
Validation of Modern JSON Schema: Formalization and
Complexity

LYES ATTOUCHE, Université Paris-Dauphine - PSL, France
MOHAMED-AMINE BAAZIZI, Sorbonne University, France
DARIO COLAZZO, Université Paris-Dauphine - PSL, France
GIORGIO GHELLI, University of Pisa, Italy

CARLO SARTIANI, University of Basilicata, Italy

STEFANIE SCHERZINGER, University of Passau, Germany

JSON Schema is the de-facto standard schema language for JSON data. The language went through many

minor revisions, but the most recent versions of the language, starting from Draft 2019-09, added two novel

features, dynamic references and annotation-dependent validation, that change the evaluation model. Modern

JSON Schema is the name used to indicate all versions from Draft 2019-09, which are characterized by these

new features, while Classical JSON Schema is used to indicate the previous versions.

These new “modern” features make the schema language quite difficult to understand and have generated

many discussions about the correct interpretation of their official specifications; for this reason, we undertook

the task of their formalization. During this process, we also analyzed the complexity of data validation in

Modern JSON Schema, with the idea of confirming the polynomial complexity of Classical JSON Schema

validation, and we were surprised to discover a completely different truth: data validation, which is expected

to be an extremely efficient process, acquires, with Modern JSON Schema features, a PSPACE complexity.

In this paper, we give the first formal description of Modern JSON Schema, which we have discussed with

the community of JSON Schema tool developers, and which we consider a central contribution of this work.

We then prove that its data validation problem is PSPACE-complete. We prove that the origin of the problem

lies in the Draft 2020-12 version of dynamic references, and not in annotation-dependent validation. We study

the schema and data complexities, showing that the problem is PSPACE-complete with respect to the schema

size even with a fixed instance but is in P when the schema is fixed and only the instance size is allowed

to vary. Finally, we run experiments that show that there are families of schemas where the difference in

asymptotic complexity between dynamic and static references is extremely visible, even with small schemas.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: JSON Schema, complexity of validation

ACM Reference Format:

Lyes Attouche,Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger.

2024. Validation of Modern JSON Schema: Formalization and Complexity. Proc. ACM Program. Lang. 8, POPL,

Article 49 (January 2024), 31 pages. https://doi.org/10.1145/3632891

Authors’ addresses: Lyes Attouche, Université Paris-Dauphine - PSL, Paris, France, lyes.attouche@dauphine.fr; Mohamed-

Amine Baazizi, Sorbonne University, Paris, France, baazizi@ia.lip6.fr; Dario Colazzo, Université Paris-Dauphine - PSL,

Paris, France, dario.colazzo@dauphine.fr; Giorgio Ghelli, University of Pisa, Pisa, Italy, ghelli@di.unipi.it; Carlo Sartiani,

University of Basilicata, Potenza, Italy, carlo.sartiani@unibas.it; Stefanie Scherzinger, University of Passau, Passau, Germany,

stefanie.scherzinger@uni-passau.de.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART49

https://doi.org/10.1145/3632891

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
https://doi.org/10.1145/3632891
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3632891
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632891&domain=pdf&date_stamp=2024-01-05

49:2 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

1 INTRODUCTION

JSON Schema [Org 2022] is the de-facto standard schema language for JSON data. It is based on
the combination of structural operators, which describe base values, objects, and arrays, through
logical operators such as disjunction, conjunction, negation, and recursive references.
JSON Schema passed through many versions, the most important being Draft-04 [Galiegue

and Zyp 2013], Draft-06 [Wright et al. 2017], which introduced extensions without changing the
validation model, Draft 2019-09 [Wright et al. 2019], and Draft 2020-12 [Wright et al. 2022].

The evaluation model of Draft-04 and Draft-06 is quite easy to understand and to formalize, and
it has been studied in [Pezoa et al. 2016], [Bourhis et al. 2017, 2020], [Attouche et al. 2022], yielding
many interesting complexity results. However, Draft 2019-09 introduces two important novelties to
the evaluation model: annotation-dependent validation, and dynamic recursive references, which
have been generalized as general-purpose dynamic references in Draft 2020-12. According to the
terminology introduced by Henry Andrews in [Andrews 2023], because of these modifications
to the evaluation model, Draft 2019-09 is the first Draft that defines Modern JSON Schema, while
the previous Drafts define variations of Classical JSON Schema. These novelties are motivated by
application needs, but none of them is faithfully represented by the abstract models that had been
developed and studied for Classical JSON Schema. Further, both novelties need formal clarification
and specification, as documented by many online discussions, such as [Neal 2022] and [Jacobson
2021]. These discussions involve main actors behind the JSON Schema design and show that the
informal JSON Schema specification leads to several, different, yet reasonable interpretations of the
semantics of the new operators in Modern JSON Schema.

