is positive or negative will cause the scales to tip. That is, it will
cause precision to rise but recall to decrease, or vice versa. Classifier computes a decision score for each
instance, and if the decision score is equal to or greater than the threshold value, it predicts a positive class,
indicating that the instance belongs to the class, target, or output. If the decision score is less than the threshold,
the instance is in the negative class, target, or output. The majority of the classifier employs a threshold of 0.
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An example of a relationship between Recall and Precision is plotted in Figure 3.1. The graph illustrates that
if we require greater precision, we should set threshold higher than the default threshold value, and if we need
higher recall, we should set threshold lower than the default threshold value.

10 1

08 1

0.6 1
=== Precision

— Recall
04 - /

02' f’

-
(e—

0.0 1

~200 ~100 0 100 200
Figure 3.1 - Recall vs Precision with threshold equal to zero

In certain cases, it is unclear if the aim is to maximize recall or precision at the expense of the other statistic.
When it is necessary to find an ideal balance of accuracy and recall, the F1 score combines the two variables.
The F1 score is calculated by taking the harmonic mean of accuracy and recall.

precision - recall

F1 = 2 Eq. 3.6

precision+recall

Because it excludes extreme values, the harmonic mean is utilized instead of a simple average. A classifier
with 1.0 accuracy and 0.0 recall has a simple average of 0.5 but an F1 score of 0. The F1 score gives equal
weight to both criteria and is a subset of the generic F3 metric that may be altered to give greater weight to
either recall or accuracy by adjusting . Other metrics for combining precision and recall, such as the
Geometric Mean of accuracy and recall, are available, but the F1 score is the most widely employed. We strive
to maximize the F1 score if we wish to develop a balanced classification model with the best balance of recall
and precision.

The methods for calculating these metrics are well represented visually in the following Figure 3.2:
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Figure 3.2 - Confusion matrix for binary classification and metrics calculation

The diagonal entries of the confusion matrix are the true predictions of both classes. The greater the number,
the more accurate the predictions, and therefore the classifier. The misclassifications predicted wrongly by the
classifier are represented by the diagonal elements. When compared to metrics such as accuracy, confusion
matrix is a good metric to use in cases of unbalanced data sets. The reason for this is demonstrated with a
simple example: suppose in a data set there are 99 good samples and 1 bad sample, then the classifier would
be biased towards the majority class and make all predictions as belonging to the good class. If this is the case,
the classifier's accuracy remains at 99%. In this scenario, it is clear that the classifier failed to identify the more
relevant minority class. Similarly, finding the components that will fail the quality test is more critical in metal
casting data than identifying the majority or passed class samples. The confusion matrix allows us to easily
see the classifier's predictions on the minority class. The confusion matrix illustrates how many samples are
erroneously recognized. They can also provide us with indices of the components that will fail. Instead of
merely giving us the raw numbers of accurate and erroneous predictions for a certain data set, this will tell us
the percentage of correct and incorrect forecasts.

In general, these measurements are interpreted as follows (Shivaprasad, 2020):

« High recall or precision values indicate that the model manages the class well;

« Low recall or precision values indicate that the model is reliable when it predicts a positive one for that class,
but that the model is unable to identify the members of that specific class (it is true in our case for the class of
the class "1" As the prediction of "1" is usually correct but does not identify several)

« A high recall value and a low precision value imply that the model correctly recognizes the class but also
contains components from other classes (it is true in our case for the class of "0" as it intercepts almost all but
predicts "0" also for many "1")

* Low recall or precision levels indicate that the model performs poorly.

AUC (which stands for "Area Under the Curve™) is another metric for a classifier, where the curve in issue is
termed ROC (Receiver Operating Characteristic curve). A model's ROC curve may be quantified by computing
the overall Area Under the Curve (AUC), a statistic that ranges between 0 and 1, with a greater value indicating
better classification performance. AUC ROC indicates how well the probabilities from the positive classes are
separated from the negative classes. In essence, the curve depicts the trend of the probability threshold "T*
above and below which a positive and negative is characterized in terms of belonging to a given class. For
example, if it is determined that 0.7 is the value of the probability threshold above which a positive one is
credited, we will have a given percentage of false positives and a certain rate of true positives at this threshold.
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For all values of "T," the function that depicts the true positives vs. false positives, the trend of the sort is
depicted in Figure 3.3:
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Figure 3.3 - llustration of possible ROC curves depicting different model performance. From the left: the
model has to sacrifice lot precision to get high recall; to the right: the model is highly effective and it can
reach high recall while maintaining high precision

The true positive rate on the y-axis is shown against the false positive rate on the x-axis in a ROC curve. The
recall is represented by the true positive rate (TPR), while the chance of a false alert is represented by the false
positive rate (FPR). The confusion matrix may be used to compute both of these. The representation on the
left indicates that a model with this property, in order to intercept a significant number of true positives, must
inevitably produce a big number of false positives (the worst case is the dotted blue colour in which one is
substantially a 50% of real positive).

Instead, in the case of the model on the right, with a low rate of false positives (the optimum scenario is in the
top left corner), it has a large number of actual positives, and so, the more the curve has this tendency, the
better the curve reacts. The AUC, and the diagram on the right will have a value of the order of 0.95 (which is
already a very excellent number), but the diagram on the left will have a value of the kind of 0.6. This indicates
that AUC is not affected by scale. It evaluates how well predictions are rated rather than their absolute values;
it is classification-threshold-invariant: it assesses the quality of the model's predictions regardless of the
classification threshold used, unlike F1 score or accuracy, which are affected by the threshold used.

3.2.3. Metrics for Regression

Regression is a term used to describe predictive modelling challenges that entail forecasting a numerical value.
It differs from classification, which entails anticipating a class label. In contrast to classification, accuracy
cannot be used to evaluate a regression model's predictions. Instead, there are error metrics that are particularly
built for analysing regression predictions. Error addresses on average how close predictions were to their
expected values (Naz et al., 2019).

There are three error metrics that are commonly used for evaluating and reporting the performance of a
regression model; they are: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE)

The Mean Squared Error, or MSE is calculated as the mean or average of the squared differences between
predicted and expected target values in a dataset.

MSE = = - NI (Y; — ¥,)2 Eq. 3.7

Where
* n is the number of samples in the dataset
* Y; is the actual value of the output (the one expected)
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+ Y, is the predicted value of the output (that ideally should be equal to the actual value)

The difference between these two numbers is squared, which removes the sign and results in a positive error
value. Squaring has the additional consequence of inflating or amplifying big mistakes. That is, the greater the
gap between the predicted and actual values, the greater the squared positive error. When MSE is employed as
a loss function, this has the effect of "punishing" models more for higher mistakes. When employed as a
measure, it also has the effect of "punishing™ models by raising the average error score. A perfect mean squared
error value of 0.00 indicates that all forecasts completely matched the expected values. This nearly never
happens, and if it does, it indicates that the predictive modelling problem is easy.

The Root Mean Squared Error (RMSE) is an extension of the mean squared error. When the square root of the
error is calculated, it indicates that the RMSE units are the same as the original units of the predicted target
value.

RMSE = VMSE = \/ﬁ YR (Y, — V)2 Eq. 3.8

Where

* n is the number of samples in the dataset

* Y; is the actual value of the output (the one expected)

+ Y, is the predicted value of the output (that ideally should be equal to the actual value)
It is important to note that the RMSE cannot be determined by taking the average of the square root of the
mean squared error values. This is a common blunder.
MSE use the square operation to eliminate the sign of each mistake value and to penalize big errors. This
procedure is reversed by the square root, but the outcome remains positive. Like for MSE, a perfect root mean
squared error value of 0.00 indicates that all forecasts completely matched the expected values.

Mean Absolute Error, or MAE, is a common metric because, like RMSE, the units of the error score correspond
to the units of the anticipated target value.

Changes in MAE, unlike RMSE, are linear and hence intuitive.

In other words, MSE and RMSE penalize greater errors more severely than smaller ones, inflating or
magnifying the mean error score. This is due to the incorrect value being squared. The MAE does not give
distinct sorts of mistakes more or less weight, and instead, the scores grow linearly as the error increases.
The MAE score is derived as the average of the absolute error values, as the name implies.

1 >
MAE = - Bl (Y — %)l Eq. 3.9

Where

* n is the number of samples in the dataset

* Y; is the actual value of the output (the one expected)

+ Y, is the predicted value of the output (that ideally should be equal to the actual value)
When computing the MAE, the difference between an expected and forecast value might be positive or
negative, and the abs forces it to be positive.
Like for MSE and RMSE, a perfect mean absolute error value of 0.00 indicates that all forecasts completely
matched the expected values

R-Squared (R?) represents the amount of variability in the dependent variable that the model can explain. It is
the square of the Correlation Coefficient (R), thus the name R-Squared. R?is derived by squaring the prediction
error and dividing it by the entire sum of the squares that replace the calculated forecast with mean. It ranges
from 0 to 1, with a higher value indicating a better match between forecast and actual value.
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SStotal B Z?:]_(Yi_ ?)2

. n — Y2
RZ = 1- SSresiduals 21=1(Y1 Y) Eq 3.10

Where

* n is the number of samples in the dataset

+ SS means sum of squares

* Y; is the actual value of the output (the one expected)

+ Y, is the predicted value of the output (that ideally should be equal to the actual value)

+ Y is the mean value of the entire samples in the dataset
R? is a useful metric for determining how well a model fits the dependent variables. R-squared values range
from 0 to 1 and are commonly stated as percentages from 0% to 100%. In the best-case scenario, the modelled
values precisely match the observed values, resulting in SSresiauats = 0 and R? = 1. While R? = 0 for a baseline
model that always predicts Y. Models with poorer predictions have a negative R? value.
Figure 3.4 shows plotted graphs, one with a high value of R?and the other a low value of R?.
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Figure 3.4 - Plot of a good regression prediction model vs a bad regression prediction model

However, it does not account for the overfitting problem. Because the model is overly sophisticated if the
regression model includes numerous independent variables, it may fit extremely well to training data but
perform poorly on testing data. That is why Adjusted R? is introduced; it penalizes the inclusion of new
independent variables to the model and adjusts the measure to avoid overfitting difficulties.

R2is a convenient, apparently straightforward metric for determining how well your linear model fits a
collection of facts. However, R? doesn't reveal the whole picture. It cannot identify whether the coefficient
estimations and projections are skewed, which is why the residual plots must be evaluated: it does not indicate
the suitability of a regression model. A good model can have a low R?value, while a model that does not match
the data can have a high R?value. In summary, it estimates the strength of the association between your model
and the response variable, but it does not give a formal hypothesis test for this relationship.

Through a measure called "Permutation Feature Importance” (Breiman, 2001), which shows the sensitivity of
the model score to fluctuations in the values of the individual features, it is possible to evaluate what R? is
reliant on each of the features (thus assessing a "score™ of the features for the model). This model inspection
approach may be applied to any estimator with tabular data that has already been trained. Essentially, the
approach allows you to calculate the loss in model score (when compared to training) if the values from a
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certain feature are cancelled arbitrarily. This process will provide a score for the lowest model achieved (e.g.,
the predictions with the data of a scrambled feature will be less exact), and the drop in the model score will
represent an indication that measures how much that performance depends on a specified feature. In essence,
the approach destroys the association between the feature values and the accompanying labels and analyses
the resulting drop in the model's score. The approach may be used to regressors or classifiers, as well as to test
and training data. When the relevance of features on test data differs significantly from what is obtained on
training data, this is seen as model overfitting. The final key consideration is the clarification that technical
outcomes are model-specific:

1) It is possible that features are unimportant in models with low scores but extremely significant in models
with high scores (with equal estimators). It is usually preferable to base the evaluation of the Permutation
Feature Importance on models derived from optimal parameters acquired using the cross-validation procedure.
2) Because the approach is model-specific, it is not essential to determine how much more or less high the
inherent predictive value of a feature is, but rather how relevant the feature is for the given model.

Cross-validation, also noted CV, is a method that is used to select a model that does not rely too much on the
initial training set. The different types are summed up below:

k-fold

- Training on k — 1 folds and assessment on the remaining one

- Generally k=5 or 10

Leave-p-out

- Training on n — p observations and assessment on the p remaining ones

- Case p = 1 is called leave-one-out

The most often used approach is k-fold cross-validation, which divides the training data into k folds in order
to verify the model on one-fold while training the model on the remaining k folds, all k times. The error is then
averaged over the k folds and referred to as the cross-validation error.

Fold Dataset Validation error Cross-validation error
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Figure 3.5 - k-fold Cross-Validation
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There are many additional metrics that may be used in practice today, but a comprehensive treatment of them
would be too time consuming and, in any case, would be inconsistent with the topic of the doctoral thesis and
with the case study that will be discussed in the next paragraph. It is recommended a careful reading of for all
other procedures in (Pedregosa et al., 2011)
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4. COMPANY TEST CASE: MANUFACTURING-SUSTAINABILITY ASSESSMENT
4.1. MASTER ITALY S.R.L.

Master Italy s.r.1, is an Italian SME, that designs, produces and sells all of the small accessories for window
and door frames (Mster Italy, 2019), with a research, investment, and study of aluminium cultural process, and
reserving a profound Attention to the quality of materials, innovative technologies (by 97% of the value in
house), identifying new market demands (national and worldwide), and customer satisfaction and care (on
Time Delivery 95%).

Since 2013, Master has chosen to embark on a continuous improvement program with the goal of ensuring
customer satisfaction and managing the rising company complexity.

