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Abstract: Assuming a non-neutral impact of space, an explicit assessment of metropolitan hierarchies
based on local regression models produces a refined description of population settlement patterns and
processes over time. We used Geographically Weighted Regressions (GWR) to provide an enriched
interpretation of the density gradient in Greece, estimating a spatially explicit rank–size relationship
inspired by Zipf’s law. The empirical results of the GWR models quantified the adherence of real
data (municipal population density as a predictor of metropolitan hierarchy) to the operational
assumptions of the rank–size relationship. Local deviations from its prediction were explained
considering the peculiarity of the metropolitan cycle (1961–2011) in the country. Although preliminary
and exploratory, these findings decomposed representative population dynamics in two stages of the
cycle (namely urbanization, 1961–1991, and suburbanization, 1991–2011). Being in line with earlier
studies, this timing allowed a geographical interpretation of the evolution of a particularly complex
metropolitan system with intense (urban) primacy and a weak level of rural development over a
sufficiently long time interval. Introducing a spatially explicit estimation of the rank–size relationship
at detailed territorial resolutions provided an original contribution to regional science, covering broad
geographical scales.

Keywords: population dynamics; spatial divides; Zipf’s law; indicators; Mediterranean Europe

1. Introduction

Metropolitan growth and socioeconomic disparities are pivotal issues in urban stud-
ies [1–4]. In this perspective, population dynamics are recognized as one of the most
powerful engines of local development, in both advanced economies and emerging coun-
tries worldwide [5–7]. Multiple factors such as (i) the globalization of economic activities,
(ii) accelerated structural change toward advanced services, (iii) a more intense cycle of
building activity, and (iv) international migration, intrinsically affect the spatial distribu-
tion of population [8–10]. While regarded as informative of urban trends, comparative
analyses of population dynamics over sufficiently long time intervals [11] and disaggre-
gated geographical scales [12] are rather infrequent, even in advanced economies. Results
of diachronic and comparative investigations of long-term settlement patterns based on
population distribution over small areas are particularly intriguing in advanced world
macro-regions [13–15], being linked with complex development paths [16]. Especially in
Europe, individual countries (and even single regions) often display diverging develop-
ment paths because of distinctive social grounds, economic structures, historical, cultural,
religious and political/institutional backgrounds [17–19]. In this perspective, a spatial
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analysis of population indicators may reveal new patterns of regional divides [20–22], an
intriguing issue in geography and regional studies [23–26].

Being an appropriate variable describing the recent evolution of European regions,
local-scale population dynamics anticipate complex socioeconomic patterns of change [27–
29] that may bring new models of metropolitan growth and decline [30–32]. In this context,
earlier studies focused on the most evident stages of the metropolitan cycle, including
compact urbanization with population concentration and dispersed suburbanization with
low-density settlement expansion [33–35]. Less efforts have been devoted to investigating
the long-term evolution of metropolitan hierarchies considering together central and periph-
eral locations [36–38]. This gradient outlines a spatial dimension depending on multiple
factors of accessibility that interact among centers and peripheries [39], namely, the network
in which central locations participate to a broader system of towns and villages [40]. Space,
therefore, remains a substantial dimension of metropolitan hierarchies, which needs an
explicit analysis of its impact on the density gradient evolving over time [41].

While showing more or less evident deviations from normality, the statistical distri-
bution of social phenomena (basically, events correlated to human activities) can be more
easily framed adopting non-linear specifications, such as hyperbolic equations that can be
inspired to the class of relationships referring to Zipf’s law [42–44]. This is an empirical
law that describes the frequency of an event, that is part of a complete set of occurrences, in
relation with its rank, namely the decreasing order position calculated with respect to the
frequency of that event [45–47]. The results predicted with this law have been verified in
real datasets; one of these cases is the distribution of a resident population (namely popula-
tion size or density) along a density gradient (cities, towns, villages) within a sufficiently
wide geographical coverage, namely a continent, a country, or a broad region [48–50].
While the empirical fields of Zipf’s law are relatively varied and broadly conceived, the
comparative and diachronic analysis of metropolitan hierarchies within a given country is
a renowned application of this approach [51–53].

Despite the intrinsic importance of this analysis’ dimension, the spatial aspect of the
diachronic evolution of metropolitan hierarchies was demised even in recent studies that
have investigated urban systems (and density gradients) worldwide adopting the rank–size
relationship [54–56]. In other words, the empirical verification of Zipf-like relationships
was carried out, to the best of our knowledge, as a spatially implicit phenomenon, with
geographical structures assumed as neutral with respect to the gradient from large cities to
medium-size towns and rural villages [57]. Assuming space as a non-neutral dimension
of a given metropolitan hierarchy, this study hypothesizes deviations from a Zipf’s law
over time as a characteristic feature of the investigated social system [58]. Having made the
spatial dimension explicit through local regressions that augment the global estimate based
on canonical (or generalized) models, these deviations, estimated at a local scale, indicate
the net impact of space on the rank–size relationship, highlighting where spatial effects are
more or less intense [59]. These findings allow an accurate analysis of economic factors at
the base of such impacts.

