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Abstract—The identification of optically thin cirrus is crucial 
for their accurate parameterization in climate and Earth’s system 
models. This study exploits the characteristics of the Infrared 
Atmospheric Sounding Interferometer -New Generation (IASI-
NG) to develop an algorithm for the detection of optically thin 
cirrus. IASI-NG has been designed for the EUMETSAT Polar 
System Second Generation program to continue the service of its 
predecessor IASI from 2024 onward. A Thin Cirrus Detection 
Algorithm (TCDA) is presented here, as developed for IASI-NG, 
but also in parallel for IASI to evaluate its performance on 
currently-available real observations. TCDA uses a Feedforward 
Neural Network (NN) approach to detect thin cirrus eventually 
misidentified as clear sky by a previously applied cloud detection 
algorithm. TCDA also estimates the uncertainty of “clear sky” or 
“thin cirrus” detection. NN is trained and tested on a dataset of 
IASI-NG (or IASI) simulations obtained by processing ECMWF 
5-generation reanalysis (ERA5) data with the 𝝈-IASI radiative 
transfer model. TCDA validation against an independent 
simulated dataset provides a quantitative statistical assessment of 
the improvements brought by IASI-NG with respect to IASI. In 
fact, IASI-NG TCDA outperforms IASI TCDA by 3% in POD, 1% 
in bias, 2% in accuracy and the FAR passes from 0.02 to 0.01. 
Moreover, IASI TCDA validation against state-of-the-art cloud 
products from Cloudsat/CPR and CALIPSO/CALIOP real 
observations, reveals a tendency for IASI TCDA to underestimate 
the presence of thin cirrus (POD=0.47) but with a low FAR (0.07) 
which drops to 0.0 for very thin cirrus. 1 
 

Index Terms— Feedforward Neural Network, Next Generation 
Hyperspectral Infrared Data, Optically thin cirrus detection, thin-
cirrus-detection error.  

I. INTRODUCTION 
The accurate identification of thin cirrus is crucial for 
climatological studies and for the study of Earth radiation 
budget [1]. In the upper troposphere they cause both 
atmospheric cooling, by reflecting back the incoming 
shortwave solar radiation, and atmospheric heating, by partially 
trapping outgoing longwave terrestrial radiation [2]. The 
dominant process depends on the cloud properties. Despite their 
importance for the radiation budget, their detection is 
challenging due to relatively low contrast with the underlying 
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surface, and the misidentification of thin cirrus as clear sky 
introduces errors in the retrieval of atmospheric and surface 
parameters [3]. Several studies focus on the detection of thin 
cirrus alone or as a distinct class in a cloud classification 
scheme using physical methods based on threshold tests applied 
to Infrared (IR) and/or Visible (VIS) observations [4], [5]. A 
classical physical method, very effective for the 
characterization of optically thin cirrus, is the CO2 slicing 
method [6]. It is based on IR observations from 13 to 15 𝜇𝑚 to 
estimate cloud top pressure at high altitudes and to distinguish 
semi-transparent from opaque clouds. McHArdy et al. [7] also 
exploited Precipitable Water Vapor (PWV) information in 
detecting thin cirrus by using physical-based algorithms.  
Among the studies based on statistical methods, Bankert [8] 
applied a probabilistic Neural Network (NN) to the Advanced 
Very High Resolution Radiometer (AVHRR) data to assign a 
defined sample area to one of the 10 considered cloud classes. 
The method identified about 75% of the examined samples 
correctly, with a high rate of misclassification occurring 
between high thin cirrus and cirrostratus. In a later study, 
Bankert et al. [9] applied a 1-nearest-neighbor classification to 
the Geostationary Operational Environmental Satellite (GOES) 
observations using a training dataset of expertly labeled image 
samples. In this way, they improved the choice of samples to be 
included in the various classes training dataset with particular 
attention to thin cirrus. Strandgren et al. [10] used a NN 
approach trained with data from Spinning Enhanced Infrared 
and Visible Imager (SEVIRI) and Cloud-Aerosol Lidar with 
Orthogonal Polarization (CALIOP). Maestri et al. [11] 
proposed a machine learning algorithm for cloud detection and 
classification, using simulated high spectral resolution 
radiances. They demonstrated that very thin cirrus are better 
detected exploiting the full infrared spectrum rather than the 
mid-infrared part alone [12], as it could be expected from 
previous works [13], [14], showing numerical simulations in 
the thermal infrared to be sensitive to variations in cirrus optical 
depth and ice crystal size as well as in ice crystal shape. It is 
evident that, compared to other passive remote sensing 
instruments, high spectral resolution IR sounders carry more 
information on cirrus properties. However, detecting thin cirrus 
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clouds remains an unsolved challenge due to their spectral 
signatures being very similar to those of clear sky. 
Consequently, cloud classification algorithms often misclassify 
thin cirrus clouds as clear sky [15, 16, 17], with non-negligible 
consequences on the estimation of atmospheric parameter 
whose correct knowledge is fundamental for  the Earth radiation 
budget. To overcome the frequent misidentification of thin-
cirrus in clear sky, it is possible to exploit the improvements in 
the spatial and spectral resolutions of future satellite-borne 
sensors, that are promising for detecting clouds and estimating 
their properties with greater precision. In this study, on the basis 
of previous considerations, the whole IR spectrum [645 cm-1–
2760 cm-1] of the Infrared Atmospheric Sounder Interferometer 
- New Generation (IASI-NG) was considered for thin and very 
thin cirrus detection using a Feedforward Neural Network 
(NN): the Thin Cirrus Detection Algorithm (TCDA). In detail, 
TCDA focuses only on the area classified as clear sky by a 
previous-applied cloud detection algorithm and it aims to detect 
the thin-cirrus previously misidentified as clear-sky providing 
an estimate of the detection error. It was developed primarily 
for IASI-NG, but also in parallel for its predecessor, IASI, so to 
quantify the improvement brought by IASI-NG with respect to 
IASI and to evaluate TCDA performance on real observations, 
currently available for IASI only. The core of the TCDA is the 
Neural Network (NN), preferred over simpler approaches, like 
threshold algorithms or linear regressions, due to its higher 
versatility, power, and widespread use in scientific field to solve 
complex problems. The TCDA NN was trained and tested with 
IASI-NG (or IASI) simulated observations, calculated 
processing the global numerical weather reanalysis of the 
European Center for Medium-Range Weather Forecasts 
(ECMWF) – 5 generation reanalysis (ERA5) archive [18] with 
the 𝜎-IASI radiative transfer model [19]. TCDA was developed 
in the framework of the Combined MWS and IASI-NG 
Soundings for Cloud Properties (ComboCloud) project, funded 
by European Organization for the Exploitation of 
Meteorological Satellites (EUMETSAT) [20]. 
This paper is structured as follows. Section 2 describes the 
dataset used for the TCDA development and the criteria 
adopted for selecting thin cirrus profiles to be used for IASI-
NG/IASI simulation. It also describes the cloud products from 
active and passive sensors used for IASI-TCDA validation and 
comparison. Section 3 describes the TCDA methodology, with 
an overview of NN, the method used to estimate the total error 
to associate to TCDA output and, finally, the validation results 
of both IASI and IASI-NG TCDA on an independent simulated 
dataset. Section 4 discusses the comparison of IASI-TCDA 
with MODIS, VIIRS, SEVIRI cloud products and its validation 
against CPR/CALIOP cloud products. To facilitate the reading 
of this manuscript, Table 1 provides a comprehensive list of 
acronyms and abbreviations used throughout the text. 
 