Our Contribution. Draft 2020-12 [Wright et al. 2022] is the version of Modern JSON Schema that
we study in this paper. We provide the following contributions.1

i) We provide a formalization of Modern JSON Schema through a set of rules that take into account
both annotation-dependent validation and dynamic references (Sections 3 and 4); to the best
of our knowledge this is the first formal specification and study of Modern JSON Schema.
In addition, we implemented, in Scala, a Modern JSON Schema data validator by a direct
translation of our formal system and used it to verify the correctness of our formal system
with respect to the JSON Schema standard test suite (Section 10).

ii) We analyze the complexity of validating a JSON instance against a schema and show that,
surprisingly enough, when the general-purpose dynamic references of Draft 2020-12 come
into play, the validation problem becomes PSPACE-hard (Section 5); validation was known
to be P-complete for Classical JSON Schema [Bourhis et al. 2017; Pezoa et al. 2016]. We also
prove that the bound is strict and, hence, the problem is PSPACE-complete (Section 6).

iii) We show that annotation-dependent validation alone, on the contrary, does not change the P
complexity of validation, by providing an explicit algorithm for Modern JSON Schema that
runs in polynomial time on any family of schemas where the number of dynamic references
is bounded by a constant (Section 7). We also show that the validation for Draft 2019-09 was
still in P, because of the restrictions that it imposed on dynamic references. We study the
data complexity of validation and prove that, when fixing a schema (, validation remains
polynomial even in the presence of dynamic references.

iv) We provide a technique for substituting dynamic references with static references, at the price
of an exponential increase of the schema size (Section 8).

v) We run experiments on a rich set of validators that show that there are families of schemas where
the distinction between dynamic and static references is clearly visible in the experimental

1Unless otherwise noticed, all proofs are in the full version [Attouche et al. 2023c].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

https://modern-json-schema.com/
https://github.com/json-schema-org/json-schema-spec/issues/1172
https://github.com/orgs/json-schema-org/discussions/57
https://github.com/orgs/json-schema-org/discussions/57

Validation of Modern JSON Schema: Formalization and Complexity 49:3

results; the experiments also show that many established validators exhibit an exponential
behavior also on the P fragment of JSON Schema (Section 10).

This paper is about Formalization and Complexity. We believe that the formalization that we
provide answers a need that has been clearly expressed in many public discussions, and we will
use our connections with the JSON Schema community in order to disseminate our results.

Our complexity results, on the other hand, belong, for the moment, to the class of “foundational”
results, that is, theoretical results that shed light on a phenomenon whose practical relevance
may manifest in the future. Concretely, this is the first time that we encounter a construct of a
data-validation language whose complexity is not in P (unless P=PSPACE). As a consequence,
from now on, we know that the addition of a dynamic re-binding mechanism to a data validation
language may have an unexpected impact on its computational complexity.

2 MODERN JSON SCHEMA THROUGH EXAMPLES

2.1 An Example of Modern JSON Schema

A JSON Schema schema is a formal specification of a validation process that can be applied to a
JSON value called “the instance”. A schema, such as the one in Figure 1, can contain nested schemas.
A schema is either true, false, or it is an object whose fields, such as "type" : "array", are called
keywords. Two keywords with the same parent object, such as "$id" : "https:.../schema" and "type"
: "object" in Figure 1, are said to be adjacent, so that keywords are adjacent when they are siblings
in the parse tree of the schema.

1 { " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",

2 "$id": "http :// mjs.ex/st",

3 " $anchor ": "tree",

4 "type": " object ",

5 " properties ": {

6 "data": true,

7 " children ": { "type": " array ", " items ": { "$ref": "http:// mjs.ex/st#tree"}}

8 },

9 " examples ": [

10 { "data": 3, " children ": [{ "data": null, " children ": [] }, { "data": " ", " children ": []}]},

11 { " children ": [{ "data": null }, { " children ": [{ }] }] },

12 { "daat": 3, " hcilreden ": true }]

13 }

Fig. 1. A schema representing trees.