When defining local population trends, a spatially explicit (local) analysis of density
gradients based on Geographically Weighted Regressions contributes to informing strategic
planning and regional policies for a more coordinated urban growth [60–62]. This knowl-
edge may promote a sustainable and spatially balanced system of cities tuned finely with
the original structure of settlements, accessibility, and latent networking/interaction fac-
tors [63–65] that are partially demised in spatially implicit models. Based on these premises,
our paper is organized as follows: Section 2 describes the study area, data sources, indica-
tors, and the methodology adopted. Section 3 delineates the most relevant results of the
econometric analysis. Section 4 debates the relevance of the main findings in light of the
recent literature on regional science and applied economics. Section 5 concludes the study
with some policy considerations and recommendations for future works.
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2. Methodology
2.1. Study Area

Our study considered the whole statutory coverage of Greece (nearly 130 thousand
km2) as the investigated area (Figure 1). The LAU (Local Administrative Units) level
adopted by Eurostat (the Statistical Office of the European Commission) in the Nomencla-
ture of Territorial Statistical Units (NUTS), was chosen as the elementary spatial domain.
This level includes a total of 1033 municipalities (‘dimoi’ and ‘koinotites’ in Greek) regarded
as a suitable analysis unit when investigating spatial patterns of population and economic
activities reflective of basic geographical gradients [66]. Earlier studies have extensively
documented the appropriateness of using a detailed spatial domain such as municipalities
in empirical studies of local development, economic geography, and urbanization [26,38,40].
As a matter of fact, local administrative units depict the intrinsic geography of Greece
likely better than more aggregate spatial domains, identifying (i) the major urban nodes
(e.g., Athens, Thessaloniki, Iraklion), (ii) dynamic coastal areas, densely settled islands
in both the Ionian and Aegean Sea, and more accessible lowlands attracting tourists and
the temporary/permanent population [24], as well as (iii) internal areas exposed to land
abandonment, depopulation, and economic marginality because of poor accessibility and
social fragility due to their peripheral location [39]. More than 30% of the Greek population
gravitate around metropolitan Athens, the capital city [67], evidencing a well-consolidated
urban primacy since World War II [37].
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Figure 1. Maps illustrating the location of the study area (Greece, within the orange circle) in the
Mediterranean basin (upper left); the administrative geography of Greece (lower left); and the
annual population growth rate in 1961–1971 (middle) and 2001–2011 (right).

2.2. Data and Variables

This study exploited a complete and homogenized database released by Eurostat
and reporting the total population, derived from national demographic censuses carried
out every 10 years at each LAU unit (municipalities, see above) separately for 6 points
in time (1961, 1971, 1981, 1991, 2001, and 2011). Since LAUs were subjected to minor
changes over long observation times [68], Eurostat disseminated a homogenized list of
spatial units and boundaries for cross-region and cross-country comparisons [69]. Within
the activities of the Geographical Information System of the Commission (GISCO, https:
//ec.europa.eu/eurostat/web/gisco/overview accessed on 26 July 2023), Eurostat released
the list of spatial units and their related boundaries in a geo-spatial format (shapefile).
Technical details for data collection and handling, homogenization, the imputation of
lacking data (if any) and the derivation of geo-spatial information were provided by the
website mentioned above. Based on the original dataset, two variables were extracted from
the total population data, namely (i) population size, i.e., the absolute number of inhabitants
in each municipality at a given time (log-transformed), and (ii) demographic density, i.e., the

https://ec.europa.eu/eurostat/web/gisco/overview
https://ec.europa.eu/eurostat/web/gisco/overview
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ratio of the resident population in a total municipal area (km2, log-transformed) [12]. The
municipal area was automatically calculated from the shapefile of municipal boundaries
released by Eurostat and mentioned above [70].