TABLE I 
LIST OF ACRONYMS AND ABBREVIATIONS 

2C-ICE Cloudsat and CALIPSO Ice Cloud Property Product 

AVHRR Advanced Very High Resolution Radiometer 

C3S Copernicus Climate Change Service 

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization 

CBH Cloud Base Height 

CBH Cloud Base Height 

CCF Cloud Cover Fraction 

CCL Cloud Cover Layer 

CER Cloud Effective Radius 

CF Cloud Fraction 

CI AVHRR Cloud Information 

CIWC Cloud ice water content 

CL Cloud Layer 

CNES Centre National d'Études Spatiales 

ComboCloud Combined MWS and IASI-NG Soundings for Cloud 
Properties 

COP Cloud Optical Properties 

COT Cloud Optical Thickness 

CPR Cloud Profiling Radar 

CPRinIASI CPR FOV included in IASI IFOV 

CT Cloud Type 

CTP Cloud Top Pressure 

ECMWF European Center for Medium-Range Weather Forecasts 

EDR Environmental Data Record 

EFOV Elementary Fields of View 

EOS NASA Earth Observing System 

ERA5 ECMWF 5 generation reanalysis 

EUMETSAT Organization for the Exploitation of Meteorological 
Satellites 

FAR False Alarm Ratio 

FOR Fields of Regard 

FOV Field Of View 

GMT Greenwich Mean Time 

GOES Geostationary Operational Environmental Satellite 

HCC High Cloud Cover 

IASI Infrared Atmospheric Sounder Interferometer 

IASI-NG Infrared Atmospheric Sounder Interferometer - New 
Generation 

IFOV Instantaneous Field of View 

IFS Integrated Forecast System 

IR Infrared  

LB Layer Base 

LCC Low Cloud Cover 

M*D35 Both MOD35 and MYD35 products 

MCC Medium Cloud Cover 

MetOp Meteorological Operational Satellite 

MetOp-SG Meteorological Operational Satellite - Second Generation 

MOD35 Cloud Mask Level 2 MODIS on Terra satellite 

MODIS Moderate Resolution Imaging Spectroradiometer 

MODinIASI MODIS FOV included in IASI IFOV 

MSG Meteosat Second Generation 

MWS Microwave Sounder 

MYD35 Cloud Mask Level 2 MODIS on Aqua satellite 

NN Neural Network 

NOAA National Oceanic and Atmospheric Administration 

OCA Optimal Cloud Analysis 

PC Principal Component 

PCA Principal Component analysis  
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PL Pressure Levels 

POD Probability of Detection 

PPC Perform Parallax Correction 

PWV Precipitable Water Vapor 

RGB Red Green Blu 

RMSE Root Mean Square Errror 

SCIW Specific Cloud Ice Water content 

SCLW Specific Cloud Liquid Water content 

SEVIRI Spinning Enhanced Visible and Infrared Imager 

SEVIRIinIASI SEVIRI FOV included in IASI IFOV 

SSP Sub Satellite Point 
NPP National Polar-orbiting Partnership 

TCC Total Cloud Cover 

TCDA Thin Cirrus Detection Algorithm 

TCIW Total Column Ice Water content 

TCLW Total Column Liquid Water content 

TP Total Precipitation 

VIIRS Visible Infrared Imaging Radiometer Suite 
VIIRSinIASI VIIRS FOV included in IASI IFOV 

 

II. INSTRUMENT AND DATA DESCRIPTION 
This section describes the sensors involved in this study. The 
first sub-sections describe IASI and IASI-NG and the criteria 
adopted to select the dataset used for training and validation. 
The last sub-section describes the cloud products from active 
and passive sensors collected to build the observational datasets 
for IASI-TCDA validation. 

A. IASI/ IASI-NG: instrument description 
IASI is a high spectral resolution sounding instrument based on 
a Fourier transform spectrometer. It measures 8461 spectral 
samples in the range [645 cm-1- 2760 cm-1], with a spectral 
resolution of 0.5 cm-1 and a spectral sampling of 0.25 cm-1. It 
has been flying on European Organization for the Exploitation 
of Meteorological Satellites (EUMETSAT) Polar system (EPS) 
Metop A-B-C satellites series since 2006. IASI scans across-
track 30 Elementary Fields of View (EFOV). Each EFOV 
contains 4 Instantaneous Fields of View (IFOVs) discs with a 
ground diameter of 12 km at the Sub-Satellite-Point (SSP). 
Moving away from the SSP, the IFOV assumes an elliptic shape 
with axes increasing to about 39 km (across-track direction) and 
20 km (along-track direction) at the swath edge. At the SSP, the 
four IFOVs are 24 km apart within the EFOV, whose dimension 
is 48 km x 48 km.  
IASI-NG is the evolution of IASI. It differs from IASI for the 
improved radiometric and spectral characteristics as well as for 
the scan geometry. IASI-NG will measure 16921 samples in the 
spectral range [645 cm-1 - 2760 cm-1] with a spectral resolution 
(0.25 cm-1), spectral sampling (0.125 cm-1), and signal-to-noise 
ratio improved by a factor of two with respect to IASI. The 
higher spectral resolution and signal-to-noise ratio will directly 
result in higher vertical resolution and product accuracy [21].  
Regarding scan geometry, IASI-NG will scan across-track 14 
Fields of Regards (FORs); each FOR will contain 4x4 IFOVs 
whose dimension at the SSP and at the swath edge will be the 

same as IASI IFOV. In detail, the distance between two 
consecutive IFOV centers will be about 23.83 km and the 
distance between FORs will be about 32 km, resulting in a 100 
km x 100 km FOR at the SSP [22]. 

B. IASI/ IASI-NG: simulated dataset and criteria adopted for 
thin-cirrus dataset implementation. 
The TCDA implements a NN approach, which is trained, 
validated and tested using a dataset of IASI-NG and IASI 
simulated observations. Two NNs were trained separately for 
IASI and IASI-NG using a dedicated global dataset of 300˙000 
samples (over both land and sea surfaces), 50% characterized 
by clear sky and 50% by thin cirrus presence. IASI and IASI-
NG simulated observations are obtained applying the 𝜎-IASI 
radiative transfer code to a set of surface and atmospheric data 
selected from the ERA5 climate dataset [19]. The 𝜎-IASI is a 
fast line-by-line radiative transfer scheme that simulates both 
clear and cloudy spectral radiances for a given set of 
geophysical parameters. The radiometric noise provided by 
CNES (Centre National d'Études Spatiales) is used for IASI 
[23] while radiometric noise for IASI-NG was assumed to be 
half of that of IASI [24]. In 𝜎-IASI cloud ice particles were 
represented using spheres. Realistic assumptions on cloud 
effective radius and size distributions have been made to 
produce IR radiative transfer calculations, ice cloud 𝑑! 
(diameter effective) from Wyser [25] in which the shape 
distribution n(L) is determined by the use of a mixed 
distribution, Γ distribution [26] for small particles (𝐿 < 20𝜇𝑚) 
and power-law distribution [27] for the larger one (𝐿 > 20𝜇𝑚). 
Both these distributions have been parametrized with respect to 
the 𝐵 parameter:  
 
 	𝐵 = −2 + 10"#(273 − 𝑇)$.&𝑙𝑜𝑔$' 8

()*(
()*(!

9                        (1) 
 
Where 𝑇 is the atmospheric layer temperature (K), CIWC the 
corresponding ice water content (𝑔 ∙ 𝑚"#), and 𝐶𝐼𝑊𝐶' = 50𝑔 ∙
𝑚"#. Thus, 𝑑! is obtained with 𝐵 using a third-order 
polynomial approximation: 
 
	𝑑! = 377.4 + 203.3𝐵 + 37.91𝐵+ + 2.3696𝐵#                  (2) 
 
According to Wyser the 𝑑! range of values is limited in [10 −
100𝜇𝑚]. The set of ERA5 atmospheric state vectors, needed 
for the radiative transfer calculations, includes the thin-cirrus 
dataset used for IASI and IASI-NG TCDA implementation. 
Both ERA5 hourly data on pressure levels and on single level 
have been used for building the dataset of atmospheric profiles 
on 37 pressure levels and surface parameters, respectively. 
Global data for 4 representative days (1st of Jan, Apr, Jul, Oct 
2019), each at 4 synoptic hours (00, 06, 12, 18), equally spaced 
on a regular latitude-longitude grid at 0.125° x 0.125° 
resolution, have been selected to capture both seasonal and 
diurnal cycles. The initial ERA5 dataset consists in 
2880x1441x16 (longitude x latitude x time dimensions) 
samples for each variable.  
Here, only the subset of profiles satisfying thin cirrus selection 
criteria is used for simulating IASI and IASI-NG radiances. The 
ERA5-profiles thin-cirrus subset is hereafter denominated 
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TCDA-db. The ERA5 geophysical parameters considered for 
the selection of isolated thin-cirrus samples are: 

• High Cloud Cover (HCC), Medium Cloud Cover 
(MCC), Low Cloud Cover (LCC), providing cloud 
fraction at three levels in atmosphere; 

• Total Cloud Cover (TCC) indicating cloud fraction 
throughout the atmosphere; 

• Cloud Cover Fraction (CCF) giving the portion of 
grid box covered by cloud for each of the 37 Pressure 
Levels (PLs); 

• Total Precipitation (TP); 
• Total Column Ice Water content (TCIW); 
• Specific Cloud Ice Water content (SCIW); 
• Total Column Liquid Water content (TCLW); 
• Specific Cloud Liquid Water content (SCLW); 
• and Cloud Base Height (CBH); 

A sample is considered thin-cirrus contaminated if it satisfies 
the following tests: 

