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Abstract: This review explores the transformative potential of precision agriculture and proximal
sensing in revolutionizing crop management practices. By delving into the complexities of these
cutting-edge technologies, it examines their role in mitigating the adverse impacts of agrochemical
usage while bringing crop health monitoring to a high precision level. The review explains how
precision agriculture optimizes production while safeguarding environmental integrity, thus offering
a viable solution to both ecological and economic challenges arising from excessive agrochemical
application. Furthermore, it investigates various proximal sensing techniques, including spectral
imaging, thermal imaging, and fluorescence sensors, showcasing their efficacy in detecting and
diagnosing crop health indicators such as stress factors, nutrient deficiencies, diseases, and pests.
Through an in-depth analysis of relevant studies and successful practical applications, this review
highlights that it is essential to bridge the gap between monitoring sensors and real-time decision-
making and to improve image processing and data management systems to fully realize their potential
in terms of sustainable crop management practices.
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1. Introduction

In recent decades, the urgent need for environmental sustainability has been at the
center of global policy discussions, driven by a growing awareness of the challenges posed
by a projected global population of nearly 10 billion by 2050 [1]. Agriculture, as a vital sector
for food production, has attracted renewed attention in this context. The increase in food
production due to population growth has led to a reliance on intensive farming methods.
However, a fundamental concern arises: is it possible to increase production without a
corresponding increase in environmental emissions or even achieve a reduction? To address
this crucial issue, it is mandatory to determine the factors influencing environmental
conservation and food production [2]. Farming contributes to global GHG emissions,
accounting for 19–29% of annual emissions globally [3], considering that agricultural land
use was responsible for a substantial 37.8% of GHG emissions in the European Union
in 2018 [4]. The relationship between soil carbon emissions and fertilizer use has been
identified [5], highlighting the challenge of balancing production needs with environmental
management. Over-utilization of agricultural chemicals, including pesticides and fertilizers,
has negative effects on the environment, soil quality, water resources, and human health. It
contributes to water and air pollution, biodiversity loss, and the development of pesticide-
resistant pests [6]. Additionally, the economic burden of agrochemicals can be significant
for farmers, impacting their long-term profitability and sustainability [7].

Although agricultural agrochemicals such as fertilizers and pesticides play a crucial
role in helping to ensure stable production yields, their overuse raises concerns about the
pollution of vital resources such as water, air, and soil, with far-reaching consequences
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for future generations [7]. To address these challenges, innovative methods are key to
producing healthier products and reducing pesticide use by half [8].

The successful implementation of sustainable farm technologies is based on the ac-
quisition of big data, often collected through sensors, drones, or satellites, resulting in the
concept of “smart agriculture” [9]. Precision agriculture, supported by the collection and
analysis of big data, provides farmers with decision support systems (DSS) to optimize
production, minimize resource use, and improve product quality [10].

In addition, advances in precision agriculture in recent years have significantly im-
proved the effectiveness and sustainability of the application of agrochemicals. Several
studies have proposed the development and implementation of innovative variable-rate
spraying technologies, driven by image processing and artificial intelligence, aimed at
optimizing the use of agrochemicals on many crops [11–14].

These technologies have great potential to improve agricultural production, reduce
resource consumption, and enhance economic returns [15]. Sensors primarily used in crop
management, which enable monitoring of crop health conditions and soil properties, are
based on remote sensing [16] or proximal sensing [17].

The sustainability of agricultural ecosystems is closely linked to the effective use of
advanced sensor technologies and their integration with agricultural input measurement
systems. This integration enables more accurate and efficient application of fertilizers,
water, and pesticides, thereby reducing waste and minimizing environmental impact.

Using a map-based and sensor-based approach, the key implications of precision
farming for sustainable crop monitoring and management will be discussed.

As a result, the purpose of this study is to outline the current perspective status of
agricultural monitoring tools and to emphasize their impact on resource management
in the agricultural sector. The primary goal is to identify the sensor technologies most
frequently employed in the mechatronics of variable rate systems to maximize resource
usage in agriculture.

The sensors currently used in farming will be examined, with a focus on optoelectronic
proximal sensing systems and their potential applications for monitoring crop health, both
biotic and abiotic stress. In this context, it is important to address the following questions:
“What are the design and development principles that have guided sensor research in
optimizing agricultural inputs?” and “Which sensors are most commonly used on crop
scouting platforms, and what are the reasons for their prevalence?”

The bibliometric analysis examined approximately 200 articles on the use of sensors
operating in the VIS-NIR range, as suggested in the literature, for evaluating biotic and
abiotic stresses in crops and the related management of agrochemicals. The approach
related to precision agricultural management was discussed, emphasizing the differences
between the use of remote technologies or the “map approach” and proximal or the “sensor
approach.” Particular attention was paid to close-range sensors used for decision support
in agricultural prototypes developed in the last 20 years.

The remainder of the discussion is divided as follows. In Section 2, precision agricul-
ture is defined, and its importance in monitoring and optimizing crop production while
minimizing environmental impact is described. In Section 3, proximal optoelectronic
sensing techniques suitable for crop health monitoring are introduced, explaining how
each technique provides valuable data on crop conditions, including stressors, nutrient
deficiencies, diseases, and pests. In Section 4, the results are discussed. Finally, in Section 5,
the conclusions resulting from this investigation are highlighted.

2. Role of Precision Agriculture in Sustainable Crop Management

Following the rapid advancement of agricultural practices due to the modernization of
technological tools available to farmers and agronomists, many authors have offered their
interpretations of PA, considering environmental, farming, and food security implications.
For example, [18] discussed PA’s significance in resource management, while [19] empha-
sized PA’s role in enhancing productivity. However, a more comprehensive definition was



AgriEngineering 2024, 6 3086

provided by the International Society of Precision Agriculture (ISPRA), defining PA as “a
management strategy that gathers, processes, and analyzes temporal, spatial, and individual data,
combining it with other information to support management decisions based on estimated variability,
thereby enhancing resource use efficiency, productivity, quality, profitability, and sustainability of
agricultural production” [20].

The conscientious use of natural resources such as water and fertilizer requires that
farmers access more information about crops to support decision-making in agricultural
inputs [21]. This has sparked debates and advancements in technologies to support agricul-
tural production management. Smart Farming (SF) and Precision Agriculture (PA) emerged
as a result of such discussions [22–25]. Additionally, hyperspectral imaging (HSI) [26] and
multispectral imaging (MSI) [26] have shown efficacy in detecting water stress, salt stress,
and nutrient deficiencies. However, the most significant impact of imaging technologies
has been observed in the evaluation of biotic stresses [27,28].

Advancements in RGB, Multispectral, and thermal imaging technologies, along with
the development of snapshot sensors, have improved real-time disease management capa-
bilities. These innovations offer faster image capturing, though sometimes at the cost of
spatial resolution.

Close-range hyperspectral measurements have effectively identified leaf diseases,
while spectral indices and feature selection methods improve classification accuracy. Hy-
perspectral and multispectral imaging combined with automated disease detection sensors
facilitate real-time monitoring and precise management responses.

The integration of advanced imaging and sensing technologies has revolutionized
the assessment and management of both abiotic and biotic stresses in crops. These tools
provide quick, accurate, and non-invasive methods to monitor plant health, optimize
nutrient and pesticide management, and mitigate stress impacts.

However, the most critical problem in close-range multispectral imaging is the align-
ment of band images captured with misaligned cameras [29–31].

A clear distinction between these terms is not always achievable; smart farming
or agriculture 4.0 utilizes advanced ICT technologies to recognize temporal and spatial
variations in production resources, constantly updated with dynamic environmental and
ecosystem factors [31]. “Precision farming also entails an information technology (IT) suite,
focusing on immediate benefits while being environmentally conscious” [32].

The sensor component plays a key role in the acquisition of field information; among
these, optoelectronic sensors are the most versatile among those used in agriculture because
of their ability to correlate the interaction with the light to one or more crop parameters.

The main objective of most remote sensing studies is to assess vegetation conditions
in one or more specific areas in a non-destructive manner. Optoelectronic sensing records
reflected and emitted plant radiation in Visible to Short Wavelength Infrared (VSWIR,
400–2500 nm) and Thermal Infrared (TIR, 8–14 µm) wavelengths. This, combined with
accurate data analysis, allows the monitoring of different parameters of interest, such as
yield, presence of pests, and crop stress. Alternatively, the vegetation indices (VI) calculated
by the ratio of certain spectral bands can be used [33]. Both remote and proximal sensor
approaches have been validated in agricultural applications and used as a solution for
sustainable crop management. However, they differ in terms of the timeliness with which
the collected data by these platforms can be used in field applications, i.e., to rationalize
agricultural inputs [34]. This has led to two approaches: the map-based approach and the
sensor-based approach.

2.1. Map-Based Approach
2.1.1. Satellite Remote Sensing

Smart Farming (SF) is a modern approach to agriculture that integrates data science
and technology [35] to optimize crop management. It considers the spatial variability of
crops within the field [32,36] to optimize input applications [37]. Management zones (MZs)
are homogeneous areas with low variability, defined by data on soil [38], yield [39], electrical
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conductivity [40], farmer knowledge [41], proximal/remote sensing [42], or a combination
of these [43]. This map-based approach utilizes essential tools for analyzing spatio-temporal
variations within large-scale fields more efficiently [43–45]. GNSS (Global Navigation
Satellite Systems), for positioning technologies used in PA, including Glonass, Galileo, and
other satellites, have played a key role in the 21st century [46], providing a map-based
approach to analyze variability within large-scale fields [47].

The use of satellite remote sensing, providing high-resolution, low-cost data to delin-
eate MZs, has made possible yield monitoring [44,48], pest management [49], as well as a
map-based approach to variable rate application of different agricultural inputs, such as
water [40], nutrients [36,50] and pesticides [51].

These successes are due to the significant improvement in satellite resolution, making
it possible to acquire spatial data daily and open source [52]. Mulla [46] has provided an
overview of these advancements.

The high-resolution images are useful for assessing field variability and enabling vari-
able applications from seeding [53–55] to fertilizer [40,50]. In addition, satellite applications
in agriculture have made numerous advances not only in terms of resolution. For example,
synthetic aperture sensors (SAR) have proven to be an effective technique for crop monitor-
ing because the quality of the footage is not dependent on weather conditions [56]. Several
authors have compared different platforms to help distinguish localized conditions of
inhomogeneity in the field, determined by abiotic or biotic stresses (Table 1).

Several satellite sensors, such as WorldView [44], QuickBird [57], SPOT [51], and
RapidEye [57] are employed for site-specific farming applications.

Sentinel-2 remains the multispectral imaging mission with the highest resolution
(10 m) among open-source imaging data. Using multiple platforms, considering the
quality of information each provides, is preferable for planning corrective measures, such
as localized applications of pesticides, herbicides, and fertilizers [58]. Images from high-
resolution satellites or Unmanned Aerial Vehicles have proven effective in guiding localized
agronomic operations such as fertilization and pesticide application [58,59].

Messina et al. and Dutta et al. [58,59] illustrated the potential of both remote sensing
technologies [58,59]; integration of these technologies can improve agriculture, leading to
more informed decision-making and timely interventions. UAV imagery has offered finer
details in detecting localized problems [58], establishing that it can detect symptoms up to
2–3 weeks earlier than traditional approaches [57].

Table 1. Satellite remote sensing applications in precision agriculture: the impact of spatial resolution.

Crop Aim

Platform (Spatial
Resolution or Distance

from the Target)
Satellite

Sensor Reference

Cotton (Gossypium
spp.)