2.3. Statistical Analysis

Our analysis was organized in three steps aimed at preparing data to the subsequent
inferential and econometric treatment [51]. After a preliminary step based on descriptive
statistics, parametric correlations aimed to define the optimal descriptor of the metropolitan
hierarchy in the case of Greece [61]. A cross-section analysis was subsequently run com-
paring the results of spatially implicit, standard regressions (taken as a benchmark of the
rank–size relationship) with those from a spatially explicit (local) model, having municipal-
ities as the elementary analysis’ domain [71]. The first descriptive analysis’ step included a
study of the statistical distribution of the population size across Greek municipalities (n
= 1033), investigated using metrics of (i) central tendency/dispersion (average, standard
error, minimum and maximum) and (ii) ranking/form (median, skewness, kurtosis, 25th
and 75th percentile) [8]. These metrics were calculated separately for each observation year
(1961, 1971, 1981, 1991, 2001, 2011) and provided a preliminary description of the target
variable, which was in turn mapped at the same spatial scale using the shapefile provided
by Eurostat and mentioned above [72].

The rank–size relationship characteristic of the total population and demographic
density was initially estimated in both sign and intensity using a pair-wise correlation
analysis with parametric (Pearson product-moment) coefficients of both linear (i.e., native)
and log-transformed variables (namely, municipal rank and population size or density).
Pearson coefficients range from 1 (the highest positive correlation between two variables) to
−1 (the highest negative correlation between two variables), with 0 indicating uncorrelated
variables [26]. Significant pair-wise correlations were tested at p < 0.05 after Bonferroni’s
correction for multiple comparisons [62]. Assuming that Zipf’s law holds true in the
present dataset, positive correlation coefficients were expected between the tested variables
(municipal rank vs. population size or density). Moreover, results of this analysis indicated
the most appropriate variable (population size or density) for the subsequent econometric
model [42]. Selecting the most appropriate demographic variable for econometric analysis
was an indirect result of this investigation, with relevance for urban studies and regional
analysis [25], since earlier studies used both population size and density as target vari-
ables [31], with an incomplete discussion of the research implications of a concurrent use of
such regressors [40].

Following the empirical evidence derived from correlation analysis, we incorporated
the spatial structure of the metropolitan hierarchy in an econometric specification that
considered population density (inhabitants/km2) as a function of the municipal rank [73].
More specifically, we interpreted the bivariate relationship between population density
(log-transformed) of the i-th municipality and the rank (log-transformed) of the same i-th
domain within the urban-rural hierarchy of Greek municipalities, evaluating the impact of
rank on density through a regression coefficient (slope). The average effect of independent
(external) factors (namely, the overall level of the process irrespective of the impact of the
predictor) was estimated with another regression coefficient (intercept). In other words,
the form of the size distribution of municipalities was assumed as following a Pareto
distribution based on log(y) = log(A) − αlog(x) where x is a particular population size
(population density in our case), y is the number of municipalities with populations greater
than x (resulting from the municipal rank), and A and α are constants both assuming
positive values. These coefficients, respectively, reflect the density of the largest city (A)
and the linear distribution of city sizes when α = 1 [43–45].

Regression models were first estimated using Ordinary Least Squares (OLS), as well
as the Reduced Major Axis (RMA) and Moving Average (MA) regression generalizations
aimed at reducing model’s errors in a spatially implicit (global) framework [74]. RMA
and MA provided an alternative (spatially implicit and global) strategy to the standard
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estimation run using OLS, with the final aim of determining best-fit models with minimal
estimation errors. Assumptions for RMA and MA estimation were the same of those
traditionally formulated for any general linear model estimated with OLS techniques.
Regression intercept quantified the density of the largest city in the sample and the slope co-
efficient verified the working hypothesis of a linear distribution of city sizes (observed with
a slope around 1, in line with the main assumption of Zipf’s law [43–45]. The calculation of
standard errors for the slope and intercept assumes the normal distribution of residuals
and independence between the variables and the variance of residuals. RMA/MA fitting,
standard error estimation and slope comparison were according to Warton et al. [75].

The empirical results of these models were subsequently compared with a spatially
explicit (local estimation) strategy [66] based on Geographically Weighted Regressions
(GWRs) and adopting the same specification presented above, i.e., testing population den-
sity (log) as a function of the municipal rank (log). GWRs estimate regression parameters at
each location using weighted least squares, each coefficient in the model being a function
of space [76]. The weights for the estimation of local regression models were derived
from a bi-square nearest-neighbor kernel function, a common specification weighting the
observations closer to the locations more intensively [77]. Following this specification, the
optimal bandwidth value was estimated automatically and maintained as stable along the
whole time interval at 125.8 km. Regressions were estimated separately for each phase of
the metropolitan cycle [78], adopting a ten-year schedule, as illustrated above. The model’s
goodness of fit was assessed using both global and local R2 coefficients. Maps with the
spatial distribution of local parameters were provided for the intercept, predictor slope
coefficients, R2 values, and the standardized residuals of each model. Taken as a summary
outcome of local regressions [79], an additional map illustrating the spatial distribution
of slope-to-intercept (local) ratios was finally proposed and discussed [13]. This param-
eter estimated the implicit strength of the relationship between the two variables [5] by
standardizing the gross impact of the predictor (slope) with the average (local) level of the
process independent of the impact of the predictor itself (intercept).