1. Test 1 requires that only ERA5 profiles with TP=0 
mm, TCC>0, LCC=MCC=0 and HCC>0, and CCF=0 
for PLs higher than 450 mb can be considered thin 
cirrus, so to exclude rainy samples and thin cirrus 
overlapping low or/and medium clouds; 

2. Test 2 considers the presence of cloud ice content, i.e. 
the TCIW>0 and SCIW>0 as indicators of cirrus 
presence in conjunction with the absence of cloud 
liquid water (TCLW=0 and SCLW=0). The TCIW 
and SCIW upper limits for thin cirrus given by Mace 
et al. [28] are adopted in this study, because they were 
determined for a thin-cirrus subset representative of 
different atmospheric conditions related to cold and 
warm seasons in large-scale ascent and large-scale 
subsidence (TCIW<18	𝑔 ∙ 𝑚"+ and SCIW<0.012	𝑔 ∙
𝑚"#);  

3. Test 3 considers CBH. Taking as a reference the 
latitudinal distribution of cirrus height determined by 
Sassen et al. [29] on one year of CloudSat and Calipso 
combined observations, only the ERA5 samples with 
CBH≥5km were included in TCDA-db. The CBH is 
determined for the highest PLs where 0 < 𝑆𝐶𝐼𝑊 ≤
0.012𝑔 ∙ 𝑚"#.  Test 3 is used as a further control with 
respect to Test 1, in order to exclude ERA5 profiles 
with HCC>0 and MCC=LLC=0 but with SCIW>0 at 
CBH<5km.  
 

The TCDA-db obtained from initial ERA5 dataset after 
verifying the thin-cirrus tests includes ~260.000 samples. This 
was further reduced to 50.000 samples because of the high 
computational cost required for simulating hyperspectral 
radiances and, successively, for the NN training. TCDA-db 
subset is denominated TCDA-db-50k. Figure 1 shows the 
distribution of thin cirrus occurrences for the variables used in 
the three tests, to assess their agreement with other studies 
reported in the literature and the representativeness of the 
database. Fig. 1 (top-left panel) shows the latitudinal 
distribution of CBH for the TCDA-db-50k profiles. The CBH 
range agrees with the values reported in Mace et al., [28] and in 

Sassen and Campbell [30]. The spatial distribution, with 
maximum values for thin cirrus CBH occurring in the tropical 
belt, is similar to the latitudinal distribution of cirrus CBH 
derived by Sassen et al. [29] analyzing one-year data detected 
by CloudSat and Calypso. The combined detection 
characteristics of both Cloudsat radar and Calypso lidar were 
also used by Haladay and Stephens [2] to build a two-year 
tropical thin-cirrus dataset between 20° N and 20° S latitude. 
They found that thin cirrus CBH ranges from 11 km to 16 km 
in tropical belt, while Fig. 1 (top-left panel) shows CBH values 
lower (~9𝑘𝑚 ≤ 𝐶𝐵𝐻 ≤ ~13𝑘𝑚) in the same area. Moreover, 
the ranges determined by Haladay and Stephens [2] for SCIW 
(0.002𝑔 ∙ 𝑚"# ≤ 𝑆𝐶𝐼𝑊 ≤ 5𝑥10"#𝑔 ∙ 𝑚"#) and TCIW (1𝑔 ∙
𝑚"+ ≤ 𝑇𝐶𝐼𝑊 ≤ 6𝑔 ∙ 𝑚"+)	are similar to the SCIW and TCIW 
ranges spanned by TCDA-db-50k: 0.002 × 10"#𝑔 ∙ 𝑚"# ≤
𝑆𝐶𝐼𝑊 ≤ 3.6 × 10"#𝑔 ∙ 𝑚"# (Fig. 1 bottom-left panel)  and  
0.03𝑔 ∙ 𝑚"+ ≤ TCIW≤ 7.3 𝑔 ∙ 𝑚"+ (Fig. 1 bottom-right 
panel).  
Overall, Fig. 1 shows that the TCDA-db-50k covers all the 
range of thin cirrus base-height, SCIW and TCIW for all the 
latitudes in agreement with the above-mentioned studies. So 
long as the TCDA aims to detect isolated thin cirrus not 
included in multilayer clouds, limiting the need of a very large 
data set including different clouds combinations, TCDA-db-
50k can be deemed representative for the different types of thin 
cirrus and therefore suitable for training NNs. To this end, 
TCDA-db-50k was processed with 𝜎-IASI to simulate 50.000 
x 16921 IASI-NG and 50.000 x 8421 IASI radiances at 3 
Vertical Zenith Angle VZA (0°, 20° and 44°) both for clear sky 
and cirrus conditions.  
 

C. Validation Observational Dataset: CPR and CALIOP 
The Cloud Profiling Radar (CPR) and Cloud-Aerosol Lidar 
with Orthogonal Polarization (CALIOP) are the instrument 
onboard CloudSat and Calipso, respectively. The joined 
CloudSat/CPR and Calipso/CALIOP 2B-Geoprof-Lidar [31], 
[32] and 2C-ICE [33] cloud products were considered for 
TCDA validation purposes. 2B-Geoprof-Lidar combines the 
CPR and CALIOP observations to determine cloud properties  
such as the Cloud Fraction (CF), the Cloud Layer (CL) and the 
Layer Base (LB) for each CL. 2C-ICE is the CloudSat and 
Calipso Ice Cloudy Property Product that takes as input a 
combination of the CPR reflectivity and CALIOP attenuated 
backscattering coefficients at 532 nm to retrieve cloud 
properties information more accurate than the radar-only 
product. In particular, the 2C-ICE cloud properties used in this 
study to define thin-cirrus contaminated IASI IFOV are the 
Cloud Optical Thickness (COT) and the Ice Water Path (IWP). 
The 2B-Geoprof-Lidar and 2C-ICE cloud properties were used 
simultaneously to define the collocated IASI clear or thin-cirrus 
contaminated IFOVs. Since a IASI IFOV is never completely 
covered by the CPR pixels, a homogeneous criterion involving 
AVHRR measurements collocated within IASI on the METOP 
platform has been used. In detail, the 10.8μm radiance and the 
Cloud Information included in AVHRR Level 1B product  have 
been used for the selection of IASI homogeneous IFOVs [34]. 
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D. Comparison Observational Dataset: MODIS 
The Moderate Resolution Imaging Spectroradiometer 
(MODIS) [35] Cloud Mask Level 2 product, available at 1-km 
and 250-m spatial resolutions at the SSP, has been exploited for 
comparison with TCDA results. This product is named MOD35 
for MODIS on Terra satellite and MYD35 for MODIS on Aqua 
satellite (hereinafter M*D35 for both MOD35 and MYD35). 
The M*D35 algorithm [35], [36] employs a series of visible and 
infrared threshold and consistency tests to define confidence 
that a MODIS FOV is cloudy. In detail, M*D35 algorithm 
includes two thin cirrus tests: the infrared-thin-cirrus and the 
1.38-μm-thin-cirrus tests. The infrared-thin-cirrus test is based 
on more ice absorption at larger wavelengths; it applies the split 
window technique [37], using the BT difference between the 
MODIS bands centered at 11 and 12 μm to indicate the presence 
of thin cirrus during daytime and night-time. The 1.38-μm-thin-
cirrus test compares the reflectance in the 1.38 μm with a 

threshold [4] to reveal the presence of transmissive cirrus 
clouds in the upper troposphere under daytime viewing 
conditions.  

E. Comparison Observational Dataset: VIIRS 
A further comparison dataset for the TCDA was implemented 
on the basis of the Visible Infrared Imaging Radiometer Suite 
(VIIRS) cloud products. VIIRS is aboard two satellites: Suomi 
National Polar-orbiting Partnership (Suomi NPP) since 2011 
and National Oceanic and Atmospheric Administration-20 
(NOAA-20) since 2017 [38]. The VIIRS cloud products used 
for comparison with TCDA is the VIIRS Environmental Data 
Record (EDR) Cloud Cover Layer (CCL) and Cloud Optical 
thickness (COT) [39]. The EDR-CCL and EDR-COT are cloud 
products gridded at 6 km resolution and derived from several 
other intermediate products, e.g., Cloud Optical Properties 
(COP), Cloud Top Pressure (CTP), Perform Parallax Correction 
(PPC) and Cloud Base Height (CBH) at original 750 m spatial 

  

  
Fig. 1. The latitudinal distribution of CBH for the TCDA-db-50k profiles (top-left); histogram of latitude for the TCDA-db-
50k profiles (top-right); histogram of max SCIW for TCDA-db-50k profiles (bottom-left); histogram of TCIW for  TCDA-
db-50k profiles (bottom-right).  
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resolution. In particular, EDR-CCL gives information about the 
Cloud Type (CT) (Stratus, Altocumulus, Cumulus, Cirrus and 
Cirrocumulus) and CF on 4 layers from the top of the 
atmosphere (layer 1) to layer near surface (layer 4). EDR-COT 
values are retrieved by using observations at 0.672 µm, 1.24 
µm, and 1.61 µm during daytime (solar approach based on two-
channel correlation technique of Nakajima and King [40]) and 
observations at 3.70 µm, 8.55 µm, 10.76 µm, and 12.01 µm 
during nighttime (IR approach that follows the two-channels 
cirrus technique of Ou et al., [41]). 