Nitrogen VRT
fertilization

• RapidEye (5 m) RapidEye MSI: Blue (475 nm), green (555 nm), red (658 nm),
red-edge (710 nm) and near-infrared (805 nm) [36]

Soil
Variable Rate

Irrigation based
on soil properties

• Sentinel-2 (10 m) Sentinel-2: B4 (Red): 665 ± 30 nm–B8 (Near-Infrared–NIR):
842 ± 115 nm [40]

Winter wheat
Compare RS and

PS for site-specific
crop management

• Sentinel-2 satellite
(10 m);

• PS: Fritzmeier
ISARIA (n.p)

Sentinel-2: B02 (Blue): 490 nm–B03 (Green): 560 nm–B04
(Red): 665 nm–B05 (Red Edge 1): 705 nm–B06 (Red Edge 2):
740 nm–B07 (Red Edge 3): 783 nm–B08 (NIR): 842 nm–B11

(SWIR): 1610 nm);
Fritzmeier ISARIA: (660–780 nm)

[42]

Potato and maize

Map-based
site-specific

seeding of seed
potato production

• Sentinel-2 (10 m); Sentinel-2: (B04 (Red): 665 nm, B08 (NIR): 842 nm). [43,53–
55,60]
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Table 1. Cont.

Crop Aim

Platform (Spatial
Resolution or Distance

from the Target)
Satellite

Sensor Reference

Wheat and barley
Develop a model

for estimating
crop yield

• Deimos-1 (22 m);
• Landsat 7 and

Landsat 8 (L8) (30
m);

• Sentinel 2 (S2A,
S2B) (10 m)

Deimos-1: (Red): 630–690 nm–(NIR): 770–900 nm; Landsat 7:
(B03 (Red)): 0.63–0.69 µm–(B04 (NIR)): 0.77–0.90 µm;

Landsat 8: (B04 (Red)): 0.64–0.67 µm–B05 (NIR)): 0.85–0.88
µm; Sentinel-2 (S2A): (B04 (Red)): 665 nm–B08 (NIR)): 842
nm); Sentinel-2 (S2B): B04 (Red)): 665 nm-B08 (NIR)): 842

nm;

[48]

Corn and soybean

Compare satellite
sensors to assess

field yield
variability

• WorldView-3
(WV-3) (1.25 m);

• Planet
(Dove-Classic
Sensors) (3.25 m);

• Landsat 8 and
Sentinel-2 (30 m)

WorldView-3 (WV-3):
Coastal Blue: 0.426 µm- Blue: 0.479 µm-

Green: 0.552 µm-
Yellow: 0.610 µm-

Red: 0.662 µm-
Red-Edge: 0.726 µm-

NIR1: 0.831 µm-
NIR2: 0.910 µm;

Planet (Dove-Classic Sensors): Blue: 0.485 µm -
Green: 0.545 µm-
Red: 0.630 µm-
NIR: 0.820 µm;

Harmonized Landsat Sentinel-2 (HLS): Green: ~0.560 µm-
Red: ~0.660 µm-

NIR (8A band of Sentinel-2): ~0.865 µm-
SWIR: ~1.5 µm and ~2.2 µm.

[44]

(Triticum aestivum
L., cv. PRR58)

Compare different
nitrogen VRT
fertilization

• Sentinel-2 A (10 m) Sentinel-2 (S2A): (B04 (Red)): 665 nm–B08 (NIR)): 842 nm). [50]

Wheat
Disease detection

(powdery
mildew)

• SPOT-6 (6 m)

SPOT-6 B1: Blue (455–525 nm)-
B2 Green (530–590 nm)-
B3: Red (625–695 nm)-

B4: Near Infrared (NIR) (760–890 nm).

[51]

Wheat

Growth
monitoring
(Biomass,

moisture and
structure)

• Polarimetric SAR
Interferometry
(Pol-InSAR)

Polarimetric SAR Interferometry (Pol-InSAR): L-, C- and
X-Bands [56]

Wheat

Disease detection
pathogens

powdery mildew
(Blumeria graminis)

and leaf rust
(Puccinia
recondita).

• QuickBird Satellite
(2.4 m);

• Airborne (4 m);
• PS: ASD FieldSpec

Pro (Analytical
Spectral Devices,
Boulder, CO, USA)

QuickBird Satellite: Blue: 450–520 nm–Green: 520–600
nm–Red: 630–690 nm–Near-Infrared (NIR): 760–900 nm;

HyMap Airborne: 126 bands (450 nm-2480 nm); ASD
FieldSpec Pro (350–2500 nm).

[57]

Pigeonpea
(Cajanus cajan)

plants

Disease detection
(Fusarium wilt)

• ASI-PRISMA,
DESIS (DLR,
Germany), and
EnMAP (DLR,
Germany) HyS
satellite;

• Sentinel-2 MSI
satellite

Red-Edge (690–740 nm), Short Wave Infra-Red (SWIR)
(1510–1680 nm), and Green (530–570 nm) [59]

Onion

Comparing data
acquired by

fixed-wing UAV
satellite to crop

monitoring.

• Parrot Disco-Pro
AG fixed-wing
UAV (5 m);

• Satellite Images:
Sentinel-2 (10 m)
and
PlanetScope(3.7 m)

UAV: Parrot Sequoia MS (Green (530–570 nm), Red (640–680
nm), Red Edge (730–740 nm), and NIR (770–810 nm);

Sentinel-2: Blue 426–558 (width 66)–Green 523–595 (width
36-) Red 633–695 (width 31)–NIR 726–938 (width 106);
PlanrtScope: Blue 464–517 (width 26.5)–Green 547–585

(width 19)–Red 650–682 (width 16)–NIR 846–888 (width 21)

[58]
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2.1.2. Unmanned Aerial Vehicles

Unlike satellites, UAVs allow for a more precise selection of resolution; literature find-
ings indicate that pest management and plant health monitoring, especially for diseases,
require image parameters that satellite platforms cannot meet [42,58,59,61]. The growing
adoption of aerial remote sensing technology in agriculture has resulted in new opportuni-
ties and trends to improve crop genetics, analyze land usage, estimate crop production, and
assess biodiversity loss [47]. Over the past decade, UAVs have gained significant popularity
as monitoring tools, revolutionizing the field of remote sensing with their ability to acquire
high-resolution images and data in agricultural applications [62].

High spatial resolution enables reliable identification and analysis of numerous traits,
directly impacting the accuracy and utility of data for informed management decisions
and improved agricultural practices [61,63], such as weed detection [64] and management
useful for herbicide reduction since 69–79% [65].

On the other hand, higher altitudes are suitable for broad area coverage and multitem-
poral analysis [66]. UAVs are also a viable alternative to manual spraying applications, with
several studies focusing on reducing agrochemical use and providing efficient spraying
solutions [11,67–69]. By the use of UAV images, herbicide savings reduced untreated areas
by up to 39.2% and saved between 16 and 45 € per hectare [70]. To optimize fertilization
rates related to the N nutritional index (NNIOA) [71] using data acquired via UAV, the
NNIOA effectively regulated nitrogen deficiency, optimal levels, and excess, resulting in
adjustments of fertilizer application by 54.17%, 0.67%, and 18.18%, respectively [71]. More
recently, a time series diagnostic curve for optimal nitrogen grain fertilizer at a regional
scale was developed by examining various N fertilizer rates (0–405 kg N ha−1) [72].

The commercialization and increasing availability of UAVs, with their ability to pro-
vide high-resolution images [73], also provide smart automation solutions [68,69,74], such
as UAV-based variable-rate fertilization [75] and seeding [74].

Some examples in vineyards have used UAVs to generate a vigor map, which was
then converted into a prescription map using DOSAVIÑA® software [11]. This allows
for real-time adjustments of pesticide spraying parameters, reducing application by 45%
compared to conventional methods [11].

Similarly, Garcia-Ruiz et al. [67] evaluated two VRA strategies for the application of
copper in vineyards, reducing pesticide use by 33–44% per hectare [67]. Despite these
advantages, several efforts are needed in scouting technology to assess pests [67,76], dis-
eases [77–80], nitrogen [81–83], and water [84–86] crop stress. Among these, the evalu-
ation of flight altitude and spatial resolution has been the subject of research in recent
years [61,66,75,83,85].

According to the reviewed studies, UAVs provide high spatial resolution, ranging
from 0.05 m to 0.13 m, see Table 2, being also timely (flexible and able to acquire data as
needed), confirming themselves as an effective solution for field exploration of crop health
status monitoring.

Table 2. Recently, UAV (unmanned aerial vehicle) applications in agriculture focusing on spatial
resolution and mounted sensors.

Crop Aim
Platform (Spatial

Resolution or Distance
from the Target)

Sensors References

Type Specifications

Corn (Zea mays
L.)

Disease detection
(Setosphaeria turcica)

DJI Matrice 600 UAV (DJI,
Shenzhen, China)) (6 m) RGB Sony Alpha 6000 camera [87]

Corn

Prediction and
mapping of soil

properties and corn
yield

Aircraft: Digital Elevation
Model (DEM) Collection
(1 m); MSI data collection

(0.3 m)

RGB + LiDAR RGB (Leica ADS80 digital
camera) + LiDAR [38]
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Table 2. Cont.

Crop Aim
Platform (Spatial

Resolution or Distance
from the Target)

Sensors References

Type Specifications

Corn variety:
DeKalb Brand-

DKC67–72

Monitoring Different
Physiological Stages
for Yield Prediction
and Input Resource

Optimization

N.S. (from 60 m to 30 m) MSI

MicaSense RedEdge™: Blue
(475 nm ± 32 nm), green (560

nm center, ± 27 nm), red (668 ±
16 nm), red-edge (717 nm ± 12
nm), and near-infrared (842 nm

± 57 nm).

[75]

Wheat, barley,
and oats Yield Prediction

Airinov Solo 3DR (Parrot
Drone SAS, Paris, France)

(150 m) | 1 × 1 m/px
MSI:

SEQUOIA (Parrot Drone SAS,
Paris, France): Green: 550 nm ±

40 nm
Red: 660 nm ± 40 nm

Red Edge: 735 ± 10 nm
Near-Infrared (NIR): 790 nm ±:

20 nm.

[66]

Soybean Weed detection DJI Matrice 600 pro ((DJI,
Shenzhen, China)), (20 m) MSI

SEQUOIA (Parrot Drone SAS,
Paris, France): Green: 550 nm ±

40 nm
Red: 660 nm ± 40 nm

Red Edge: 735 ± 10 nm
Near-Infrared (NIR): 790 nm ±:

20 nm.

[88]

Cotton and
sunflower Weed detection

Quadcopter model
MD4–1000 (microdrones
GmhH, Siegen, Germany)

(30–60 m)

CIR Sony ILCE-6000 camera, + NIR. [65]

Sunflower Weed detection
Quadrocopter md4–1000

(microdrones GmbH,
Siegen, Germany)

RGB + MSI

MSI: TetraCam mini-MCA-6
(TetraCam Inc., Chatsworth,
CA, USA) (blue (B, 450 nm),

green (G, 530 nm), red (R, 670
and 700 nm), Redge (740 nm)

and near-infrared (NIR, 780 nm)
RGB: Olympus PEN E-PM1

(Olympus Corporation, Tokyo,
Japan)

[64]

Pea and
strawberry Weed detection DJI Spark (Multirotor) (2

m) | 0.3 cm/px RGB CMOS sensor (3968× 2976
pixels) [89]

Lettuce Weed detection Multi-rotor DJI Mavic Pro
(2 m) | 0.22 cm/px MSI

SEQUOIA (Parrot Drone SAS,
Paris, France): Green: 550 nm ±

40 nm
Red: 660 nm ± 40 nm

Red Edge: 735 ± 10 nm
Near-Infrared (NIR): 790 nm ±:

20 nm.

[61]

Olive tree
Pest detection (Xylella

fastidiosa subsp.
pauca (Xfp))

Multi-rotor DJI Mavic Pro
(70 m) | 6.6 cm/px MSI

SEQUOIA (Parrot Drone SAS,
Paris, France): Green: 550 nm ±

40 nm
Red: 660 nm ± 40 nm

Red Edge: 735 ± 10 nm
Near-Infrared (NIR): 790 nm ±

20 nm.

