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Abstract: Land abandonment is among the most complex la nd use change processes driven by a
multiplicity of anthropogenic and natural factors, such as agricultural over-exploitation, implementa-
tion of agricultural policies, socio-economic and climatic aspects. Therefore, it is necessary to deepen
the effects of land abandonment based on methodologies that are as multidisciplinary as possible.
Environmental and social problems related to abandonment include soil erosion and environmental
degradation. Approaches combining GIS (Geographic Information System), remote sensing, and
image analysis techniques allow for assessments and predictions based on integrating theoretical
models with advanced geospatial and geostatistical models. One of the most widely used models
for soil erosion estimation is the Revised Universal Soil Loss Equation (RUSLE). The present work
developed a model using remote sensing and GIS tools to investigate some factors of the RUSLE
equation to evaluate the adverse effects of soil erosion in areas covered by arable crops and subse-
quently abandoned. To identify potentially degraded areas, two factors of the RUSLE were related:
the C Factor describing the vegetation cover of the soil and the A Factor representing the amount
of potential soil erosion. Through statistical correlation analysis with the RUSLE factors, based on
the deviations from the average erosion values and mapping of the areas of vegetation degradation
relating to arable land, the areas identified and mapped are susceptible to soil degradation.

Keywords: land abandonment; soil erosion; remote sensing; GIS

1. Introduction

Land use changes (LUC) since the 1950s represented rural areas’ primary source of
transformation. Land abandonment is among the most impacting land use changes in land-
scape and environment [1–6]. Despite the increasing demand for areas with agricultural
purposes, agricultural abandonment processes show a growing trend starting from the
post-World War II period, mainly caused by physical, environmental, social, and economic
factors linked, for example, to agricultural overexploitation preceding the stage of aban-
donment [2]. In other words, land abandonment can be defined simply as the cessation
of agricultural activities and management for more than five years [7] or those processes
involving land recently used for agricultural purposes but currently not subject to any
cultivation practice (agricultural cultivation and pasture) [8,9]. The drivers, such as soil
quality, ecological vulnerability, and unfavorable pedological features, can be natural. They
are also human-driven because they are linked to socioeconomic factors, demographic
structure, and institutional frameworks [10–14]. Explanations of abandonment are mul-
tidimensional, and there is no clear division between drivers, as abandonment depends
on the combination and iteration between the drivers mentioned above. Many authors
have studied agricultural abandonment in Europe. They have demonstrated that in the
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Mediterranean Basin, this process occurs mainly in less productive areas, in mountainous,
marginal, and hardly accessible zones, and areas characterized by soil erosion and/or
climatic conditions unsuitable for agriculture [14–16]. The causes and magnitude of the
abandonment of agricultural areas vary from region to region; for example, in southern
Italy’s inland and marginal areas between the 1970s and 1980s, there was a constant agricul-
tural abandonment [15,17–19]. National and European agricultural policies potentially play
a decisive role in the abandonment processes [10]. Indeed, some areas in Southern Italy in
the 1950s were converted into cereal crops, favored by the Agrarian Reform policies. This
increased agricultural mechanization in the utilized agricultural area (UAA), even in zones
considered unsuitable for arable cultivation [15,20]. In subsequent decades, as a result
of changes in socio-economic conditions, crises in the agricultural sector making cereal
farming economically unfavorable in many areas, and various land reforms promoted by
the Common Agricultural Policy (especially the “set-aside” scheme [21,22]), there was a
gradual abandonment of arable land [23]. These phenomena modeled different landscapes
of climatic conditions, age of abandonment, management regime before and after the aban-
donment, and disturbance type. Land abandonment has social and economic effects and
impacts on environmental safety, the biodiversity of agricultural areas, and landscape con-
figuration. Agricultural abandonment can have beneficial and detrimental effects, although
the consequences differ depending on location and scale [24]. The link between abandon-
ment, soil erosion, and soil degradation requires in-depth methodological and technical
investigations, as factors, dynamics, and possible correlations are very varied and often
discordant. Excessive land use and abandonment may be closely linked in some territorial
contexts. Some areas could be abandoned precisely because of problems resulting from
agricultural overexploitation that occurred in the past. The abandonment of agricultural re-
gions contributes, among the negative impacts, to soil erosion and land degradation [23,25].
Land degradation includes all the processes of alteration of soil conditions. It is a complex
issue due to various phenomena such as aridity, soil morphology and orography, vegetation
cover, and anthropic and climatic factors [26]. Among the land degradation processes,
erosion is among the most impacting. Erosion is mainly due to the intensity of rainfall;
when short and intense rains occur on land with no or little vegetation cover, the surface
runoff removes the surface layer richest in organic matter from the soil. Among the factors
predisposing to erosion, the orientation of slopes represents a factor of vulnerability in areas
also subjected to water stress. Steep slopes reduce the absorption capacity and contribute
to surface runoff. For example, southern slopes, exposed to more significant solar radiation
with low humidity levels, present microclimatic conditions adverse to the regeneration of
stable vegetation favoring the triggering of erosion processes [20,27].