F. Comparison Observational Dataset: SEVIRI 
The Meteosat Second Generation (MSG)/ Spinning Enhanced 
Visible and Infrared Imager (SEVIRI) [42] Optimal Cloud 
Analysis (OCA) product, developed and distributed by 
EUMETSAT [43] has been considered for comparison with 
IASI-TCDA results. The OCA algorithm provides key cloud 
parameters through an optimal estimation method ingesting all 
the SEVIRI spectral measurements simultaneously. For each 
cloudy SEVIRI FOV, the OCA algorithm classifies as 
multilayered, single layer water, or single layer ice clouds. 
Moreover, it gives information about COT, CTP and Cloud 
Effective Radius (CER) for up to two atmospheric layers. 

III. TCDA METHODOLOGY 
This section describes the TCDA. The first sub-section details 
the NNs configurations and training, the second sub-section 
details the error estimation procedure, while the last sub-section 
validates the algorithm using a simulated dataset. 
 

A. Definition of NNs 
The core of the TCDA consists of two feedforwards fully 
connected NNs with two hidden layers, whose general 
principles are summarized in “Appendix A - Neural Network 
Overview”. One NN was developed for IASI-NG and the other 
for IASI, by using the configuration described in “Appendix B 
- Definition of the NN architecture”. Both the NNs use the same 
procedure for training, architecture definition, and input 
selection, and similar training datasets with 300.000 samples 
(sub-section 2.2). Each dataset is randomly split in three sub-
datasets namely the Training dataset (60%, 180.000 samples), 
Validation dataset (20%, 60.000 samples) and Test dataset 
(20%, 60.000 samples), used to calculate weights and biases, to 
tune some hyperparameters and to assess the performance, 
respectively. Each sample of the datasets consists of the 
following 104 variables: 

i. the first 100 Principal Component Analysis (PCA) 
outputs of the IASI-NG/IASI radiances  [44], [45]; 

ii. the cosine of the scan angle; 
iii. the cosine of the latitude; 
iv. the land fraction; 
v. the flag 0/1 for clear sky / thin cirrus presence 

 
The preliminary selected 103 variables were examined as 
possible inputs for the NNs, through a systematic procedure of 
analysis and removal of the unnecessary inputs as detailed in 
“Appendix C - Selection of NN inputs”. The output values 0/1 
have been chosen, so that their application to real data returns 

values ranging continuously in [0,1]. Although 100 Principal 
Components (PCs) may seem too many, the adopted procedure 
for inputs analysis and removal of the unnecessary ones 
requires a preliminary overestimation of the number of inputs. 
Table II summarizes the selected inputs and the main NN 
configurations.  
The output values can be considered as the probability of thin 
cirrus presence; the final output of the TCDA is then “clear sky 
condition” if the NN output is in the range [0,0.5], or “thin 
cirrus presence” if the NN output is in the range ]0.5,1]. It was 
chosen a continuous output in the range [0,1], instead of a 
discrete output 0/1, in order to evaluate it in a metric for the 
estimation of the associated error, as explained in the following 
paragraphs. In this way, however, values slightly lower or 
higher than 0.5, for instance 0.49 or 0.51, would be classified 
as "clear sky condition" and "thin cirrus presence", respectively, 
despite being very close to each other. To overcome this issue, 
an estimation error will be provided together with the TCDA 
output, as explained in Section III-D “Total error estimation”, 
developed so that its value is maximum when the NN outputs 
are around the value 0.5, while it decreases towards zero as the 
outputs reach 0 or 1.  
 

TABLE II 
MAIN FEATURES OF THE OPTIMIZED NN ARCHITECTURES FOR 

TCDA RETRIEVALS 
Sensor Input - Hidden-layers nodes number 

- Transfer functions 

IASI-NG 67 IASI-NG PCs (1÷41, 
43÷66, 70, 72) 
3 ancillary (scan-angle 
cosine; latitude cosine; land 
fraction) 

10 - 4 
tangent sigmoid – logarithmic 
sigmoid – logarithmic sigmoid 
 

IASI 39 IASI PC (1÷36, 38÷40) 
2 ancillary (scan-angle 
cosine; latitude cosine ) 

23 - 8 
logarithmic sigmoid – logarithmic 
sigmoid – logarithmic sigmoid 

 
B. Total error estimation 
A method was developed to associate the NNs output with an 
estimate of the thin cirrus detection error, exploiting the 
dichotomous statistic on Validation dataset. To this aim, hits are 
the thin-cirrus-in-reference observations correctly detected by 
TCDA, misses are the thin-cirrus-in-reference observations 
not-correctly detected by TCDA, false alarms are the clear-sky-
in-reference observations not-correctly detected by TCDA and 
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correct negatives are the clear-sky-in-reference observations 
correctly detected by TCDA. Using these quantities, we define 
the total error, that is the ratio of the sum of misses and false 
alarms to the total observations:  

 
𝑡𝑜𝑡𝑎𝑙	𝑒𝑟𝑟𝑜𝑟 = 1	 − 	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ,-..!./012.!	1214,.

56512
       (3) 

 
where accuracy indicates the fraction of thin cirrus and clear 
sky observation correctly detected. To obtain an estimated total 
error, the output of the Validation dataset has been divided into 
20 equally spaced intervals with a minimum amplitude of 0.05. 
The amplitude is gradually increased with steps of 10-4 to ensure 
at least 100 samples in each interval, as shown in Fig. 5 by 
means of the horizontal bars, for both IASI-NG and IASI 
algorithms. For each interval a contingency table and the related 
total error are determined, and finally two weighted quadratic 
fits are calculated. By using the coefficients of these fits, it is 
possible to estimate, for each NN output, the corresponding 
estimated total error, that represents the estimated uncertainty 
of clear sky or thin cirrus detection. For example, considering 
the IASI-NG fit (Fig. 5 on the left), the value 0.05 of the NN 
output leads to a clear sky scenario, because it is less than 0.5, 
with an estimated total error of 5.7%: 

 
        𝑦 = −0.36 ∙ 0.05! + 1.11 ∙ 0.05 + 0.0023 = 0.057	(5.7%)									(4)	
	

Otherwise, the value 0.75 of the NN output leads to a thin 
cirrus presence, because it is greater than 0.5, with an estimated 
total error of 29%: 

 
          𝑦 = −0.63 ∙ 0.75! − 0.06 ∙ 0.75 + 0.69 = 0.29	(29%)														(5)	
 
 

C. TCDA validation with simulated dataset 
The statistical assessment of TCDA is evaluated on the Test 

dataset, which consists of 20% of the initial database not used 
in the previously described processes (training and validation).  
Figs 6 and 7 show the scatterplots between the NN output and 
the reference target, both for IASI-NG and IASI, together with 
the histograms, showing that the distributions of NN outputs 
and reference targets are rather similar. The correlation between 
the NN output and the reference target is about 0.99 for IASI-
NG and 0.96 for IASI, the bias error is about 10-3 for IASI-NG 
and 10-2 for IASI, while the RMSE is about 16% and 30% of 
the target standard deviation for IASI-NG and IASI, 
respectively. The differences between retrievals over land and 
sea surfaces are negligible. As expected, the statistical results 
obtained for IASI-NG are better than those obtained for its 
predecessor, which will be also confirmed by the dichotomous 
statistical assessment in the next Section.  
The probability of detection (POD), the false alarm ratio (FAR), 
the bias and accuracy are defined as follows: 

• POD = hits/(hits+ misses)  (Range: 0 to 1; Perfect 
score: 1)     

• Bias = (hits+ false alarms)/(hits+ misses)  (Range: 0 to 
∞; Perfect score: 1) 

• FAR = false alarms /(hits+ false alarms)  (Range: 0 to 
1; Perfect score: 0)     

• Accuracy = (hits+ correct negatives)/total (Range: 0 to 
1; Perfect score: 1). 

These statistical parameters are fully described in [46]. 
 