The logics at the base of the program master improvement are those of Lean Thinking, that is, the battle against
waste through process simplification, staff participation, and a drive toward the construction of synchronous
process flows. To support the activities, enabling technologies, such as integrated automations, machines, and
systems, are being used, allowing for the maintenance of proper working conditions and the analysis of real-
time performance. As a result, the groundwork is laid for challengers' ever-increasing improvement activities.
After 5 years of implementing Lean logics, the company capitalized on its experiences by developing the
Master Italy Program System, which is a dynamic collection of lean techniques and methods to be used in
various operating areas, human resource development tools, and Best Practices to be inspired by new projects.
The areas within which it is spaced include security and the environment, improvement and ongoing
innovation, digital transformation, and competence development (Master Italy, 2018).

As an additional value, Master Italy has chosen to begin an activity of study of the production chain and
reduction of the environmental effect of the goods in the domain of window components in 2011. This is the
path that the Master Group has followed to position itself as a virtuous model of circular economy by thinking
that a survey of environmental consequences is a must, demonstrating its commitment to the long-term growth
of the firm. The monitoring of consumption and impacts, which enables ongoing action and improvement of
its goods and processes, not only from a technological but also from an environmental standpoint, is therefore
an acceptance of duty towards all stakeholders.

The industrial structure of the Master Italy is exceptionally varied, as it is distinguished by a large number of
machines (72) split among around 15 manufacturing departments spread throughout three sheds and an
administration office building, with a total area of 37.000 m? (see Figure 4.1). Furthermore, the company is
distinguished by a vertically integrated organization, which results in a diverse range of technological
processes: aluminium die-casting, zamak die-casting, plastic molding, steel shearing, aluminium shearing, shot
blasting, washing and tumbling, painting, drilling and threading, automatic and manual assemblies. The supply
chain may be separated into two macroblocks: 1. The first is for raw material processing (aluminium die-
casting, zamak die-casting, plastic molding, steel shearing, aluminium shearing, shot blasting, washing and
tumbling, drilling and threading), which is distinguished by a high production capacity, large production
batches, a large number of machines, high plant and equipment costs, and so on; 2. The second processing
block consists of painting (and other outdoor surface finishes) and automatic and manual assemblies, which
have distinct characteristics and organizational needs from the first block and are highly heterogeneous within
it due to the large number of references and the high variability of production batches (from a few pieces to
thousands).
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Figure 4.1 - Plant of Master ltaly's spatial distribution

Since 2013, the company's Lean Manufacturing approach has enabled it to arrange processes and resources
according to the "value stream" logic, especially regarding:

» The processes have been categorized according to homogenous product families, both in terms of final
product families, material absorption, and comparable processes (belonging to both block 1 and block 2, with
a view to the "flow";

* The key process management and measurement techniques (OEE, OLE, SMED, 5S, Kanban, Action Plan,
Problem Solving, and so on...) have been implemented in various departments in order to monitor process
efficiency and effectiveness and to introduce the logic of continuous improvement.

Due to the lack of technological solutions on the production lines, production data is managed using manual
or low-tech tools, which are plagued by issues of timing (timely availability of data to support both low- and
high-level decision making) and quality (reliability and quality of the data), as well as a high risk of operational
error due to the large number of manual loading and management activities.

The issues surrounding data generation and storage included: the time-consuming nature of data collection,
validation, and entry into the system, which is often done manually; the risk of data entry or transmission errors
due to manual skills, and the fragmentation of data across multiple information mediums, including paper,
which is not always integrated with the company's management system;

Data management, on the other hand, created the following issues:

1) The inability of the system to automatically update production data, which has apparent negative
consequences for data dependability and correctness.

2) the inability of the Production Manager and value stream leaders to control machine activities and key
productivity indicators of operators, machinery, and other production resources in real time;

3) the lack of a centralized corporate reporting system;
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4) the lack of congruity analysis and data certification.
The virtualization of the organization necessitates the development and use of digital models known as digital
twins, which reflect the collection of resources and knowledge of real-world operations. Because virtual
replication of a physical system is quite complicated, a substantial quantity of data and models that reflect the
operational semantics of the simulated pieces must be available.
A lack of knowledge of the genuine goal to be reached still persists. Companies in manufacturing that seek to
analyse Big Data to improve the perception of what they are doing, for example, by being aware of the aim
they want to attain, are still few. Master Italy is not one of them; it no longer wants to sell components; instead,
it wants to sell a full service that includes Al (“Cafagna, Gruppo Master Italy Srl,” 2018).
As a result, technical solutions (MES and scheduler - machine level production planning simulation software)
were implemented in 2017 to optimize production process management and monitoring along the following
intervention axes:
. Automated production planning and scheduling
. Real-time updates on the status of production orders and deviations from the scheduled one.
. Elimination of errors in paper compilation and manual data entry.
. The created pieces are automatically registered.
. Manufacturing waste is automatically documented.
. Automatic recording of active and idle machine times.
. Machine status is automatically updated in real time.
. Consistent resource monitoring throughout the production process.
9. Processing and monitoring of performance indicators in real time and automatically (e.g. OEE, Machine
production capacity).
The thesis work is part of a larger and long-term project begun by the company in 2017 to report the phases of
analysis concerning the implementation of the project called “Master Twin” which aims at an application of
ML aimed at predicting, with a certain advance, the machine faults of a manufacturing plant. The digital twin
of a product or process allows for the emulation, analysis, and simulation of the evolution of its actual twin,
assisting in the prevention of issues or improving performance through real-time data analysis. It is built on
three pillars (Abusohyon et al., 2021):
- Big data, 10T, and sensors: they enable continuous data interchange across goods, systems, and
processes.
- Digitalization: the digital copy provides a virtual environment for evaluating ideal operating
conditions, highlighting deviations, and testing remedial solutions.
- Intelligence: the digital twin provides tangible support for informed and timely strategic and
operational decision-making.
The output of the prototype phase is thus represented by the demonstration on field of the applicability of
Machine Learning technologies to the operational context of the Master company, and that the application of
these technologies can descend a concrete benefit of greater plant efficiency, higher productivity, lower
production waste, and so on. Because it was a purely exploratory area, the characteristics of the prototype
version were represented by a limited operational context to a single machine, the use of historical data (not
updated in real time), and access to external support for the component of artificial intelligence technology.
The end result is a computer application that, based on real-time readings of the machine’s operating
parameters, is able to visually notify the operator that the conditions for a detained machine are being
generated, to indicate the peak of the machine where the malfunction is occurring (based on the parameters of
the pattern found), and to suggest a preventive solution. It will be possible, using an evolved human-machine
interface (HMI), to alert the employees in charge of supervising the plant and suggest interventions aimed at
preventing the critical event that is being announced, with obvious benefits on plant efficiency and
productivity.

O NO Ol &~ WDN -

107



41.1. Context

The “Master Twin” project had a breakthrough in 2020, with a development of a static prototype to test the
applicability of artificial intelligence technologies to the context of company operations.

In 2019, thanks to investments made by the company in accordance with the Smart-Factory philosophy, a

capillary field data acquisition layer that, using loT technologies, conveys large databases collected along the
entire Production line to a centralized system monitoring system will be available (SCADA). This massive
amount of field data constitutes a massive informational legacy (Big Data) that can be profitably used for ML
purposes in order to train algorithms capable of predicting events based on large databases gathered.

An application solution capable of bridging data from machine sensors on a single die-casting machine with
machine event casualization from the production management system has been introduced. With this
prototype, we want to demonstrate that, by applying ML methodologies to the data in question, artificial
intelligence (Al) technology is capable of extracting, from the collected data, a series of patterns capable of
predicting events whose correspondence has been found in the causals of critical events (microstops,
production waste, faults) relating to the same machine on the MES system.

The Master Twin project is divided into the following phases:

1. Project definition: an awareness on the organization's goals, priorities, and resources in order to identify
the goal that the predictive analysis must reach by calculating the costs of implementation and the
associated timing. This step entails conducting research on the aluminium die-casting process, which will
be followed by research on the other raw material departments and the painting department, as well as the
subsequent application of the model on them, in order to make a technological change and manage
production in a flexible and predictive manner.

2. Data preparation: it is required to collect all relevant data so that it may be utilized later in the analysis.
The majority of Master's machines are outfitted with a PLC with basic control capabilities and a set of
machine edge sensors capable of monitoring some crucial process parameters. The following operational
steps are used to gather, historicize, and clean data:

- Data Selection: choosing a data collection necessitates understanding of the domain from which
the data is drawn. Removing irrelevant data from the data set minimizes the research space during
the data mining phase, resulting in a shorter analysis time.

- Data pre-processing: his phase involves cleansing the information and eliminating discrepancies
that may create difficulties throughout the data analysis process. This phase involves the
development of E-R (entity-relationship) models, which are conceptual models for the conceptual
and graphical representation of data as well as the relationships between data databases.

- Data Transformation: the data is translated into forms suited for data mining techniques analysis.
During this phase, the diversity of data is reduced while the quality of the data is maintained.

3. Data analysis and exploration: the extraction of information from current data sets in order to create
models and forecast future outcomes and/or trends. The best algorithms for analysis are defined at this
stage. This stage entails evaluating and implementing machine sensors (e.g., machine learning algorithms
or data mining techniques). The two primary roles of data mining are extraction and analysis. The
approaches employed in the first extract implicit and tacit information to make it useable; in the second,
the data is investigated and analysed mechanically or semi-automatically to uncover patterns and
regularity in the behaviour being studied. These are referred to as patterns. A pattern is a synthetic and
semantically rich representation of a set of data that encapsulates a recurring pattern in the data.

4. Digital model construction: it entails creating a very accurate virtual representation of the actual thing.
The model collaborates with the appropriate physical system to undertake behaviour analysis, assessment,
and prediction.

Users must develop the following models to generate a full mirror replica of the physical system:

1. The geometric model was built as a solid 3D model.
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2. a physical model that simulates the physical features of a physical system (e.g., stress on the gear and
temperature, working pressure, etc.).

3. The behavioural model depicts the behaviour of a physical system that is governed by driving factors (for
example, production orders) or disturbing factors (e.g., human interference factors).

4. A rule model contains restrictions and relationships that enable assessment, optimization, and/or prediction.
5. Model Validation and Model Use: To validate the developed digital model, tests must be done. Statistical

analysis, heuristic analysis, experimental analysis, and human analysis are some of the methodologies that may
be utilized for evaluation.
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Figure 4.2 - Digital Twin conceptual architecture (Parrot and Warshaw, 2017)

As aresult, the digital twin's ability is to emulate three human brain capacities: conceptualization, comparison,
and collaboration. At the following stages, virtual transformation enables the following benefits, confirming
what has been said by (Becue et al., 2020):

e Quality: reduced processing waste due to proper system control;

e Productivity: reduced setup times, failures, and machine downtime;

o Competitiveness: reduced testing times;

¢ Innovation: highly technological products and processes.

o Real-time communication between the digital twin and the real system.

o Digital twin implementation and utilization

e Documentation and interpretation of the preceding stages' outcomes It may be required to return to

prior phases to refine or change the information obtained in response to the user's most pressing
demands.
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4.1.2. Die-casting Process

Die-casting is a process that involves melting metal pans in high-temperature furnaces, then pouring the liquid
metal into a mold of the appropriate shape and allowing it to solidify. When the final solidified object, also
known as a casting, is expelled from the mold, the cycle is complete.

The casting process is comprised of one cycle, from mold cleaning to casting, and it takes around 4-120
seconds, depending on the casting size. As a result, it has a high productivity, with the ability to manufacture
30-1000 castings per machine per hour; the casting duration is determined by the mold clamping force. Die-
casting offers the most price competitiveness in mass production components since it is a high-productivity
technique. The traditional die-casting method, on the other hand, has drawbacks such as a lack of pressure
resistance owing to high internal gas content, surface flaws due to the breaking layer, losses in strength and
airtightness due to internal shrinkage, and difficulties in undercut processing. A furnace, metal, die-casting
machine, and die are all used in the die-casting process. The metal, which is usually a nonferrous alloy such
as aluminium or zinc, is melted in the furnace and then injected into the dies using a die-casting machine.
Die-casting technology is quite complicated in practice, and it is critical to select the parameters of the HPDC
process in order to obtain appropriate mechanical qualities and the desired performance for the made
aluminium-alloy components.

operating parameters during the cycle (strokes of the mechanical parts C1, C2, and CC, execution times of the
various phases of the T1, T2 cycle, speed V1, V2, pressures PS, PF, and PM, closing force FC, and measured
sprue thickness in the SM mold).

One cycle of die-casting process can be divided into four distinct phases:

1. Melting: Aluminium enters as a solid and departs as a molten state. For injection, die-casting needs that
aluminium be heated deep into its liquid phase. Aluminium has a melting point of 680-700 °C. The aluminium
is transported to each die-casting machine once it has been melted and heated to the right temperature. Each
die cast machine has its own holding furnace, which keeps the molten aluminium at the proper temperature as
it waits to be used in the die cast machine.