Looking at Figure 1, the "$schema" keyword specifies that this schema is based on Draft 2020-12.
Subschemas of a JSON schema can be identified through a URI with structure baseURI · "#" ·

fragmentId (we use B1 ·B2 for string concatenation); the "$id" keyword assigns a base URI to its
parent schema, and the "$anchor" keyword assigns a fragment identifier to its parent schema, so
that, in this case, the fragment named "tree" by "$anchor" is the entire schema. Hence, this schema
can be referred to as either "http://mjs.ex/st" or as "http://mjs.ex/st#tree".
The "type" keyword specifies that this schema only validates objects, while it fails on arrays

and base values. The "properties" keyword specifies that, if the instance under validation contains
a "data" property, then its value has no constraint ("data" : true), and, if it contains a "children"
property, then its value must satisfy the nested subschema of line 7: it must be an array whose
elements (if any) must all satisfy "$ref" : "http://mjs.ex/st#tree". "$ref" is a reference operator
that invokes a local or remote subschema, which, in this case, is the entire current schema.2

2By the standard rules of URI reference resolution [Berners-Lee et al. 2005], the URI "http://mjs.ex/st#tree" could be

substituted by the local reference "$ref" : "#tree", since "http://mjs.ex/st" is the base URI of this schema.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:4 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

This schema is satisfied by all the instances that are listed in the "examples" array.3 The second
example shows that no field is mandatory — fields can be made mandatory by using the keyword
"required". The third example shows that fields that are different from "data" and "children" are
just ignored. To sum up, the only JSON instances where this schema fails are those that associate
"children" to a value that is not an array, such as {"data" : 3, "children" : "aaa"}.

Introducing dynamic references. Dynamic references have been added in Modern JSON Sche-
ma as an extension mechanism, allowing one to first define a base form of a data structure and
then to refine it, very much in the spirit of “self” refinement in object-oriented languages. To
this aim, the basic data structure is named using "$dynamicAnchor" and is referred using the
"$dynamicRef" keyword, as in Figure 2, lines 3 and 7. This combination indicates that "$dynamicRef" :
"http://mjs.ex/simple-tree#tree" is dynamic, which means that, when this schema is accessed
through a different context, as exemplified later, this dynamic reference may refer to a fragment
that is still named "tree", but which is defined in a schema that is not "http://mjs.ex/simple-tree".
We underline the absolute URI part of the dynamic reference to remind the reader of the fact that
this URI is only used if it is not redefined in the “dynamic context”, as we will explain later.

1 { " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",

2 "$id": "http :// mjs.ex/simple −tree",

3 " $dynamicAnchor ": "tree",

4 "type": " object ",

5 " properties ": {

6 "data": true,

7 " children ": { "type": " array ", " items ": { " $dynamicRef ": "http://mjs.ex/simple-tree#tree" }}}

8 }

Fig. 2. A schema representing extensible trees.

The contextual redefinition mechanism is illustrated in the schema shown in Figure 3. The
schema "http://mjs.ex/strict-tree" redefines the dynamic anchor "tree" (line 3), so that it now in-
dicates a conjunction between "$ref" : "http://mjs.ex/simple-tree#tree" (line 4) and the keyword
"unevaluatedProperties" : false (line 5), which forbids the presence of any property whose name
does not match those listed in "http://mjs.ex/simple-tree#tree". If one applies this schema, it will
invoke "$ref" : "http://mjs.ex/simple-tree#tree" (Figure 3 - line 4), which will execute the schema
of Figure 2 in a “dynamic scope” where "http://mjs.ex/strict-tree" has redefined the meaning of
"$dynamicRef" : "http://mjs.ex/simple-tree#tree". In detail, in Draft 2020-12, the “outermost” (or

“first”) schema that contains "$dynamicAnchor" : fragmentName is the one that fixes the meaning of
that anchor for any other schema (′ that will invoke "$dynamicRef" : absURI ·"#" ·fragmentName

later, independently from the absolute URI absURI used by (′, hence, in this case, the meaning
of "http://mjs.ex/simple-tree#tree" in Figure 2 is fixed to be "http://mjs.ex/strict-tree#tree"
because the schema of Figure 3 is invoked before the one in Figure 2. Observe that the meaning
of the static reference "$ref" : "http://mjs.ex/simple-tree#tree" to the dynamic anchor "#tree"
(Figure 3 line 4) is fixed and does not depend on the dynamic context.