Land degradation and desertification are complex processes caused by anthropic
activities and soil and climatic characteristics. Spatial analysis, statistical techniques, and
remote sensing have been used to identify significant degradation trends due to agricultural
abandonment in the area. The combined use of satellite data and spatial analyses allows the
production of data for the estimation and monitoring of land degradation and soil erosion
and the mapping and monitoring of areas subject to degradation. These are mainly based on
vegetation spectral indices obtained by combining the different spectral bands of Sentinel
data, which emphasize and detect any changes in the vegetation status. Integrating the
RUSLE soil erosion model with remote sensing models is an effective and extensively used
tool in the literature [28–32], useful for mapping and quantifying soil erosion areas and rates
for developing better land conservation and monitoring maps. Direct field measurements
are very expensive as they require more human and technological resources [33,34] and
cannot cover the whole catchment area but are limited to specific sites [33]. Empirical
models, on the other hand, such as RUSLE, in a GIS environment, thanks also to the ever-
increasing availability of satellite images with a high spatial resolution (for example, the
data of the Sentinel constellation), can facilitate the quantitative monitoring of the rate of
soil loss in large areas [35,36].
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According to the data reported by Italian agricultural censuses, Basilicata is among
the Italian regions with extensive arable land. In line with the national trend, a constant
decrease in agricultural areas, especially arable land, has been shown [37]. Basilicata is
mainly affected by the risk of land degradation; among the different degradation processes,
the process of soil erosion is dominant, sometimes taking the form of typical morphological
configurations (gullies and badlands). Assessing land degradation at the regional scale is
of fundamental importance to characterizing land surface, its variations over time, and
identifying areas needing urgent actions [38,39].

The multidisciplinary approach, such as the combination of the LULCC (Land Use
Land Cover Changes) diachronic analyses associated with erosion models and land degra-
dation estimations, represents a fundamental tool for formulating adequate land-use plan-
ning and limiting human impacts on the environment [40]. Many studies in the literature
focused on land degradation assessment by applying different research methods, most of
which are based on the application of spatial analysis through GIS, remote sensing, and
direct soil measurements (sampling and laboratory surveys [41–44]). Remote sensing tech-
niques are more flexible than field analysis methods because they allow for the observation
of large areas using a range of spectral indices useful for characterizing those environmental
phenomena that contribute to LULCC [45–48]. Remote-sensing data are of great help in
supporting local government bodies in monitoring degradation phenomena [49]. The
fundamental information to analyze concerns vegetation cover, rainfall, surface runoff,
and soil erosion. Furthermore, empirical models can be used to define areas susceptible
to degradation.

In this work, the analyses include applying remote sensing and spatial analysis tech-
niques to estimate soil erosion and land degradation phenomena in abandoned agricultural
areas. To emphasize and relate the process of land degradation and soil erosion as neg-
ative impacts consequential to land abandonment, it was established to take advantage
of a robust methodology, i.e., the Revised Universal Soil Loss Equation (RUSLE) model.
Initially adopted to calculate and monitor erosion of small agricultural areas, with the
development of new calculation algorithms, this model is now being used to investigate
very large areas [50–52]. The study area concerns a district of Basilicata which is particularly
vulnerable to land abandonment of arable crops due to the combination of anthropic and
natural factors.

2. Study Area

According to many authors, Basilicata, located in Southern Italy (Figure 1), is a region
at potential land degradation risk [53–55]. Generally, all the regions of southern Italy
are considered at potential risk of land degradation because it derives from a peculiar
combination of bioclimatic and geomorphological features such as irregular reliefs with
steep slopes, high erodible soils, wide climatic variability, recurring droughts, typical
of Mediterranean territories, and from the improper use of soil resources (for example,
agricultural overexploitation, urbanization, industrial pollution, etc.) [56]. Basilicata is a
mountainous and hilly region characterized by large uninhabited areas. At the same time,
30% of its surface is subject to environmental constraints, highlighting the need for more
sustainable land use [45]. Soils are highly susceptible to degradation, e.g., in the coastal
area of the Metapontum Plain, soils are degraded due to salinization processes.

In contrast, in the so-called Matera Hills, morphologically complex forms are called
calanchi (badlands), characterized by irregular erosional processes exposed to strong
climatic oscillations and a complex geochemical composition [57,58]. The area investigated
in this work includes the territory of 18 municipalities and an extension of about 1600 km2.
Hydrogeological instability also affects the area; in fact, the IFFI (Inventory of Landslide
Phenomena in Italy) project surveyed approximately 860 landslides in 2014 [59].
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Figure 1. The overall outline of the study area with detail (bottom left) on the part considered in
the methodology.

The primary land use is agricultural; from the analysis of land-use data, it can be seen
that the area is mainly occupied by agricultural land of different types, primarily arable
crops. Considering arable land, heterogeneous agricultural surfaces, permanent crops,
stable meadows, and agricultural land uses cover approximately 80% of the entire surface
analyzed. The solid agricultural vocation, with an important tendency towards agricultural
abandonment [17] and the consequent degradation and erosion processes, make these areas
particularly interesting to analyze. Using the Corine Land Cover at level II 2018 [60] as the
reference land cover map, we can divide the study area into two main zones according to
the predominant type of land use (Table 1).

Table 1. Land cover based on Corine Land Cover II Level expressed in km2 and percentage (%).

Corine Land Cover 2018 km2 %

Agricultural Areas 1266.186 81.45

Artificial Areas 12.44 0.8

Forest and Seminatural Areas 27.,4 17.46

Water Bodies 3.772 0.24

Wetlands 0.799 0.5

Total 1554.597 100

The western part is characterized by agricultural areas with complex morphology and
is the most diversified from the point of view of land cover because agroforestry patches
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can be found. With a gentler morphology, the remaining part presents almost exclusively
an agricultural use (mainly arable land).

3. Materials and Methods

To provide a more fluent understanding of the approaches, techniques, and analyses
performed, several parts of the paper are summarized and briefly described below:

• Evaluation of soil loss (monthly and annual from October 2019 to September 2020)
using RUSLE modeling in the areas subjected to agricultural abandonment;

• Clustering of the results deriving from the application of the RUSLE model by spatial
autocorrelation analysis (autocorrelation algorithm Getis & Ord.) to highlight areas
with permanent erosion;

• Estimating the susceptibility to soil degradation of arable land and abandoned agri-
cultural areas based on the average values of the RUSLE and mapping of the areas
still vegetated but showing signs of degradation, including arable land, through the
statistical correlation with the C Factor of the RUSLE.