2. Injection: Molten aluminium is pumped into the mold via a plunger (Figure 4.3). The molten metal is then
moved into a chamber where it may be injected into the die after being kept at a constant temperature in the
furnace. When a die cast machine is ready for its next cycle (die closed and ready for shot), an automated ladle
pulls a predetermined volume of molten aluminium from the holding furnace and pours it into the mold. When
the pouring is finished, the injection step begins. The first injection phase is the sluggish phase (T1), in which
the plunger goes slowly forward (V1).
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Al - Second phase injection accumulator
A2 - Third phase injection accumulator
B - Removal accumulator

C - Injection piston

D - Multiplicr piston

E - Non-return valve

V1 - Second phase proportional valve
V2 - Third phasc proportional valve
V3 - Pressure reduction valve

V4 - Removal proportional valve

P2 - Final pressure

The first injection phase is sluggish. During the first injection phase, the valves V1 and V2 are closed, and the hydraulic oil flow from the pumps (through the pressure
and flow control unit) advances the injection piston C, pushing the molten metal into the feeding channel.
The second injection step is quick. When the injection piston C reaches the "Start of the second phase™ (as intended) position, the V1 valve is activated with an
clectronic consent, and the flow of hydraulic oil from the A1 accumulator imprints a higher speed on the piston Injection. The quick advancement of the injection piston
allows the mold cavily (o be completely filled.

Third injection phase: ip The Piston C achieves the "third phase" quota in the last stroke of the race (max. 100 mm.) which grants the electrical consent to
the opening of the V2 valve. By advancing the multiplier piston, the A2 accumulator fluid feeds it. Because of the abrupt increase in pressure P2, there is no return valve
and. It is applied, and then high pressure is used (o minimize microporosily in printed materials. The sel lax return value is regulated by the controller valve V4, which is
controlled by accumulator B. To change the final pressure (P2), the back pressure must be changed using the V3 reduction valve.

Figure 4.3 — Injection scheme

After a predetermined distance (C1), the plunger moves (C2) with an intermediate speed phase (V2), during
which the speed is raised to fill the mold. When this is finished (T2), the machine enters a rapid phase in which
the speed is considerably increased in order to fill the component cavity with aluminium (CC).

3. Molding: The molten aluminium hardens in the cavity of the mold. After the cavity has been filled and the
plunger has stopped moving, the hydraulic cylinder that is pushing the plunger is inflated to a greater pressure
(PM). During solidification, this pressure keeps the molten metal in the dies. The final shape of the casting is
established when the whole cavity is filled and the liquid metal hardens. The die cannot be opened until after
the cooling time has passed and the casting has hardened. To hold the die tightly closed while the metal is
injected, clamping force (FC) must be provided. The die opens the ejector or moves half of the die after a
certain length of time (TC).

4. Extraction: The casting is pushed out of the mold chamber by an ejection device. When the injection cycle
is finished and the machine is fully open, the die cast is pushed out and the thickness of the die cast (SM) is
regulated to avoid quality faults. At this point, the mold is lubricated and a new cycle can start over.

5. While the next cycle begins, the previous print has finished cooling and is moving towards the final steps
of processing. Depending on the intricacy of the component, they might be more or less articulated.

6. The cleaning of the mold comes after the molding and cooling phases. This process entails removing the
meshes. To remove the part of the jet that has hardened and remained connected to the product component
throughout this step of the process. It is a variable procedure dependent on the size of the component to be
separated from the castable channel: for little pieces (as is typically the case with zamak products), bending
the break point is often sufficient to break the connection; however, for big parts, a specific cutting equipment
is necessary, which can be automatic or manual / robotized, depending on the component in production.

A die cast is a representation of an injection cycle. There are 36 pieces in the die cast. This means that every
33 seconds, 36 components are created for each die-casting cycle.

The quality of a die-cast product is affected by a number of elements. It is mostly determined by the properties
of the alloy materials, the casting parameters, and the design circumstances of the molds and components. In
general, a die-cast product is built with component thickness, charge time, local overheating temperatures, and
surface conditions in mind. To reduce casting defects and produce high-quality die-cast goods, the equipment's
working conditions must be adjusted, and the size and position of the gate speed, runner, overflow, and
ventilation must be appropriately addressed while constructing molds. Among them, casting procedures or
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casting circumstances have a greater impact on the mechanical characteristics of die-cast aluminium alloys
than the alloys utilised. Several thermodynamic parameters impact on die-casting process. They increase the
quality of die-cast items when appropriately determined and adjusted. Mold temperature, dose volume, slow
and quick injections, injection pressure, set up pressure, chemical composition, and liquid metal temperature
piston velocity, metal temperature, filling time, and hydraulic pressure (Verran et al., 2008).

A die-casting process's environmental and technological performance is the consequence of a large number of
criteria. Some of these settings may be changed, while others are random. On a daily basis, modern foundries
may collect massive amounts of process data. These contain information about molten metal preparation,
casting process parameters, simulation findings, component shape, Non-Destructive Evaluation (NDE) data,
and so forth. In an industry firm, there are many various sources of information, such as data from the PLC
system, MES, manufacturing line, and from outside the company. The ERP system understands what
consumers want, the MES system understands how to create it, and data from production line sensors
demonstrates how the production system functions. Enterprise data source systems are frequently produced by
various suppliers and may not speak the same language. Data is acquired at several phases of the process.
These data are held in silos, and their value is frequently restricted until they are combined. This would be a
missed opportunity for the foundry unless there was a means to combine, fuse, and analyse the data.

Each die-casting process cycle is monitored and recorded on the cells during the operations. Each cycle record
is made up of values relating to the input and output process parameters.

Over time, the types of data and collecting methods utilized by several departments within the same institution
have developed. Methods range from high-tech automated uploading to a cloud database to handwritten
notebook entries. As a result, merging the numerous sources into a coherent dataset presents issues because
collection frequency and identities frequently differ. Communication among stakeholders is crucial throughout
the process to determine whether, how, and how frequently data should be gathered to provide the best
description of the system to be modelled. Integrated data is required for conducting machine learning, and it is
a missed opportunity for the foundry business if no attempt is made to assemble, fuse, and analyse this data in
order to better understand the process elements impacting casting quality.

4.1.2.1. Company die-casting process research challenges

1. Real-time thermodynamic process analysis. It is important to construct a network of sensor meets and
a data integration system (IOT architecture) to gather all operations in real time and do automate
thermodynamic analysis using a built-in ad-hoc algorithm.

2. Being able to incorporate an EA and LCA study into a single automated analysis.

3. Solve the challenge of heterogeneous data sources and formats by combining raw data sets from MES,
PLC, and environmental data into a single structured database. The ability to acquire deep PLC data,
MES data, and data from sensors, which monitor more particular objects that may not be available via
the PLC or MES, is critical to high quality analytics and outcomes (Khan et al., 2017).

4. Managing an Unbalanced Dataset. Handling unbalanced data for machine learning is a major study
topic, and various studies have been conducted to address the skewed data set issue, since many real-
world datasets are severely imbalanced. Considering the causalisations reported on the MES, it is
discovered that about 80% of the dataset influences the cause for microstops, 10% for mechanical
faults, and 5% for both electrical faults and equipment faults, resulting in severely uneven data
training.

5. Apply various anomaly detection approaches, like as machine learning, to find minority class samples
that are oddities or outliers.

6. Fine-tune algorithm performance with additional data and verify models using previously unknown
test data.
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4.2. COUPLED EA-LCA FOR THE THERMODYNAMIC MODELLING

In this paragraph, an EA-LCA coupled analysis is performed on the company industrial test case, in accordance
with what is stated in paragraph 2.1.4, thus following the System Thinking. Since the company's dedication to
the long-term growth of the business for all stakeholders, it has been feasible to gather data formatted according
to our needs and undertake direct measurements on the field of the process under investigation. LCA, as the
name implies, is commonly used to assess a product's complete life cycle in a so-called "cradle-to-grave"
assessment. LCAs are sufficient for analysing environmental impacts over the whole product life cycle. LCAs,
on the other hand, do not have a broad influence on a certain stage of life. Because just a few customers have
complete influence over a product over its entire life cycle, thorough reviews are vital. The application will
allow you to clarify the systematic approach outlined in the preceding paragraph in further depth and identify
any gaps that remain unbridged. This case study is typical since the whole process may be characterized using
alternative beginning assumptions; also, it is composed of many sub-processes with distinct flows, increasing
the risk of meeting heterogeneities.

STEP 1 - Goal and scope definition

The goal and scope derive from the company's requirements in quest of product system optimization: to
decrease scraps created, to limit the environmental effect in terms of CO, in order to get the EPD declaration
on the company's products (“EPD International,” 2020), and to minimize energy consumption. To achieve
these objectives, the LCA and EA will be built individually, followed by a hybrid EA-LCA. The study is
performed on a single component (a safety pin, manufactured by die-casting zamak) and then on the full
manufacturing chain of the finished product ready for sale (a handle). In terms of research, the purpose is to
demonstrate the differences in the level of complexity of the analyses done on a particular process vs the
complete production chain. As a result, the amount of heterogeneity is more or less significant. The two
analyses will be conducted in parallel following the system thinking.

SUB-STEP 1.1 - Functional unit

It is simple to pick the functional unit for both the LCA study and the EA based on the company's performance
requirements. The functional unit of the product system under examination in the current case study was found
in one piece of safety pin with a diameter d = 9.6 mm and weight m = 20.1 gr, which is the same for all
scenarios. While the functional unit chosen for the assessment of the entire manufacturing process is the steel
corner square (whose safety pin is a component) with dimensions L x P x H = 24 mm x 14 mm x 24 mm and
weight of m = 121 gr. This option normalizes the input and output data for the reference flows, proportional
to the functional unit of the investigated product system. The functional units (depicted in Figure 4.4) provide
a structure for the standardization (in a computational sense) of input and output data on the basis of which the
performance of the analyzed process may be defined.
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Figure 4.4 - Functional Units. a) the safety pin; b) the steel corner square
SUB-STEP 1.2 - Reference flow, scenario and system boundaries

The recommended initial step is to create a process flow diagram depicting the relationship between the system
unit-processes, as illustrated in Figure 4.5. According to the system thinking, the benefit of studying the process
as a first step is the identification of its main phases, as well as the definition of its primary and secondary
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elements to be considered in the analysis, the estimation of the total cycle time, and the apparent criticalities
that may arise during the analysis. As it corresponds to a distinct technological cycle, the schematization
becomes objective, eliminating heterogeneity.

Third-party suppliers' zinc alloy (zamak) (“UNI EN 1774,” 1999) panels (or ingots) are unloaded using an
electric forklift in a dedicated zone of the production plant. The individual panels are then placed into the
furnace. The alloy is melted in an electric oven at a temperature of 400-420 °C. Molten metal is pumped into
steel molds during die-casting. After that, the molten material is squeezed into steel molds. To cool melting
systems and trim, closed cycle water is employed. While reusable scraps are reintroduced upstream of the
furnace, completed items are retrieved, put into boxes, and transferred to the assembly section. The die-casting
process is characterized as a basic sequence of activities indicated in Figure 4.5: melting (furnace), die-casting
(injection and die phases), cooling and trimming, and final extraction for machining.
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Figure 4.5 - Die-casting sub-processes (or sub-systems according to the system thinking)

While, concerning the analysis relating to the steel corner square, one final product, 1 pc, is made up of six
components (see Figure 4.6Errore. L'origine riferimento non é stata trovata. for the overall manufacturing
process flow chart):

a safety pin produced by the zamak die-casting and vibro-tumbling processes. Die-casting zamak is a
method of producing zamak (zinc alloy) items by injecting molten metal into steel molds. In an electric
oven, the alloy is fused at a temperature of 400-420 °C. The molten substance is then injected and
squeezed into steel molds. Following that, the printed material is discharged into boxes and allowed
to cool to room temperature. The sprues are reintroduced into the furnace prior to the melting process.
The semi-finished product is next transferred to the vibro-tumbling step, which is a mechanical
scouring of metal surfaces that also allows the piece's sharp edges to be removed. The procedure is
carried out by immersing the parts to be treated in a heterogeneous mass of moving granules or spheres
that perform metal removal / sanding by sliding along the surfaces of the component.

a spring block plate produced by stainless steel shear presses, washing, and vibro-tumbling processes
Stainless steel coils are physically treated with additives in the metal pressing and sheathing section
utilizing eccentric presses for shearing machining supplied with steel pitch molds. The steel belt is
then forced into the mold, where it is molded and cut to fit the plate to be created. Dirty components
are delivered to an industrial washing machine with a centrifuge. The procedure is intended to remove

114



processing residues (oil, pastes, fats, dust, etc.) from metal semi-finished goods. The washing system
operates by dissolving appropriate detergents in hot aqueous washing solutions maintained at roughly
70 °C.

a female wing produced by die-casting and shot blasting, and a male wing produced by die-casting,
shot blasting, drilling, and threading. In order to make aluminium alloy components, molten metal is
injected into steel molds during the die-casting process. The raw material for aluminium alloy loaves
is delivered within melting furnaces and heated at the melting temperature of the alloy (660-700 °C).
The molten substance is then injected and squeezed into steel molds. Robotic arms are then used to
place the printed material in boxes and bring it to room temperature. Shot blasting is carried out by
pushing steel metal balls with a diameter of 0.5 mm at high speed against the objects to be treated,
eliminating any leftover burrs created by molding. The item is then transported to the department of
drilling and threading. The section is comprised of a range of machine tools that can work dry as well
as with lubricants and chemicals. In the latter situation, fully automated machines run a continuous
cycle in a closed cab, recycling the emulsion after filtering.

third-party contractors are used to purchase springs and screws.

Following that are the semi-automatic assembly and hand packing (with labels and cardboard) steps.