3. Results
3.1. Descriptive Statistics

Table 1 illustrates some descriptive measures of the statistical distribution of the
resident population in the 1033 municipalities of Greece during the six years of study. A
progressive increase in the resident population was observed in the area: at the beginning
of the observation period (1961), the gap between the average and the maximum value per
municipality ranged between 400 inhabitants/km2 and 19,800 inhabitants/km2. In 2011,
the absolute range was considerably higher because of the increase in the maximum density
value (nearly 30,000 inhabitants/km2), that was compensated only in part with a coherent
increase in the average value (nearly 700 inhabitants/km2). At all observation years,
the median value was found different from the average value, highlighting a structural
asymmetry that rose over time. The 25th percentile of the statistical distribution of the
resident population showed a slight decrease (from 27 to 17 inhabitants/km2), and contrasts
with a more evident increase in the 75th percentile (from 76 to 93 inhabitants/km2). This
result testifies an increase in the urban component of the hierarchy (i.e., rising population
in urban municipalities) at the expense of low-density (basically rural) areas, where a
systematic population decrease was observed (as a result of land abandonment and the
consequent rural exodus to central locations). Despite the strong statistical asymmetry, the
morphological indexes of skewness and kurtosis showed a slow convergence towards a
more balanced distribution over time.
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Table 1. Descriptive statistics of population density (inhabitants/km2) in Greek municipalities
by year.

Variable 1961 1971 1981 1991 2001 2011

Mean 374 486 612 650 693 695
Max 19,809 24,650 36,781 34,431 34,106 29,976
Min 0 0 0 1 1 1
Std. error 52 67 84 84 85 82
Median 42 37 37 38 40 35
25th pctile 27 22 21 22 22 17
75th pctile 76 70 75 80 91 93
Skewness 7.2 6.7 6.9 6.4 6.0 5.5
Kurtosis 59.5 51.4 59.9 49.7 44.8 36.2

3.2. Correlation Analysis

Table 2 shows the results of a linear correlation analysis (based on parametric Bravais–
Pearson moment-product coefficients) that investigates the strength of the rank–size re-
lationship in 1033 municipalities of Greece. We compared separately (i) two variables
(population size and density), and (ii) two metrics (a traditional logarithmic specification
and a purely linear specification). The linear specification was systematically less effi-
cient than the traditional logarithmic specification. In addition, the population density
performed much better than the absolute population size for both specifications. Based
on these premises, the subsequent analysis was run using the logarithmic specification of
population density as the input variable.

Table 2. Correlation coefficients (Pearson) assessing the rank–size relationship in Greece (n = 1033
municipalities) with linear and logarithmic forms, by year.

Year
Total Population Population Density

Linear Log Linear Log

1961 −0.909 −0.843 −0.842 −0.962
1971 −0.921 −0.877 −0.849 −0.967
1981 −0.922 −0.887 −0.859 −0.971
1991 −0.927 −0.894 −0.870 −0.974
2001 −0.934 −0.904 −0.879 −0.978
2011 −0.947 −0.908 −0.900 −0.977

3.3. City-Size Distribution and the Metropolitan Hierarchy in Greece

Table 3 illustrates the most representative trends over time in the global econometric
estimates (logarithmic specification) for population density at Greek municipalities using
three techniques (OLS, RMA, and MA) and, by comparison, the global goodness of fit of
the related (spatially explicit) GWR model. For all observation years, the density–rank
relationship assumed a systematically high goodness-of-fit (adjusted R2 > 0.9), despite
the wide and possibly heterogeneous sample size (n = 1033 municipalities). Global R2

coefficients increased over time, reaching 0.95 in 2011 from an initial value of 0.93 (1961).
OLS estimates of the regression intercept showed rising values over time (from 5.23 to 6.39).
The slope of the estimated relationship was negative and increased over time (from −1.35
to −1.81); the ratio between slope and intercept also grew over time (from −0.259 in 1961 to
−0.283 in 2011). The estimates obtained with models other than the OLS (namely, RMA and
MA) confirmed these results, while reducing the regression coefficient’s error. On the basis
of the same logarithmic specification, the comparative scrutiny of the adjusted R2 values of
the GWR model documented the superiority of a spatially explicit model compared with
spatially implicit approaches. The overall improvement in the adjusted R2 was 0.8% in 1961
and 0.5% in 2011. For 2011, the spatially explicit model captured approximately 96% of the
overall variability in the data series, highlighting the importance of an explicit evaluation
of spatial structures when assessing metropolitan hierarchies.
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Table 3. Results of a global regression estimating the metropolitan hierarchy in Greece (n = 1033
municipalities) by year (see text for abbreviations; estimate ± standard error).