As another example, in Figure 4, we have a simplified version of the metaschema of JSON Schema.
The metaschema "https://json-schema.org/draft/2020-12/meta/applicator" has a dynamic an-

chor (i.e., name) "meta", and specifies that the value of a "properties" keyword is an object �? , where
every field of �? has an arbitrary name (like "data" or "children" in Figure 2 line 6), and the value
of every field of �? (such as true and { "type" : "array", . . . } in Figure 2 line 7) is itself a schema; the

3JSON Schema validation will just ignore all non-validation keywords such as "examples".

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

Validation of Modern JSON Schema: Formalization and Complexity 49:5

1 { " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",

2 "$id": "http :// mjs.ex/strict −tree",

3 " $dynamicAnchor ": "tree",

4 "$ref": "http:// mjs.ex/simple −tree#tree",

5 " unevaluatedProperties ": false ,

6 "non − examples " : [

7 { "dat": 3 },

8 { "data": 3, " chldrn ": [] },

9 { " children ": [{ "data": null }, { " chldrn ": []}]}]

10 }

Fig. 3. A schema that refines trees.

1 { "$id": " https :// json − schema .org/ draft /2020 −12/ meta/ applicator ",

2 " $dynamicAnchor ": "meta",

3 " properties ": {

4 " properties ": {

5 "type": " object ",

6 " patternProperties ": {

7 ".∗": { " $dynamicRef ": "https://json-schema.org/draft/2020-12/meta/applicator#meta" }

8 }

9 }

10 }

11 }

12

13 { "$id": " https :// json − schema .org/ draft /2020 −12/ meta/ uneval ",

14 " $dynamicAnchor ": "meta",

15 " properties ": {

16 " unevaluatedProperties ": { " $dynamicRef ": "https://json-schema.org/draft/2020-12/meta/uneval#meta" }

17 }

18 }

19

20 { "$id": " https :// json − schema .org/ draft /2020 −12/ meta/core",

21 " $dynamicAnchor ": "meta",

22 "type" : [" boolean ", " object "],

23 " properties ": {

24 "$id": { "type": " string " },

25 " $dynamicAnchor ": { "type": " string " },

26 " $title ": { "type": " string " }

27 }

28 }

29

30 { "$id": " https :// json − schema .org/ draft /2020 −12/ schema ",

31 " $dynamicAnchor ": "meta",

32 " allOf ": [{"$ref": " https :// json − schema .org/ draft /2020 −12/ meta/ applicator "},

33 {"$ref": " https :// json − schema .org/ draft /2020 −12/ meta/ uneval "},

34 {"$ref": " https :// json − schema .org/ draft /2020 −12/ meta/core"}]

35 }

36

37 { "$id": " https :// json − schema .org/ draft /2020 −12/ mini − schema ",

38 " $dynamicAnchor ": "meta",

39 " allOf ": [{"$ref": " https :// json − schema .org/ draft /2020 −12/ meta/ applicator "},

40 {"$ref": " https :// json − schema .org/ draft /2020 −12/ meta/core"}]

41 }

Fig. 4. JSON Schema metaschema

use of "$dynamicRef" : "https://json-schema.org/draft/2020-12/meta/applicator#meta" allows
the programmer to later redefine what constitutes a valid schema.
In the same way, the metaschema "https://json-schema.org/draft/2020-12/meta/uneval" has

the same dynamic anchor (name) "meta", and specifies that the value of a "unevaluatedProperties"
keyword is itself a schema (we will describe "unevaluatedProperties" later on).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:6 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

The metaschema "https://json-schema.org/draft/2020-12/meta/core" just specifies that every
schema is either a boolean or an object, and that the value of keywords "$id", "$dynamicAnchor",
and "title", is a string.
The metaschema "https://json-schema.org/draft/2020-12/schema" combines the three frag-

ments above, and redefines the dynamic anchor "meta", so that, when an instance is validated using
"https://json-schema.org/draft/2020-12/schema", any dynamic reference "...#meta" found inside
any of the three fragments actually refers to "https://json-schema.org/draft/2020-12/schema",
that is, to their conjunction.
Some validators do not support the "unevaluatedProperties" keyword; these validators would

then use the "https://json-schema.org/draft/2020-12/mini-schema" metaschema. It combines
only two of the fragments above, and redefines the dynamic anchor "meta", so that, when an
instance is validated using ".../mini-schema", any"$dynamicRef": "...#meta" found inside any of
the two fragments refers to ".../mini-schema".