To make the findings of LCA and exergetic analysis more similar in terms of indicators, the stages of transport
(typical of LCA), assembly, and packing will be excluded from the study. This decreases the amount of
variation in process definition, inventory, and computations. Finally, the purpose and scope of the two
independent studies are the same, the system boundaries are the same, and the inventory analysis is performed
on the same flows of matter and energy.
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Figure 4.6 - A flow chart depicting the manufacturing processes of corner square

The scenario analysis is linked to the sensitivity analysis in this example, which is a function of the possible
alterations in the percentage allocation of energy consumption during the production phases. EA substantially
assists the quest for technical or operational process improvements. In this situation, EA aids in the definition
of a single scenario, eliminating potential heterogeneities by identifying sub-systems (unit-processes)
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whenever a state change happens. Concerning the reference flows, non-compliant items were included in the
analysis as long as the overall entering raw materials and their consequences were included. Waste treatment
methods were also provided. The EA uniquely identifies reference flows in its balance equations (see
paragraph 2.1.2), eliminating analytical heterogeneity.

The system boundaries were chosen based on the analysis's goal and scope. The defined boundaries are as
follows: i) a temporal boundary (2020); ii) a geographical boundary (the main production setting place is
Conversano - ltaly); and iii) a technological boundary, which includes all in-plant production processes
necessary to manufacture the two functional units, excluding raw material production and transportation (buy)
and packaging (made in another company's department). Due to a lack of precise data, only the manufacturing
phase has been included in the system boundaries for the hybrid analysis done here.

Because EA was used as a guideline to identify the unique intermediate path from S(to) to S(tn), heterogeneity
was severely reduced. The system thinking aims to simplify the search for different production of S(ty).

The optimization criteria in the EA is a guidance to this goal by decreasing the term EXoss, Which is the source
of the system's less-than-theoretical efficiency. Heterogeneity is decreased in EA and LCA by describing our
industrial system as a thermodynamic model. It is probable that LCA is an estimate of the distance between
the end state S(tn) stated in terms of environmental effect rather than thermodynamic potential, and that EA is
a thermodynamic approach that also helps to measure process inefficiencies. The thermodynamic model is
built of four unit-processes, each of which may be regarded as a separate thermodynamic system (more control
volumes) with associated mass and energy input and output fluxes determined by the functional unit and the
system boundaries/system environment. Figure 4.7 and Figure 4.8 depict a graphical depiction of the two
system models. The models were built on the basis of the "ontological reference model" approach used by
(Cao et al., 2018), which states that when there is a variation from the previous state, the system must be
divided into sub-processes; this means having a technological view of the production cycle and the product.
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Figure 4.7 - The model of the die-casting process according to the system thinking
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Figure 4.8 - The model of the entire manufacturing process of the steel corner square according to the system thinking
STEP 2 - Inventory analysis

It is known which data must be inventoried now that the goal and scope specification process has concluded.
The physical characteristics of raw materials and secondary materials (zinc, water) may be discovered in
technical standards datasheets. The amount of processed materials intake and output, as well as their relative
temperatures, have been monitored throughout time. Partial and whole-time cycles have also been tracked.
Over the course of 2020, the electrical power consumption by machines was measured and proportionately
assigned to the functional unit.

SUB-STEP 2.1 - Choice of the database

Equivalent items must be discovered and selected from the appropriate database for all data linked to the
functional unit. Because the availability of data related to each specific database was limited, as was the number
of items recorded (Table 2.1) and the poor geographical specification that these datasets provide, the choice
for the most suitable database for our case study fell solely on Ecoinvent v.2.2 uploaded on the SimaPro® v.7.3
software. Concerning EA, the chemical exergies associated to zinc and water were gathered from the most
recent list of chemical exergies (Szargut, 1989; Rivero and Garfias, 2006).

SUB-STEP 2.2 - Allocation

Allocation criteria for energy consumption were assessed based on the nominal power of each machine, rather
than machining costs (economic allocation). As a result, an attributional LCA was performed using average
data on power usage. The same allocation criteria were used for EA. To address the issue of average data,
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expanding the borders would be avoided since some information would be lost; instead, it would be a good
practice to place an electrical meter on each machine.

SUB-STEP 2.3 - Local technical uniqueness

The topic of location in LCA encompasses more than just changes in geographical, topographic, and climatic
geometry. Each ecosystem touched by resource exploitation or pollution is unique to some extent. As a result,
a local ecosystem is particularly sensitive to the constraints imposed by a single product system's life cycle.
Local distinctiveness is demonstrated by investigations into the influence of site-specific evidence and testing
programs aimed at incorporating local sensitivities in LCA. According to the system thinking, data relating to
the geographical position have been picked in the database: primarily data related to Italy, if accessible, or
average data connected to European territory in the remaining situations. In contrast to LCA, EA is not
susceptible to geographical requirements that might alter the technical application of this technique of analysis,
limiting the potential heterogeneities that may develop when picking data based on local specifications in LCA.
The geographical location of the system/process under investigation has no direct influence on the exergetic
analysis since what counts is the temperature differential between the material fluxes in, out, and with regard
to the dead state. It signifies that the ability to create productive work through the absorption of power remains
the same. When varied ambient conditions are considered, it will take more time and energy to melt the zamak
panels, although this is not a reason that directly impacts exergy, in terms of spatial-local specification, even a
strong conditioning system in the plant can degrade the efficiency of the foundry.

In terms of the inventory connected to the safety pin, Table 4.1 shows the primary flows of materials, energy,
and wastes for each sub-process of the die-casting zamak. These figures have previously been computed in
terms of the functional unit, which is one pc of safety pin.

Table 4.1 - Main process parameters, i.e., process flows of safety pin manufacturing

Materials Electrical Energy Wastes

Sub-process - - -

Type  Quantity Non-renewable  Photovoltaic Type Quantity
Zamak panels +

Furnace reusable scraps U014 K9 000035 kWh  0.00003kwh  Vetaldross 0.00003 kg
Additives/Chemicals  0.0001 kg VOC 0.00007 kg
.. Zamak shot  0.0248 kg Metal 0.00003 kg
Injection = fditives/Chemicals 0.00005 kg 0007 KWh 0.00002 kWh VOC 0.00002 kg
. Zamak shot  0.0011 kg Metal 0.00003 kg
Die Additives/Chemicals 0.00035 kg 00054 kWh 0.00005 kwh il 0.0001 kg
Dust 0.00001 k
Trimming Zamak casting  0.0013kg  0.00014 kWh  0.00001 kWh us g

Metal Scraps 0.00003 kg

In terms of the inventory connected to the steel corner assessment, Table 4.2 shows the primary flows of
materials, energy, and wastes for each sub-process. These figures have previously been computed in terms of
the functional unit, which is one pc of steel corner.

Table 4.2 - Main process parameters, i.e., process flows of steel corner square manufacturing

Materials Electrical Energy Wastes
Sub-process - - -
Type Quantity  Non-renewable Photovoltaic Type Quantity

Die-casting Zamak panels 0.0014 kg Metal 0.0001 kg
zamak Additives/Chemicals  0.0005 kg 0.0012 kWh  0.00011 kWh VOC 0.00011 kg
Die-castin Aluminium panels  0.0248 kg Metal 0.00048 kg
aluminiun? Natural gas 0.012m®  0.00067 kwWh  0.00003 kWh VOC 0.00002 kg

Additives/Chemicals  0.001 kg Oil mist  0.0009 kg
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Flattening and Stainless steel coils 0.0011 kg 0.00082 kWh  0.00008 kWh Metal 0.00005 kg

cutting Additives/Chemicals 0.0003 kg Oil 0.0001 kg
Water  0.0976 | Sludge  0.0951

Washing Natural gas 0.0018 m®  0.0022 kWh  0.00021 kwWh  Formaldehyde 0.000001 kg

Additives/Chemicals 0.0003 kg Chemicals 0.0003 kg

Vibro-tumbling Abrasive grains  0.0002 kg  0.00082 kwh  0.00008 kWh Grains 0.0002 kg

Shot blasting Abrasive blasting 0.0003 kg 0.0016 kwWh  0.00014 kwh Grains 0.0003 kg

t[:]rr'égg?nznd Additives/Chemicals 0.0001kg  0.000034 KWh 0.000006 kWh Metal 0.0001 kg

STEP 3 - Life cycle impact assessment
SUB-STEP 3.1 - Impact category selection and cut-off rules

The environmental performance comprises data on resource usage, energy consumption, pollutant emissions
across the product's life cycle, and possible environmental consequences in kgCOzeq. The IPCC-GWP-100y
impact category was chosen, with a cut-off value of less than 1%. The firm's goal of obtaining EPD certification
on their products, which demands exactly the environmental effect represented in kgCO.eq, compelled the
corporation to choose this impact category (“The International EPD® System - The International EPD®
System,” n.d.). The sole metric for EA is the amount of exergy loss represented in Joules, or dimensionless
efficiency. Cut-off was simple in this situation since the EA previously set the tolerance of the performance
parameter to +/- 1 [J]. This decision is solely based on the goal and scope previously defined.

Because the information acquired will aid in the anticipated effect assessment, the inventory review should be
guided by the selection of impact assessment metrics. If the effect calculation is exergy research, the data
acquired may be suitable to this, implying that gathering a large amount of pollution data should be overlooked
since they are either damaging or greenhouse gases but do not contribute significantly to Exergy losses.
Consider that EA alone is incapable of delivering full information regarding the system under study's
environmental sustainability. Just when coupled with LCA and adding information pertaining to process
performance, not only environmental, but also technical/technological, does exergetic analysis become a
helpful instrument for the cause, as in Exergoenvironmental and Exergoeconomic analysis, or CExD. As a
result of being more limiting in terms of system boundaries and flows to be evaluated than the LCA, exergy
minimizes some sources of uncertainty and heterogeneity inherited in the LCA. When a broad-spectrum
examination of probable environmental consequences is needed, the LCA impact categories, such as Recipe
or CML-IA, are recommended. CEXD is the best assessment method for integrating LCA and EA because it
allows for the consideration of all upstream and downstream flows (as well as related primary and secondary
data) that characterize the LCA to be expressed in a single more comprehensive metric, such as exergy demand
(MJ).

SUB-STEP 3.1 - Space and time characterization

The bounds were chosen to address space characterization. In terms of time characterization, the system view
only applies to the production stage, reducing heterogeneity caused by the limitation of different alternatives
that would occur at each sub-step of the analysis, i.e., additional alternatives in functional units, system
boundaries, and even more during LCI, where similar data in the datasets may lead to inaccuracies.

STEP 4 - Results and interpretation

ISO 14044 state that “The selection of impact categories shall reflect a comprehensive set of environmental
issues related to the product system being studied, taking the goal and scope into consideration” (“ISO 14044,”
2006). Indeed, even if it investigates the whole product system, a study that focuses primarily on one type of
effect, such as carbon footprint or water footprint reports, is not considered a life cycle assessment in the
meaning of the ISO standard. However, from a system standpoint, where the practitioner must answer to the
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company's needs, which constitute a constraint, the purpose is realized by the measurement of COzeq
emissions, which is the quantity necessary to receive the EPD certificate. Furthermore, as established at the
start, the EA allows to reduce some of the inherent heterogeneities of the LCA technique while simultaneously
providing us with relevant information on process and system performance. The general character of 1SO
standards is a limitation: more contextualization or a set of representative test cases would be preferred to
avoid free interpretation.

As concerns the case study, the life cycle results, the emissions have been summarized per each component in
the following Figure 4.9 illustrating the normalized overall impacts of one safety pin. The evaluation of the
impacts for the GWP reported a total value of 0.0775 kgCOeq/pc. While the normalized overall impacts for
the steel corner square are depicted in Figure 4.10, reporting a total value of 0.3186 kgCOeq/pc

0.03 0.029
IPCC GWP 100a
- 0.025
Unit kgCO2eq 0.022
0.02
= 1 - Furnace 0.02934 0.015
L 0.015
% 2-Injection 001511 0011
S 3-Die 0.02207 0ol
77
4 - Trimming 0.01100 0.005
. 0
Total 0.07752 1- Furnace 2 - Injection 3-Die 4 - Trimming
Figure 4.9 - Safety pin: results of IPCC GWP100y performed with LCA
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Figure 4.10 — Steel corner square: results of IPCC GWP100y performed with LCA

When the EA is performed from a systemic perspective, the total sustainability evaluation becomes less
uncertain than the LCA. The retrofit work has been examined indirectly by taking into account the exergy loss
flow in the Sankey diagram in Figure 4.11. Despite the unambiguous specification of all presumptions and
assumptions made for both analyses, the greatest exergy loss happens in the 3-Die sub-process, which
contradicts the conclusions obtained by using the LCA.
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Figure 4.11 - Sankey diagram of exergy flows expressed in Joule

The following figures were produced from the EA for the sustainability performances based on the exergy
efficiency indices determined for each sub-process, as shown in Figure 4.12. While the metrics for the complete
manufacturing process of the steel corner square are presented in the next paragraph in Table 4.3

35.00 3112

30.00

25.00 21.05 21.05

20.00
# General [%)]

15.00 % Net use [%]
10.00

5.00

0.00
1 - Furnace 2 - Injection 3-Die 4 - Trimming

Figure 4.12- Exergy efficiencies for each sub-process

Because of the quantity of destroyed exergy, heat losses, and wastes, net use exergy efficiency differs from
general exergy efficiency. The gap between these two efficiency indicators implies that the melting operation's
exergy efficiency may be enhanced further, i.e., there is potential for alternate process scenarios S(tn).