Parameter OLS RMA MA

1961
Slope −1.352 ± 0.012 −1.405 ± 0.012 −1.423 ± 0.012
Intercept 5.227 ± 0.031 5.364 ± 0.001 5.411 ± 0.001
Adjusted-R2 0.926
Global R2 (GWR) 0.934
1971
Slope −1.500 ± 0.012 −1.550 ± 0.012 −1.572 ± 0.013
Intercept 5.567 ± 0.032 5.698 ± 0.001 5.754 ± 0.001
Adjusted-R2 0.936
Global R2 (GWR) 0.942
1981
Slope −1.606 ± 0.012 −1.655 ± 0.012 −1.678 ± 0.013
Intercept 5.857 ± 0.032 5.983 ± 0.001 6.043 ± 0.001
Adjusted-R2 0.942
Global R2 (GWR) 0.946
1991
Slope −1.650 ± 0.012 −1.694 ± 0.012 −1.715 ± 0.012
Intercept 6.001 ± 0.031 6.113 ± 0.001 6.169 ± 0.001
Adjusted-R2 0.950
Global R2 (GWR) 0.954
2001
Slope −1.690 ± 0.011 −1.729 ± 0.011 −1.749 ± 0.012
Intercept 6.135 ± 0.030 6.235 ± 0.001 6.286 ± 0.001
Adjusted-R2 0.956
Global R2 (GWR) 0.959
2011
Slope −1.806 ± 0.012 −1.850 ± 0.012 −1.874 ± 0.013
Intercept 6.387 ± 0.033 6.500 ± 0.001 6.564 ± 0.001
Adjusted-R2 0.953

Global R2 (GWR) 0.958

3.4. Deriving a Spatially Explicit City–Size Relationship for Greece

Figures 2–6 showed the results of local regression models estimating the metropolitan
hierarchy in Greece as a spatially explicit phenomenon, producing a local estimate of the
intercept, slope, and adjusted R2, as well as the estimation error for each municipality. More
specifically, Figure 2 illustrates the spatial distribution of the locally adjusted R2. Values
of the adjusted R2 close to 1 indicate a close adherence with the predictions of Zipf’s law.
The highest values of this index were associated with Central Greece, the Peloponnese,
and the Aegean islands. The area with high R2 values increased over time, embracing the
whole Peloponnese, Crete, and other districts of Central Greece (e.g., Thessaly). This macro-
region corresponded with the districts of the oldest settlements in classical Greece and the
actual metropolitan structure close to Athens, confirming the existence of a mono-centric
model for Greek settlements gravitating on Attica. The model performed better in 2011
(the highest R2 in the available time series) following the dense and compact urbanization
characteristic of recent Athens’ development. The subsequent suburbanization did not
seem to have altered this mono-centric model, contributing in turn to consolidate it further.
The metropolitan hierarchy characteristic of this settlement seems to follow better than
other regional settlements (e.g., Macedonia region with Thessaloniki urban center) that
likely consolidated more recently. As an indirect confirmation, the regression fit of the
metropolitan hierarchy in peripheral regions was relatively less satisfactory: in 1961, local
R2 < 0.85 were recorded in Thrace and North-Western Greece (Epirus). However, areas with
R2 < 0.85 decreased over time. Among Greek regions, only Thrace remained associated
with R2 < 0.9 in 2011, possibly confirming the peripheral profile of this region reflecting a
slight deviation from the predictions of Zipf’s law.
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The demographic and urban evolution of Greece led to a particularly homogeneous
density gradient. In line with the general assumptions of the GWR model, the regres-
sion residuals showed a random spatial distribution. Residual values higher than +2 or
−2 concentrated in peripheral municipalities of North-Western Greece (Epirus) or North-
Eastern Greece (Thrace), confirming the economic marginality of such contexts (Figure 3).
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Estimating Local Regression Parameters