To sum up, the dynamic nature of "...#meta" allows one to define a “customized” metaschema by
choosing the specific fragments to combine. This example is very important, since it provided the
initial motivation for the introduction of dynamic references: allowing the definition of different
versions of the metaschema by choosing which fragments to combine.

The semantics of dynamic references is not easy to understand, and we believe that it needs a
formal definition. We are going to provide that definition.

2.2 Annotation Dependency

In Modern JSON Schema, the application of a keyword to an instance produces annotations, and
the validation result of a keyword may depend on the annotations produced by adjacent keywords.
These annotations carry a lot of information, but the information that is relevant for validation
is which children of the current instance (that is, which properties, if it is an object, or which
items, if it is an array) have already been evaluated. This information is then used by the operators
"unevaluatedProperties" and "unevaluatedItems", since they are only applied to children that have
not been evaluated.
For example, the assertion "unevaluatedProperties" : false in the schema of Figure 3 depends

on the annotations returned by the adjacent keyword "$ref" : "http://mjs.ex/simple-tree#tree"
(which refers to the schema in Figure 2). In this case, "$ref" evaluates all and only the fields whose
name is either "data" or "children". Hence, "unevaluatedProperties" : false is applied to any other
field, and it fails if, and only if, fields with a different name exist.
The order in which the keywords appear in the schema is irrelevant for this mechanism; as

formalized later, the result is the same as if the "unevaluatedProperties" keyword was always
evaluated last among the keywords inside its schema (i.e., its adjacent keywords).

The definition of evaluated in the specifications of Draft 2020-12 ([Wright et al. 2022]) presents
many ambiguities, as testified by online discussions such as [Neal 2022] and [Jacobson 2021]. These
ambiguities do not affect the final result of the evaluation, but only the error messages that are
generated; these aspects are further discussed in the full version, and we will formalize here the
interpretation that is more widely accepted. We believe that an important contribution of this work
is that it provides a precise and succinct language in which these ambiguities can be discussed and
settled.

3 FORMALIZING JSON SCHEMA SYNTAX

A key contribution of this work is a formalization of the entire Modern JSON Schema language,
but, for reasons of space, we only report here a crucial subset that illustrates the approach and is
sufficient to carry out the complexity analysis; the remaining part is in the full version.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

https://github.com/json-schema-org/json-schema-spec/issues/1172
https://github.com/orgs/json-schema-org/discussions/57

Validation of Modern JSON Schema: Formalization and Complexity 49:7

In this section, we formalize the syntax, which does not present any technical difficulty; the
validation behavior is defined in the next section.

Schemas are structured as resources, which are collected into documents and refer to each other
using URIs. We deal with these aspects through a “normalization process” (Section 3.1), where we
eliminate the issues related to URI resolution and to the collection of many resources in just one
document; we then formalize the syntax of normalized JSON Schema in Section 3.2.

3.1 URI Resolution, Resource Fla�ening, Schema Closing

The keywords "$id", "$ref", and "$dynamicRef" accept any URI reference as value, they apply the
resolution process defined in [Berners-Lee et al. 2005], and then interpret the resulting resolved
URI according to the JSON Schema rules. Since resolution is already specified in [Berners-Lee et al.
2005], we will not formalize it here, and we will assume that, in every schema that is interpreted
through our rules, the values of these three keywords have already been resolved, and that the
result of that resolution has the shape absURI ·"#"·fragmentId for "$ref", and "$dynamicRef", where
fragmentId may be empty and has the shape absURI , with no fragment, for "$id".

A "$id" : absURI keyword at the top-level of a schema object (83 that is nested inside a JSON Sche-
ma document (indicates that the schema object (83 is a separate resource, identified by absURI , that
is embedded inside the document (but is otherwise independent. Embedded resources are an im-
portant feature, since they allow the distribution of different resources with just one file, but present
some problems when they are nested inside arbitrary keywords, and when a reference crosses
the boundaries between resources, as does "$ref" : "http://mjs.ex/top#/properties/foo/items" in
Figure 5, line 3 (see also Section 9.2.1 of the specifications [Wright et al. 2022]) (a fragment identifier
following "#" may be either an anchor, as in the previous examples, or a JSON path, as in this case).