[76]

Wheat (cv).
‘Mingxian 169’

Diseases detection
(Yellow rust)

Six-rotor electric UAV
system (DJI Innovations,
Shenzhen, China) (30 m)

| 1.2 cm/px

HyS

UHD 185 (Cubert GmbH, Ulm,
Baden-Württemberg, Germany):

450–950 nm ±:
4 nm.

[77]
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Table 2. Cont.

Crop Aim
Platform (Spatial

Resolution or Distance
from the Target)

Sensors References

Type Specifications

Tomato

Diseases detection
(Tomato Yellow Leaf
Cur)–TYLC; Target
Spot ((Corynespora

cassiicola)–TS;
Bacterial Spot
(Xanthomonas
perforans)–BS)

(Matrice 600 Pro
Hexacopter, DJI,

Shenzhen, China) (30 m)
| 1.03 cm/px

HyS
Pika L 2.4 hyperspectral camera
(Resonon, Bozeman, MT, USA):

380 to 1020 nm.
[78]

Potato Disease detection
(late blight)

UAV (N.S.) (80 m) | 4–5
m/px HyS Rikola Ltd., (Oulu, Finland):

600–800 nm [79]

Maize Weed
detection/spraying

• Fixed-wing eBee Ag
UAV (senseFly SA,
Cheseaux-
Lausanne,
Switzerland) (150
m)

• VTOL multicopter
(35 m)

CIR/MSI

CIR: Modified Canon S110
camera (Red (660 nm), green
(520 nm), blue (450 nm), and
near-infrared (NIR; 850 nm)).

2015:
MSI: Agrosensor multispectral
camera by AIRINOV (Channels:
Green (550 nm), red (660 nm),
red edge (735 nm), NIR (790

nm)).

[70]

Vineyard Spraying
Hexacopter (model:

DroneHEXA, Dronetools
SL, Sevilla, Spain) (95 m)

MSI

MicaSense RedEdge: Red:668
nm

±5 nm,
Green:

560 nm ± 10 nm,
Blue:

475 nm ± 10 nm,
RedEdge: 717 nm ± 5 nm,

Near Infrared (NIR): 840 nm ±
20 nm;

[11,90]

Vineyard

Diseases detection
downy mildew

(Plasmopara
viticola/spraying

Hexacopter (model:
CondorBeta,

Dronetools SL, Sevilla,
Spain) (95 m)

MSI

MicaSense RedEdge: Red:668
nm

±5 nm,
Green:

560 nm ± 10 nm,
Blue:

475 nm ± 10 nm,
RedEdge: 717 nm ± 5 nm,

Near Infrared (NIR): 840 nm ±
20 nm;

[67]

Barley (H. vulgare
L).

Phenotyping
response of barley to

different nitrogen
fertilization
treatments

Mikrokopter Oktokopter
6S12 XL eight rotor UAV

(HiSystems GmbH,
Moomerland, Germany)

(50 m) | RGB (10
mm/px); THERMAL

CAMERA (54 mm/px)

RGB, Thermal and
MSI cameras

RGB: Panasonic GX7 digital
camera (Panasonic Corporation,

Osaka, Japan); MSI:Tetracam
(Tetracam, Inc., Gainesville, FL,

USA) mini MCA (Multiple
Camera Array): 450 ± 40 nm,

550 ± 10 nm,
570 ± 10 nm,
670 ± 10 nm,
700 ± 10 nm,
720 ± 10 nm,
780 ± 10 nm,
840 ± 10 nm,
860 ± 10 nm,
900 ± 20 nm,

950 ± 40 nm; TH: FLIR Tau2
640 (FLIR Systems, Nashua,

NH, USA).

[73]
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Table 2. Cont.

Crop Aim
Platform (Spatial

Resolution or Distance
from the Target)

Sensors References

Type Specifications

Wheat Water stress

DJI Matrice 100
quadcopter (DJI,

Shenzhen, China) (35 m)
| 2.43/px

MSI

MicaSense RedEdge: Blue: 475
nm,

Green: 560 nm,
Red: 668 nm,

Red Edge: 717 nm,
Near-Infrared: 840 nm.

[84]

Vineyard Disease detection
(Mildew disease)

Quadcopter drone (25 m)
| 1 cm2/px CIR two camera sensors MAPIR

Survey2(RGB + NIR) [80]

Winter oilseed
rape (Brassica

napus L.)
Nitrogen stress

Matrice 600 UAV (DJI,
Shenzhen, China) (20 m)

| 1.86 cm/px
RGB Nikon D800 (Nikon, Inc., Tokyo,

Japan) [83]

Vineyard cv.
–Vermentino’,

‘Cagnulari’, and
‘Cabernet
Sauvignon’
grapevines

Discriminate several
water stress condition

• Multi-rotor
MikrokopterOk-
toXL (HiSystems
GmbH,
Moomerland,
Germany) (100 m);

• PS: Thermal
imaging camera

Thermal camera and
Thermal imaging

camera

Thermal camera: (FLIR TAU II
320, FLIR Systems, Inc.,
Wilsonville, OR, USA);

Thermal imaging camera:
(InfRec R500Pro, Nippon

Avionics Co. Ltd., Tokyo, Japan)
with a resolution of 640 × 480

pixels, operating in the 8–14 µm
waveband range, and equipped

with a red, green, and blue
(RGB)

[85]

Rice
Nitrogen

accumulation
estimation

Mikrokopter OktoXL:
RGB (50 m) | 13 mm/px;
CIR: (100 m) | 36 mm/px;

MSI: (100 m) | 56
mm/px.

RGB, CIR, and MSI

RGB: Canon 5D Mark III
(Canon Inc., Tokyo, Japan); CIR:
Canon PowerShot SX260 + NIR;

MSI: Tetracam mini-MCA6
(Tetracam Inc., Chatsworth, CA,

USA: B (490 nm ± 10 nm),
Green (550 nm ± 10 nm), Red
(680 nm ± 10 nm), Red Edge
(720 nm ± 10 nm), NIR1 (800

nm ± 10 nm) and NIR2 (900 nm
± 10 nm).

[82]

Maize

Crop grow status
evaluation based on
canopy chlorophyll

content

DJI M600 Pro (DJI,
Shenzhen, China) UAV 30

m)
MSI

Red Edge–MX: Blue: 475 nm ±
32 nm);

Green: 560 nm ± 27 nm)
Red: 668 nm ± 14 nm)

Red Edge (RE):
717 nm ± 12 nm)

Near-Infrared (NIR): 840 nm
±57 nm).

[81]

Wheat (cv.
Yangmai 23,

Zhenmai 12, and
Ningmai 13);

Rice (cv. Nanjing
9108, Yongyou

2640, and
Wuyunjing 32)

Investigated the
effects of different

nitrogen (N) fertilizer
rates,

eBee fixed-wing UAV
(SenseFly,

Cheseaux-sur-Lausanne,
Switzerland) (70 m)

MSI

SEQUOIA (Parrot Drone SAS,
Paris, France): Green: 550 nm ±

40 nm
Red: 660 nm ± 40 nm

Red Edge: 735 ± 10 nm
Near-Infrared (NIR): 790 nm ±:

20 nm.

[72]
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Table 2. Cont.

Crop Aim
Platform (Spatial

Resolution or Distance
from the Target)

Sensors References

Type Specifications

Wheat (Triticum
aestivum)

Investigated the
effects of different

nitrogen (N) fertilizer
rates

eBee fixed-wing UAV
(SenseFly,

Cheseaux-sur-Lausanne,
Switzerland)

MSI

SEQUOIA (Parrot Drone SAS,
Paris, France): Green: 550 nm ±

40 nm
Red: 660 nm ± 40 nm

Red Edge: 735 ± 10 nm
Near-Infrared (NIR): 790 nm ±:

20 nm.

[71]

Winter wheat Water stres

DJI M300 Pro UAV
(Shenzhen DJI Sciences
and Technologies Ltd.,

Shenzhen, China):
MSI: (50 m) | 3.5 cm/px;
Thermal Camera: (50 m)

| 4.5 cm/px

MSI and Thermal
camera

MSI: RedEdge-MX (MicaSense
AgEagle, Wichita, KS, USA):

Blue (465–485 nm), Green
(550–570 nm), Red (663–673 nm),

Red Edge (712–722 nm), and
Near-Infrared (820–860 nm);
Therma camera: Zenmuse

H20T.

[86]

At the same time, research has focused on abiotic stress due to nutrient and water de-
ficiency [72,81,82,85,91], weed detection [61,70,88,92], and disease monitoring [76,78–80]. The
rapid adoption of UAVs is partly due to the availability of different types of sensors, such as
RGB, Multispectral (MSI), Hyperspectral (HyS), thermal cameras, and LiDAR sensors, which
can be used simultaneously [93,94].

Sensors like RGB cameras are widely used in crop scouting for detailed analysis of
vegetation and environmental conditions, leading to improved crop management and yield
predictions. These sensors, with high spatial resolution, are limited to the VIS spectrum and
are used for phenotyping crop grows [38], weed detection [63], and disease detection [87].

Color changes during biotic and abiotic stress can provide valuable information on
crop growth [83]. Several authors have developed cost-effective solutions with excellent
detection capabilities using RGB sensors [63,64,87]. RGB images were used to characterize
phenological stages with different nitrogen treatments [66]. The high resolution of RGB
cameras offers high precision in weed and disease detection, with average precision rates
of 94.73% [63] and 95% [87], respectively.

To overcome limitations related to morphological changes, taking into account also
plant biophysical characters, MSI cameras’ spectral bands can be utilized to do empir-
ical modeling, such as the correlation among vegetation indices (VI) and plant phenol-
ogy [75], weed and disease detection.

Barzin et al. [75] emphasized the importance of spectral bands, such as blue (475 nm),
green (560 nm), red (668 nm), red edge (717 nm), and near-infrared (842 nm), for assessing
plant health and chlorophyll content. Spectral reflectance curves, especially in the visible
(490 and 670 nm) and NIR regions, have been employed to evaluate different stresses, such
as the impact of powdery mildew infection [51] and yellow rust infection [77].

The red edge band (700–800 nm) is critical for predicting crop yield and monitoring
growth stages during the growing season [75] and for detecting declines in chlorophyll
concentration and other disease-related changes [78]. The application of the infrared wave-
length range (around 850 nm) has been highlighted for monitoring vineyard health [80] and
studying the impact of powdery mildew infection [51].

Furthermore, the use of wavelengths in the red edge and SWIR regions has been
highlighted for detecting physiological changes in plants caused by diseases, particularly
for identifying wilting [59]. Previously, Marino [49] discussed the use of a comprehensive
range of 13 spectral bands, including visible, NIR, and shortwave infrared (SWIR) bands, for
detailed monitoring of crop conditions, stress factors, growth stages, and disease detection.
Messina et al. [58] has highlighted the use of specific spectral bands, such as green, red, red
edge, and NIR, to calculate the Soil Adjusted Vegetation Index (SAVI).
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NDVI maps obtained by the MSI camera suite on drones were utilized to evaluate
vegetation structure and drive variable chemical treatment in vineyards [67]. MSI cameras
were employed for early detection of Xylella fastidiosa subsp. pauca (Xfp) infections in olive
trees [76].

Hyperspectral remote sensing is another promising approach to disease surveillance
at the leaf level [94]. Merged UAV hyperspectral images, which included Vegetation Indices
(VI) and Texture Features (TF), demonstrated excellent modeling accuracy for early yellow
rust wheat monitoring [77] and classification of several diseases in tomato plants (mean
accuracy of 99%) [78].

Several studies have compared many types of onboard sensors with unmanned aerial
systems (UAS).

Several vegetation indices were obtained by the RGB, Color Infrared (CIR), and Mul-
tispectral (MS) cameras for nitrogen estimation in rice, finding that red-edge vegetation
indices from MS images had the highest accuracy for leaf and plant nitrogen accumu-
lation [82]. Similarly, RGB, MSI, and thermal aerial imagery were compared to a high-
throughput plant phenotyping platform (HTPP) for assessing wheat varieties. Multivariate
regression models explained 77.8%, 71.6%, and 82.7% of yield variance from aerial, ground,
and combined datasets, respectively [73].