Finally, from the contingency Table III, the dichotomous scores 
are summarized and compared in Table IV. 

 

  
Fig. 5. Result of the weighted quadratic fit for IASI-NG (left) and IASI (right). 
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TABLE III 
CONTINGENCY TABLE FOR TCDA FROM IASI/IASI-NG. 

(ACORRECT POSITIVES - BFALSE ALARMS - CMISS - DCORRECT 
NEGATIVES). 

 
  ERA5 cirrus presence (reference) 

  Yes No Total NN 

NN 
cirrus 
presence 

Yes 28867/29610a 619/160b 29486/29770 

No 1073/335c 29441/29895d 30514/30230 

Total 
ERA5 

29940/29945 30060/30055 60000/60000 

 
Overall, the POD, FAR, bias and accuracy are very close to 
their perfect values, thus indicating a good ability of the TCDA 
to correctly detect the presence of thin cirrus on the independent 

test dataset. The statistical scores separately for land and sea 
surface are not shown because they are identical to those of 
Table IV. This result implicitly confirms the goodness of the 
choice to use a unique NN for land and sea surface, instead of 
two separate NN, as frequently happens in the retrieval of 
atmospheric parameters by means of satellite observations. 
Statistical scores for TCDA applied to IASI-NG are better than 
those for TCDA applied to its predecessor IASI. This is likely 
a result of the IASI-NG improvements in spectral resolution and 
noise level. In detail, IASI-NG TCDA outperforms IASI TCDA 
by 3% in POD, 50% in FAR, 1% in BIAS, and 2% in accuracy. 

  
Fig. 6. Validation of TCDA for IASI-NG. Left: scatter plot of NN vs reference truth (ERA5). Right: histograms of NN output and 
reference truth (the onset is on logarithmic scale).  

  
Fig. 7. As in Figure 6, statistical results from validation of TCDA for IASI. 

 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3303268

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 
> TGRS-2022-04508  < 
 

 
 

 

9 

IASI and IASI-NG test datasets were also used to validate the 
error estimation as derived in paragraph 3.4. For both the 
sensors, the NN output obtained from test dataset was divided 
into 12 equally spaced intervals whose width was initially 0.08 
and it was gradually increased, without exceeding the 
maximum width of 0.5, to ensure at least 100 sample in each 
interval. For each interval (vertical bars in Fig. 8), the 
corresponding contingency table and the true total error were 
computed. Fig. 8 shows the scatterplot of the true total error 
determined for NN versus NN estimated error determined by 
using the equations in Figure 5. The excellent correlation (~0.97 
for IASI-NG and 0.99 for IASI) and low RMSE (~24% and 
13% of target standard deviation, respectively) suggest good 
capability for this method to estimate the total error.  

 
 

TABLE IV 
SUMMARY OF DICHOTOMOUS SCORES FOR TCDA FROM IASI 

AND IASI-NG. 
 

SCORE IASI IASI-NG PERFECT 
VALUE 

SAMPLE 60000 60000  

POD 0.96 0.99 1.0 

FAR 0.02 0.01 0.0 

BIAS 0.98 0.99 1.0 

ACCURACY 0.97 0.99 1.0 

 

V. IASI TCDA VALIDATION AND COMPARISON WITH REAL 
DATA 

In addition to the validation against simulated data reported in 
sub-section III-C, IASI TCDA was validated against real 
observations obtained from CPR/CALIOP cloud products. 
Active sensors such as lidar, are able to recognize thin cirrus 
with matchless accuracy [2]. In particular, the joint use of CPR-
radar and CALIOP-Lidar gives better results in identifying thin 
cirrus than using them separately. In fact, while CPR is able to 
penetrate thick layers that attenuate the CALIOP signal, 
CALIOP is able to detect the scattering from very tenuous 
clouds as well as to sense the top of optically thin ice clouds 
that are transparent to CPR [30]. Moreover, IASI TCDA was 
also compared with three different datasets of cloud products 
from the passive sensors MODIS, VIIRS and SEVIRI described 
in sub-sections II-D, II-E, II-F, respectively.  
For spatial collocation, IASI was designated as the principal 
instrument; each IASI IFOV is defined as clear or thin-cirrus 
contaminated according to the cloud properties of the reference 
data falling within it. Only the IASI IFOVs completely covered 
by reference FOVs have been considered for validation and 
comparisons.  

The following sections show the results of validation carried 
out against CPR-CALIOP/2B-Geoprof and 2C-ICE cloud 
products and the results of comparison with the three passive 
sensors/products MODIS/M*D35, VIIRS/EDR and 
SEVIRI/OCA. A dichotomous statistical assessment for TCDA 
was performed, including the accuracy, POD,  FAR and bias.  

 

 

  
Fig. 8. True vs NN-estimated total error for IASI (left panel) and IASI-NG (right panel). 
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A. Results of TCDA validation against CPR/CALIOP-2B-
Geoprof-Lidar & 2C-ICE products 
2B-Geoprof-Lidar and 2C-ICE files collocated with MetOp-
A/B IASI overpass in 2016-2017 were jointly used to define a 
dataset of clear and thin-cirrus contaminated IASI IFOVs. The 
2C-ICE and 2B-Geoprof-Lidar are sampled at the CPR spatial 
resolution (https://www.cloudsat.cira.colostate.edu/cloudsat-
static/info/dl/2b-geoprof-lidar/2B-GEOPROF-
LIDAR_PDICD.P2_R04.20070604.pdf). The CPR FOV is 
considered thin-cirrus contaminated when only the highest 
levels are cloudy (LC>0 and LB≤450 hPa) and the related COT 
and IWP satisfy the conditions 0<COT≤ 1.72 and 0<IWP≤ 18 
g⋅m-2 [28]. The IWP value is not always available, so the thin 
cirrus selection was principally based on COT test. In total, 314 
IASI-CPR matchups have been collected for TCDA validation, 
all located at high latitudes (65-74°N).  For simplicity, the CPR 
FOV included in IASI IFOV is denominated CPRinIASI. The 
number of CPRinIASI along the CloudSat depends on the 
satellite view angle and range from 2 to 15. The IASI IFOV 
collocated with CPR is considered for validation only when all 
the CPRinIASIs are clear (in this case the IASI IFOV is 
considered “clear”) or a fraction of CPRinIASIs is thin-cirrus 
and the remaining CPRinIASIs are clear (in this case the IASI 
IFOV is considered “thin-cirrus contaminated”).  However, this 
information cannot be simply extended to the entire IASI 
FOVs, since IASI IFOVs (12 by 12 km at the SSP) are always 
larger than the area covered by the CPR swath (2.5 by 1.4 km). 
CPR overlaps IASI IFOV along a circle arc, and thus the IASI 
IFOV is never completely covered by the CPR pixels. In order 
to get information on the entire IASI IFOVs previously 
classified as thin-cirrus-contaminated or clear on the basis of 
the 2B-Geoprof-Lidar/2C-ICE information only, a further test 
for investigating the homogeneity of the IASI IFOVs have been 
done by considering the AVHRR-CI 
(https://www.eumetsat.int/media/38675) and the 11.5-μm 
radiances collocated within the IASI IFOV. The homogeneity 
test consisted in applying the criteria proposed in Farouk et al. 
[47] that established the homogeneity of a IASI IFOV on the 
basis of the overall AVHRR cluster statistics.  Farouk et al. 
assume that a IASI IFOV including several classes (i.e. clear 
class and cloudy classes), characterized by small standard 
deviations and similar mean radiances, can be more 
homogeneous than a IASI IFOV with a single cloudy or clear 
class.  In detail, only the IASI IFOVs containing a cirrus-class 
(ensemble of AVHRR FOVs satisfying only the CI cirrus test) 
and/or a clear class (ensemble of AVHRR FOVs not satisfying 
any CI cloud test) have been considered for homogeneous test. 
Finally, the IASI IFOV was declared thin-cirrus-contaminated 
only after satisfying the homogeneity criteria [48]. Among the 
314 pre-screened thin-cirrus contaminated IASI IFOVs, 248 
passed the homogeneity test. The same procedure was applied 
to the IASI IFOVs previously classified as clear according to 
2B-Geoprof-Lidar/2C-ICE cloud products, so to select 248 
clear homogeneous IASI IFOVs. In applying the homogeneity 
criterion, we assumed to consider the CPR/CALIOP 
information as “truth” when it disagrees with the AVHRR-CI 
in detecting thin cirrus cloud. In fact, some IASI IFOVs defined 
as thin-cirrus-contaminated by the 2B-Geoprof-Lidar/2C-ICE 