As a reference, a more integrated EA-LCA was also performed in SimaPro®, integrating Exergy and LCA.
The CEXD approach was chosen as the analytical method. The goal of CEXD is to calculate the total exergy
extracted from nature by adding the exergies of all resources (both material and energy) necessary to supply a
product or process. The evaluation occurs at several stages of the life cycle. This approach assesses the quality
of energy demand in the investigated system by using exergy as a measure of the possible loss of valuable
energy. The CExD assessment results, presented in Figure 4.13 and Figure 4.14, were consistent with
independent LCA and EA evaluations.
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Figure 4.13 - Safety pin: results of CExD expressed in MJ
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Figure 4.14 - Steel corner square: results of CExD expressed in MJ

Because they use quite different measures, the sustainability assessment results obtained through the LCA
alone are not directly comparable to those obtained by the EA alone. The case study results utilizing the two
methodologies independently are contradictory, because LCA deems the furnace to be the most influential
sub-process, whilst the EA turns out to be die-casting. Because the aluminum endures a significant drop in
temperatures in a relatively short period of time during die-casting, the value of the Carnot efficiency

component (1 - %) QL of Eq. 2.12 turns out to be greater in this sort of Exergy-based research. Assuming

that the CEXD was the appropriate compromise between LCA and EA, the following findings are consistent
and predictable: SimaPro® software does CExD analysis, hence it relates to its method's characterisation
factors (see (PRé, various authors, 2019) for a deep insight). CExD's findings, but as shown in Figure 4.13, the
impacts of the die-casting sub-process are proportionately bigger than those of the LCA alone in Figure 4.9.
This implies that exergy has helped to achieve a better balance between the significance of data flows and the
emissions associated with them, as well as the environmental consequences.

The comparability of the analysis's results is then ensured. Another way to look at it, always in accordance
with the system thinking, is to conceive of a production batch, i.e., one printed (a cycle) made up of 32 safety
pins, as a functional unit (in Figure 4.5 is visible the whole printed extract before trimming). We may analyse
the integral physics, the genuine physical quantities that are not distributed equally among the 32 pcs, in this
approach, but information about the processing on the single piece may be lost.

4.2.1. Process Performance Metrics

The purpose of this paragraph is to offer an overview of the value of the most important indicators mentioned
in the state of the art (see paragraph 3.1.2) concerning the case study.
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The indicators will be calculated on the basis of the manufacturing process for the production of a corner
square (which therefore represent the functional unit, as well as the finished product of the analysis). As a
result, in this situation, the analysis is carried out not only on the die-casting process, but also on the full chain
of processes required for the manufacturing and supply of the completed product and packaging. This process's
information and assumptions have already been explained in the preceding paragraph 4.2.

The results of the analyses per unit of manufacturing process, all of which are connected to the functional unit,
will be displayed as indicators of process performance in terms of sustainability and technological quality.
The indicators discussed below were computed using the equations provided in Table 3.1. As a result, the LCA
and EA performed are useful in determining the parameters needed to calculate the indicators. The results are
shown in Table 4.3.

LCA’s GWP100y, which is widely used as a benchmark for obtaining EPD certifications for a sustainable
product. The greenhouse gas potential (GWP) represents a greenhouse gas's contribution to the greenhouse
effect in proportion to the CO, impact, which has a reference potential of 1. Each GWP value is determined
for a specific time period of 100 years. The case study reported a total value of GWP of 0.3186 kgCO.eq/pc
net of assembly and packaging for the case study carried out with SimaPro® and Ecoinvent v.3 database. The
meaning of this measure is to determine the quantity of CO- equivalent created for each sub-process. The more
energy-intensive the process, the higher the quantity generated. As a result, according to GWP100y, die-casting
aluminium is the most energy-intensive subprocess (considering, however, that this process is called into
question twice, for the production of both wings, male and female). Die-casting methods, in general, have the
biggest environmental effect.

Exergy losses are irreversible poor uses of available energy, or squandered labour potential. This is also known
as dissipated energy, and it may be decreased with the right retrofit solutions. The Exiess Nnumber has also been
included in the table since it is commonly mistaken as a metric for evaluating which sub-process consumes the
most energy and hence has the greatest opportunity for improvement in terms of technological quality and
sustainability.

the overall Exloss of 1.315 MJ represents the sum of exergies lost in sub-processes. When the EXioss Values of
sub-processes are examined, it is clear that there are cases where the result is consistent with that expressed by
GWP100y, at least from a ranking standpoint, and other cases where a sub-process, such as washing, finds
itself less energizing than vibro-tumbling, despite the GWP's assertion to the contrary. EXess has repeatedly
classified the two die-casting methods as less sustainable.

The coefficient of resource-use performance, np, is defined as exergy efficiency. It is a non-dimensional
measure that may be stated in percentage form. In order to increase performance, exergy efficiency highlights
the significance of measuring losses and internal irreversibilities. Higher exergy efficiency reflects more
energy content employed in the system, making it more sustainable, whereas lower exergy efficiencies
represent energy losses and internal irreversible processes, resulting in inferior energy quality and a worse
sustainable rating. It is calculated by dividing the total exergy intake by the useable exergy output. The overall
efficiency of the process under consideration is 50.70%, placing steel corner production on a medium
sustainable path. As a consequence of pure exergetic analysis, the n, findings are totally compatible with EXioss,
indicating die-casting operations as the most energy-intensive sub-processes. Because n, in this situation is not
cumulative, the process efficiency is represented by the value 12.34% of the die-casting aluminium,
independent of the number of pieces produced. It has a little better efficiency than zamak, which contradicts
the GWP100.

The Exergetic Eco-Efficiency, neco, iS @ measure used to compare two identical processes. It is worried with
the possible effect differential between exergy generated from renewable sources and exergy created from non-
renewable sources. Thus, the more specific the definition of which streams in the process come from renewable
resources and which come from non-renewable resources, as opposed to the intelligent use of recyclable
materials, the more accurate this indicator becomes. The most notable difference in the case study in question
is the amount of electricity absorbed by the machines in the various sub-processes, which is generated for
approximately 9% by photovoltaics and the remainder purchased from grids, consisting of 20% coal, 1.1% oil,
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61.2% natural gas, 5.1%nuclear, 8.7% renewable, and the remainder from a combination of sources. In light
of the foregoing, and depending on the source of raw materials, the overall process has an average eco-
efficiency of about 0.56, which is not directly comparable to simple energy efficiency, but when compared to
the hierarchy of sub-processes, it is very consistent with what the GWP has expressed. Furthermore, in terms
of environmental effect, the two die-casting operations are the worst sub-processes.

The Life Cycle Irreversibility Index, x, complementary of the Life Cycle Quality Index v, supports to the
comparison of processes and products having the same functional unit. In contrast to the previous indicator,
this one emphasizes the value of useful exergy generated throughout the life cycle, as well as the recycling
potential of waste materials, and thus the exergy that can be recovered rather than that which is completely
lost. The Life Cycle irreversibility index considers the exergy inefficiency, however if a real system is
compared to the latest technological innovations, or to an ideal Carnot machine, an index that measures
technology obsolescence may be implemented. In terms of the case study, the Life Cycle Irreversibility Index
verifies what the other indicators have already said: die-casting procedures are the most impactful, and in this
case, the most irreversible. It should be highlighted that the majority of sub-processes are reasonably valuable.
This is owing to the fact that all genuine processes are irreversible, especially those involving abrupt
temperature changes, state changes, or large waste of auxiliary material that does not contribute to the increase
in useable exergy created. Because there are no substantial temperature variations or material waste,
procedures with reduced irreversibility include vibro-tumbling, drilling, and threading. On average, the whole
production cycle of the steel corner component is 60% irreversible. The Renewability Factor is calculated by
dividing the cumulative exergy demand of renewable resources by the cumulative exergy demand of non-
renewable resources. This metric is equivalent to the neco, but since it is calculated entirely on SimaPro using
the hybrid CExD method, it eliminates the uncertainty that may arise when integrating the LCA and EA only
at the end, rather than from the beginning. In the case study, FR also confirms that die-casting processes are
the least sustainable, with a low renewability factor. However, it is inconsistent with neco on the other sub-
processes as well. On average, the overall production process has a low renewability factor of 0.348, where 1
is the optimum process.

Table 4.3 - List of the main indicators’ results for each sub-process

Metric
Sub-process GWP100y EXioss Mo MNeco X FR
[kgCO2¢] [MJ] [%] [-] [-] []

Die-casting zamak 0.0731 0217 112 0137 092 0149
Die-casting alurminium ___ |NOMGTANMINOMASINE 12340414 089 0229
Flattening and cutting 0.0107 0.133 47.89 0.564 0.74 0.46
Washing 0.0218 0.085 79.08 0.721 0.65 0.355
Vibro-tumbling 0.0099 0.178 52.47 0.821 0.24 0.371
Shot blasting 0.0321 0.186 63.28 0.68 0.58 0.431
Drilling and threading 0.0036 0.071 88.65 0.873 0.17 0.444
Overall 0.3186 1.315 50.70* 0.559* 0.60* 0.348*

*average between the values of each sub-process

In conclusion, while all metrics agree that the zamak and aluminium die-casting processes are the most energy-
intensive and least sustainable, when compared to other sub-processes, this agreement is not clear.

Because the inventory created during the LCA, which is done with SimaPro, is made up of background data
that already has certain pre-set processing, the findings of the LCA and EA analyses cannot be directly
compared. Here, we're talking about metrics and orders of magnitude that are so dissimilar that SimaPro®’s
CExD values and the findings of pure exergetic analysis do not converge to equivalent conclusions. All of this
raises the level of uncertainty in interpreting the data for effective consumption reduction and process
improvement measures. As a consequence, it would be reasonable to compare consistent measures in terms of
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inventory and process type with one another. Indicators obtained from combined EA-LCA evaluations may
appear to be a more consistent solution as an outcome.

4.3.DIE-CASTING PROCESS THERMODYNAMIC MODEL

These studies conducted in the preceding paragraph help as a reference point for determining which factors
should be regulated and where to begin constructing one's approach. In reality, the die-cast model was required
to emphasize process parameters, their physical linkages, and the type of source to be utilized for control,
monitoring, and validation. The Table 4.4 below depicts an overview from the Excel model, which will serve
as the foundation for the later design phase of the measuring and monitoring system, as well as the automation
of the real time EA.

Master Italy is an extremely dynamic and constantly developing SME. Although it has management platforms
for production and quality control, the human influence (of operators) on all processes is still very strong. The
continuous improvement of processes through targeted interventions identified by EA and LCA analyses, as
well as the company's management system platforms, attempts to minimize this aspect, which is still not easily
measurable in terms of quality loss and energetic effort (we can call it "anthropic entropy™). This is supported
by the fact that there is currently no technique of objective and accurate study in the literature that completely
characterizes the contribution of the social dimension within the paradigm of both sustainability and quality of
processes and/or finished products sold by the company.
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Table 4.4 - Overview of the process's Excel thermodynamic model, including the sources from which to monitor each parameter

MELTING
Process parameter [ Ssymbol| mu. | Source Simulation [ symbol [ m.u. | Check | Source
Solid state temperature of o Quantity of heat for _
ingots Ts C Thermo cam melting Qm J Qm=p-Varcs (Ts- Ts) Pyrometer
. Quantity of heat for
Meltl_ng temperature of the Ty °C Datasheet transformation from Qi J Qi=p-Val-cl Pyrometer
aluminium alloy X L
solid to liquid

Aluminium alloy casting R Quantity of heat for _
temperature Ta C PLC casting Qe J Qc=p-Varcs: (Ta - Tr) Pyrometer
Furnace capacity volume Va m3 PLC [ Total amountofheat |  Q: J Q=Qm+Qi+Q. | Pyrometer |
Density of the alloy p kg/dm3 Datasheet
Specific heat of the alloy S cal/g°C Datasheet
Fusion latent heat cl callg Datasheet
Furnace temperature Turnace °C PLC
Methane gas Mgas m3 PLC
Room pressure Po Pa Air quality sensor

CASTING

Process parameter | symbol | mu. | Source [ | Simulation | Ssymbol | m.u. | Check | Source
- Type of product to be | | Melted alloy volume in
3 3 = .
Alloy volume to be injected Vg m manufactured the spilling bath Vb m Vp=2/3:-Vy CCD Cam
. Alloy volume injected
Alloy volum.e (’:iepOSIted on the Vi m3 CCD Camera into the container in Vi ms3 Vi=Vg- Vi Flow meter
mould by friction :
the pouring phase
o Alloy injection o
Mould temperature Teup C Thermocam temger ajture T C Ti=Ta- Ts- Tt- Teont Pyrometer
[ Container temperature | T | °C |  Thermocam | | Aluminium mass [ ma °C | Ma = Vi-p | Mass flow meter |

Cup inclination | % | % | PLC
Cast translation speed vi | mm/msec | PLC
Pouring speed vy | mm/msec | PLC
Machine closing time [ tn | msec | PLC
Alloy pouring time | & | msec | PLC
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FIRST PHASE INJECTION