The integration of multiple sensors on a single UAV platform significantly improves
crop exploration capabilities by allowing the simultaneous collection of multiple types of
data, such as visual, thermal, and multispectral information. This comprehensive approach
provides a more detailed understanding of crop health, stressors, and environmental
conditions (Table 2).

Map-based technologies in PA offer substantial benefits in yield prediction, disease
detection, and resource management [11,66], promoting sustainable farming [55,67].

Although some of the research lines are increasingly moving in this direction, other
researchers focused on refining data fusion techniques [60], expanding the application of
these technologies across different crops and regions, and ensuring their accessibility and
usability to farmers for real-time applications [80].

2.2. Sensor-Based Approach

In the last decades, the growing attention to reducing pesticide use has favored the
adoption of intelligent and robotic vehicles, enabling farmers to reduce inputs such as pes-
ticides, herbicides, and fertilizers. Sensor-based Variable Rate Application (VRA) systems
allow for the application of crop inputs and control of farm machinery actuators without
prior field data collection [34]. Proximal sensors, situated close to the target, can potentially
resolve these issues [95,96], overcoming the issues of sampling point location, applicator
location, and map interpolation [21] due to limited sample numbers per hectare [97]. Sensor-
based systems focus on sensor acquisition and real-time decision-making, overcoming the
limitations of map-based solutions [97]. Commercial systems such as WeedSeeker [98] and
WEED-IT [99] can be used for weed management; they work by automatic calibration, jet
adjustment, and sensitivity adjustment. These systems are able to halve the application
of pesticides [100]. A summary of sensor-based applications that have been considered is
shown in Table 3.

Several sensor-based applications have been developed for variable-rate fertilizer
application [97], soil irrigation [101], and spot applications for agrochemicals and fungi-
cides [97,102], also testing real-time controllers [34]. Chattha et al. [23] proposed an on-
the-go system of variable rate herbicide and fungicide using a µ-eye color cameras tractor
mounted saving (9.90–51.22%) of chemicals applications in wild blueberry fields. RGB
sensors are also used on hydraulic-based VRA prototypes for nitrogen and irrigation re-
quirements [101]. As an alternative, Ref. [103] successfully implemented a sensor-based
VRA system for granular nitrogen-based fertilizer by utilizing two crop reflectance N
sensors tractor-mounted.
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Table 3. Sensor-based prototypes developed in Variable Rate Application (VRA).

Objective Experimental
Condition Crop (s) Stress Evaluated Sensors Reference

Type Specifications

Develop a modular
robot system for

automatic disease
detection.

Controlled
greenhouse

environment

Vitis vinifera, (cv.
Cabernet

Sauvignon)

Powdery mildew
(Erysiphe necator) CIR

3-CCD, R-G-NIR camera
(MS4100, DuncanTech,

Auburn, CA, USA): Green
(540 nm), Red (660 nm), and

NIR (800 nm);

[12]

Develope. A
human-robot

framework for target
detection, involving a

remote human
operator and a robotic

platform equipped
with target detection

algorithms.

Field Grapevines N.S. RGB

(IDS Inc. (Washington, DC,
USA), uEye USB video camera
with a Wide VGA [752 × 480]

resolution);

[104]

Develop an image
processing based on a
variable-rate chemical
sprayer assisted with

remote monitoring

Field Coconut
plantations

Two-colored
coconut leaf

beetles (Brontispa
longissima)
Coconut

black-headed
caterpillars

(Opisina arenosella)
Coconut

rhinoceros beetles
(Oryctes

rhinoceros)

RGB
(IDS Inc., uEye USB video

camera with a Wide VGA [752
× 480] resolution);

[105]

Develop a
variable-rate spraying

system for precise
application of

agrochemicals based
on plant disease

severity.

Field Paddy (rice)

White-tip disease
caused by

Aphelenchoides
besseyi Christie.

RGB Web cameras (Logitech Pro
9000, San Jose, CA, USA); [106]

Evaluate a system
based on digital

image processing for
detection of weeds in

row crops

Field

Maize (Zea
maize L.), Sugar

beets (Beta
vulgaris L.), and

Sunflower
(Helianthus
annuus L.).

Weed CIR RGB imager with an R/NIR
filter,(Robert Bosch GmbH).; [107]

Evaluate the
possibility of using a

low-cost imaging
system to drive a
precision orchard
spraying system.

Both laboratory
and field test

Olive tree
orchard N.S RGB Camera (TSCO, VGA (640 ×

480), 30 fps, 10 Megapixels). [108]

Develop a low-cost
and smart technology

for precision weed
management.

Field N.S Weeds: RGB

Low-cost web cameras
(LOGITECH c920, Newark,
CA, USA) 640 × 480 pixels

resolution.

[13]
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Table 3. Cont.

Objective Experimental
Condition Crop (s) Stress Evaluated Sensors Reference

Type Specifications

Develop a smart
technology for
precision weed
management.

Field

Maize, Winter
wheat, Winter

barley, and
Sugar beets

Weeds:
Winter

Rape:Alopecurus
myosuroides, Apera

spica-venti,
broad-leaves;

Maize:
Echinochloa
crus-galli L.,

Chenopodium
album L.,
Galinsoga

parviflora Cav.,
Solanum nigrum

L.;
Winter

wheat/barley:
Echinochloa
crus-galli L.,

Chenopodium
album L.,
Galinsoga

parviflora Cav.,
Solanum nigrum

L.;
Suger beets:
Chenopodium
album, Galium

aparine,
Alopecurus
myosuroides

RGB Digital bi-spectral cameras
(N.S). [109]

Develop a site-specific
agrochemical
application.

Both controlled
laboratory

conditions and
field.

Potato (Solanum
tuberosum L.)

Weed
(lambsquarters);

Simulated disease
(early blight)

infected plants at
a laboratory scale.

RGB

Two types of cameras (Canon
PowerShot SX540 HS camera

and Logitech C270 HD
Webcam).

[14]

Evaluate the
performance accuracy
of a modified variable
rate granular (MVRG)
fertilizer spreader on

a tractor.

Field

Wild blueberry
(Vaccinium

angustifolium
Ait.)

Fertilizer
application RGB

Six µEye color cameras
(UI-1220SE/C, IDS Imaging
Development System Inc.,

Woburn, MA, USA)

[23]

Design an automated
prototype VR sprayer

on the tractor.
Field

Wild
blueberries
(Vaccinium

angustifolium).

Fungicide and
fertilizer

application.
RGB

Four µEye digital color
cameras (UI-1220SE/C, IDS

Imaging Development System
Inc., Woburn, MA, USA).

[22,102]

Testing the intelligent
orchard pesticide
precision sprayer.

Field
Peach and

Apricot trees,
and grapevines

Pesticide
spraying based

on leaf Wall Area
(LWA)

RGB_Depht Microsoft’s Kinect [110]

Development of Deep
Learning-Based

Variable Rate
Agrochemical

Spraying System for
Targeted Weeds

Both laboratory
and field Strawberry

Weed: spotted
spurge and

Shepherd’s purse.
RGB

Two digital cameras with
resolutions ranging from 3000
× 2000 to 1500 × 1000 pixels

[111]
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Table 3. Cont.

Objective Experimental
Condition Crop (s) Stress Evaluated Sensors Reference

Type Specifications

Develop a
multi-parametric

system for variable
rate nitrogen
application.

Field
Winter wheat

(Triticum
aestivum L.)

Nitrogen
fertilizers

application
MSI N sensor

The Yara N-Sensor ALS 2
(Yara GmbH and Co. KG,

based in Dülmen, Germany):
(670, 730, 740, and 770 nm).

[103]

Design and evaluate
an on-the-go VR

fertilization system
for the application of

phosphate (P2O5).

Field Maize Phosphorus (P)
fertilizer VIS-NIR

A portable, fiber-type,
VIS-NIR spectrophotometer
(Zeiss Corona 45 visnir 1.7,
Germany): (305–1711 nm):

(401–1135 nm ± 3.2 nm) and
(1135–1663 nm ± 6 nm).

[97]

Develop a low-cost
agricultural robot for
spraying fertilizers.

Greenhouse Rosemary crops
Spraying liquid
fertilizers and

pesticides.
RGB The GoPro Hero 5 action

video camera. [112]

Design an intelligent
robot equipped with a

wireless control to
monitor the

nutritional needs of
the spinach plant.

Greenhouse
Baby spinach

(Spinacia
oleracea)

Iron deficiency RGB
ESP32CAM digital camera
with a resolution of 1200 ×

1622 pixels.
[25]

Develop an
autonomous

robot-driven CSSF
and evaluate its

agro-economic and
environmental

feasibility in maize
production.

Field Maize

Site-specific
seeding and
nitrogen (N)
fertilization

solution

VIS-NIR

on-line vis-NIRS (Visible and
Near-Infrared Spectroscopy)

system developed by
Mouazen (2006).

[113]

Develop an online
plant health

monitoring system to
assess overall plant
health in real-time.

Field
Maize, Wheat,
Soybeans, and

Tomatoes.

Pathogens or
nutrient

deficiencies
relevant to the

chosen crop
would be

considered, such
as fungal diseases,
pest infestations,

or nitrogen
deficiency.

RGB-NIR RGB and NIR imaging
cameras (N.S). [114]

Develop a flexible
robotic-based
approach with

proximal sensing
tools (XF-ROVIM)

specifically developed
to detect X. Fastidiosa

on olive orchard

Field Olive tree
ochard

Xylella fastidiosa
(X. fastidiosa)

infection

CIR; MSI;
HyS Imager;

Thermal
camera

CIR: two digital single-lens
reflex (DSLR) modified

cameras (EOS 600D, Canon
Inc., Tokyo, Japan);
MSI: (CMS-V, Silios

Technologies, Peynier, France)
that can obtain simultaneous

images at eight different
wavelengths (558, 589, 623,

656, 699, 732, 769, and 801 nm);
HyS: (spectrograph Imspector
V10, Specim Spectral Imaging

Ltd., Oulu, Finland (400
nm–1000 nm) + camera uEye

5220CP, iDS Imaging
Development Systems

(GmbH, Obersulm, Germany);
Thermal camera: (A320, FLIR

Systems, Wilsonville, OR,
USA).

[115]
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Table 3. Cont.

Objective Experimental
Condition Crop (s) Stress Evaluated Sensors Reference

Type Specifications

Develop a
remote-controlled

field robot
(RobHortic) for
inspecting the

presence of pests and
diseases in

horticultural crops
using proximal

sensing.

Both laboratory
and filed Carrots

Disease
(Candidatus
Liberibacter

solanacearum).

CIR; MSI;
HyS Imager;

Thermal
camera

MSI: (CMS-V, Silios
Technologies, France) (558,
589, 623, 656, 699, 732, 769,

and 801 nm,);
CIR: three DSLR (Digital

Single Lens Reflex) cameras
(EOS 600D, Canon Inc, Japan),

two modified to capture
images in near-infrared (NIR)

from 400 to 1000 nm);
HyS:(InSpectral-VNIR,

Infaimon SL, Spain) (410–1130
nm);

Thermal camera: (A320, FLIR
systems, Wilsonville, OR,

USA).

[116]

Develop an
autonomous machine
vision-based system
for precise nitrogen

fertilizing
management to

improve nitrogen use
efficiency in

greenhouse crops.

Greenhouse Cucumber. Site-specific
fertilizer RGB CCD color camera (mod.

DF-7107, Sony, Tokyo, Japan) [117]

Design, development,
and testing of a robot

for
plant-species–specific

weed management

Filed
Cotton, Wild

oats, and
Sowthistle

Weed RGB IDS UI-1240SE 1.3 MP global
shutter camera. [118]

Develop a prototype
of a robotic platform

to address the specific
needs of this field

type at an individual
plant level rather than

per strip or field
section.