cloud products were classified as “clear” in terms of the 
AVHRR-CI, but this due to the better ability of active sensor to 
detect optically thin layer if compared with passive sensors that 
often misidentify thin cirrus as clear sky [16], [17].  
TCDA detects 117 IASI-IFOVs as thin cirrus among the 248 
thin-cirrus-contaminated IASI IFOVs and it correctly detects as 
clear 237 IASI IFOVs among the 248 clear IASI IFOVs. Table 
V is the contingency table for dichotomous statistical 
assessment of TCDA applied to real IASI observations against 
co-located 2B-Geoprof & 2C-Ice cloud products (the related 
samples are indexed with (1)) as well as against the other cloud 
products considered for the comparison. This results in 
POD=0.47, BIAS=0.52, FAR=0.09, Accuracy=0.71. When 
considering only the 64 IASI IFOVs characterized by COT ≤0.3 
and comparing them with the same number of clear ones, the 
statical scores are quite similar: POD=0.47, BIAS=0.47, 
FAR=0.0, Accuracy=0.73. The low FAR indicates the tendency 
of TCDA to not misidentify clear sky as thin cirrus. Only one 
IASI IFOV with COT<0.03 (subvisual cirrus) is present in the 
dataset and it is correctly classified by TCDA. These results 
should be taken with care due to the uncertainty caused by the 
partial coverage of the IASI IFOV by the CPRinIASIs so that 
the information on the remaining IASI IFOV is derived by the 
homogeneity tests involving AVHRR radiances that may not 
reveal inhomogeneity due to presence of very thin cirrus easily 
misidentified as clear sky at the AVHRR wavelengths. An 
example of IASI-TCDA cloud detection map and the related 
TCDA-total-error map are shown on the left and on the right of 
Fig. 9, respectively, for the Metop B-IASI granule acquired on 
25th August 2017 from 07:38 GMT to 07:41 GMT. TCDA was 
applied to the IASI IFOVs declared clear and thin-cirrus 
contaminated based on the CPR/CALIOP-2B-Geoprof-Lidar & 
2C-ICE products. The TCDA-IASI results have been collocated 
on the corresponding AVHRR  RGB composition. The color of 
the thin-cirrus clouds in the natural-color RGB image depends 
on the underlying surface. In Fig. 9 the thin cirrus clouds are 
recognizable by their elongated shape and cyan color shades. In 
detail, the IASI IFOVs in red are correctly detected as thin-
cirrus by TCDA accordingly to the CPR/CALIOP-2B-Geoprof-
Lidar & 2C-ICE cloud products and to the RGB image. The 
IASI TCDA results in magenta are related to IASI IFOVs 
detected as thin-cirrus by TCDA at odds with CPR/CALIOP-
2B-Geoprof-Lidar & 2C-ICE cloud products classifying them 
as clear sky. However, the area corresponding to the IASI 
IFOVs magenta between about 68°N and 70°N of latitude 
seems to be contaminated by a very thin cirrus, whose presence 
can be deduced from the hazy effect on the underlying surface. 
The corresponding total error values, shown on the right of Fig. 
9, are lower than 1% testifying the TCDA output precision for 
this example. 
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TABLE V 
CONTINGENCY TABLE FOR DICHOTOMOUS STATISTICAL 

ASSESSMENT OF TCDA APPLIED TO REAL IASI OBSERVATIONS 
AGAINST CO-LOCATED 2B-GEOPROF&2C-ICE (1), M*D35(2), 

VIIRS-EDR(3) AND SEVIRI-OCA(4) CLOUD PRODUCTS 
 Reference cloud product cirrus 

presence 

Yes No Total NN 

 
 
 
 
NN thin- 
cirrus 
presence 

Yes 117(1) 

8049(2) 

4470(3) 

1893(4) 

11(1) 

4111(2) 

5722(3) 

1868(4) 

128(1) 

12160(2) 

10192(3) 

3761(4) 

No 131(1) 

1830(2) 

4761(3) 

119(4) 

237(1) 

3139(2) 

3509(3) 

144(4) 

368(1) 

4969(2) 

8270(3) 

263(4) 

Total  248(1) 

9879(2) 

9231(3) 

2012(4) 

248(1) 

7250(2) 

9231(3) 

2012(4) 

496(1) 

17129(2) 

18421(3) 

4024(4) 

 

B. Results of IASI TCDA comparison with MODIS/M*D35 
product 

MODIS orbits acquired between years 2016 and 2018 with a 
good temporal and spatial overlap with IASI orbits have been 
considered for building a dataset of thin-cirrus and clear IASI 
IFOVs based on M*D35 product. 68 orbits were considered, all 
located at high latitudes. MODIS IFOVs collocated within each 
IASI IFOV are denominated MODinIASI. Each IASI IFOV is 
classified clear when all the MODinIASIs are classified as clear 
by M*D35. An IASI IFOV is considered thin-cirrus 
contaminated when a fraction of the MODinIASIs satisfies at 

least one of the two M*D35 thin cirrus tests described above 
(paragraph II-D), and the remaining are clear. The samples 
related to the TCDA dichotomous statistics are indexed with (2) 
in Table V. In detail, the TCDA dichotomous statistics was 
applied to 17129 IASI IFOVs (9879 clear IFOVs, 7250 thin-
cirrus IFOVs). The corresponding statistical scores are: 
POD=0.81, FAR=0.34, BIAS=1.23, indicating good detecting 
skills with some tendency to overestimate thin cirrus presence. 
An example of TCDA application to IASI IFOVs declared 
clear/thin-cirrus contaminated on the basis of the M*D35 
product is shown in Fig. 10, where IASI-TCDA cloud detection 
map and the related TCDA-total-error map are shown on the 
left panel and on the right panel, respectively, for the Metop A-
IASI granule acquired on 18th August 2016 from 18:17 GMT to 
18:20 GMT. The IASI IFOVs classified as thin-cirrus (in 
red/magenta) and clear (in cyan/yellow) have been collocated 
on MODIS true color RGB image, where the high thick clouds 
are white while the high thin ice clouds are characterized by a 
transparent white color and are recognizable by their filament 
shape. In particular, the red IASI IFOVs are classified as thin-
cirrus by the TCDA in agreement with the MOD35 cloud 
product. Most of the red samples correspond to high thick cloud 
or multilayered cloud overlaid by thin cirrus. The IFOVs in 
magenta are clear for MOD35 and thin-cirrus for TCDA that, 
on the basis of the MODIS true color RGB, mostly detects them 
correctly (e.g. magenta IFOVs on Bathurst Island, 
approximately around 75° N latitude and 98° W longitude, as 
well as those near Stefansson Island, approximately around 72° 
N latitude and 104 °W longitude). The associated total error is  
mostly around 10%. The statistical scores related to this 
example are POD=0.95, FAR=0.40 bias=1.59 and accuracy= 
0.65. 

  

Fig. 9. 25th August 2017 from 17:38 GMT to 17:41 GMT: IASI- TCDA versus CPR-CALIOP thin cirrus detection results(left 
panel) and IASI-TCDA total error map (right panel). The AVHRR natural-color RGB image consists in the composition of the 1.6-
µm reflectance (visualized in red), the 0.87-µm reflectance (visualized in green) and the 0.63-µm reflectance (visualized in blue). 
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C. Comparisons with VIIRS/EDR product 
The TCDA was further compared with cloud products 

available from VIIRS. Unlike the MODIS/M*D35 cloud mask 
product, there is no explicit reference to the identification of 
thin cirrus clouds in VIIRS cloud products. Because of this, 
thin-cirrus contaminated IASI IFOVs were defined on the basis 
of cloud information provided by the VIIRS EDR-CCL  and 
VIIRS EDR-COT (described in paragraph II-E). VIIRS-IASI 
spatial/temporal coincidences for years 2016 and 2017 were 
investigated. For simplicity, VIIRS FOVs collocated within a 
IASI IFOV are denominated VIIRSinIASI. Only the IASI 
IFOVs completely covered by the VIIRS FOVs classified as 
clear or thin-cirrus have been considered to implement the clear 
and thin-cirrus datasets to be used for validation. A VIIRS FOV 
is considered thin-cirrus contaminated if: 

● Cloud Fraction greater than 0 only for the highest 
layer (i.e., EDR-CCL-CF>0 only for layer 1, EDR-
CCL-CF=0 for the remaining 3 layers); 

● Cloud Type identified as cirrus (i.e., EDR-CCL-CT 
equal to “cirrus”); 

● Cloud Optical Thickness smaller than 1.72 (i.e., 
0<EDR-COT≤1.72 [49]. 