Process parameter Symbol | m.u. Source Simulation Symbol m.u. Check Source
First phase injection course Cl mm PLC Container volume Veont m3 Veont = Leont*Ap CCD Cam
First phase time Tl msec PLC Filling rate feont % cont = (Veont/ V1) -100 PLC
First phase accumulator .
plressSre umd pcl Pa PLC First phase course Ci mm C1 = Leont-feont PLC
Hydraulic cylinder diameter dc mm Type of product to First phase injection speed V1 mm/msec V1=Cl/T1 PLC
be manufactured
— . . Type of product to : : 2 — 2.
Injection piston diameter dp mm | e manufactured Hydraulic cylinder area Ac mm Ac=de*(3.14/4) CCD Cam
. Type of product to A : 2 —
Container length Lcont mM | e manufactured Injection piston area Ap mm Ap =dy*(3.14/4) CCD Cam
Alloy flow in first phase 3 _
injection mould Quail m?3/sec Quol = VIT1 Flow meter
First phase piston force Fol N Fol = pcl-Ac Inductive meter
Agent pressure on the metal in _ .
the first phase pal Pa pal = Fpl/A, Inductive meter
First phase aluminum force Fal N Fal = pal-Ap Inductive meter
SECOND PHASE INJECTION
Process parameter [ Ssymbol | m.u. | Source [ | Simulation | Symbol [ m.u. | Check | Source
sgzigg phase injection C2 mm PLC Second phase injection speed V1 mm/msec V1=C2/T2 PLC
Second phase injection time T2 msec PLC Second phase injection course C2 mm C2 = VI/A, PLC
2iggsnudr£hase accumulator pc2 Pa PLC Second phase range Q2 m3/sec Q2=V2-Ap Flow meter
Printable area width Sp mm CCD Cam AI_on f low in second phase Quoi2 m3/sec Quoi2 = VIIT2 Flow meter
injection mould
Long casting length Lac mm CCD Cam Long casting area Acc mm? Asc = Sp-Lac CCD Cam
Long casting speed Vs, mm/msec Va=V2-(Ap/Ac) PLC
Second phase piston force Fp2 N Fp2 = pc2-Ac Inductive meter
Agent pressure on the metal in _ .
the second phase Pai2 Pa Pai2 = Fp2/Ap Inductive meter
Second phase aluminium force Fa2 N Fa2 = pai2:-Ap Inductive meter
Total course Cot mm Cit = C1 + C2 PLC
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THIRD PHASE INJECTION

Process parameter | Symbol | m.u. | Source Simulation | Symbol | m.u. | | Source
Multiplication time [ ™ [msec| PLC Multiplication pressure PM Pa PM = ((p3-A3 - Peontr- Acontr) -A2) PLC
Specific pressure PS Pa PS = PM- (A)/Ac) PLC
Jnird phase Injection cc | mm CC = Cr(dp/2) PLC
SOLIDIFICATION
Process parameter | Symbol | m.u. | Source Simulation | Symbol |[m.u.] | Source
Mould temperature | T mould | °C | Thermocam | | Thermal content CS Kcal CS = (crma) + (C*(TI - Te)-ma) Thermocam
Opening force Fopen N Fopen = PS-As PLC
Clamping force FC N FC = Fopen-1.2 PLC
Thickness SM mm SM = Cy - Ciot PLC
LUBRICATION
Process parameter Symbol m.u. Source
Lubrication time ty sec PLC
[ Detachment level DL | % PLC
EXTRACTION
Process parameter Symbol m.u. Source
Extraction temperature Te °C Thermocam

Cycle time TC sec MES

Good pieces pc conf pc MES

[ Discarded pieces | pcnonconf | pc MES
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Finally, to complete this modelling phase, the developed model allowed for the simulation of the piston race
in its three phases, based on the variation of the technological parameters associated with it. Matlab Simulink's
Model Predictive Control (MPC) was used to simulate the die-casting process (MathWorks, 2019). Figure 4.15
depicts an overview of the model and the simulation results. On Simulink (Bemporad et al., n.d.), the
mathematical model is called ‘plant’ and interacts with the MPC controller. The plant consists of a piston,
considered as a material point of mass (m) to which a force (F) is applied, subject to damping due to liquid
metal. So, the piston is subjected to the applied force F, damping force and inertia force. Assuming that the
system is in equilibrium, an equation of the second order at constant coefficients is obtained, which is the
mathematical law behind the simulation. The plant integrated and connected to the MPC Controller, provides
as output the velocity and the position of the piston in time. The velocity is then kept constant by the MPC
through the variation of the force F. Lastly, is introduced a disturbance to the applied force F to simulate the
effects of the uncontrolled parameters (i.e. inhomogeneity of molten aluminium). These inhomogeneities are
completely random and not measurable in a deterministic way, depending on factors external to the process
analysed, such as quality of the raw material and times of supply of the metal from the melting bath to our
system.

Plant dashboard

MPC mv

. » . N
(W > T > -
100 } - »ret ff space-time graph

Model dashboard

force-time graph

Figure 4.15 - Matlab Simulink’s MPC model of die-casting process focused on the three phases of injection-moulding

4.4, AUTOMATIZATION OF REAL-TIME PROCESS EXERGETIC ANALYSIS

In this paragraph, a novel approach to implementing the Exergy Algorithm within an online monitoring system
is introduced. At each sample time, the thermodynamic variables, including the exergy, are calculated in real
time. The energy and exergy efficiency index are then calculated, providing a new understanding of the
evolving phenomena within the monitored process. A fast thermodynamic process was used as a test case. To
put the algorithm to the test, an exergy analysis of a simple heather was performed.
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To allow for iterative software implementation, the above thermodynamic equations must be rewritten in a
more structured manner. The Exergy Algorithm must be applicable to generic thermodynamic streams, such
as those in the chemical, industrial, electrical, and biological fields. In any case, some constraints have been
imposed.

A generic thermodynamic system has been divided into three levels (Figure 4.16): Level 1 is the overall system.
Reading the Table 4.5, the overall energy flux at Level 1 is calculated as the sum of all Device energy streams
in the system. Sub-devices at Level 2. At Level 2, the Device represents a single machine or system with a
well-defined boundary, within which one or more Level 3 material flux energy exchanges occur. An electrical
energy stream may be present in a device. Finally, the device’s energy input/output is the algebraic sum of
materials and the electrical correspondent stream. Level 3 is the material and energy streams of the sub-device.

SYSTEM
I 1 ! | 1
DEVICE 1 DEVICEi DEVICE m
—— Material Stream 1 — Material Stream 1 —— Material Stream 1
—— Energy Stream 1 — Energy Stream 1 —— Energy Stream 1
- Material Streamn = — Material Stream n — Material Stream n

—— Energy Stream n “— Energy Stream n — Energy Stream n

Figure 4.16 - Structure of a generic thermodynamic system

Only the following thermodynamic phenomena has been considered: heat transfer from a convective material
at constant pressure and volume; while other assumptions were:

* There was no material state transformation.

* There was a constant flow of cinematic, internal, and potential energy.

» The homogeneous system outside the System boundary represents the environment. The environment is
assumed to have known temperature and pressure, as well as an infinite heat capacity.

Table 4.5 - Thermodynamic system scheme

Environment DeadStateTemprg ) [K]

ij generic Material

Material flux
3 kg
MJin(t) [?]

Measured Variables mij ke

out(t) [?]

Temperatures
tempijin gy [K]
tempijoue(e) K]

130



Constants 'SpecificHeat'ij [J/kgK] (referred to the ij material)
hijin e [é] = SpecificHeat ij * (tempin(t)— DeadStateTempTo(t))
Specific enthalpy hijoyecr [é] = SpecificHeat ij * (tempout(t)— DeadStateTempTo(t))

hij(t) [E] = hout= hin

Specific entropy

sij; [L] = SpecificHeat ij * | In i)
in(t) keK DeadStateTemprq
J tempoyecr)
i ——| = SpecificHeat ij 1
Sout(t) [kgK] pecilictieatd) = | In DeadStateTempTo(t)

J
S(t) [kg—K] = Sout(t) — Sin

Specific exergy

.. J .. ..
eXijin(p) [k_g] = hijjpy — DeadStateTempro) * Sijine

.. J .. .
eXijout(t) [k_g] = hijoyery — DeadStateTemproe * Sijoutcr)

. J . .
exij(t) [k_g] = eXijoury — €Xijin()

Material stream

t

matijinp [kg] = me(r) * dt
0
t

matijout(t)[kg] = z Moyt(r) * dt
0

matij(t) [kg] = matyyy — Matipe

Cumulative Enthalpy

t
Hijincy 1 = Zmin(t) * hjp * dt
0

t
Hijoutry = Z Mgye(r) * Nouter) * dT
0

Hij(t) = Houw — Hinw

Cumulative Entropy

t
Sijin (D = Zmin(r) * Sin(r) * dt
0

t
Sijouty = Zmout(‘r) * Sout(r) * dT
0

Sijj(t) = Sout(t) - Sin(t)

Cumulative Exergy

t
Exiji () = zmin(T) * Xin(r) * dt
0
t
EXijout(t) = Zmout(t) * €Xout(r) * dt
0

EXij (t) = EXout(t) - EXin(t)

Cumulative Max Entalpy

t
HeXijin(t) = Z min(‘t) * hin(‘t) * effmax(t) * dt
0

t
HeXijout(t) = Z Moyt(r) * hout(‘t) * eﬂ:max(t) * dt
0

Hexij (t) = HexXoutry — HeXingy

Where:
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[tempin(t) + tempout(t)]

2
DeadStateTempr, (t)]

terﬂpmea\nij (t)

tempmeani]’ ® =

effmaxij(t) = [ 1-

Cumulative Enthalpy
Only material flux

n
H, = Z Hyp, (¢
lnma‘"Device(t)i ml]( )
j=1

n
f =S Ho
out,mt])evice(t)i outll( )
j=1

H

) =H — H;
matDevwe(t)i OUtmatDevice(t) lnma"Device(t)

Cumulative Entropy
Only material flux

n
s, = Z S (¢
lnma‘"Device(t)i ml]( )
j=1

n
s =) Syt
OUtmatDevice(t)i outll ( )
j=1

S

. =S - §;
matpevice(t); Ol‘ltlm‘tDevice(l;)i Mmatpeyice(t);

Cumulative Exergy
Only material flux

n
Ex; = z Ex;,.. (t
lnmatDevice(t)i ml]( )
j=1

n
Ex = z Exout:; (t
OutmatDeViCe(t)i outl]( )
j=1

Ex ) = Ex — Ex;
matpevice(t) i OUtmatDevice(t) i Mmatpeyice(t) i

Cumulative Max
Enthalpy
Only material flux

n
Hex; = 2 Hex;,..(t
mmatDevice(t)i ml]( )

j=1

n
Hex = z Hexyt:: (t
OUtmatpeyice(t), OUtl]( )

=1

Hex ) = Hex — Hex;
matpevice(t) i Ol“tm"“tDevice(t) i Mmatpeyice(t) i

Cumulative Electrical
Energy

t
Enelin(t)i U] = Z Wln](t) drt

0
t
By, U1= ) Woury(®) dt
0

Cumulative Energy
balance

En

i = H; En
Mpevice(t); mmatDevice(t)i + elin(t)i

EnOUtDevice(t)i = HoutmatDeVice(t)i + En@lOUt(t)i

EnDevice(t)i = E:nourDevice(t)i - EninDevice(t) i

Cumulative Exergy
balance

Engyt

- Device(t);

Cumulative Energy ENpevice(tyeft, = E—l

EfﬁCiency inDevice(t)i
EXinDevice(t)i = ExinmatDevice(t)i + Enelin(t)i + HexinmatDevice(t)i
EXO“tDeVice(t)neti = EXOUtmatDevice(t)i + EnElout(t)i

ExoutDevice(t)toti - ]E‘:X()UtDevice(t)neti + HeXOUtmatDevice(t)i

EXlOSSDeVice(t)- - ExoutDevice(t) T EXinDevice(t)-
i tot; i
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E _ EXOUtDevice(t)mt
. XgenDeviCe(t)eff - EXinD ot

Cumulative Exergy . evice(Dtot
Efficiency _ EXoutpevice(t)per

Ex =
netDevice(t)eff EXinDevice(t)t .
o)

m
ne}inSystem(t) o= Z Enelin(t)i
Cumulative Electrical o
Energy EnelOUtSystem(t) o= Z Enelout(t)i
i=1
Enelsystem(t) U] = Eneloutsystem(t) - Eneli“System(t)

EninSystem(t) = z EninDevicei(t)

i=1
Cumulative Energy E A
balance Doutsystem(y ~ - nOUtDevicei(t)
i=
EnSystem(t) = Z EnDevicei(t)
i=1
. Engyue
Cumulative Energy ENsystem(t. = h Outsystem(t)
Efficiency rlinSystem(t)

EXmSystem(t) mDevwel

EXOUtSystem(t) XOutDevlce )

Cumulative Exergy

balance
EXOUtSystem(t)tot - z EXOUtDevicei(t) tot
i=1
EXIOSSSystem(t) = Z EX]OSSDevicei(t)
i=1
Ex _ EXOUtSystem(t)tot
. gensystem(ggr Ex;p,
Cumulative Exergy . System(®tot
Efficiency Ex _ EXoutsystem(t) et
netgystem(t)
eff EXmSystem(t)tot

44.1. Measuring and Monitoring System

In order to improve knowledge about all of the individual parameters at stake, industrial processes necessitate
the acquisition of multiple signals.

The thermodynamic laws underlying Exergetic Analysis are important for tracing the set of parameters that
should be measured and monitored throughout the process, as well as the variables that can be calculated.
Reference flows are uniquely identified in its balance equations, which are based on Szargut’s studies (see the
equations in paragraph 2.1.2), as well as the performance metrics (see paragraph 3.1.2).

The system proposed configuration includes the following features.

Operational features to be obtained:
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1. modular system

2. portability

3. adaptability

4. remotely accessible
5. platform for the cloud

Physical quantities that must be collected:

1. electrical specifications (e.g., power, energy)
2. temperatures (via thermocouples)

3. temperature (via pyrometer)

4. mV, V, A analogue signals.