3.1. Dataset

Satellite images are very useful for constructing land characterization models, risk
assessment, and for the susceptibility of soils to erosion. The remote-sensing data used in
this work are part of the ESA’s Copernicus Mission. Specifically, the data used are from the
Sentinel 2 satellite, and the spatial coverage provided by the satellite swatch determined
the extent of the study area (Figure 1). Sentinel 2 satellite data provide high-resolution
multispectral optical imaging at spatial resolutions between 10 m and 60 m. In this paper,
Sentinel data used for determining the C factor of the RUSLE model were downloaded from
the THEIA site [61]. The images available on the THEIA site [61] re-process the Sentinel
2A and 2B pair images, with the aggregation of atmospherically corrected TOA bands
using the MAYA (Multi-sensor Atmospheric Correction and Cloud Screening) algorithm.
The set of bands available at the site is FRE (flat reflectance) and SRE (surface reflectance).
In this work, the FRE (Flat Reflectance) bands were used, which, in addition to being
atmospherically corrected, suppress reflectance variation due to slope. For images with
cloud cover, the algorithm calculates relative masks with two resolutions at 10 m and 20 m.
The CLM (Cloud Mask) band at 20 m was used in our case. Twelve images (one for each
month) were used from October 2019 to September 2020.

The land cover classification was based on the Corine Land Cover 2018 (CLC) dataset
and, for the spatial and statistical analyses, on the 2013 Natura Map on a scale of 1:50,000 in
a format freely available at the ISPRA [62] repository in the form of a shapefile. Furthermore,
for estimating the parameters of the RUSLE model, in addition to data from the Sentinel
satellite and meteorological data, the ‘European Soil Map’ [63] and the Basilicata Soil Map
were used.

3.2. Erosivity Estimation

Soil-loss estimation was estimated using the RUSLE by resampling all necessary
parameters to the spatial resolution of Sentinel 2A (10 m) in a GIS environment.

Among the main models for estimating soil erosion, the RUSLE model is one of
the most widely used to predict, for example, the annual loss of soil [31,64–66]. RUSLE
describes how climate, soil characteristics, topography, and land use influence soil ero-
sion caused by the impact of surface runoff [35]. The RUSLE is based on five variables
in Equation (1) related to rainfall patterns, soil properties, topography, crop cover, and
management, and conservation tillage practices:

A = R * K * LS * C * P (1)

where A = annual soil loss (Mg—ha−1—year−1); R = precipitation erosion factor (MJ—mm—
ha−1—h−1—year−1); K = soil erodibility factor (Mg—h—MJ−1—mm−1); LS = slope length
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and slope factor (dimensionless); C = crop and cover management factor (dimensionless);
and P = crop or erosion control factor (dimensionless). The result estimates the amount of
soil lost due to surface erosion. All parameters calculated were resampled to the spatial
resolution of Sentinel-2A (10 m) and summed to obtain the actual value of RUSLE expressed
in Mg * ha−1 * year−1. The RUSLE values were calculated for the following months: October,
November, and December 2019 and March, April, May, June, July, August, and September
2020. For the monthly RUSLEs, a specific model has been implemented by the Graphical
Modeler of QGIS to realize batch processing and calculate the different parameters semi-
automatedly. Finally, the monthly values were summarized to have an annual RUSLE
value. The months of January and February 2020 were not included in the calculation of
RUSLE because cloudless satellite imagery is not available for C-factor estimation.

3.2.1. Rainfall Erosivity Factor (R)

Rainfall has the most significant erosive impact among the various climatic factors
that characterize a territory. The precipitation erosivity factor R is an average index that
measures the kinetic energy and intensity of precipitation to describe the effect of erosion,
two parameters that significantly influence erosive processes. R indicates the quantity of
rainfall and peak intensity of the rainstorm that determine its erosive power. Soil loss from
cultivated fields is related to the energy and intensity of each rainfall in that area [30].

From the online database of the Functional Centre of the Basilicata Region [67], the
cumulative monthly rainfall data of six meteorological stations (Albano di Lucania, Irsina,
Venosa, Palazzo San Gervasio, Oppido Lucano, and Grassano) were downloaded.

The R-factor equation is based on the rainfall intensity developed for the Basilicata
region in the work of Capolongo [68], in which only daily rainfall contributions with values
greater than ten are added up.

R = 0.1087∗
[
daily cumulate rain f all (1.86)

]
(2)

Once the point values of R were obtained for all months of the period considered
for each rain gauge, the data were spatialized using interpolation tools, thus obtaining a
probable erosivity factor R for the entire study area.

3.2.2. Soil Erodibility Factor (K)

The soil erodibility factor K is the rate of soil loss per unit of the rainfall erosion index
(t ha h ha−1 MJ−1 mm−1) as defined by Terranova [69]. The factor K is the long-term
average response of soil and soil profile to the erosive power of storms. In particular,
it represents the detachment and transport of part of the soil components due to rain-
and surface-flow impact. It considers specific characteristics of the soil components, from
abrasive effects due to transport and localized deposition of soil parts depending on the
topography to rainwater infiltrations in the soil profile [27].

K =

[
2.10 ∗ 10−4 ∗ (12 − M) ∗ [(Si + f S) ∗ (100 ∗ C)]1.14 + 3.25 ∗ (A − 2) + 2.5 ∗ (P − 3)

100

]
(3)

M represents the organic matter, expressed as a percentage (%), present in the soil,
Si is the percentage of silt from 0.002–0.05 mm, fS is the content of very fine sand with a
diameter 0.05–0.1 mm, and C is the percentage of clay with a diameter <0.002 mm. The K
values thus obtained were multiplied by the factor 0.1313 to be expressed in the unit of
the International System. The parameters were derived from the Pedological Map of the
Basilicata Region and the Basilicata Region soils database to define the factor on the area
under investigation.