An IASI IFOV is considered clear when all the VIIRSinIASIs 
are clear (EDR-CCL-CF=0 for all the 4 layers) while it is 
considered thin-cirrus contaminated when a fraction of 
VIIRSinIASIs is classified as thin cirrus and all the remainder 
VIIRSinIASIs are clear. A total of 9231 thin-cirrus-
contaminated and 9231 clear IASI IFOVs were so identified. 
All the VIIRS FOVs used to validate TCDA are located at high 

latitudes, as for M*D35 product.  
The samples of the contingency table for the IASI TCDA 
algorithm comparison with VIIRS EDR product are indexed 
with (3) in Table V. The dichotomous statistical scores are 
characterized by a high FAR (0.56) and a low POD (0.48) with 
a Bias (1.10) that shows a tendency of IASI TCDA algorithm 
to overestimate thin cirrus presence when compared with 
VIIRS EDR product. When considering only the 779 IASI 
IFOVs characterized by COT ≤0.3 and comparing them with 
the same number of clear ones, the statistical results improve 
slightly, in particular VIIRS and IASI agree in detecting about 
the 90% of clear IASI IFOVS (FAR=0.17) and about the 50% 
of the thin-cirrus contaminated IASI IFOVs 
(POD=0.51).Statistical scores obtained against VIIRS-EDR are 
worse than those obtained against MODIS-M*D35. This may 
be a consequence of the indirect detection of thin-cirrus 
contaminated VIIRS IFOVs. In fact, unlike thin cirrus dataset 
built on the basis of M*D35 thin cirrus tests, the IASI IFOV is 
considered thin-cirrus contaminated or clear by considering the 
combination of three different VIIRS-EDR products, which in 
turn derive from several other intermediate products. Moreover, 
the high FAR is also due to the low accuracy of VIIRS in 
detecting cloud area over snow-covered land [49], as evidenced 
also in [15] where the CRIS-cloud detection algorithm trained 

 

  
Fig. 10. 18th August 2018 from 18:17 GMT to 18:20 GMT: IASI- TCDA versus MODIS-MOD35 thin cirrus detection results 
(left panel) and IASI-TCDA total error map (right panel). The MODIS true-color RGB image consists in the composition of the 
0.645-µm reflectance (visualized in red),  the 0.555-µm reflectance (visualized in green) and the 0.469-µm reflectance 
(visualized in blue) 
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on VIIRS cloud mask sometimes misidentifies thin clouds as 
clear sky. Fig. 11 shows an example of TCDA applied to IASI 
IFOVs classified as clear or thin-cirrus on the basis of VIIRS-
EDR cloud product information. As for comparison examples 
in Figs 9 and 10, the red/cyan IASI IFOVs are detected as thin-
cirrus/clear both by TCDA and reference cloud product, while 
the magenta IASI IFOVs correspond to false alarms. The 
example is related to the IASI granule acquired on 6th June 2017 
from 18:50 GMT to 18:53 GMT collocated on VIIRS True 
color RGB image. Comparing the TCDA results with VIIRS 
True color RGB image, it can be deduced that TCDA correctly 
detects clear (in cyan) and thin cirrus (in red) IASI IFOVs in 
agreement with VIIRS-EDR cloud product. The FAR (0.87) for 
this example is very high as it can be seen from the high number 
of magenta IASI IFOVs in Fig. 11. However, some magenta 
IFOVs are related to area where the thin cirrus presence is 
correctly detected by TCDA (e.g. below 65° N latitude). 
Moreover, on the basis of VIIRs-EDR information, IASI IFOVs 
characterized by the same RGB colors are classified differently 
(e.g. IASI IFOVs in the area between 64°N-66°N latitude and 
135°E-140°E longitude as well as in the area between 64°N-
70°N latitude and 150°E-155°E). Due to the high number of 
false alarms, for this example the statistical scores are not good 
(POD=0.51, bias=4.16 and accuracy= 0.68). The Total error 
values are about 10% for most IASI IFOVs. Total error values 
higher than 10% are related to IASI IFOVs detected as clear 
both by TCDA and VIIRS-EDR product. 

D. Results of TCDA validation against SEVIRI/OCA product 
All the validation/comparison results obtained by comparing 
IASI TCDA output with MODIS, VIIRS and CPR products are 
based on high-latitude data, because of the collocation between 
different polar orbiting platforms. To extend the TCDA 
comparisons to mid-latitudes, we also considered the MSG-
SEVIRI OCA product (paragraph II-E). For simplicity, the 
SEVIRI FOV included in IASI IFOV is denominated 

SEVIRIinIASI. On the basis of OCA product, the IASI IFOV 
co-located with MSG-SEVIRI is considered thin-cirrus 
contaminated when all the cloudy SEVIRIinIASIs are classified 
as “single layer ice cloud” with 0 < COT ≤ 1.72 and CTP < 
450 mb. Conversely, the IASI IFOV is considered clear when 
all the SEVIRIinIASI FOVs are clear. A total of 4024 match-
ups were collected for years 2021 and 2022 using IASI on 
MetOp-A/B. As for MODIS and VIIRS products, also for 
MSG-SEVIRI the IASI IFOVs are considered for validation 
only when they are completely covered by MSG-SEVIRI  
FOVs. The number of SEVIRI FOVs included in IASI IFOV 
ranges from ~4 to ~65 depending on the dimensions of the 
SEVIRI FOVs and IASI IFOV. The samples related to the 
IASI-TCDA versus SEVIRI-OCA comparison are indexed with 
(4) in the cumulative contingency Table VI. The corresponding 
statistical scores reveal a good POD (0.94) but also a 
considerable FAR (0.50). Similar statistical results are obtained 
by analyzing the thin cirrus contaminated IASI-IFOVs with 
COT ≤0.3. As for in the VIIRS and MODIS comparisons, the 
comparison with SEVIRI shows that TCDA tends to 
overestimate the thin cirrus presence (bias=1.87). This 
overestimation could be also a consequence of the OCA high 
errors in estimating COT related to optically thin cirrus [43]. 
 

 

  
Fig.11  16th August 2016 from 02:20 GMT to 02:23 GMT: IASI-TCDA versus VIIRS-EDR thin-cirrus detection results (left 
panel) and IASI-TCDA total error map (right panel) 
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Fig. 12 shows the results of TCDA applied to IASI IFOVs 
classified as clear/thin cirrus on the basis of the SEVIRI-OCA 
cloud product. The TCDA results have been collocated on 
SEVIRI Natural Color. The example is related to the IASI 

granule acquired on 19th September 2021 from 10:23 GMT to 
10:26 GMT. The thin cirrus and clear sky IASI IFOVs are 
correctly detected according to the SEVIRI-OCA cloud product 
and RGB image. Some false alarms (in magenta) are related to 
areas that seems contaminated by very thin cirrus (e.g. area 
between 52.5°N- 54°N latitude and 2.5°W-0° longitude) or to 
area contaminated by low clouds (e.g. area between 52.5°N- 
54°N latitude and 10°W-7.5W° longitude). The statistical 
scores related to this example are POD=0.95, Far=0.74, 
bias=3.77, accuracy=0.34 and the Total Error is lower than 10% 
for most IASI IFOVs samples. 
 

IV CONCLUSIONS 

The main novelties characterizing the Thin Cirrus Detection 
Algorithm (TCDA) proposed in this study are: 

1. TCDA is not a standalone algorithm but it is applied 
to the IASI/IASI-NG IFOVs classified as clear-sky by 
any  cloud detection algorithm in order to refine cloud 
screening by detecting the thin cirrus previously 
misidentified as clear-sky; 

2. TCDA also provides an estimate of the classification 
error, which indicates the probability that the 
algorithm misclassified the scenario; 

3. TCDA has been developed for both IASI-NG and 
IASI, thus allowing  
§ a continuous use of the algorithm in the 

transitional phase between the two sensors; 

§ the comparison of IASI/IASI-NG TCDA results 
to highlight the differences between the two 
instruments. 