Filed Cabbage and
red cabbage

Site-specific
fertilizer

MSI and
RGB.

MSI: Parrot Sequoia
multi-spectral (MS) camera;

RGB: Vorsch RGB;
[119]

Develop a robotic
disease detection

system in
greenhouses

Greenhouse Bell peppers

Powdery mildew
(PM) and Tomato
spotted wilt virus

(TSWV)

RGB
RGB camera (PowerShot

SX210 IS, Canon, USA) 4320 ×
3240 pixels resolution.

[120]

Develop a robotic
disease detection

system in
greenhouses

Greenhouse Bell peppers

Powdery mildew
(PM) and Tomato
spotted wilt virus

(TSWV)

RGB; MSI

RGB RGB camera (LifeCam
NX-6000 WebCam, Microsoft,
Redmond, WA, USA) with a

resolution of 1600 × 1200
pixels;

MSI: NIR-R-G multispectral
camera (ADC Lite, 520–920

nm, equivalent to TM2, TM3,
and TM4, Tetracam,

Chatsworth, CA, USA) with a
resolution of 2048 × 1536

pixels, and a single-laser-beam
distance sensor (DT35, SICK,

Waldkirch, Germany).

[121]

Develop a robotic
platform for
single-plant
fertilization

Field Organic
vegetable

Single Plant
Fertilization MSI

The multispectral camera
(model Sequoia; Parrot Drones

SAS, France).
[122]
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Table 3. Cont.

Objective Experimental
Condition Crop (s) Stress Evaluated Sensors Reference

Type Specifications

Develop a smart
irrigation system Field Soil Smart irrigation RGB

Digital camera (Model Nikon
D5300) (6000 × 4000 pixels

resolution).
[101]

Develop a variable
rate fertilizer

applicator to detect
real-time deficiency of

N

Field Wheat Site-specific
fertilizer VIS-NIR

Greenseeker handheld sensor
(Trimble Inc., Sunnyvale, CA,

USA)
[123]

Develop a
computer-vision

system for detecting
crop plants at

different growth
stages for robotic

weed management

Field

Lettuce (Lactuca,
L.) and broccoli
(Brassica oleracea
L. var. botrytis

L.).

Weeds:
bromegrass

(Bromus inermis
Leyss), pigweed

(Amaranthus spp.),
lambsquarters
(Chenopodium

album),
waterhemp
(Amaranthus

rudis),
barnyardgrass

(Echinochloa
crus-galli),
bindweed

(Convolvulus
arvensis), purslane

(Portulaca
oleracea), and
white clover

(Trifolium repens)

RGb-Depth RGB-D sensor (Kinect version
2; Microsoft) [124]

The new era is moving towards “agrobots”, which can operate autonomously, re-
ducing labor needs and increasing efficiency through variable rate application of in-
puts [125]. Agrobots do not require human direct action but can carry out agricultural
activities autonomously [125]. A classification based on their level of autonomy is suggested
by [104].

Many studies have investigated the development of fully autonomous machines using
digital image analysis and computer-based decision systems to reduce workload and labor
costs [109].

A prior study, Oberti et al. [12] equipped a machine vision-based disease detection
system with a precision spraying device for spot spraying the diseased vine canopy area,
demonstrating a reduction in pesticide use from 65% to 85%. More recently, the smart
sprayer developed by [106] reduced spray volume by 47% and 51% for weed and diseased
plant detection experiments, respectively, compared to a Constant-rate Application (CA).

A simple configuration of these vehicles frequently uses a digital camera, also known
as the machine-vision approach [13], providing the opportunity to use low-cost sensors to
drive a cost saving in a developed prototype [111].

A low-cost agricultural spraying robot has been proposed by Ref. [112] and Ref. [120] for
monitoring crop health and disease control using a live video and an RGB camera, respectively.

In addition, the machine vision approach has also been used to reduce pesticides
through orchard sprayers (over 54%) [108] both in the laboratory and in the field environ-
ment (saving 43% of chemical use) [14].

Machine vision is used to assess vegetation size, location, position, texture, and color.
RGB sensors, often combined with depth sensors like time-of-flight (TOF) or LiDAR,
enhance weed identification. The RGB-D sensor (Kinect version 2; Microsoft) demon-



AgriEngineering 2024, 6 3100

strated automated crop plant detection using color and depth images for robotic weed
control [124] and estimating pesticide rates in fruit trees [110].

Robotics in precision spraying technologies in agriculture have shown promising re-
sults in disease and pest control, labor safety, and chemical exposure reduction [105]. How-
ever, robot navigation remains a challenge, necessitating the development of advanced
sensors and equipment like LIDAR or stereoscopic imaging systems for guidance sys-
tems [126]. The widespread use of robots in indoor environments necessitates remote
sensing imaging sensors for leaf-based applications [12,107], as multispectral and hyper-
spectral imaging sensors are also needed for leaf-based applications [114,116].

Cruz Ulloa et al. [119] designed and tested a field crop robot integrated with multiple
sensors, including laser, MSI, and RGB sensors, for selective fertilization in cabbage fields.
Additionally, Cubero et al. [116] developed a RobHortic remote-controlled field robot for
inspecting the presence of pests and diseases in horticultural crops using proximal sensing.
The robot was equipped with color, multispectral, and hyperspectral cameras, and it was
located looking at the ground (towards the plants). Another group of researchers utilized
robotic technology for single plant fertilization, integrating LiDAR optical sensors, an MSI
camera, and a robotic arm. This system collected information about plant volume, crop
health, and plant location to perform liquid fertilizer application accurately [122]. Some of
the robotic platforms developed by researchers are depicted in Figure 1.

Figure 1. Robotic platforms for crop health monitoring and variable rate application (VRA) developed
in recent years: (a) field robot to detect pests and disease: robot prototype (a) and sensor architecture
(b) [116]; (b) selective spraying for disease control using a modular agricultural robot [12]; (c) variable
rate spreader for real-time spot-application of granular fertilizer [23]; (d) variable rate agrochem-
ical spraying system for targeted weeds control [111]; (e) smart variable-rate sprayer for targeted
application of agrochemicals [126]; (f) robotized early plant health monitoring system [114].

Simple camera setups are not as reliable as multispectral and hyperspectral imaging
approaches [116]. Real-time applications, due to both the high computational analysis time
and the drop in performance at higher speeds, are a challenge for real-time processing. In
addition, automation approaches are still not extensively adopted, with the majority of
procedures being completed in controlled situations [114].

Moreover, although fertilizer and pesticide spraying robots are capable of carrying
large storage tanks [111], the problem remains that they are too complicated, slow, and
expensive to be made available to the public [13,114,116].



AgriEngineering 2024, 6 3101

As a result, the agricultural sector continues to lag in adopting modern technologies
necessary for safe and autonomous operations. To ensure satisfactory safety, additional
steps must be taken beyond mere technology adoption. These steps may include imple-
menting robust safety protocols, providing adequate personnel training, and developing
regulatory frameworks to support the integration of new technologies [101].

Several challenges remain in deploying agricultural sensor robots effectively; one of the
limitations is specific and operational conditions such as lighting [126] and speed [13].

Advancements in computer vision, global positioning systems, laser technologies, ac-
tuators, and mechatronics have made robotic systems and smart technologies for Precision
Agriculture (PA) possible [127].

Smart technologies in agriculture are primarily used for crop management, yield
forecasting, and disease detection. PA, or advanced agriculture, uses the availability of
modern sensor techniques to apply crop inputs based on crop needs and field proper-
ties [128]. This perspective highlights the findings of [6], which explored PA technologies
allowing for the decrease of greenhouse gas emissions while enhancing farm productivity
and economic benefits.

3. Proximal Sensing Techniques for Crop Health Monitoring

Proximal sensing is the use of field sensors to gather signals from researched features
like soil, plants, or the environment when they are in contact with or close to them.

It allows farmers to obtain detailed information about specific areas, such as plant
health or weed presence, providing real-time or high-frequency data for quick monitoring
and action [129]. Modern sensors enable continuous data collection without increasing
farm workload and can be used to build IoT networks for various uses [130]. Robots for
agricultural production using proximal sensors are being developed to address the growing
need for nondestructive, rapid, and accurate approaches in modern farming [131].

Automated detection, diagnosis, and quantification of plant-scale diseases are crucial
for precise, site-specific pesticide delivery. Disease management requires a high density of
spatial and temporal information on crop growth parameters based on disease characteris-
tics [132]. Current sensing techniques in remote sensing are inspired by proximal sensors,
aiming to spatialize data on a large scale from knowledge obtained between single plant
interactions using point measurements [95].

Different typologies of sensors have been discussed in the literature for their suitability
in detecting changes in plant physiology due to biotic and abiotic stresses [133,134].

As a result of the growing demand for real-time, large-scale detection of plant dis-
eases, which is becoming increasingly important in PA [132], several reviews have con-
sidered spectroscopic techniques in the visible and infrared spectrum, such as ViS-NIR
spectroscopy [135], fluorescence spectroscopy, and imaging techniques for large-scale
real-time disease monitoring of plants [26,133,134].

Among the various technologies discussed, the evaluation of electromagnetic radiation
interactions with plant tissue currently represents the most promising technique [95].

3.1. Characterizing the Physiological Response to Stress: The Principles of Optoelectronic Techniques

Early detection of plant stresses is crucial in agriculture to prevent crop yield losses [136] due
to diseases impacting both quantity and quality [132]. Plant pathogens can be identified early,
potentially reducing losses by up to 50% worldwide [133]. The PA approach optimizes pesticide
use and production cost efficiency, reducing economic and ecological expenses [18]. Never-
theless, adverse conditions can inhibit plant growth, requiring early detection and preventive
measures to minimize negative effects [137]. By utilizing information and technology, the PA
approach can help manage pesticides and agrochemicals effectively [138].

Vis-NIR spectroscopy is a reliable technology used to detect plant stress and dis-
eases [135,139]. Spectral analysis is a method based on matter-energy interaction to analyze
the spectral reflectance of objects, including plants, to gather information about their
properties [140]. The absorption of light by green leaves depends on the type of light
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received. Photosynthetic pigments are found in the visible (VIS) region (400–700 nm),
while dry matter dominates the near-infrared (NIR) region (700–1100 nm). Water absorbs
light in the short-wave infrared (SWIR) region (1100–2500 nm) [141]. Healthy green leaves
have low spectral reflectance in the VIS range due to the absorption of leaf pigments,
particularly chlorophyll. The spectral profile in the visible range is influenced by chloro-
phylls, carotenoids, and anthocyanins, which are closely linked to plants’ photosynthesis
processes [142]. Unhealthy plants show decreased reflectivity in the near-infrared (NIR)
spectrum and increased reflectance in the red zone due to stress [143]. This decrease in
chlorophylls raises reflectance in the VIS range, revealing the absorption properties of
other pigments like xanthophylls and carotenoids [144]. As stress persists, leaf structures
break down, increasing intra-leaf dispersion and the NIR signal. The red edge may flatten
concurrently with an increase in brown pigment concentrations, which absorb light in
the VIS and early NIR regions [145]. Finally, the absorption in the SWIR decreases due
to reduced leaf moisture [146] since water is the primary source of infrared absorption in
plant tissue [136].

Consequently, monitoring variations in a plant’s spectral behavior can indirectly
assess the plant’s overall health [147]. For this reason, several reviews focused on the
potential of plant reflectance, fluorescence, and thermography measurements to assess crop
health [133,134].

The sensitivity and accuracy of these sensors could be defined by their ability to
distinguish healthy and diseased plants, measure disease spread and severity, and diagnose
specific diseases or symptoms [148].

In the next sections, we provide a comprehensive explanation of biotic and abiotic
crop stressors, taking into account not only the spectrum component (spectral resolution)
but also the integration with spatial characteristics (spectral imaging) employed in opto-
electronic sensors. The goal is to assess the opportunities and problems associated with
RGB, Multispectral, and Hyperspectral sensor applications at close range.