Figure 4 illustrates the spatial distribution of slope coefficients estimated using local
regression models separately for the six years of study, from 1961 to 2011. Slope coefficients
assumed systematically negative local values around the global mean (between −1.3 and
−1.8) and highlighted the existence of a highly dynamic metropolitan system. In other
words, resident population along the density gradient displayed a more heterogeneous
spatial distribution at the end of the study period, concentrating in particularly accessible
and dense areas. The highest slope coefficient values were observed in metropolitan Athens,
in line with earlier results. This trend was particularly evident between 1961 and 1991,
while decreasing progressively in the following two decades (2001 and 2011). In these
recent decades, the highest (local) slope coefficients concentrated in peripheral areas such
as North-Western Greece, with expanding urban nodes such as Ioannina, Preveza, Arta,
and Agrinio. This development path benefited from an improved infrastructural network,
namely the construction of the Egnatia road connecting Igoumenitsa (the most accessible
port from Italy) to Thessaloniki and the highway from Igoumenitsa to Athens, which took
advantage of the new Rio-Antirio bridge over the Strait of Patras. Combined with more
latent phenomena of metropolitan suburbanization responding to urban concentration
(1961–1991), generalized accessibility gains led to a redistribution of the metropolitan
hierarchy. Northern Greece was characterized by lower values of the slope coefficient
since 1971. This result highlights the greater stability of the urban system gravitating
around Thessaloniki (the second Greek city) and belonging to the administrative region
of Macedonia.
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Figure 5 illustrates the spatial distribution of local intercepts calculated by GWR. In
line with what has been observed for local slope coefficients, the highest values of local
intercepts concentrated in metropolitan Athens and in the peripheral region of Epirus,
namely, the areas with a peculiar rank–size relationship with respect to the Greek aver-
age. This result can be explained by the peculiar characteristics of both areas, the former
having evident infrastructural endowments and agglomeration/scale potential (higher
than the country average), and the latter displaying rural attributes and latent peripheral
conditions. This structure slowly diverged over time: metropolitan Athens realized its
maximum intercept coefficient in 1981, in coincidence with the period of maximum urban
concentration in Greece (in the 1980s, more than 35% of the Greek population resided in
Attica). Conversely, the highest intercept coefficient in 2011 was observed in Epirus and in
the Western part of the island of Crete, following relevant changes in the spatial structure of
human settlement in Greece. This result testifies the progressive rebalancing of settlement
structures and population dynamics along the density gradient in the country since 1991.
Since the 1980s, these dynamics have coincided with the end of compact urbanization, a
persistent, intense, and characteristic stage of the metropolitan cycle in Greece, leaving the
ground to low-density suburbanization.
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Changes over time in density gradient were finally quantified considering the ratio
of (local) slope coefficients to (local) intercepts (Figure 6). In line with the empirical
results already described above, the highest values were observed in the most peripheral
regions (particularly North-Western Greece) which, however, has achieved fast (relative)
population gains in recent years, being more aligned with the city–size relationship found at
the national level. On the Ionian side, the region between Ioannina to the North and Agrinio
to the South was the best example of such dynamics. The lowest values identified the
metropolitan area gravitating around Thessaloniki and including most of the municipalities
in Central Macedonia. This system was relatively stable—squeezed between the dynamism
of peripheral areas and the gigantism of metropolitan Athens.
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4. Discussion

The empirical approach presented in this study offers conceptual and methodological
advancements to urban studies, with reference to the analysis of metropolitan hierar-
chies [80]. In line with similar studies carried out in other European countries [81], the
work assessed the evolution over time in the metropolitan hierarchy of Greece at a fine
geographical scale (municipalities). As a novel contribution to regional science, we adopted
a spatially explicit, analytical framework derived from classical studies of metropolitan
hierarchies [82], including the empirical verification of Zipf’s law applied to diachronic
investigations of urban systems worldwide. The literature applications of the city–size rule
are available for both advanced and emerging countries [83]. From an operational point of
view, the empirical results of such analyses demonstrated how the city–size relationship
fits the metropolitan hierarchy appropriately in any investigated system [43–45], either
considering urban systems (namely, cities and metropolitan areas), or including the entire
density gradient (from urban centers to small rural municipalities with a low population
density). From this perspective, making Zipf’s assumptions spatially explicit is an original
contribution to the Applied Economics literature.

Together with such important aspects, our findings demonstrate how population
density—instead of total population size—is the most appropriate variable for testing the
city–size relationship [84–86]. Being intrinsically standardized to a space unit (municipal
area), and reflecting—at least indirectly—economic agglomeration and scale processes [78],
the use of population density as the dependent variable in the city–rank relationship seems
to provide a relevant contribution to the empirical analysis of metropolitan hierarchies [87].
In this perspective, the use of total population size seems to be sub-optimal [88], being
dependent on the choice of political dimension (e.g., municipalities, districts, provinces)
and scale [80], because administrative borders are intrinsically variable within the same
region, e.g., between urban and rural areas in the same country [89–91] and, even more
clearly, between countries [92–94]. One possible methodological development for future
studies is the improvement in econometric approaches based on an enlarged availability of
population grid data, which may reduce intrinsic heterogeneity in the use of administrative
(polygonal) boundaries. For Europe, population grid data are becoming increasingly
popular in recent years, despite the availability of time series computed on regular lattices
seemingly still restricted, at least as far as official statistics are concerned.

