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Graph signal processing and wavelet packets

Iulia Martina Bulai and Sandra Saliani

Dipartimento di Matematica, Informatica ed Economia
Università degli Studi della Basilicata, ITALY

iulia.bulai@unibas.it, sandra.saliani@unibas.it

1 Introduction

Nowadays graphs became of significant importance given their use to describe complex
system dynamics, with important applications to real world problems, e.g. graph repre-
sentation of the brain, social networks, biological networks, spreading of a disease, etc.,
[1]-[5].

What is missing in graph signal processing is a general definition of Spectral Graph
Wavelet Packets Transform in the same fashion as for the classical framework [6] (see
also [7]), where the equivalent of frequency is represented by the eigenvalues of the
Laplacian matrix. Bremer and coauthors in [8] introduced diffusion wavelet packets
transforms starting from diffusion wavelet definition [9], based on a diffusion operator
T on a manifold or a graph. Cloninger et al. in [10] defined the natural graph wavelet
packet dictionaries by introducing a set of novel multiscale basis transforms by consid-
ering the distance between graph Laplacian eigenvectors.

In this paper we introduce a novel graph wavelet packets construction, to our knowl-
edge different from the ones known in literature. Our work is inspired by the Spec-
tral Graph Wavelet Transform (SGWT) defined by Hammond et al. in [11] and can be
viewed as a generalization of their work. The result is a dictionary of frames particularly
suitable for analyzing signals defined on graphs with a large number of nodes.

We will give some concrete examples on how the wavelet packets can be used for
compressing, denoising and reconstruction by considering a signal, given by the fRMI
(functional magnetic resonance imaging) data, on the nodes of voxel-wise brain graph
G with 900.760 nodes (representing the brain voxels) defined in [1]-[2].

2 Main Results

2.1 Spectral wavelet operator and wavelet spaces

Let G denote an undirected connected weighted graph with N nodes, A the N×N (sym-
metric) adjacency matrix with non-negative real entries ai j, where ai j > 0 if there is
an edge between vertices i and j. D denotes the diagonal N ×N matrix with diago-
nal entries given by the degrees d(i) = ∑ j ai j, and L = D−A is the non-normalized
Laplacian. Alternatively one can consider the normalized Laplacian defined as in [1].

We shall denote by 0 = λ0 < λ1 ≤ λ2 ≤ ·· · ≤ λN−1 the eigenvalues of L ordered
in ascending order, including multiplicities, and by χ`, ` = 0, . . . ,N− 1 a set of corre-
sponding orthonormal eigenvectors. Let g : [0,+∞)→ R be a continuous function. In



[11] the authors call the operator Tg : RN → RN , Tg = g(L ), the wavelet operator,
and for s > 0, T s

g = g(sL ) is called the wavelet operator at scale s, i.e. the wavelet
operator corresponding to the dilation of g by s : g(s·).

It follows from the definition that if χ` is an eingenvector of L , corresponding to
the eigenvalue λ`, then Tg(χ`) = g(λ`)χ`. Also, for any f ∈ RN ,

(Tg f )(m) =
N−1

∑̀
=0

g(λ`) f̂ (`)χ`(m), m ∈ RN . (1)

In the classic case, wavelets are usually defined starting from a Multiresolution
Analysis (MRA), Vj ⊂ Vj+1 ⊂ L2(R). Translations of the scaling function ϕ span the
core space V0, and the translations of the wavelet ψ span the orthogonal complement
W0 of V0 in V1. In analogues way we define this spaces for the graph theory framework:

Definition 1. Let (s j) j≥1 be a strictly increasing sequence of positive real numbers
(thought as scales), set s0 = 1. The space V0 is spanned by the finite linear combinations
of translates of the low-pass filter, h, V0 = 〈Thδn,n = 1, . . . ,N〉. Hence

f ∈V0⇔ f̂ (`) = h(λ`)
N

∑
n=1

anχ∗` (n), an ∈ C.

The space W0 is spanned by the finite linear combinations of translates of the band-pass
filter, g, W0 = 〈Tgδn,n = 1, . . . ,N〉.

Next, we define the spaces V− j and W− j for any j≥ 1. The space V− j = 〈T s j
h T

s j−1
h . . .Thδn,n=

1, . . . ,N〉. The space W− j = 〈T s j
g T

s j−1
h . . .Thδn,n = 1, . . . ,N〉.

Hence, following the same notation and the reasoning used for the wavelet spaces,
we can define the wavelet packets spaces.

Definition 2. We define W0,0 =V0, W1,0 =W0, and, for any j≥ 1,W0,− j =V− j, W1,− j =

W− j. For any j≥ 1, we write n ∈N in finite dyadic expansion n = ∑ j
i=0 εi 2i, εi = 0,1

we define (set s0 = 1) Wn,− j = 〈T s0
Mε0

T s1
Mε1

. . .T
s j

Mε j
δk,k = 1, . . . ,N〉, where

Mεi =

{
h, if εi = 0,
g, if εi = 1.

and T si
Mεi

= Mεi(siL ).

2.2 Frames of spectral graph wavelet packets

The tuple ε = (ε0,ε1, . . . ,ε j) in the dyadic expansion of n = 0, . . . ,2 j+1−1 corresponds
to the dyadic interval

I j,n =

[
ε j

2
+ · · ·+ ε0

2 j+1 ,
ε j

2
+ · · ·+ ε0

2 j+1 +
1

2 j+1

)
⊂ [0,1)

315



Proposition 1. Let F be a finite set of indices ( j,n) ∈N×{0, . . . ,2 j+1−1}, such that
the collection {I j,n, ( j,n) ∈F} forms a partition of [0,1) : [0,1) =

⋃
( j,n)∈F I j,n.

Assume G(λ ) = h2(λ )+ g2(λ ) > 0 for all λ ∈ R+. Let L ≥ 0 be the maximum of
the set { j ∈ N, ( j,n) ∈F , for some n}. Then the system {TM( j,n)δk, ( j,n) ∈ F , k =

1, . . . ,N} is a frame for RN with lower and upper frame bound given respectively by

min{1, min
λ∈[0,λmax)

GL+1(λ )} and max{1, max
λ∈[0,λmax)

GL+1(λ )}. (2)

Hence if {TMiδk, i = 0,1, k = 1, . . . ,N} is a Parseval frame for RN , then the intro-
duced system is a Parseval frame for RN , too.

3 Conclusion

As an application we have used a brain graph with 900.760 nodes, an fMRI signal and
its noisy version, represented on the top row of Figure 1. After computing the wavelet
packet coefficients we processed the signals, e.g. reconstruction, compressing and/or
denoising. For lack of space, here, we report only the results for denoising using two
different filters, bottom row of Figure 1.

Fig. 1. Top row: (left panel) axial slices of the representation of the fRMI signal; (right panel)
noisy fRMI signal on the brain graph. Bottom row: Reconstruction of the signal, from the left
to the right after denoising at 33% for type-Meyer filter, and 54% spline filter, thresholding,
respectively. The color spectrum assumes values from −0.002 black to 0.002 white.
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