3.2. Abiotic Crop Stresses

Nutritional and disease stress assessments can identify visual signs of disor-
ders [149]. Unbalanced fertilizer inputs can impact groundwater, leading to leach-
ing [50]. Leaf chlorophyll content provides valuable information about plant phys-
iological status [150]. Chlorophyll meters handheld devices offer a dimensionless
value strongly correlated with actual chlorophyll content, as chlorophyll is sensitive to
nitrogen [151].

Some commercially available transmittance-based chlorophyll meters include the
SPAD-502 (Konica Minolta Sensing, Inc., Sakai, Osaka, Japan)and the MC-100 Chloro-
phyll Concentration Meter (Apogee Instruments, Inc., 721 West 1800 North, Logan, UT,
USA) [152], which provide quick estimates with high accuracy [153]. The SPAD-502
chlorophyll meter (Spectrum Technologies Inc., Plainfield, IL, USA) is a portable, rapid,
nondestructive spectral device that is still widely used for in situ measurement of nitro-
gen deficiency [152] and to determine nitrogen fertilization rates [154]. It detects leaf
absorbance in the red (650 nm), where chlorophyll absorbs, and in the infrared (940 nm),
where chlorophyll transmits.

However, the SPAD-502 m does not provide the exact levels of chlorophyll [155]. In
addition, only a small portion of plant nitrogen is bound to chlorophylls, while the majority
is bound to proteins [156].

On the other hand, the canopy reflectance sensors operating in the visible-to-near-infrared
(VIS-NIR) spectrum have been widely used to optimize nitrogen fertilization [17]. Sev-
eral papers discuss the use of the canopy spectroradiometer in precision nitrogen appli-
cations [140,149,151]. Two common commercial canopy reflectance sensors, the Crop Circle
ACS-470 [157] and the GreenSeeker (Trimble Navigation Limited, Sunnyvale, CA, USA),
developed in 2004 and 2001, respectively [46], have been widely used in the literature for
estimating foliar nitrogen content.
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The N fertilizer optimization algorithm (NFOA) was created utilizing two fixed wave-
bands of the GreenSeeker sensor, which calculates vegetation indices such as normalized
difference vegetation index (NDVI) and ratio vegetation index (RVI) [158]. However, the
active MSI Crop Circle ACS-470 sensor’s six bands (blue: 0.43–0.47 µm; green: 0.53–0.57 µm;
red: 0.63–0.67 µm, 0.66–0.68 µm; red-edge: 0.72–0.74 µm; NIR: > 0.76 µm) can be used to
estimate a larger number of vegetation indicators [159]. These indicators are more accurate
at assessing rice and wheat growth than the GreenSeeker sensor’s NDVI during critical
growth stages [159].

The advancement and implementation of spectroradiometer technology have facili-
tated non-invasive assessments of crop nitrogen levels and provided real-time support for
nitrogen management during the growing season. Precision nitrogen management (PNM)
using active canopy sensors (ACS) shows great ability in enhancing crop nitrogen use
efficiency (NUE) [160]. A PNM strategy for winter wheat in the North China Plain (NCP)
was developed using a CC ACS-470 multispectral sensor, which significantly improved the
estimation of early-season plant nitrogen uptake (PNU) and grain yield in winter wheat,
reduced nitrogen application rates, and increased nitrogen partial factor productivity (PFP)
by an average of 61–67% [160]. Active canopy sensors (ACS) devices provide real-time
vegetation index (VI), offering a non-invasive solution for monitoring nitrogen levels within
fields [161]. They are less susceptible to weather conditions such as cloud cover and outdoor
lighting [129]. Active Canopy Sensors (ACS) are more accurate in measurements compared
to chlorophyll meters [162]. Consequently, proximal sensing characteristics are considered
more suitable for predicting yields and managing nitrogen at the field level [160,161,163].

Due to the overwriting of plant pigment signature in the same spectral region [164], the
hyperspectral sensors, operating in the full VIS-NIR spectral range (200–1150 nm), are
widely used in crop scouting due to their high spectral resolution, which allows for the
discrimination of one [165–167] or more [168,169] stresses with a single measurement. For
example, leaf temperature (Tc), relative water content (RWC), yield, and leaf chlorophyll
content (LCC) were used as stress indicators to identify the combined effects of water and
nitrogen stress in tomatoes [169].

Full-range hyperspectral devices have the potential to be used in crop models, which
are reliable tools for guiding decision-making regarding fertilizer use in agriculture. Exam-
ples of crop models include the N-PROSAIL Model [165] and the DSSAT crop model [167].

For discriminating several stresses, the integration of multiple statistical methods, like
inflection points and vegetation indices, has shown promise, though it requires high compu-
tational time [168]. Common regression models, such as Partial Least Squares Discriminant
Analysis (PLSDA), showed low accuracy in classifying more stress simultaneously [170]. In
recent decades, the use of Machine and Deep learning approaches has been promising
for handling the complexity and dimensionality of hyperspectral data [166,171–173]. Sev-
eral models, such as Extreme Learning Machine (ELM) and Genetic Algorithm-Extreme
Learning Machine (GA-ELM) [172], Random Forest Regression (RFR) [166], and Artificial
Neural Networks (ANN) [25] are some examples. The improvement in remote sensing
contributes to the diffusion of these spectral processing algorithms also in leaf scale. In
addition, due to the flexible and cost-effective real-time nitrogen application through UAV-
mounted RGB sensors for assessing crop health and physiology [81,83,85]. Digital photos
measure crop canopy cover, leading to a new nitrogen nutrition index (NNI) method. These
optical instruments gather crop growth information quickly but require extensive on-site
measurements, limiting large-scale use [174].

Changes in carotenoid and chlorophyll concentrations can be monitored through color
image characteristics [144,150]. RGB, HSB, and CIELab (Lab*) color models are used to
relate to chlorophyll content, with moderate association strengths [175].

A computer imaging technique predicts SPAD readings in potato leaves using a CCD
camera with optical filters, achieving 85% accuracy and R² of 0.88 [176]. The integration of
CIELab color models, SPAD readings, and chlorophyll content into digital imaging models
could be used for sorting biotic and abiotic stress [177,178]. Researchers are exploring
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the use of low-cost, high-resolution sensors like RGB cameras; RGB sensors have been
used on robotic platforms for monitoring and estimating fertilizer needs for the past
decade [22,23]. Sun et al. [24] used 22 indices to detect nitrogen stress) using cell phone
images, identifying NPK deficiencies using morphological and color indices. Similarly,
Ref. [179] used a cell phone to capture digital images of soil samples from two agricultural
fields to predict variable soil organic matter (SOM) and soil moisture content (SMC).
Also, a smartphone application demonstrated high prediction accuracy for soil texture,
indicating high prediction accuracy for clay (R² = 0.97–0.98) and sand (R² = 0.96–0.98) and
moderate prediction accuracy for silt (R² = 0.62–0.75) [180]. Digital RGB images captured at
a proximal scale can be combined with advanced computer-vision methods to gain insights
into plant stress. A color CCD camera was developed to detect trends in changing textural
characteristics of greenhouse crop images to ensure optimal nitrogen fertilization [117]. A
new digital camera, ESP32CAM, has been used for close-up imaging of plant leaves,
extracting color, morphological, and texture features to estimate iron stress in spinach
leaves with precision, sensitivity, specificity, and accuracy of 86%, 82%, 84%, and 83%,
respectively [25].

Smart irrigation using computer vision can optimize water utilization in agriculture
by utilizing digital technology. Advancements in irrigation technologies, such as non-
contact vision systems and deep learning models, are crucial for efficient water use [101]. A
non-contact vision system uses a video camera to predict irrigation requirements for
loam soils, as presented by [101]. Digital cameras can identify water needs for different
soil texture classes under different lighting conditions [181]. Additionally, models have
been developed to estimate soil organic matter and moisture content from cell phone
images, ensuring proper irrigation scheduling and reducing yield losses [179]. Additionally,
Goyal et al. [173] developed an image classification model using 2703 RGB images of maize
crops to ensure proper irrigation scheduling; model accuracy of 98.71% and 98.53% for
training and testing, respectively.

Image processing techniques, especially RGB cameras, are capable of producing high
spatial resolution images in visible (VIS) bands, including color, texture, and features
essential for crop classification or segmentation [33]. Several researchers have combined
color parameters morphological and structural features derived from image processing
to detect plant stress [22,23,97,103]. However, the quality of RGB imaging faces light
sensitivity issues and is further limited by its ability to capture information only in the
visible spectrum. This limitation means that RGB imaging cannot detect data beyond what
is visible to the human eye, such as details that may be present in the near-infrared, which
can be crucial for some agricultural and scientific applications [116].

Recently, MSI and thermography have growing attention in crop scouting and plant
phenotyping [26]. The underlying information in the invisible spectrum helps significantly
with the detection of early crop deficits [73,85]. Short-wave infrared (SWIR) cameras open
up more possibilities for machine vision solutions due to the leaf water relations [182]. The
availability of SWIR cameras is consolidated for UAS platforms [85]. For quantification
of water deficit stress, the Crop Water Stress Index (CWSI) was computed, and its mode
values were extracted from processed thermal imageries [85,183].

Thermal sensors are widely used to monitor water stress in plants, with the Crop
Water Stress Index (CWSI) being a popular tool [33]. The CWSI, derived from infrared
thermometers, shows a strong linear relationship between water stress (Tc) and relative
water content (RWC) (R² = 0.80, p < 0.0001) [169]. It also predicts spatial variability of crop
water status for moderate (CWSI = 0.72, 0.28, and 0.43) and severe (CWSI = 0.90, 0.34, and
0.51) water deficits in grapevine cultivars [85]. Crop reflectance indices have been used to
map water stress in greenhouse-grown bell peppers, showing higher reflectance values
within the visible spectral range [184]. Vegetation indices (VIs) have emerged as an effec-
tive alternative to traditional biochemical procedures for many abiotic stresses. Different
reflectance patterns caused by salt stress have been observed in the near-infrared (NIR),
shortwave-infrared (SWIR), and visible (VIS) ranges [185]. Leaf reflectance is associated



AgriEngineering 2024, 6 3105

with variability in growth, leaf ion accumulations, and leaf water relations. A significant
linear association was also observed between water deficiency and yield and leaf chloro-
phyll content (LCC) due to the lowered efficiency of light consumption by stressed plants’
photosystems [169]. Discriminating abiotic stresses is challenging due to absorbance peaks
in the same optical domain. Hyperspectral-derived vegetation indices offer non-destructive,
real-time monitoring, but plant physiological stress adaptations must be considered for
accurate plant state determination [16].

Stress intensity can be accurately detected using hyperspectral reflectance spectroscopy
to estimate plant productivity in terms of chlorophyll fluorescence. Fluorescence imaging
allows for the early detection of stress-specific effects and primarily relies on the optical
characteristics of chlorophyll for measurements. Concerning photosynthesis, the fluores-
cence signal is an extremely sensitive indicator of biotic or abiotic stress [186].

A new hyperspectral system has been developed [187] to detect early plant stressors.
This system uses both reflectance and fluorescence imaging in the visible and near-infrared
(VNIR) wavelength range (400–1000 nm) [187]. Although fluorescence imaging has high
accuracy (>90%) and shows considerable potential for early detection of drought-stressed
leaves before any obvious symptoms or size variations are evident [26,188], its application
is severely limited by its high costs and apparatus requirements. Furthermore, particularly
in outdoor settings without environmental control, it can be challenging to determine
which factors, such as temperature or light, cause variations in the signal [186].

Hyperspectral imaging (HSI) is a non-destructive method that simultaneously obtains
both morphological and internal plant components by combining the benefits of spec-
troscopy with computer vision [26]. It allows for the extraction and optimization of the
specific wavelength image that most accurately depicts the symptoms of leaf nutrient defi-
ciency [189]. Previously, Cotrozzi et al. [170] found that hyperspectral imaging improved
lettuce yields and quality under high-intensity sodium lighting, fertilization, and salinity
conditions, accurately predicting osmotic potential, chlorophyll, and phenol levels(R² of
validation = 0.70–0.84). A novel nighttime hyperspectral sensing system was developed to
study Chinese cabbage and spinach leaves’ reflectance under different fertilization regimes,
achieving an accuracy of 50–80% [189].