4.1. Exploring the Spatial Dimension of Metropolitan Hierarchies

In addition to the empirical verification, earlier studies have tried to explain the
motivations underlying the city–size rule in metropolitan areas [55]. One of the most
appropriate explanations concerning the impact of the economic factors of agglomeration
and scale along the metropolitan gradient [95], the conceptual and operational intersection
with Christaller central location theory and its generalizations, as well as the effect of
centralized (e.g., mono-centric), decentralized (e.g., polycentric), or mixed spatial orga-
nizations on settlement spatial patterns [96–98]. At the same time, earlier works based
on a mathematical rationale and numerical simulations have shown the existence of a
significant rank–size in random data [99–101]. These results suggest how power laws
describing the relationship between size and rank of a given phenomenon are a statistical
feature of all data series [102]. Therefore, the empirical verification of such a law does not
necessarily require an economic explanation and seems to be independent from the specific
phenomenon investigated [46,57,60].

Metropolitan hierarchies, however, have an eminent spatial dimension. In fact, popu-
lation distribution and the morphological structure of settlements follow non-automatic
dynamics (i.e., dependent on their intrinsic demographic dimension or economic strength)
derived from spatial interaction [45], accessibility [103], and the networks in which urban
centers participate [104–106]. Space, therefore, remains a substantial dimension underlying
the rank–size relationship, thus needing an explicit impact analysis [59]. As an innovative
contribution to urban science [107], our study assumes space as a non-neutral dimension
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of the city-rank rule and assesses it explicitly by integrating global estimates (based on
canonical or generalized regression models) with local estimates derived from spatial
regressions [54]. Having made explicit the anisotropic effect of settlement location and
their geographical structure, namely proximity or distance, our approach interprets the
deviations over time from the city–rank rule as a characteristic feature of the investigated
metropolitan system [58]. In other words, these deviations, estimated at a local scale,
highlight the net impact of space on the rank–size relationship, highlighting where spatial
effects are more or less intense, and, thus, suggesting a particularly accurate analysis of
economic factors at the base of such impacts [50–52].

4.2. From Global to Local Econometric Models

While the estimation and comparison of the global regression coefficients of the city–
size rule (using linear, logarithmic, or generalized specifications) still feed the debate (both
empirical and methodological) in regional science [108–110], (i) sources of heterogeneity
in real-world data [111], (ii) spatially anisotropic effects [48], and (ii) the importance of
changing time structures [57], require additional investigation. In this perspective, our
study provides a first application to some of these research questions confirming, on the one
hand, the topicality of the rank–size rule in an explicit analysis of metropolitan evolution
and, on the other hand, the need of theoretical generalizations faced with latent (e.g., space–
time) statistical structures that may affect the model’s precision [105]. Being aware of the
descriptive and exploratory aim of our study, further research should clarify the possible
impact of the spatial support used in this paper (namely, municipalities) with respect to
other candidate solutions (e.g., regular grids) [56].

On the one hand, regular lattices have been recognized as a possible solution to the
eventual Modifiable Area Unit Problem (MAUP), which is intrinsic in the use of polygonal,
administrative units such as local municipalities [112]. On the other hand, administrative
units were traditionally used in most of the empirical tests of Zipf’s law, and are particularly
appropriate when long time intervals are extensively investigated, with the main target
variable (namely, population size) coming from (historical) demographic censuses [59].
Especially in Europe, these data were released at municipal domains more than one century
ago [60], while the availability of population grid data from official statistics (e.g., provided
by Eurostat) is, at least up to now, rather limited to the last one to two decades [113].

Assuming the strengths of our paper in the (sufficiently long) time interval of investi-
gation, the intrinsic focus on spatially non-neutral deviations from the Zipfian behavior
(thus justifying a spatially explicit approach to the analysis of metropolitan hierarchies)
rather than on the Zipf’s α exponent (as is typical of the most traditional studies of the
rank–size rule), may justify the adoption of a polygonal, administrative domain like the
municipalities, as clearly documented in Calderín-Ojeda [114] for France. The use of local
municipalities provides an indirect, additional advantage to the study of metropolitan
hierarchies, namely, the opportunity to investigate the whole of the density gradient in a
country, from the larger to the smaller settlement [15]. This approach seems to be particu-
larly appropriate when selecting population density (and not the total population size) as
the target variable, removing (or at least containing) the intrinsic effect of the differential
land area inherent in the municipal structure of almost every country [38]. Considering the
whole density hierarchy (namely, the whole territorial coverage of a given country, without
excluding settlements below a given threshold), makes the spatially explicit analysis of
Zipf’s law a reasonable and coherent issue in regional studies [76].