3.2.3. Topographic Factor (LS)

The L and S factors represent the effect of topography on soil erosion rate and are the
most difficult factors to determine in the RUSLE equation due to the topographic variability
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of the areas investigated [70]. Slope length (L) in RUSLE is defined as the distance from
the point where surface flow begins to the point where storage occurs, or runoff waters are
channelized. The topographic factor comprises slope length (L) and slope steepness (S).

Soil loss increases if the slope length increases due to downward runoff accumulation.
Slope (S) describes how erosion increases with the slope angle. Soil erosion increases with
the slope angle due to runoff’s increasing velocity and erosivity [71]. Many authors have
developed equations to estimate the LS factor [66,69,72–74]. The formula proposed by
Mitasova [75,76] was used to calculate the topographic LS factor relative to a point r on a
hillslope, which includes into a single factor LS the parameters relating to slope length L
and slope S, using a formulation that better interprets the topographical complexity of the
examined region:

LS(r) = (µ + 1)
[

a(r)/a0

]µ[
sin b(r)/b0

]n
(4)

where a(r) is the upslope-contributing-area per unit contour width, in this study assessed
by the product of QGIS with GRASS function r.flow, b is the slope, µ is the slope length
exponent [77], n is a parameter whose value has been set to 1.2 [69], a0 = 22.1 m is the
standard USLE plot length, and b0 = 9% is the slope grade of the standard USLE plot. The
LS factor was estimated using the 20 m gridded DEM with the support of QGIS software; in
fact, most LS estimation algorithms are implemented within GIS software. The LS product
factor is dimensionless and was assumed constant over the entire observation period [75].

3.2.4. Crop Management Factor (C)

The C Factor is non-dimensional and is calculated to consider a vegetation cover’s
impact on erosion. Several papers in the literature C [31,65,66] have different approaches to
estimating the C Factor, which can differ depending on the other parameters considered. C
depends on many sub-factors, such as vegetation cover, soil moisture, and foliage residue,
which change continuously throughout the year, so it is necessary to be able to estimate an
indicator to calculate the state of vegetation both spatially and over time. The SAVI [78,79]
vegetation index was used to estimate the C-Factor Equation (5).

SAVI =
[(NIR − RED) ∗ (1 − L)]

(NIR + RED + L)
(5)

The equation, defined by Kuo et al. [79], was used to calculate the C Factor:

C = −a ∗ SAVI + 1 (6)

where a is the land cover management factor to which value 1.18 was assigned. The C
Factor will have values between 0 and 1; where 0 indicates complete coverage vegetation
cover and 1 indicates no vegetation cover or bare soil. Therefore, a value of C close to zero
is indicative of soil not exposed to erosion, while high values of C are indicative of soil
exposed to erosion [80]. According to Alejandro [81], estimating the C Factor becomes more
complicated depending on how land use and vegetation change. The estimation of C using
satellite vegetation indices could effectively respond to continuous and rapid changes in
vegetation and land use.

In the estimation of the C Factor, among the vegetation indices, NDVI is among the
most widely used, according to Lin [82], there is a linear correlation between the C Factor
and NDVI, and other authors, such as Van der Knijfff [83], presented a C-factor equation
based on the NDVI index, as applicable in Europe.

Lin also observes that the NDVI is highly variable and, therefore, would decrease
the accuracy in calculating C. For this reason, the Soil-Adjusted Vegetation Index (SAVI)
presented by Huete [84] is the most suitable for a better estimate of C [85,86].
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3.2.5. Conservation Support Practice Factor (P)

The factor relative to conservation practices (P) provides the ratio of soil loss of
supporting practices and is used to quantify the positive impacts of these practices.

The P factor considers control practices that decrease the erosive potentials of runoff
due to their influence on drainage patterns, runoff concentration, and runoff velocity.
The value of the P factor varies from 0 to 1, with a value approaching 0 indicating good
conservation practice and a value approaching 1 indicating poor conservation practice [30].
The P factor was derived from a dataset freely available online on the ESDAC website [87].

3.2.6. Clustering of RUSLE Values

Integrating satellite imagery and geostatistical analysis is a very innovative approach
for analyzing and mapping those factors that are spatially variable. In the study of statistical
variables representative of phenomena or processes acting at the land scale, the issue of
spatial autocorrelation is crucial in assessing whether a particularly intense phenomenon
in a specific area implies the presence of the same in contiguous areas as well [88].

Spatial autocorrelation indices were applied to monthly and annual soil erosion maps
obtained from applying the RUSLE model.

The concept of spatial autocorrelation is one of the most important in spatial statistics.
It derives from the first law of geography introduced by Tobler in 1970 [89], “everything
is related to everything else, but near things are more related than distant things.” Auto-
correlation indicators measure whether and how much a dataset is autocorrelated across
the study region. Similar values of the variable result in spatial clusters in the presence
of positive spatial autocorrelation. In the presence of negative spatial autocorrelation,
spatially clustered different values of the variable are present; the absence of spatial au-
tocorrelation indicates a random distribution of values in space. After applying several
indices to the monthly RUSLE values, the choice fell to using the Gi local autocorrelation
index proposed by Getis and Ord [90,91]. Getis and Ord’s algorithm is a local indicator of
spatial autocorrelation; local indicators allow us to identify clustered pixels, measuring
how homogeneous the features within the area are. In particular, a high index value means
a positive correlation for high-intensity values, while a low value of the index means a
positive correlation for low-intensity values.