HSI analysis for non-destructive visual mapping of early stress symptoms in plants
has been effective, as early phosphorus deficiency has been successfully detected using
NIR HSI with a diagnostic rate of 97.5% in cucumber plants [190]. The main advantage of
hyperspectral imaging is the identification of spectral regions where mean values of foliar
reflectance can be accurately used to characterize crops. Additionally, the consistency of
associations between crop foliar reflectance and levels of individual macronutrient elements
across different crops can be established [189].

Cubero et al. [116] developed a highly accessorized mobile platform for scanning
plants, integrating digital cameras and hyperspectral sensors. This platform demonstrated
detection levels of 67.3% and 66.4% in the laboratory using spectroscopy and hyperspectral
imaging, respectively, and 59.8% in the field. HSI is a promising technology for plant
phenotyping, offering high spectral and spatial resolution. However, it is costly and compu-
tationally intensive [191]. Multispectral imaging (MSI) offers superior spatial resolution, as
HSI compromises spatial resolution. RGB, modified RGB, and MSI cameras are increasingly
studied for real-world crop management applications (Table 2).

Close-range hyperspectral reflectance imaging is used for plant phenotyping in-
doors, but real-time disease detection under field conditions is limited [192]. However,
the ability to design systems for real-time disease detection under field conditions is still
limited [114]. Reflectance spectra from multispectral images estimate water and nutri-
ent stress in cassava, biomass, chlorophyll, and net photosynthesis with high accuracy
(R2 = 0.90) [193].

NDVI is an indicator of overall plant health, relying on the principle of chlorophyll
uptake and reflectance [114].
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A cart prototype robot equipped with a multispectral camera with five lenses (green:
550 nm, red: 660 nm, red edge: 735 nm, near-infrared: 790 nm) was used on tomato
plants with different levels of organic fertilization. It also estimated their nutritional states
in the early stages and found several VIs and morphological features using computer
vision [194]. Automatic morphological analysis was able to distinguish the fertilized treat-
ments with 99% confidence.

Ref. [195] designed and calibrated a low-cost NDVIpi system and provided details of
the methodology for image processing to ensure high-quality, accurate NDVI imagery. Us-
ing an NIR filter to modify an RGB camera, calibrated to 620 nm for red and 750 nm for NIR,
the proposed system was compared with a commercial MSI camera (Micasense RedEdge,
(Micasense, Seattle, WA, USA)) and showed comparable performance in measuring NDVI.
Advanced prototypes of autonomous vehicles using multispectral cameras have been de-
veloped to analyze crop metrics more efficiently and accurately. However, research has also
highlighted gaps in the fusion of multiple images captured by robotic platforms. This in-
cludes selecting the most appropriate spectral bands for discriminating plant disturbances
and addressing gaps in image registration. Multimodal image fusion can enrich informa-
tion gathered by multi-sensor plant phenotyping platforms like GPhenoVision [196] and
NU-spidercam [197]. Combining multimodal imaging techniques can improve detection
capabilities, optimize the developmental environment, and facilitate early stress mitiga-
tion [187]. However, short-range imaging sensors require further processing efforts, as
highlighted by recent studies focusing on aligning multimodal images [29,30].

3.3. Biotic Crop Stresses

The chemical composition of infected plant tissue can significantly affect the VIS/IR
reflectance spectrum, potentially due to fungal structures or toxins production [198]. Spec-
tral signatures of vegetation, influenced by factors like light, moisture, and soil [199], need
to be focused on regions that best explain links between pathogens and plant physiological
traits. Spectral reflectance bands around 470 and 670 nm are effective in detecting aphid
infestation, as they decrease chlorophyll a/b ratio and increase leaf transmittance in the
NIR due to cellular disruption [200]. Red edge and NIR bands provide insights into plant
conditions, revealing changes in chlorophyll content, water levels, leaf area index, seasonal
variation, and canopy biomass [199]. For example, aphid infestation significantly impacts
cotton leaves, reducing chlorophyll content and water levels and decreasing reflectance
in both visible and near-infrared ranges [200]. Near-infrared spectroscopy can assess mi-
nor leaf damage in tomatoes [199] and cancer-infected and Huanglongbing (HLB) in citrus
leaves [201]. Early detection of plant diseases is crucial for effective management and food
safety [199], reducing losses in agricultural industries [26,27] and positively impacting
sustainability [18]. Spectral band selection is crucial for disease detection [201] and identi-
fication in pest monitoring [145]. Detection distinguishes healthy plants from unhealthy
ones, while identification diagnoses diseases [147,202]. Abiotic and biotic parameters are
used to classify plant diseases [147]. Leaf spectral reflectance data has strong predictive
capabilities for disease detection [26,95,134], but its robustness in the presence of multiple
diseases remains an area of interest [28,148,203–205].

As a result of these considerations, research in recent decades in agriculture has focused
on the use of new types of sensors and methods for data analysis [26]. In the context
of studying phytopathology through optoelectronic systems, both remotely [206] and
proximally [95], hyperspectral sensors and machine learning techniques are extensively
discussed in current smart agriculture topics.

The use of hyperspectral sensor systems, specifically spectroscopic techniques (VIs),
has been explored for the non-destructive detection and differentiation of sugar beet dis-
eases caused by fungal pathogens such as Cercospora leaf spot, Powdery mildew and
Sugar beet rust [147]. Researchers have achieved an accuracy of 65% to 90% in classifying
these sugar beet leaf diseases, depending on the type and stage of the disease [148]. Hy-
perspectral imaging line-scanning spectrometers (ImSpector V10E, Spectral Imaging Ltd.,
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Oulu, Finland) have also been used for continuous screening and monitoring of symptoms
during pathogenesis [27].

The RE-LIEF-F algorithm, a feature selection method, has been proposed to develop
hyperspectral indices that demonstrate good accuracy and sensitivity (85–92%) for the
classification of these disorders [28]. This method can be applied to hyperspectral data
from different types of sensors, scales, and various biotic and abiotic crop stresses [205].

Recently, researchers have investigated the potential of spectroscopic techniques
for disease analysis and discrimination [207]. Using a high-resolution portable spectral
sensor, they accurately classified one healthy leaf and three diseased tomato leaves at
different stages, achieving 100% accuracy [207]. Predictive models using partial least
squares discriminant analysis (PLS-DA) were designed to distinguish early blight from late
blight infection (Alternaria solani) with greater than 80% accuracy two to four days before
the onset of visible symptoms [198]. Field spectroradiometers with a leaf clip were used to
collect data from inoculated potato plants in the growth chamber [208].

The optical properties of plants are affected not only by interactions with foliar
pathogens but also by interactions with soilborne pathogens and physiological stress
sources [177]. Hyperspectral data was analyzed to examine the impact of soil reflectance
on the relationship between SVIs and leaf symptoms caused by nematodes and non-
sporulating fungi in the soil [203]. Hyperspectral VIs in the 400–1000 nm range were used
to track Trichoderma spp., Rhizoctonia solani Kuhn biocontrol strains on wild arugula, and
Sclerotium rolfsii Sacc. and Sclerotinia sclerotiorum de Bary on lettuces [209].

A random forest machine learning model reduced the large training dataset, enabling
the computation of de novo vegetation indices that are particularly indicative of canopy
decline caused by basal pathogen attacks [210]. Artificial neural networks were also used
to select the VIS (492–504, 540–568, and 712–720 nm) and NIR (855, 900–908, and 970 nm)
bands, whose reflectance readings contributed to distinguishing between biotic and abiotic
stress on a wild rocket through imaging [177]. Hyperspectral imaging has been used
to identify healthy plants from those affected by yellow rust and nutritional stress in
wheat [211] and to discriminate disease and insect stress in tea plants [212]. By using
spectral imagery information and machine learning algorithms, these authors achieved a
90% satisfaction rate in identifying diseases [211] and pests [212].

Hyperspectral imaging is an innovative tool for the non-invasive identification of
physiological conditions and can facilitate the objective evaluation of plant disease severity.
It allows for the detection of spatial information about objects of interest, unlike non-
imaging systems [27,28,148].

In the analysis of different types of sensors to distinguish among several cucumber
diseases, Berdugo et al. [204] considered hyperspectral imaging as the system offering
the greatest potential in specifying the pathogen. This consideration seems to be shared
by Ref. [213] on multispectral imaging. Multispectral [214], thermal imaging [215], and
multispectral fluorescence imaging [213] are other suitable sensor types that have been
evaluated for detecting downy mildew (Furarium spp.) on wheat ears, HLB-infected citrus
trees, and real-time phenotyping, respectively. The imaging optical detection has shown
accuracy in crop healthiness detection [216], but its specificity and sensitivity are improved
due to pixel assignment of disease-specific symptoms [26].

Although further efforts are still needed, the automated disease detection sensors
would facilitate the rapid acquisition of spatial dispersion data. These sensors would
need to be mounted on tractors and be capable of functioning at the pace of farming
machinery [217] or on an autonomous agricultural vehicle [134]. This is useful for applying
selective targeting to pesticide applications, ensuring pesticide saving.

Over the past decades, several authors have developed prototypes in this field. One of
the first studies on selective and fully automated spraying of diseases in specialty crops was
presented by [12]. The multispectral imaging system, operating in discrete bands (green
(540 nm), red (660 nm), and NIR (800 nm)), was integrated with a manipulator control for
selective spraying of powdery mildew disease in grapevines. The robotic system was able
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to treat 85% to 100% of the diseased area within the canopy. Similarly, [120] showed high
classification accuracy (with peaks of 90%) for two bell pepper diseases, powdery mildew
(PM) and Tomato spotted wilt virus (TSWV).

Previously, Moshou et al. [218] designed a prototype multisensor tractor that com-
bines multispectral and hyperspectral images using real-time data fusion methods. By
showcasing automatic disease identification in wheat fields, this prototype enhanced the
scope of site-specific spraying research by incorporating autonomous robotic implementa-
tion platforms.

The simultaneous use of both plot (i.e., chromatic, form) and structural (NIR spectral
wavelength) information enables the classification of disease symptoms both morphologi-
cally and structurally, referring to vegetation indices and spectral bands.

Among the proposed approaches, variable application of agrochemicals can be dosed
in relation to leaf area. Dammer et al. [214] employed a real-time variable-rate fungicide
spraying system for disease control in cereal crops, detecting the target by linear correlation
of CROP-Meter sensor and leaf area index.

Samseemoung et al. [105] designed an image processing algorithm to assess the density
of disease, enabling the application of the right amount of chemicals to the targeted area.

Otherwise, the high resolution offered by RGB images allows for the classification of
healthy and unhealthy plants based on color characteristics. Previously, Tewari et al. [106] de-
veloped an image segmentation color image algorithm based on chromatic aberration (CA) to
detect diseased regions in paddy fields. The proposed segmentation algorithm consisted of
color component extraction and analysis, as well as operator selection based on gravity. In
this method, the disease-infected area (leaf or plant surface) was expressed as a percentage or
proportion of the total area based on color extraction. Additionally, Schor et al. [120] proposed
a method of classification into healthy, diseased with low severity, or diseased with medium
severity based on the ratio of diseased pixels (DP).

However, it is sometimes difficult to distinguish between healthy and diseased areas
using the distribution of the raw values of gray levels in the three RGB channels of digital
cameras. The use of spectral indices, which are algebraic combinations of the gray levels of
pixels in two or more spectral channels, can greatly improve this discrimination [148,203].

Oberti et al. [12] proposed a classification algorithm based on the color indices (com-
bining R, G, B, and NIR channels) of the multispectral sensor (3-CCD, R-G-NIR camera
(MS4100, DuncanTech, Auburn, CA, USA)).