 

TCDA consists in an approach based on Feedforward Neural 
Network for the detection of optically thin cirrus from the new 
generation sensor IASI-NG and from its predecessor IASI.  
TCDA exploits the whole infrared spectrum in the range [645 
cm-1–2760 cm-1] with a spatial resolution of 0.125 cm-1 for 
IASI-NG and 0.25 cm-1 for IASI to give in output the 
probability that the IASI (IASI-NG) IFOV is thin-cirrus 
contaminated (TCDA NN output >0.5) and the corresponding 
estimated total error. The estimated total error represents the 
estimated uncertainty of clear sky or thin cirrus detection. 
TCDA uses two distinct NNs for IASI and IASI-NG. Although 
the NNs were defined and optimized through the same 
procedure for IASI and IASI-NG, the resulting NN 
configurations differ in architecture and in input selection. This 
was to be expected, as the two sensors have different 
characteristics, especially the improved spectral resolution and 
radiometric signal-to-noise ratio of IASI-NG. These 
improvements result in the better statistical scores obtained for 
IASI-NG respect to IASI, as demonstrated by validating TCDA 
with a simulated dataset. In fact, IASI-NG TCDA outperforms 
IASI TCDA by 3% in POD, 50% in FAR, 1% in BIAS and 2% 
in accuracy.  In order to evaluate the performance of TCDA on 
real observations, IASI TCDA was validated against the 
combined CPR/CALIOP 2B-Geoprof-Lidar and 2C-ICE cloud 
products and compared with three observation datasets from 
passive sensors, i.e., the MODIS-M*D35, VIIRS-EDR, 
SEVIRI-OCA cloud products.  

 

  

Fig.12  19th September 2021 from 10:23 GMT to 10:26 GMT: IASI-TCDA versus SEVIRI-OCA thin-cirrus detection results (left 
panel) and IASI-TCDA total error map (right panel). The SEVIRI natural-color RGB image consists in the composition of the 
0.8-µm reflectance (visualized in red), the 0.6-µm reflectance (visualized in green) and the reflectance (visualized in blue). 
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TABLE VI 

STATISTICAL SCORES OF IASI TCDA AGAINST MODIS-
M*D35,VIIRS-EDR,SEVIRI-OCA AND CPR/CLOUDASAT-

2B-TAU CLOUD PRODUCT 
 

 Dichotomous scores 
Accuracy Bias  POD FAR 

 
Sensor/ 
product 

MODIS/M*D35 0.65 1.23 0.81 0.34 
VIIRS/EDR 0.43 1.10 0.48 0.56 
2B-GEOPROF-
Lidar & 2C-
ICE/CPR&CALIOP 

0.71 0.52 0.47 0.09 

SEVIRI/OCA 0.51 1.87 0.94 0.50 

 
The dichotomous statistical scores are summarized in Table VI. 
The statistics obtained by comparing IASI TCDA with the 
cloud products from passive sensors seem to indicate a 
tendency for IASI-TCDA to overestimate thin cirrus but this 
tendency is not confirmed by the IASI TCDA validation against 
active sensor CPR and CALIOP cloud product where the FAR 
is very low (0.09). The best results are given by comparing 
IASI-TCDA with MODIS-M*D35 product, the only cloud 
product providing an explicit detection of thin cirrus presence. 
This is not the case for VIIRS-EDR and SEVIRI-OCA 
products, which give information about COT and cloud levels, 
from which the thin cirrus presence has been derived.  
Note that, because of their low COT, thin cirrus are the hardest 
clouds to detect. This study only partially addresses cloud 
detection, as TCDA was intended to work on IASI/IASI-NG 
IFOVs classified as clear by a cloud mask previously applied.  
A future study will be dedicated to the implementation of a 
cloud classification mask, including TCDA, with the aim to 
exploit IASI-NG hyperspectral data for the detection of 
multilayer clouds and eventually overlapping thin cirrus. 
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APPENDIX A - NEURAL NETWORK OVERVIEW  

Under specific conditions, the NNs are the universal 
approximators of any continuous function with arbitrary 
accuracy [50]. A NN is a computing system based on 
perceptrons (neurons o nodes) organized in layers connected in 
a chain, whose overall length gives the depth of the NN. In the 
feedforward NN the input information �⃗� moves always forward 
through the first layer called input layer, then follows into the 
intermediate levels, or hidden layers, and finally into the output 
layer to obtain the output results �⃗�. In the fully connected NN 
used in this study, each node of a layer is connected to each 
node of the next layer by a weight 𝑤-,89  where i and j indicate 
the indexes of the two nodes of the two contiguous layers k and 

k+1. In the input layer, the output of each node corresponds to 
a single input, while in the other layers the output of the node j 
of the layer k, 𝑦89 is: 
 

𝑦89 = 𝑡𝑟𝑓𝑢𝑛X∑ Z𝑤-,89 𝑦-9"$[:
-;$ + 𝑏89]                 (A1) 

 
where 𝑏89 is a bias, 𝑘 is the considered layer with 𝑀 nodes and 
𝑡𝑟𝑓𝑢𝑛 is a transfer function properly chosen to modulate the 
summation result. The choices for the number of hidden layers, 
their nodes, and the transfer functions for each layer define the 
NN architecture. The procedure to calculate the weights and 
biases is the so-called training phase, which in this study was 
carried out by using the Levenberg-Marquardt backpropagation 
algorithm [51], [52] that iteratively adjusts weights and biases 
minimizing the Mean Square Error (MSE).  
To minimize the risk of overfitting and reducing the 
computational cost by limiting the number of the training 
epochs (i.e., the training cycles used by the backpropagation 
algorithm through the full training dataset), two early stopping 
rules were used in this study: 

i. the MSE calculated on the Validation dataset 
increases for five consecutive epochs; 

ii. the MSE gradient with respect to the weights 
calculated on the training dataset drops below 0.1‰ 
of the variance of the NN output. 

When the training stops, the weights and biases corresponding 
to the epoch with minimum of MSE calculated on the 
Validation dataset are chosen. 
 

APPENDIX B - DEFINITION OF THE NN ARCHITECTURE 

In general, NNs with at least one hidden layer are universal 
approximators of any continuous function, as long as the 
transfer function of the nodes in the hidden layers is continuous, 
limited and not-constant, with pure linear activation function in 
the output layer and with enough hidden units available [50]. 
However, although one hidden layer is enough to approximate 
any continuous function, NNs with two hidden layers generally 
produce better results [53]. Traditional NNs with 2 hidden 
layers are chosen to keep the complexity of the proposed 
architecture as low as feasible. To define the number of nodes 
in the hidden layers, an iterative trial-and-error approach was 
adopted. Starting with only one node for both hidden layers, for 
each iteration two NNs were configured by adding one node 
separately both on the 1st  and on the 2nd hidden layer. The two 
NNs were subsequently trained and compared, finally choosing 
the one that produced the least MSE. The iterative procedure 
continues with the progressive addition of nodes and ends when 
the gradient of the 3-points moving averages of MSE calculated 
on the Validation dataset increases 10 times consecutively. The 
final configuration is chosen in correspondence to the minimum 
of the MSE calculated on the Validation dataset with a tolerance 
of 1%, in the minimum input number direction. To evaluate the 
contribution of the transfer functions to the NN architecture, the 
three most common transfer functions were considered: 
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● hyperbolic tangent sigmoid function 𝑓(𝑥) = +
$/!"#$

− 1 

● logarithmic sigmoid function  𝑓(𝑥) = $
$/!"$

 
● linear function  𝑓(𝑥) = 𝑥 

The above-described iterative procedure was performed for 
each of the 12 combinations of the transfer functions, obtained 
by using the first two functions for the two hidden layers and 
all the three functions for the output layer. The combination of 
the transfer functions that produces the minimum MSE 
calculated on the Validation dataset was finally selected. For 
IASI the best architecture consists of 23 nodes on the 1st hidden 
layer, 8 nodes in the 2nd hidden layer, with the transfer functions 
[logarithmic sigmoid – logarithmic sigmoid – logarithmic 
sigmoid]. For IASI-NG the best architecture consists of 10 
nodes on the 1st hidden layer, 4 nodes in the 2nd hidden layer, 
with the transfer functions [tangent sigmoid – logarithmic 
sigmoid – logarithmic sigmoid] for [1st hidden layer – 2nd 
hidden layer – output layer]. 

 
APPENDIX C - SELECTION OF NN INPUTS 

To reduce the risk of overfitting of the NNs, an iterative input 
removal procedure was adopted, which starts from the less 
important ones and ends until the desired degree of tolerance is 
reached. In this procedure, at the first iteration, all the inputs are 
removed, one at a time, and the relative weight redistributed 
among the remaining inputs by minimizing the MSE by using 
the approach described in Castellano and Fanelli [54]. The NN 
corresponding to the input whose removal returns the minimum 
MSE calculated on the Training dataset is selected and its 
weights and bias are updated, by using Levenberg-Marquardt 
algorithm and the same two early stopping rules introduced 
above. The procedure is then reiterated starting from the 
number of the inputs obtained in the previous iteration, until 
only one input remains. The final subset of inputs was chosen 
by selecting those corresponding to the minimum MSE 
calculated on the Validation dataset, with a 1% tolerance, in the 
direction of the minimum input number.  
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