In applying autocorrelation methods, it is important to define the nature of the events
investigated and the geometric relationships involved. In image processing, the spatial
event is associated with a pixel, and spatial autocorrelation statistics are usually calculated
by considering the geographic coordinates of its centroid [88].

Intensity, on the other hand, should be chosen by strictly considering the empirical
nature of the case study. The conceptualization of geometric relationships in the case of
image processing is very simple because the distance between events is always equal or is
a multiple of the pixel size. The application of spatial autocorrelation statistics to remote
sensing images allows us to obtain a new raster that contains in each pixel a number
expressing how much it is autocorrelated to another pixel.

Given the study’s objective, the intensity is given by the erosion and, thus, by the
RUSLE values. In this document, we have used as intensity (Gi of Getis and Ord) the value
of RUSLE calculated using Equation (1).

The latter technique was applied individually to each month, highlighting only the
pixels with positive autocorrelation and then cumulating into a final raster, allowing the
development of a map indicating areas that exhibit a permanent erosion rate.

3.3. Identification Areas Susceptible to Degradation

To study the process of soil erosion on a large scale in as much detail as possible, it
was decided to deploy an additional method referring specifically to rural and agricultural
abandoned areas. Erosion susceptibility of erosion events is based on their spatial distribu-
tion under the influence of specific causal factors [92,93]. Logistic regression is a frequently
applied multivariate statistical technique for modeling susceptibility by investigating the
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interactions between erosion factors. In the literature, in the absence of a scientific frame-
work on the subject, the susceptibility analysis needs to improve on the subjectivity of
researchers in choosing the factors to use [94,95].

This new analysis approach is based on factors included in the RUSLE model, particu-
larly on the relationship between some of these factors and the overall erosion index, to
identify the most susceptible areas to the effect of degradation [38]. To examine the prob-
lem of erosion in agricultural areas (particularly arable land and abandoned agricultural
areas), the C Factor was referred to because it is the factor that assesses the influence of
agricultural land-use management on the erosion factor (A). Land covered by vegetation is
more protected from erosion because the leaf area present provides a physical barrier to
the impact of rainfall and the sliding effect of debris downstream. Identifying areas where
erosion is high, primarily during periods of vegetation growth, implies that those areas
have evident problems caused by poor vegetation cover. Therefore, by isolating RUSLE’s
C Factor and linking it to RUSLE’s A during periods of maximum vegetation activity, it
is possible to obtain and identify areas subject to probable degradation as they show a
high erosion rate despite the soil being covered by vegetation. March was investigated
because it is the period when the land is mostly covered by vegetation, and the arable
land’s phenological stage is crucial. To show how the C Factor influences the A factor
in relation to the other parameters, we set the slope factor (for the morphological part)
and the R factor (for erosivity due to precipitation) in a range of three classes. A table of
combinations can be constructed based on the class of each factor, as shown in Figure 2.

The diagram in Figure 2 describes the steps to identify degraded areas, starting with
examining the RUSLE factor. For each combination of the slope classes and the R factor,
A value was selected only for abandoned agricultural areas and arable land belonging to
the Nature Map of ISPRA, thus obtaining nine distinct layers in the ranges of slope and R
erosivity referred to March 2020.

Since the objective is to look for the correlation between the erosivity of the A factor
and the C Factor, it was chosen to compare them through the analysis of linear regression
by the map of residuals for each regr[A_(i,j), C] pair. The residual maps A_res(i,j) quantify,
pixel by pixel, the error E calculated on the difference between the value of estimated A
and the actual A. The direct proportionality Y = AX + B + E is given by the points closest to
the regression line and thus the points at which the value of residuals E is small in absolute
value. In order to select the values of A where the error can be considered minimal, a
threshold E = |YReal-Y Estimate| < 2 was defined around the regression line to highlight
all points that fall therein and to identify areas instead of only recurring to points that
lie right on the line. The pixels thus obtained will be characterized by a large and direct
proportionality because they are close to the line as opposed to the more distant pixels,
which, instead, do not give proportionality and consequently are not of interest to our
analysis. In defining the areas where the vegetation factor weighs more on the value of
A, all other things being equal, to define those showing a high erosion value, a threshold
was placed on each layer A_res(i,j), excluding all pixels with values less than or equal
to 5 Mg/haˆ−1*yearˆ−1. The result represents those areas that, despite being covered by
vegetation, have a high erosion factor. In these areas, erosion could cause or already is
causing low productivity and is destined for abandonment. The nine A_res(i,j) maps were
combined successively to compose a single map of areas of degradation.
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4. Results and Discussions
4.1. Persistent Erosion Map

The final results identified and estimated the average annual soil loss and erosion-
susceptible zones in the study area.

The development of the RUSLE model involves the generation of an intermediate
raster representing the different processes that may influence, to different degrees, the
overall erosion of soils. For a more accurate analysis, each factor should be evaluated
individually to examine how each influences and weighs on the final value of the RUSLE.

One of the most important factors related to R is the rainfall erosivity. The first
contribution of rain to erosion begins when raindrops touch the soil, leading to what is
known as an “erosion splash.” According to the energy and properties of the raindrops and
the soil on which they fall, a specific type of soil particle separation may occur [28]. Later,
when the event is so powerful that not all the water infiltrates into the soil, partially due to
the low soil permeability, water that does not infiltrate but accumulates on the soil starts
to flow following the direction of maximum slope and cutting larger and deeper channels
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(rills and gullies). Kinnel, in 2005 [96], stated that particle detachment occurs when the
erosive forces of raindrops and water flow overcome the soil’s resistance to erosion.