RGB and multispectral imaging can assess disease classes and severity [213], but chal-
lenges remain in implementing accurate systems in real-time field conditions due to high
variability in the field [219]. The lighting environment and sensor location are key factors,
with the angle of view affecting detection sensitivity [12]. Inhomogeneous illumination also
affects classification algorithms. To enhance classification resilience under partially restricted
homogeneous illumination, many efforts have been proposed [12,106]. Automated and selec-
tive spraying for diseases still has limitations [218], and recent innovations offer hyperspec-
tral/multispectral snapshot sensors, which provide faster image capturing but poorer spatial
resolution compared to hyperspectral scanners [220].

The feasibility of these applications related to spectroscopy in agriculture depends
on several factors; for example, it is necessary to decide first which scale to use for the
measurements. It has been observed that better model performance is obtained at the
sub-leaf level than at the canopy [216,221]. This is the case of sensors without imaging,
which might be due to the reduction of external disturbances, such as lighting, in the case
of hyperspectral imaging. However, this is related to spatial resolution.

Small-scale investigations by Ref. [27] for the detection and identification of Cercospora
leaf spot, sugar beet rust, and powdery mildew on sugar beet, illustrated the significance
of spatial resolution. These studies demonstrated that at lower spatial resolutions, the
distinctions between the reflectance signatures of healthy and diseased tissue become less
pronounced. The growing quantity of pixels containing inconsistent data may be the root
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cause of this evolution. Therefore, choosing an appropriate spatial resolution is crucial for
hyperspectral surveys [222].

Considering that real-time mapping of disease management is made possible by the
availability of significant spectral information related to computer vision-based remote
sensing, it may be possible to integrate different sensors (such as thermal sensors and/or
three-dimensional shape sensors) to improve pathogen detection [210].

4. Results and Discussions

The use of agrochemicals in agriculture can be applied site-specifically if the spa-
tiotemporal trends of stresses on crops are known [32]. To achieve such spatially precise
applications, it is necessary to detect and map stress symptoms in crops using sensors [34].

Precision agriculture has two basic approaches: map-based and sensor-based. The
map-based technique employs geographical data to generate management zones (MZs) that
reflect the field’s variability. In contrast, the sensor-based approach emphasizes real-time
data collection and application, allowing for instantaneous field management decisions.
The timeliness and precision of this method have the potential to dramatically improve
agricultural efficiency.

Optoelectronic sensors placed on satellite, airborne, or ground-based platforms have
emerged as key tools for sustainable crop management due to their versatility and accuracy
in assessing plant health and environmental conditions [47].

Remote sensing in agriculture is useful for accurately monitoring vegetation condi-
tions. In this context, satellite imaging, particularly from platforms like Sentinel-2, has
demonstrated tremendous potential in mapping field variability and guiding precision
agriculture operations [58]. For example, NDVI and other indices have been used to esti-
mate crop yields, control variable rate irrigation (VRI), and optimize fertilizer applications,
thereby increasing production while minimizing the negative environmental impact [58,59].
However, despite these advances, some major issues persist. Satellite imagery is lim-
ited by spatial resolution (5–10 m) and weather conditions, which affect data quality and
availability [61].

UAVs have revolutionized precision agriculture by providing high-resolution (<0.5 m)
and timely (more than one day) data for comprehensive crop monitoring and manage-
ment [42,58,59,61]. UAVs equipped with several kinds of sensors (RGB, multispectral,
hyperspectral, and thermal) provide flexibility and precision in data collecting [62]. They
are especially suitable for applications that need precise spatial resolution, such as weed de-
tection [64], disease monitoring [77–80], and targeted pesticide management [65,70]. UAVs
may operate using a selection range of altitudes, altering the spatial resolution to match
individual monitoring requirements, hence improving data accuracy and utility [61,63].

Furthermore, future research should focus on integrating multi-sensor data and de-
veloping robust data fusion algorithms. Future research should focus on enhancing data
fusion techniques, broadening their application to diverse crops and territories, and ensur-
ing farmers’ accessibility to their application. Furthermore, map-based solutions may fail
to respond to real-time changes in ground conditions that occur between mapping and
deployment. Proximal sensors, also known as the “sensor-based approach,” are positioned
close to the target and can overcome some of the limitations of map-based systems [95,96]. It
provides site-specific management and eliminates the need for prior field data collecting,
hence improving the efficiency of Variable Rate Application (VRA) systems [97].

On-the-go sensor applications embedded into agricultural machines provide real-time
data acquisition and decision-making [97]. These systems have been designed and tested
for a multitude of applications, including variable-rate fertilizer application [97] and spot
treatments of agrochemicals and fungicides [97,102]. The effort to reduce pesticide use
resulted in the deployment of intelligent and autonomous vehicles. These “agrobots”
have been targets of focus in recent decades [125]. From prototypes developed in the last
decades, efforts to develop cost-effective solutions have been centered on digital image
analysis and computer-based decision systems [109]. Machine vision techniques based
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on simple digital camera setups have also proven effective. However, multispectral and
hyperspectral imaging provide more accuracy and precision [114,116]. It has been noted
that studies on the sensor-based variable-rate approach employ robotic platforms that
predominantly integrate MSI and RGB sensors for real-time detection and spraying of
fertilizers and pesticides [12,106,111]. Despite these advancements, real-time applications
encounter issues such as high computational demands and requirements for both image
processing and robust navigation algorithms [13,114,116]. Due to computational limits,
fully autonomous operation in outside settings is limited, with the majority of procedures
being conducted in controlled environments.

Proximal sensing has proven to be successful in assessing various biotic and abiotic
stresses. Assessing leaf chlorophyll content is a key method for evaluating plant physio-
logical status, as it strongly correlates with nitrogen content in leaves [129]. By identifying
changes in chlorophyll, carotenoids, and other pigments, these methods help manage
crop health and yield, allowing for timely interventions. Handheld chlorophyll meters
like SPAD-502 (Konica Minolta Sensing, Inc., Sakai, Osaka, Japan) and MC-100 (Apogee
Instruments, Inc., 721 West 1800 North, Logan, UT, USA) provide quick, non-destructive
measurements [152,153], although they can be influenced by environmental conditions and
specific crop characteristics. On the other hand, commercial active canopy VIS-NIR sensors
(ACS) such as GreenSeeker (Trimble Navigation Limited, Sunnyvale, CA, USA) and Crop
Circle ACS-470 (Holland Scientific, Lincoln, NE, USA) have been widely used in estimating
nitrogen status and optimizing fertilization [17].

The integration of spectral imaging with spatial characteristics in RGB, Multispectral,
and Hyperspectral sensors provides a comprehensive approach to monitoring plant health.
These sensors can distinguish healthy plants from diseased ones, measure disease spread,
and diagnose specific symptoms, offering a powerful tool for precision agriculture.

Moreover, advancements in digital image processing techniques have promoted the
use of RGB cameras [81,83,85]; when combined with machine learning models, these
sensors have proven effective in detecting nutrient deficiencies in plantively identified
leaf diseases, while spectral indices and feature selection methods improve classification
accuracy. Hyperspectral and multispectral imaging combined with automated disease
detection sensors facilitate real-time monitoring and precise management responses.

The use of one or more advanced crop stress sensing technologies provides rapid, accu-
rate and non-invasive methods to monitor plant health while optimizing the management
of agricultural inputs.

However, the most critical problem in close-range multispectral imaging is the align-
ment of band images captured with misaligned cameras [29,30]; algebraic combinations
of the gray levels of pixels in two or more spectral channels can greatly improve their
discrimination [148,203].

Ref. [12] proposed a classification algorithm based on the color indices (combining
R, G, B, and NIR channels) of the multispectral sensor (3-CCD, R-G-NIR camera (MS4100,
DuncanTech, Auburn, CA, USA).

Digital and multispectral imaging can assess disease classes and severity [213], but
challenges remain in implementing accurate systems in real-time field conditions due to
high variability in the field [219]. The lighting environment and sensor location are key
factors, with the angle of view affecting detection sensitivity [12,22–25,120]. Additionally,
hyperspectral imaging (HSI) [26] and multispectral imaging (MSI) [26] have shown efficacy
in detecting water stress, salt stress, and nutrient deficiencies. However, the most significant
impact of imaging technologies has been observed in the evaluation of biotic stresses [27,28].

Advancements in RGB, multispectral, and thermal imaging technologies, along with
the development of snapshot sensors, have improved real-time disease management capa-
bilities. These innovations offer faster image capturing, though sometimes at the cost of
spatial resolution.

While image alignment on UAVs can rely on geolocated points in the field, close-
range multispectral images are not georeferenced. In addition, implementing Hys and MSI
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imaging in real-time field conditions presents challenges, including lighting conditions,
sensor positioning, and viewing angles. These factors can affect the accuracy of disease
detection, underscoring the need for robust algorithms and adaptable systems. In this view,
the integration of machine learning algorithms with spectroscopic techniques has proven
to be effective in classifying diseases and detecting stress indicators. To address these
needs, future research should focus on refining the resolution and accuracy of multi and
hyperspectral imaging, as well as other sensor technologies. In addition, the development
of algorithms that can handle field variability could be critical for practical applications.
Finally, exploring the integration of multiple sensor modalities could surpass current
limitations and improve the accuracy of stress detection.

5. Conclusions and Future Trends

The use of agrochemicals in agriculture can be site-specific if spatial trends of stresses
on crops are known. Remote sensing can assist in managing spray application decisions
and minimizing the use of fungicides, pesticides, and fertilizers while monitoring crop
vigor. Factors such as management objectives, crops, field size, and farm machinery’s
capacity to vary inputs must be considered when selecting sustainable farming solutions.
Sensors and platforms determine the data that can be accessed from existing monitoring
systems, which is most helpful in agricultural decision-making.

Remote sensing data has three main properties: spatial, spectral, and temporal resolu-
tion. Large-scale monitoring is attractive for remote sensing, but identifying agricultural
emergencies requires more precise spatial resolution data. UAV platforms provide an
alternative solution to satellites for obtaining high-frequency data at a localized scale, en-
abling the monitoring of agricultural health at the individual plant level. However, weather
conditions, limited battery life, and regulatory restrictions may limit UAV uses.

Several types of sensors have been developed to evaluate plant traits, including color
imaging, near-infrared and thermal imaging, fluorescence imaging, and hyperspectral
imaging. Autonomous robots are particularly suitable for this type of operation, as they
need to streamline the process of analyzing data and making decisions in real time.

A gap exists between the types of sensors used in two main lines of research: monitor-
ing and successive management (map approach) and real-time decision-making (sensor
approach). Multispectral and modified RGB sensors, also known as color-infrared (CIR)
sensors, present themselves as the optimal solution for close-range monitoring, preserving
both spatial and spectral information.

This work highlighted the main advancements achieved in precision agriculture
through the development and use of proximal sensor technologies for site-specific agro-
chemical applications.

Finally, the main findings of this research are reported below.

• The effect of using these technologies, such as UAVs, autonomous robots, and mul-
tispectral sensors, offering precise and high-resolution data, allows the farmers to
estimate, with a decision based on objective data, the quantity, time, and location of
agrochemicals application.

• A gap exists between sensors used for monitoring and those for real-time decision-
making. Multi-band sensors are frequently used in monitoring. However, digital
sensors like RGB cameras are preferred for real-time applications.

• Despite the multispectral and RGB-modified (CIR) sensors being optimal for close-
range monitoring, challenges include image alignment and noise removal and/or
reduction, which require better algorithms and image processing techniques.

• Integration with artificial intelligence allows for the development of predictive mod-
els and real-time decision-making systems that improve crop management and re-
source optimization.

• Further research is needed to improve image processing algorithms, enhance sensor
calibration techniques, and develop more efficient data management systems.
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In conclusion, this study emphasized the transformative potential of sensor technolo-
gies in precision agriculture. By addressing current challenges and continuing to innovate,
these technologies can significantly contribute to more sustainable and efficient farming
practices, ensuring both food security and environmental sustainability.
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