Then, the monitoring system has been assembled with the following components:
- 1/O Analog Acquisition Board (Figure 4.17)
- Raspberry Pi 4 (Figure 4.18)
- Type K thermocouples (Figure 4.17)
- Type T thermocouples (Figure 4.17)
Plus, the systems already in place in the department:
- PLC (quantitative information)
- MES (qualitative information)

Data elaboration tools:

- Database: MySql
- Data and plots have been elaborated on Jupyter (“Project Jupyter,” 2021)

Figure 4.17 - Acquisition board
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40 Pin General-Purpose
Input/Output Header

POE HAT Header

2.4/5GHz
Wireless Bluetooth 5.0 ‘

{ Micre SD Card Slot >

2-Lane MIPI DS| | —
Display Port

| USB-C'5V/3A Power Supply {

Micro HDMI Ports
(Supporting 2xdk
Displays)

’ USB3.0x2
|

4 7# USB2.0 x2
{

| Stereo Audio Port ‘

[

‘ 2-Lane MIP| CS| Camera Port

Figure 4.18 - Raspberry Pi 4 model B

The acquisition board can include up to 8 analogue sensors. Eventually energy meters, flux meters and other

measurement devices can be included.

44.2. Implementation of the Algorithm in Python

The iterative algorithm includes a generic number of the following basic objects included in the overall System:

- Measurement instrument
- Measured variable

- Material

- Device

The EA algorithm has been implemented in Python using the following steps:

1.
follows in Table 4.6.
2. Data acquisition
3. Load of data
4. Check data
5. Calculate:
i. Material Streams
(@) Enthalpy
(b) Entropy
(©) Exergy
ii. Devices Streams
@) Electrical Streams
(b) Enthalpy
(c) Entropy
(d) Exergy
iii. System Streams
@) Electrical Streams
(b) Enthalpy
(c) Entropy
(d) Exergy
6. Store Data

i Material Streams
il. Device Streams

Read Setup file: the above objects are defined in a setup file, which contains Python dictionaries as

| Gigabit Ethernet |
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iii. System Streams

Table 4.6 - Algorithm structure in Python

Dictionary name

Filename configSetup.py
Dictionary name: config_setup ={...}

Sample Data setup

‘sampleld’: ‘Test’,
‘timeStep’: ‘25°,

Materials Specifications ‘matSpec’: {

0: {
‘matld’: 0,
‘matName’: “ ... ¢,
‘matDescr’: © ... ¢,
‘SpecificHeat’: ...,
‘SpecificHeat um’: ‘J/(kgK)’,
‘Density’: ...,
‘Density_um’: ‘kg/m3’,

}

1:
‘matld’: 1,
‘matName’: ‘... °,
‘matDescr’: © ... *,
‘SpecificHeat’: ...,
‘SpecificHeat um’: ‘J/(kgK)’,
‘Density’: ...,
‘Density_um’: ‘kg/m3’,

1

n: {
‘matld’: n,
‘matName’: ‘... °,
‘matDescr’: © ... *,
‘SpecificHeat’: ...,
‘SpecificHeat um’: ‘J/(kgK)’,
‘Density’: ...,
‘Density um’: ‘kg/m3’,

1

b
Measurement devices Structure:

‘measurement_devices’: {
‘idDevice’: {
idPar_1: ‘Description Parameter’,

idPar_n: ‘Description Parameter’,

h
}
‘measurement_devices’: {
# Electric meter dev. 1
©00”: {133: “ ... [... T},

# Temperature dev. 1
‘t00’: {370: ... <,
371 ...
372:°...°
373: ...
b
+

Environment Variables

Variable declaration:
‘variable name’: [‘idDevice_idParameter’ , k , offset ],
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Considering a general Thermodynamic System composed of multiple machines, Level 1 includes the System
model. In Level 2, each machine is represented as a "Device." Material fluxes cross the device boundary. At
Level 3 of the aforementioned structure, each material flux and related energy stream is modelled.

Consider that i = 0,...,m represents the index associated with a generic j device, and j=0,...,n represents the
index associated with the iy device generic material streams where i is the generic device and ij the generic

Where:

v_out =k * v_in + offset

‘envParams’:

{
‘temp_env’: [t00_370°, 1, ...],
‘temp_env_um’: ‘K’,

‘DeadStateTemp T0 um’: ‘K’,
‘DeadStatePressure PO’: ...,
‘DeadStatePressure PO um’: ‘atm’,

b

k, offset: constants for linear transformation

idDevice: The measurement Device id
idParameter: The measurement parameter id

‘DeadStateTemp_TO’: [‘t00 371, 1, ...],

System structure Structure:

‘sysDevices’: {
0:{
‘devName’: ‘...,
‘devDescription’: ‘...
‘elecStream’: { ... }
‘matStream’: {

k)

0:{...
j: {...
n:{.
}
3
i: {...},
m {...}

material stream.

The described algorithm needs to be applied and evaluated for further improvements.

1)

2)

5.3.2.1. Gaps in the application

Values of initial energy.

The initial values of the energy and enthalpy variables have been set to zero. This causes errors in the

calculation of the efficiency index.

Efficiency indices.

The efficiency indices were calculated iteratively as the ratio of cumulated values at each sampling instant,
beginning with the starting time. This needs to be revised because the actual initial values of internal
energies were neglected. A better approach would be to calculate the efficiency index on a regular basis

(hourly, daily, etc...) rather than at each sample.
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3) Accumulation of energy and transients.
The exergy balance equations are only applicable to steady-state systems. During the transient, it is
expected to see the dynamic behaviour of exergy balance and exergy efficiency index. This was also
discovered in this Test Case. This will be looked into. The iterative algorithm must consider transient
terms related to thermal energy accumulation and release phenomena. Otherwise, only the steady-state

periods will be considered.

4.4.3.

The model was validated on a single sub-device, a heat exchanger installed on the company's field.
The Setup algorithm is depicted below:

#

# Setup Data

#

config_setup ={

# General Sample Data Information

'sampleld": ‘Test',
'Description’: "Test over heater’,
‘location”: ",

#D

'startDate": '2021-01-09 00:00:00',

‘endDate’: '2021-01-10 00:00:00',

'tim

#D

ateTime

eStep": '2s',

evices

'devices"”: {

0
2

: True,

# Materials Specifications
'matSpec”: {

0

¥
1

{
'matld": O,
‘matName': 'Water',
‘matDescr': ",
‘SpecificHeat": 4185,

‘SpecificHeat_um'": 'J/(kgK)',

'Density": 1000,
'‘Density_um': 'kg/m3',
'‘Melting_point" 0,
'‘Melting_point_um": °C',
'latent_heat": 333500,
'latent_heat_um": 'J/kg’,

{
'matld”: 1,
'matName'": 'Air’,
'matDescr'; "Air’,
'SpecificHeat": 1005,

Model Test and Validation
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‘SpecificHeat_um': 'J/(kgK)',
'Density": 1.2,
'Density_um': 'kg/m3',
b
b

# Measurement devices
'measurement_devices": {

# Temperature dev. 1

100" {
370: 'External air temperature',
371: 'Internal air temperature’,
372: 'Heater input water temperature’,
373: 'Heater output water temperature’,
3
b

# Variables
‘envParams'.
{
#Environment Devices
‘temp_env'": ['t00_370', 1, 273.15],
‘temp_env_um': "°C’,
'‘DeadStateTemp_TO": [t00_371', 1, 273.15],
'‘DeadStateTemp_TO_um®: 'K',

2

'sysDevices":
{
# Energy Balance
# Home heater
0: {'devld" 0,
‘devName': 'Home_heater’,
‘devDescription’: 'Home_heater",

‘elecStream": {
'‘W_in" ['nd', 1000],

'W_in_um": 'W',
'W_out": ['nd',0],
‘W_out_um" "W/,
b
'matStream": {
0: {

'matld": 0,

'description"; 'Heater water’,

'm_in": ['nd’, 0.1],

'm_in_um": 'kg/s',

'm_out": ['nd', 0.1],

'm_out_um": 'kg/s',

‘temp_in": ['t00_372', 1, 273.15],
‘temp_in_um": "°C/,

‘temp_out": ['t00_373, 1, 273.15],
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The following diagrams depict the measured and monitored temperatures and fluxes (Figure 4.19, Figure 4.20,

‘temp_out_um": °C’,

}

1. {
'matld"; 1,
'description’: "Air’,
'm_in": ['nd’, 0.3],
'm_in_um": 'kg/s',
'm_out": ['nd', 0.3],
'm_out_um": 'kg/s',
‘temp_in": ['t00_370', 1, 273.15],
‘temp_in_um"; "°C/,
'temp_out": ['t00_371', 1, 273.15],
‘temp_out_um': *°C’,

Figure 4.21).
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Figure 4.19 - Input/Output Temperatures of Device 0 — Material 0
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Figure 4.20 - Input/Output Temperatures of Device 0 — Material 1
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Figure 4.21 - Material Flux

The following diagrams depict the measured and monitored enthalpy, entropy and exergy (Figure 4.22, Figure
4.23 and Figure 4.24).
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Figure 4.22 - DEVICE 0 - Material 0 — Enthalpy (H)
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Figure 4.23 - DEVICE 0 - Material 0 — Entropy (S)
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Figure 4.24 - DEVICE 0 - Material 0 — Exergy (Ex)

The following diagrams depict the measured and monitored enthalpy, entropy and exergy (Figure 4.25, Figure

4.26, Figure 4.27, Figure 4.28, Figure 4.29).
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Figure 4.25 - DEVICE 0 - Electrical energy (Pconst = 1kW)
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Figure 4.26 - DEVICE 0 - Input balances
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Figure 4.27 - DEVICE 0 - Output balances
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Figure 4.28 - DEVICE 0 - Entropy balance
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Figure 4.29 - DEVICE 0 - Exergy balance
And finally, the following diagram depicts the calculated exergy net and general efficiencies (Figure 4.30).
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Figure 4.30 - DEVICE 0 - Exergy efficiency (general and net)

4.5.DATASETS ANALYSIS

As previously stated, the case study focuses on Master Italy aluminium die-casting process. The machine in
discussion is known as “F55,” and it is located in a department floor dedicated to die-casting aluminium and
zamak.

There are two data sets available for the machine being tested:

1) a collection of datasets relating to recordings of the machine’s operating parameters during the execution of
each cycle detected by the PLC on board the machine and obtained from the system into which these
measurements are poured on a regular basis.

2) the recording of the causes of machine downtime and anomalies performed by operators on the MES system
for production progress management.

In the future, hopefully, there will also be field data from additional sensors that will monitor the internal
micro-climatic conditions at the external facility climatic conditions. It will be possible to extract new patterns
and correlations between process performance parameters and the latters to understand whether temperature
and radiant average humidity affect the quality of the process and, more importantly, the finished product.
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45.1. PLC

PLC is an abbreviation for Programmable Logic Controller, and it refers to a device used to control industrial
processes. PLCs operate on an industrial plant by running a program and processing digital and analogical
signals from sensors. It is an integral part of the "F55" machine. The process parameters continuously
monitored by the machine are provided in Table 4.7. The limit values are established by trained operators and
are those for which the machine goes into alert or stops completely. In that situation, the operator is compelled
to act and declare (on the MES) the reason (causal) for which it was summoned. operator personnel often has
to fix faulty situations manually because the possible faults and fault combinations are manifold and often need
manual mechanical intervention by an operator (Vogel-Heuser et al., 2016). The parameters are congruent with
what is indicated in paragraph 4.1.2. In terms of the die-casting process, the distinction between the
characteristics of the first phase, second phase, molding, clamping and extraction is clear.

Table 4.7 - Example of the operating and alarm process parameter values set on "F55" machine PLC by specialized operators

Process Parameters Lower Limits (MIN) Upper Limits (MAX)

Name Symbol << < m.u. > >>

course first phase Cl 212 237 mm 263 288

time first phase T1 1300 1360 ms 1532 1678

speed first phase V1 0.14 0.16 m/s 0.18 0.2
piston seizure GP 2 3 bar 12 20

course second phase C2 95 137 mm 122 166

time second phase T2 90 142 ms 106 173

average speed second phase V2 0.82 0.9 m/s 1.45 15
max speed second phase VM 15 1.55 m/s 2.3 2.5
course third phase (compression) CcC 1 2 mm 8 10
solidification time T3 13 15 ms 20 22
solidification time delay TD 20 23 ms 25 28
injection pression PM 250 260 bar 280 290

final pression PF 205 210 bar 285 310
speed casting doses VA 0 0 m/s 0 0
filling pression (of the clamp) PR 20 22 bar 24 26

specific pression PS 830 927 bar 1025 1122

closing (or clamping) force FC 5000 5391 kN 5959 6526
sprue thickness SM 13 15 mm 26 30
time cycle TC 30 31 S 47 48

As shown in Figure 4.31, the dataset resulting from PLC registrations contains:

+ a series of references including the MeaSetld which is a sequential progressive of the PLC print, the
timestamp of the printed (TimestampLocal), the machine reference (ResourceName) which is precisely the
F55, the injection number N INIEZ which is also a progressive but is occasionally reset;

» the set of values assumed by the machine’s operating parameters during the cycle (strokes of the mechanical
parts C1, C2, and CC, execution times of the various phases of the T1, T2 cycle, speed V1, V2, pressures PS,
PF, and PM, closing force FC, and measured sprue thickness in the SM mold).

« A third set of data is shown in Figure 4.32, which represents the maximum and minimum values of each of
the previous parameters set on the machine during the setup phase (MIN_C1, MAX_C1, etc).