The result of Inverse Distance Weighting (IDW) [97] interpolation using cumulative
rainfall data from six meteorological stations (Albano di Lucania, Irsina, Venosa, Palazzo
San Gervasio, Oppido Lucano, and Grassano) showed that the average monthly rainfall
ranges from 11.11 mm to 222.70 (MJ*mm/ha*h*year). Figure 3 shows the mean values of
the R factor during the observation period of October 2019–September 2020; the highest
values occurred during November 2019, followed by March 2020 and July 2020.

Land 2023, 12, x FOR PEER REVIEW  12  of  25 
 

minimal, a threshold Ɛ = |YReal‐Y Estimate| < 2 was defined around the regression line 

to highlight all points that fall therein and to identify areas instead of only recurring to 

points that lie right on the line. The pixels thus obtained will be characterized by a large 

and direct proportionality because they are close to the line as opposed to the more distant 

pixels, which, instead, do not give proportionality and consequently are not of interest to 

our analysis. In defining the areas where the vegetation factor weighs more on the value 

of A, all other things being equal, to define those showing a high erosion value, a threshold 

was placed on each layer A_res(i,j), excluding all pixels with values less than or equal to 

5 Mg/ha^−1*year^−1.  The  result  represents  those  areas  that,  despite  being  covered  by 

vegetation, have a high erosion factor. In these areas, erosion could cause or already is 

causing low productivity and is destined for abandonment. The nine A_res(i,j) maps were 

combined successively to compose a single map of areas of degradation. 

4. Results and Discussions 

4.1. Persistent Erosion Map 

The final results identified and estimated the average annual soil loss and erosion‐

susceptible zones in the study area. 

The development of  the RUSLE model  involves  the generation of an  intermediate 

raster representing  the different processes  that may  influence,  to different degrees,  the 

overall erosion of  soils. For a more accurate analysis, each  factor  should be evaluated 

individually to examine how each influences and weighs on the final value of the RUSLE. 

One  of  the most  important  factors  related  to R  is  the  rainfall  erosivity. The  first 

contribution of rain to erosion begins when raindrops touch the soil, leading to what is 

known as an “erosion splash.” According to the energy and properties of the raindrops 

and the soil on which they fall, a specific type of soil particle separation may occur [28]. 

Later, when the event is so powerful that not all the water infiltrates into the soil, partially 

due to the low soil permeability, water that does not infiltrate but accumulates on the soil 

starts to flow following the direction of maximum slope and cutting  larger and deeper 

channels  (rills and gullies). Kinnel,  in 2005  [96], stated  that particle detachment occurs 

when  the erosive  forces of  raindrops and water  flow overcome  the  soil’s  resistance  to 

erosion. 

The result of Inverse Distance Weighting (IDW) [97]interpolation using cumulative 

rainfall data from six meteorological stations (Albano di Lucania, Irsina, Venosa, Palazzo 

San Gervasio, Oppido Lucano, and Grassano) showed that the average monthly rainfall 

ranges from 11.11 mm to 222.70 (MJ*mm/ha*h*year). Figure 3 shows the mean values of 

the R factor during the observation period of October 2019–September 2020; the highest 

values occurred during November 2019, followed by March 2020 and July 2020. 

 
Figure 3. Histogram of the trend in R values during the months of analysis (October 2019 to September
2020).

The C Factor is related to the vegetation cover of the investigated area; it is related
precisely to the vegetation growth and development factors of the entire observed period,
in this case, one year. For this reason, the histogram in Figure 4 shows different values
during the whole period. The highest values are recorded in the summer because the
investigated area shows predominantly agricultural areas, and post-crop land use shows
very low vegetative cover. In the autumn months (October and November), high C values
are observed. Still, in this case, the higher-than-average value considers the absence of
vegetative cover in natural areas.
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To estimate monthly RUSLE values (Figure 5), the computational process was au-
tomated by creating Graphical Modeler QGIS software to perform batch processing to
estimate the different parameters semi-automatically. January and February 2020 were
not included in the RUSLE calculation because the satellite imagery had cloud cover and
could not be used in the C-value estimation. Subsequently, erosion data obtained from the
RUSLE calculation were compared and correlated with land-cover data to assess how this
process may influence degradation phenomena and the relationship with agricultural aban-
donment. A preliminary study was based on the results of monthly and annual average
values of RUSLE concerning mainly arable farmland and abandoned farmland.
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Figure 5. Example of the results of the parameters used for calculating the RUSLE. For R and C
Factors, only one monthly run was reported as an example.

Analyzing the annual values of RUSLE, Table 2 shows that the erosion rate is marginally
higher in abandoned areas with typical post-crop vegetation (abandoned lands). Borrelli
compared erosion data and different types of land use, identifying a significant drop in
the estimates of soil erosion rates from cultivated lands to forests and other forms of semi-
natural vegetation [98]. In this study, agricultural areas covered about 11% of the areas
studied and are responsible for about 50% of the overall erosion. The authors estimated
that agricultural areas had, on average, considered rates of erosion times that were higher



Land 2023, 12, 645 13 of 22

than the overall rate of soil erosion throughout the year of the study. It is also estimated
to be about seven times higher than the average erosion of soils with natural vegetation
cover [98].

Table 2. Average monthly and annual RUSLE values (expressed in Mg-ha−1-year−1) for arable and aban-
doned lands.

Period Abandoned Lands Arable Lands

October 2019 1.81 2.10
November 2019 8.81 8.84
December 2019 0.42 0.34
March 2020 7.22 3.94
April 2020 0.90 0.35
May 2020 0.37 0.39
June 2020 1.95 2.19
July 2020 1.85 1.96
August 2020 2.29 1.33
September 2020 0.69 0.48
YEAR (2019–2020) 26.23 22.92

In this work, the difference in the amount of erosion in areas with different land cover
types is extremely important to investigate because high erosion values are mainly found
in arable agricultural areas where several months of the year have bare soil.