4.3. Local Econometrics and the Zipf’s Law

While preliminary, descriptive and exploratory in their scope, the results of GWR
models seem to confirm the appropriateness of our assumptions. Going beyond the
simple estimation of Zipf’s coefficients, the overall improvement in the goodness-of-fit
of spatial regression models compared with global, spatial implicit models suggests that
peri-urbanization—a well-known phenomenon in urban studies—may affect the formation
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and consolidation of any metropolitan hierarchy [81]. The use of a joint coefficient (slope-
to-intercept) estimated from GWR may provide further information and gives room to a
refined discussion of the spatial structure of data. More specifically, it contributes to explain
some systematic deviations of the empirical data from Zipf’s law, especially at the tails of
the hierarchy (e.g., in urban conditions). Spatial departures from the expected behavior may
be, therefore, explained with a refined investigation of the role of economic agglomeration
and scale, despite other social forces meriting a specific analysis [76]. In this perspective,
moving from spatially implicit to spatially explicit econometric techniques when testing
Zipf’s law is an appropriate solution, assuming spatially asymmetric departures from the
standard behavior [115].

In the earlier literature, going beyond the vast spectrum of global models estimating
Zipf’s law and generalizing the traditional power specification at the base of Pareto’s law,
quantile regression—a well-known and widely used econometric technique—proved to
be appropriate when identifying important deviations from Zipf’s law in specific portions
of the statistical distribution, or for specific city sizes (for instance, in the top-level rank
of the metropolitan hierarchy) [52]. However, quantile regression in these studies was
mainly adopted in a spatially implicit framework, implying a homogeneous behavior of the
metropolitan hierarchy across space (i.e., depending exclusively on the city rank, and not on
the spatial relationship between cities) [53]. Assuming spatially heterogeneous deviations
from Zipf’s law, a local spatial regression was preferred to a global or mixed (quantile)
approaches to verify the relevance of any spatially asymmetric departure to the standard
rank–size rule [54]. In this direction, further research should to clarify the impact of some
important choices when developing geographically weighted regressions with the aim at
testing the adherence of any metropolitan hierarchy to Zipf’s law [78]. One important aspect
is the selection of the optimal bandwidth adopted to estimate local GWR parameters [13,19].
For instance, the use of fixed or adaptive Kernel approaches, and their impact on parameter
estimations, should be carefully investigated in theory and practice [116]. The use of
spatially explicit, local techniques going beyond a regressive/econometric approaches,
such as the geographically weighted summary statistics [117] that include spatially explicit,
local correlation coefficients, can be particularly appropriate in this perspective, with the
aim of providing a preliminary, descriptive analysis of local heterogeneity [115]. Unraveling
local heterogeneity on the base of exploratory approaches based on correlation inference
may represent an effective procedure contributing to the delineation of novel exploratory
approaches and explicative (e.g., econometric or statistic) rationales to the (spatially explicit)
analysis of metropolitan hierarchies worldwide.

5. Conclusions

Considering the impact of non-neutral spatial structures, this study demonstrated how
the econometric estimation of the rank–size rule based on local regression models produces
an augmented description of metropolitan hierarchies. Based on these premises, our work
estimated a local and spatially adjusted city–size relationship over time, providing a local,
dynamic interpretation of metropolitan systems in Greece focusing on the spatially non-
neutral departure from the expected behavior. While descriptive and exploratory in its aims,
our study documented the specific contribution of local regressions in a refined analysis
of the adherence of the empirical data to the operational assumptions of the city–size rule.
Empirical results also provided insights into the specific investigation of local deviations
from city–size predictions. This allowed an indirect decomposition of representative
population dynamics in at least two different phases of the metropolitan cycle in Greece
(e.g., urbanization, 1961–1991, and suburbanization, 1991–2011) with diverging social
contexts and economic forces at the base of the density gradient. Being regarded as
an original contribution to regional science, this timing was also in line with the main
results from earlier studies, and provides a geographical interpretation of the evolution of
metropolitan systems based on the rank–size rule. From a methodological point of view,
future research should consider more tightly new or refined methodologies (i) addressing
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the increasing (local) heterogeneity in real-world geo-spatial data, (ii) exploring spatially
anisotropic effects, and (iii) evaluating changes in time structures. As mentioned above,
further studies should also clarify the impact of spatial support (e.g., polygons vs. grids)
and the selection of optimal estimation bandwidth in local regression models.
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