At first glance, the elements of interest in this dataset are the progressive of printed MeaSetld, which essentially
represents a progressive of machine cycle, the printed timestamp TimestampLocal, and the values assumed by
the machine parameters T1, C1, SM, etc, with the others substantially constant for the given F55 machine.
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MeasSetld Companyli ArticleCod Ar Evc‘ieria\Num-Resal Wor TimestampUTC Timestamplocal N_INIEZ C1 T1 Vi c2 T2 v2 cc PM PF VA Ps FC M

422548 1 ATYS 10 601 F55 31/01/2019 23:00  01/02/2019 00:00 601 286 1349 21 79 69 114 4 275 274 0 1189 5917
422549 1 ATYS 10 602 F55 31/01/2019 23:00 01/02/2019 00:00 602 285 1348 21 80 73 110 3 274 274 0 1189 5864
422550 1 ATYS 10 603 F55 31/01/2019 23:01 01/02/2019 00:01 603 286 1351 21 79 70 113 4 274 274 0 1189 5864
422551 1 ATYS 10 604 F55 31/01/2019 23:01 01/02/2019 00:01 604 286 1348 21 80 70 114 4 274 273 0 1184 5884
422552 1 ATYS 10 605 F55 31/01/2019 23:02 01/02/2019 00:02 605 285 1346 21 81 73 111 3 274 273 0 1184 5874
422553 1 ATYS 10 606 F55 31/01/2019 23:03 01/02/2019 00:03 606 285 1343 21 81 73 111 3 274 274 o 1189 5864
422554 1 ATYS 10 607 F55 31/01/2019 23:03 01/02/2019 00:03 607 285 1344 2 81 74 109 4 274 274 0 1189 5884
422555 1 ATYS 10 608 F55 31/01/2019 23:04 01/02/2019 00:04 608 285 1348 21 82 74 111 4 274 274 0 1189 5885
422556 1 ATYS 10 609 F55 31/01/2019 23:04 01/02/2019 00:04 609 285 1344 21 81 74 109 4 274 274 0 1180 5895
422557 1 ATYS 10 610 F55 31/01/2019 23:05 01/02/2019 00:05 610 285 1344 21 80 72 111 4 275 274 0 1189 5864
422558 1 ATYS 10 611 F55 31/01/2019 23:05 01/02/2019 00:05 611 286 1351 21 81 71 114 3 274 273 0 1184 5844
422559 1 ATYS 10 612 F55 31/01/2019 23:06 01/02/2019 00:06 612 286 1351 21 82 73 114 3 275 2713 o 1189 5844
422560 1 ATYS 10 613 F55 31/01/2019 23:06 01/02/2019 00:06 613 286 1351 21 82 73 112 3 274 274 0 1189 5864
422561 1 ATYS 10 614 FS5 31/01/2019 23:07  01/02/2019 00:07 614 285 1339 21 80 73 110 4 275 274 0 1189 5864
422562 1 ATYS 10 615 F55 31/01/2019 23:08 01/02/2019 00:08 615 285 1339 21 80 72 111 3 2713 274 0 1180 5844
422563 1 ATYS 10 616 F55 31/01/2019 23:08 01/02/2019 00:08 616 285 1347 21 81 71 114 4 277 7 o 1197 5854
422564 1 ATYS 10 617 F55 31/01/2019 23:09 01/02/2019 00:09 617 286 1345 21 81 71 114 4 275 276 0 1189 5864
422565 1 ATYS 10 618 F55 31/01/2019 23:09 01/02/2019 00:09 618 285 1340 21 81 73 111 4 274 273 0 1184 5864
422566 1 ATYS 10 619 F55 31/01/2019 23:10 01/02/2019 00:10 619 285 1339 21 79 72 110 3 274 274 0 1189 5854
422567 1 ATYS 10 620 F55 31/01/2019 23:10 01/02/2019 00:10 620 285 1342 21 79 71 111 3 274 274 0 1184 5854
422568 1 ATYS 10 621 F55 31/01/2019 23:11 01/02/2019 00:11 621 285 1339 21 81 74 109 4 274 2713 0 1184 5864
nnnnnn Tarve o - i mezaral mmhaaanatl enl aesl vael e a 5 Al alasmcems
Figure 4.31 - PLC Dataset
PM PF VA Ps FC M TC MIN_C1 MIN_T1 MIN_V1 MIN_C2 MIN_T2 MIN_V2Z MIN_CC MIN_PM MIN_PF MIN_VA MIN_PS MIN_FC MIN_SM MIN_TC MAX_C1 MAX_T1
275 274 1] 1189 5917 21 34 212 1300 14 a5 a0 a2 1 250 205 0 830 5000 18 31 288 1678
274 274 4] 1189 5864 22 33 212 1300 14 95 90 82 1 250 205 0 830 5000 18 3 288 1678
274 274 o 1189 5864 21 34 212 1300 14 95 90 82 1 250 205 o 830 5000 18 31 288 1678
274 273 1] 1184 5884 20 34 212 1300 14 a5 a0 a2 1 250 205 0 830 5000 18 31 288 1678
274 273 4] 1184 5874 21 33 212 1300 14 95 90 82 1 250 205 ] 830 5000 18 3 288 1678
274 274 o 1189 5864 21 33 212 1300 14 95 90 82 1 250 205 o 830 5000 18 31 288 1678
274 274 1] 1189 5884 20 34 212 1300 14 a5 90 a2 1 250 205 0 830 5000 18 31 288 1678
274 274 ] 1189 5885 19 33 212 1300 14 a5 90 82 1 250 205 ] 830 5000 18 31 288 1678
274 274 1] 1180 5895 20 34 212 1300 14 a5 a0 82 1 250 205 0 830 5000 18 31 288 1678
275 274 o 1189 5864 21 33 212 1300 14 95 90 82 1 250 205 o 830 5000 18 31 288 1678
274 273 o 1184 5844 20 33 212 1300 14 95 90 82 1 250 205 0 830 5000 18 31 288 1678
275 273 1] 1189 5844 20 33 212 1300 14 a5 a0 a2 1 250 205 1] 830 5000 18 31 288 1678
274 274 4] 1189 5864 19 33 212 1300 14 95 90 82 1 250 205 1] 830 5000 18 3 288 1678
275 274 o 1189 5864 21 34 212 1300 14 95 90 82 1 250 205 0 830 5000 18 31 288 1678
273 274 1] 1180 5844 22 34 212 1300 14 a5 a0 a2 1 250 205 1] 830 5000 18 31 288 1678
277 272 4] 1197 5854 19 33 212 1300 14 95 90 82 1 250 205 ] 830 5000 18 3 288 1678
275 276 1] 1189 5864 19 34 212 1300 14 a5 0 82 1 250 205 0 830 5000 18 31 288 1678
274 273 o 1184 5864 20 33 212 1300 14 95 90 82 1 250 205 o 830 5000 18 31 288 1678
274 274 0 1189 5854 23 33 212 1300 14 a5 90 82 1 250 205 o 830 5000 18 31 288 1678
274 274 1] 1184 5854 22 33 212 1300 14 a5 a0 82 1 250 205 0 830 5000 18 31 288 1678
274 273 o 1184 5864 20 33 212 1300 14 95 90 :73 1 250 205 o 830 5000 18 31 288 1678
273 272 (] 1180 5854 22 33 212 1300 14 a5 90 82 1 250 205 ] 830 5000 18 31 288 1678

Figure 4.32 - Ranges of the machine set-up values

4.5.2. MES

MES stands for Manufacturing Execution System and is a system that collects and distributes information to
allow for the optimization of production activities from order placement to finished product. Using real-time,
up-to-date, and accurate data, the MES guides, responds, and informs about plant and production department
activities as they occur. The resulting reaction time, combined with the emphasis on reducing non-value-added
activities, propels plant operations and processes to maximum efficiency. By combining the optimization of
production and logistics processes with the control of resource availability and product quality, the MES
System bridges the “gap” between ERP systems (administrative and accounting) and machine control systems
(PLC, SCADA MES).

Indeed, the lack of interaction between ERP and Control Systems turns the production process into a black
box: you know the inputs and outputs of production but have no visibility into what happens in between.
MES is thus the critical component that enables system communication and provides complete visibility into
what is happening in production.

Figure 4.33 depicts the dataset obtained from the MES system and containing the causes imputed by the
operators in conjunction with the occurrence of an anomaly. In this dataset, the recordings have a ‘date time’
timestamp as well as the identifier of the machine to which they refer (Resource field) and a series of ancillary
information such as the item produced, the number of pieces produced, the names of the machine operators,
production execution times, and so on. Finally, the most important information is represented by the content
of the ‘casualisation’ field and its ‘suspension description’, which reports any anomalies with associated causal
factors.

The interesting aspect to notice is that there are multiple records with the same timestamp because the
information is repeated for each operator and for each article code produced during the same production phase,
and thus the causal anomaly occurs several times with the same timestamp. Because the information that is of
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interest in this first phase is the reason for fault and the time reference at which it occurred, the first processing
of this information aims to make the recordings that report the timestamp with the associated fault cause
unique. A second important factor is that the MES system records a causal “99 — Fermo Macchina Generico”
every time the machine stops, which is then better specified by the operator when the machine restarts (after a
few minutes) with the actual fault cause. This implies that the same machine downtime will generally report
two associated reasons for downtime, of which the generic reason 99 must be ignored in favour of the operator-
recorded reason (see the example in Figure 4.34).

Lcmmc] Tul - |Dataloa) usHAnM R\s;m CE"UI;' Opev;luommer uAn\c;)\uT vap' uT =Y uT Man uT Fermo uma éuuma ScuN Battute uT Prep. uol;IT Lav Qonu Squau Cau;m Descrizione snspsnsmuN TuuN u
0 0

0770472019 |01/0472019 06:00:00 R |L F55  |RPRES 13114 20190006517 | 10A0TZM 0 0 0 0 0 0 0/ SQPRA 0 T 6

01/0472019 |01/04/2019 06:00:00 R |L F55 RPRES /5076 20190006517 10A0T2M 0 0 0 0 0 0 0 0 0/SQPRA 0 16

01/04/2019  |01/04/2019 06:00-00 R L F55 aPRES Bi1a 150190006519 [10A002M 0 0 0 0 0 0 0 0 0/SQPRA 0 1 5

01/04/2019 |01/04/2019 06:00:00 R |L F55 |RPRES /3076 20130006519 |10A002M 0 0 0 0 0 0 0 0 0/SQPRA 0 1 s

01/04/2019 |01/04/2019 06:00-00 R |L F55  RPRES 3114 20190006514 |10A0T0F 0 0 0 0 0 0 0 0 0/SQPRA 0 1

01/04/2019 |01/04/2019 06:00:00 R |L Fs5 | RPRES "S076 (30190006514 10A010F 0 0 0 0 0 0 0 0 0/SQPRA 0 1 s

01/04/2019  |01/04/2019 06:00-00 R |L F56  RPRES /3114 /20190006518 |10A002F 0 0 0 0 0 0 0 0 0/SQPRA 0 1 s

01/0472019 |01/04/2019 06:00:00 R |L F55 | RPRES 5076 20190006518 |10A002F 0 0 0 0 0 0 0 0 0/SQPRA 0 1 s
5 010472019 01/04/2019 06:00:00 R |L F§6  RPRES /3114 /20190006516 |10A012F 0 0 0 0 0 0 0 0 0/SQPRA 0 1 6
1 010472019 01/04/2019 06:00:00 R |L F55 |RPRES '076 20190006516 10A012F 0 0 0 0 0 0 0 0 0/SQPRA 0 1 6
5 010412019 |01/04/2019 06:00:00 R |L F55 RPRES %3114 20130006515 10A010M 0 0 0 [ 0 0 0 0 0/SQPRA 0 1 s
5010472019 01/04/2019 06:00:00 R |L F§6 RPRES /3076 20190006515 10ADTOM 0 0 0 0 0 0 0 0 0/SQPRA 0 1 s
5 010472019 01/04/2019 10:02:06 | |L F55 |RPRES /3076 20190006517 [10A012M 0 0 0 0 0 0 0 0| 0320564236 SQPRA 99|Fermo Macchina Generico 16
5 |01/0472019 |01704/2019 10:02:06 [ |L F55 |RPRES %3114 20130006517 10A012M 0/0.756612252 0 [ 2376 0 74.25 0| 0,320564236 SQPRA 99|Fermo Macchina Generico i 6
5 01042019 01/04/2019 10:02:06 | |L F§6  RPRES /3076 /20190006519 | 10A002M 0 0 0 0 0 0 0 0| 0.267136863 SQPRA 99|Fermo Macchina Generico 1 s
5 010472019 01/04/2019 10:02:06 | |L F55 |RPRES /3114 20190006519 10A002M 0/0.630510243 0 0 1980 0 61,875 0| 0.267136863 SQPRA 99|Fermo Macchina Generico 1 s
5 010412019 |01/04/2019 10:02:06 |S || F55 |RPRES '3076 20190006514 10A010F 0 0 0 [ 0 0 0 0| 0267136863 SQPRA 99|Fermo Macchina Generico 1 s
5 |01/04/2019 01/04/2019 10:02:06 [ |L F§6 RPRES /3114 '20190006514 | 10A010F 0/0.630510243 0 0 1980 0 61,875 0| 0.267136863 SQPRA 99|Fermo Macchina Generico 1 s
5 010472019 01/04/2019 10:02:06 |S |1 F55 |RPRES /3076 20190006518 10A002F 0 0 0 0 0 0 0 0| 0.267136863 SQPRA 99|Fermo Macchina Generico 1 s

Figure 4.33 - MES Dataset
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