The reason could be that areas with post-crop vegetation have a higher land cover type
(expressed by the RUSLE C Factor) and morphological context that could influence erosion.

The months with the highest average values are November 2019 and March 2020
(Table 3). Overall, land use/cover classes with the highest average annual values are
those of clayey areas subject to strong erosion; badlands are known to suffer the effects
of erosion due to the almost absence of vegetation and their geological and pedological
features [99,100]. The average erosion values are highest in areas where vegetation species,
typical of post-crop processes due to the abandonment of arable land, are present.

Table 3. Surfaces in hectares and as a percentage of areas in permanent erosion.

Land Cover Classes Hectares (ha) in
Persisten Erosion

% of Total Persistently
Eroded Area

Arable Land 493.96 22.48

Abandoned Area 1343.11 61.13

Olive groves, vineyards and orchards 143.89 6.55

Forests and shrublands 29.57 1.35

Riparian vegetation areas 18.52 0.84

Gully areas 149.48 6.80

Urban areas, quarries, industrial sites 18.76 0.85

These areas are included in the classes marked by species and ecological successions
typical of areas where agricultural activities (cereal cultivation and/or grazing) have been
interrupted for some time and with some temporal continuity. Concerning t classes related
to crop abandonment, all show average values above the total annual value. Areas covered
by forests may also show erosion problems in particular contexts (e.g., overgrazing in
steeply sloping areas, inappropriate cutting in the past, and fires).

The study area is covered by about 9% of areas showing post-crop vegetation derived
from agricultural abandonment. These areas are prevalently located in the western and
south-western sides, involving zones with different morphological characteristics, soil
types, and socio-economic conditions, and are less profitable for intensive agriculture.
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Focusing on arable land, it can be seen that the month showing the most significant
values is November 2019. This is due to the amount of rainfall that has decreased and also
to the fact that in November, arable land has no vegetation cover, as it is the transition
period between the end of the agricultural year and the beginning of planting for the next
one. Since there is no vegetation cover, March is optimal for studying land degradation
due to erosion in arable land.

Erosion is determined in November, with the R parameter of RUSLE being equal due
to rainfall, only by the stationary factors K and LS. This is called “natural potential” [101],
which does not consider the influence of vegetation. Areas, where high erosivity values
emerge can be indicated as those areas subject to greater susceptibility to soil degradation
and, therefore, should receive more attention.

Abandoned areas present higher erosion values in the periods of November and
March. Compared to arable areas, November exhibits lower values, despite the difference
in land use in the two land cover types. There could be many reasons for this, but they
require further investigation as several factors could be involved, related to morphological
and physical factors as well as different stages of abandonment. In March, the average
erosion value in the abandoned areas is almost twice compared to those found in arable
land, presumably because in this month, the cultivated areas already provide some degree
of land cover, and the herbaceous and shrub vegetation has not yet, as the growing season
starts later than that of cereals and other arable crops.

Applying the local autocorrelation algorithm of Gi has allowed us to identify the
areas to pay attention to, characterized by permanent erosion, which takes into account the
spatial and geographical relationships that may exist between contiguous areas emerging
from the monthly RUSLE calculations. The pixels marked in the map are spatially and
geographically related to each other, according to the intensity of the monthly RUSLE value
(Figure 6).
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Pixels have been reclassified only to have discrete values 0–1. The areas showing
persistent erosion rates have value one and correspond to those in the analyzed period
with positively autocorrelated RUSLE values. These areas have a constant erosive contribu-
tion during all the analyzed months. To interpret this process more clearly, results were
correlated to land cover to evaluate which classes were most affected by permanent erosion
in terms of surface area. The most significant classes (Table 3) relate to arable land and
abandoned agricultural areas. Furthermore, by relating the hectares in permanent erosion
to the total area of the land cover class, it is possible to identify those areas most affected by
a higher erosion rate each month. From this analysis, it can be seen that the highest rates are
found in classes that, due to their characteristics, are subject to erosion phenomena (gullies,
quarries, and riverbeds); the classes of land use are subject to agricultural abandonment
processes that follow.

Spatial statistical analysis indicates that arable land and abandoned areas have sig-
nificantly higher erosivity rates, with the last representing more than 61 percent. The
results of these activities made it possible to produce preliminary land degradation sus-
ceptibility maps for arable and abandoned land. The mapping outputs make it possible to
identify large areas or clusters that need to be monitored because they may be susceptible
to degradation.

The actually cultivated areas could be susceptible to degradation as they have higher
erosion values than average ones in March 2020 and variable but permanent erosion
throughout the year analyzed. Moreover, these areas predominantly show cereal crops.
They are therefore subject to significant periods of the year when the soil is bare and are also
subject to different types of mechanized tillage, exacerbating the vulnerability of these plots.
Regarding the areas with post-crop vegetation resulting from abandonment processes,
elaborations of areas susceptible to land degradation were evaluated based on the RUSLE
values obtained for November 2019.

4.2. Mapping of Sensitive Land Degradation Areas

This section presents the results of evaluating erosion variables and the susceptibil-
ity analysis.

The multiple regression analysis techniques is used to predict the response (dependent)
variable based on two or more predictor (independent) variables [92,102]. This technique
is used to evaluate each predictive variable’s contribution to the model’s total variability.
It can also be applied to validate the variability of the response variable by adding new
predictive variables to the model. This type of analysis has advantages and disadvantages,
which are widely described in the literature, where many examples can be found [103–105].

In this study, the predictor variables (i.e., RUSLE parameters: R, LS, and C) are grouped
into static and dynamic factors, while the response variable is actual soil loss (A RUSLE).

The areas analyzed in March 2020 represent areas where erosion strongly correlates
with the C Factor. To define with a reasonable probability that these are year-round, it is
necessary to integrate the data with the Getis map of the entire area, obtained by spatial
autocorrelation, which covers the areas subject to permanent erosion from October 2019
to September 2020. As an end result, the intersection provides a soil degradation map for
arable land that shows high RUSLE values during the growing season and keeps them
throughout the year. The map in Figure 7 and Table 4 summarizes the result obtained
from the realization of the map of agricultural areas (cultivated and abandoned) strongly
correlated to the vegetation factor C, susceptible to degradation.
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Table 4. Extension of the areas subject to degradation cultivated with arable land in degradation concerning
the factor C.

Municipality Degradation (ha) RUSLE (A)
Average

Degradation
Area (%)

Tolve 70.32 7.37 0.97
Genzano di Lucania 63.48 6.95 0.35
Tricarico 36.20 9.07 0.42
Irsina 19.48 8.58 0.13
Forenza 14.72 7.33 0.23
Acerenza 13.00 6.87 0.29
San Chirico Nuovo 12.52 7.65 1.49
Venosa 6.44 5.79 0.05
Banzi 3.08 6.46 0.05
Oppido Lucano 2.68 6.71 0.07
Ginestra 2.24 5.94 0.42
Cancellara 2.12 7.61 0.10
Palazzo San Gervasio 1.68 6.93 0.04
Albano di Lucania 0.76 7.74 0.05
Maschito 0.48 5.57 0.01
Grassano 0 0 0

The municipalities within the study area are shown in the table’s first column; the
surface, in hectares, of degraded agricultural areas per municipality is indicated in the
second. The following column shows each municipality’s average value of erosion of the
degraded areas. Finally, the area calculated with the methodology and the agricultural area
relating to each municipality were compared.

Tolve has the most degraded hectares, with an average A of 7.36 [Mg-ha−1-year−1]
and a percentage of the total area of around 0.97%. Another interesting fact to highlight
is the area of San Chirico Nuovo, which has the highest degraded area of 1.48% with an
average erosion of 7.65 [Mg-ha−1-year−1]. The data referring to the municipalities of Irsina
and Grassano is partial because the study area only includes part of the municipal territory.
Figure 8 shows in detail some areas that show high susceptibility to degradation.
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For overlapping pixels (Figure 8), the orthophoto identifies the clusters where land
degradation is most likely to occur. There may be a variety of causes for this process, one
of which could be, for example, intensive exploitation (excessive mechanization and use
of chemicals), resulting in the loss of organic content that leads to the deterioration of soil
structure, thus facilitating the initiation of erosion.

Land degradation susceptibility estimation measures the likelihood that soil erosion
will occur in a location based on the relationship between its past and various causal
factors [92,102]. In the multivariate statistical model, all erosivity parameters (independent
variables) responsible for erosion were treated together, and their interactions helped
to determine the future probability of land degradation [106]. The model also assessed
the relative contribution of each variable, placing more emphasis on variables known to
contribute to erosion occurrence. Logistic regression analysis was chosen as the appropriate
multivariate technique due to the nature of the data used in this study [106].

The independent variables used in this analysis include non-continuous data (slope
angle, C Factor, and rainfall data). The dependent variable is binary (presence or absence
of erosion). Detailed descriptions of the technical logistic regression can be found in the
literature [107,108].

Independent variables were gradually entered into the process if their probability
of remaining in the model was more significant than 5 (the default cutoff for this case
study). The results were then transferred to the QGIS Raster Calculator for the probabilistic
development of the land degradation–erosion susceptibility map (pixel size 20 m × 20 m).
The susceptibility map has been classified into several classes, from the lowest values
indicating a low probability of degradation to progressively higher values.

5. Conclusions

The abandonment of agricultural land is one of the most important manifestations
of changes in the use of cultivated land. It is difficult to explain the negative impacts of
a complex and spatially variegated process, such as agricultural abandonment [109,110].
Throughout this study, land erosion related to water action was considered a parameter
closely related to land degradation due to agricultural abandonment. This study provides a
first insight into the impacts linked to agricultural land abandonment in the municipalities
analyzed. The adopted analyses have made it possible to evaluate the relationships between
changes in agricultural land use and degradation processes since erosion processes occur
more in areas that have undergone changes in land use and/or abandonment. In contrast,
in permanent agricultural areas, the impact of the erosion process is generally lower. With
the methodologies applied in this study, it was possible to create different datasets, both
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tabular and in the form of maps, to evaluate the land degradation process related to land
use and land-cover dynamics.

Applying the logistic regression model for susceptibility analysis is appropriate for
the present study. The results of this analysis provided information that led to a significant
improvement in understanding the spatial distribution of agricultural soil erosion due
to agricultural abandonment and/or agricultural overexploitation. The susceptibility
maps produced in this study can be used as a guideline for land management in land-use
planning. More site-specific testing and analysis are needed to establish the distribution of
areas subject to likely degradation. The erosive impact of abandoned and uncultivated land
raises important questions about implementing land conservation programs. It is difficult
to cooperate with those involved in soil conservation and land degradation prevention
activities and to involve farmers whose animals are grazing on unused land. Sustainable
rural land use and management through integrated planning could mitigate this ongoing
process and avoid negative impacts. Replicable and updatable land planning techniques
and methodologies need to be implemented to quantify and analyze the consequences of
agricultural abandonment at high levels of detail. This study can be used as a reference for
spatial planning policies to achieve the Zero Net Degradation Land objective by 2030 [111].
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