1 { " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",

2 "$id": "http :// mjs.ex/top",

3 "$ref": "http:// mjs.ex/top #/ properties /foo/ items ",

4 " properties ": {

5 "foo": { " $schema ": " https :// json − schema .org/ draft /2019 −09/ schema ",

6 "$id": "http :// mjs.ex/ nestedFoo ",

7 " items ": { "type": " object "}}},

8 " unevaluatedProperties ": { "$id": "http :// mjs.ex/ nestedUnevaluatedProps ", "type": " string " }}

1 { " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",

2 "$id": "http :// mjs.ex/top",

3 "$ref": "http:// mjs.ex/ nestedFoo #/ items ",

4 " properties ": { "foo": { "$ref": "http :// mjs.ex/ nestedFoo #" }},

5 " unevaluatedProperties ": { "$ref": "http:// mjs.ex/ nestedUnevaluatedProps #" },

6 " $defs ": { "http:// mjs.ex/ nestedFoo " : {

7 " $schema ": " https :// json − schema .org/ draft /2019 −09/ schema ",

8 "$id": "http:// mjs.ex/ nestedFoo ",

9 " items ": { "type": " object "}}},

10 "http :// mjs.ex/ nestedUnevaluatedProps " : {

11 "$id": "http:// mjs.ex/ nestedUnevaluatedProps ",

12 "type": " string "}}

1 Valid instances : { "foo": [{ "aa" : 3 }, {}] }

2 { "bar": "any string " }

3 { "foo": [{ "bb" : "a" }], " other " : "z" }

4 Non valid instances : { "foo": [3] }

5 { "any": 3 }

Fig. 5. A schema with embedded resources, its fla�ened version, and some examples.

To avoid this kind of problem, we assume that every JSON Schema document is resource-flattened
before validation. Resource flattening consists in moving every embedded resource identified by

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:8 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

"$id" : absURI into the value of a field named absURI of a "$defs" keyword at the top level of the
document, and replacing the moved resource with an equivalent schema {"$ref" : absURI · "#"}
that invokes that resource;4 "$defs" is a placeholder keyword that is not evaluated but is a place to
collect schemas that can be invoked using "$ref" or "$dynamicRef". 5 During this phase, we also
replace any reference that crosses resource boundaries with an equivalent reference whose URI
is the base URI of the target, as suggested in Section 8.2 of the specifications [Wright et al. 2022]
(e.g., line 3 in the first schema of Figure 5, which crosses the boundary of the internal resource
"http://mjs.ex/nestedFoo", is substituted with the equivalent reference of line 3 in the second
schema); the two steps are exemplified in Figure 5.

Closed schemas. The input of a validation problem includes a schema (and all schemas that are
recursively reachable from (by following the URIs used in the "$ref" and "$dynamicRef" operators.
For complexity evaluation, we will only consider closed schemas, that is, schemas that include all
the different resources that can be recursively reached from the top-level schema. There is no loss
of generality, since external schemas can be embedded in a top-level one by copying them in the
"$defs" section, using the "$id" operator to preserve their base URI.

3.2 JSON Schema Normalized Grammar

JSON Schema syntax is a subset of JSON syntax. We present in Figure 6 the grammar for a subset of
the keywords, which is rich enough to present our results. In this grammar, the meta-symbols are
(X)∗, which is Kleene star of - , and (X)?, which is an optional - . Non-terminals are italic words,
and everything else — including { [, :] } — are terminal symbols.
JSON Schema allows the keywords to appear in any order and evaluates them in an order that

respects the dependencies among keywords. We formalize this behavior by assuming that, before
validation, each schema is reordered to respect the grammar in Figure 6. The grammar specifies
that a schema (is either a boolean schema, that matches any value (true) or no value at all (false),
or it begins with a possibly empty sequence of Independent Keywords or triples (IK), followed by a
possibly empty sequence of First-Level Dependent keywords (FLD), followed by a possibly empty
sequence of Second-Level Dependent keywords (SLD). Specifically, the two keywords in FLD,
"additionalProperties" and "items", depend on some keywords in IK (such as "properties" and
"patternProperties"), and the two keywords in SLD depend on the keywords in FLD, and on many
keywords in IK , such as "properties", "patternProperties","anyOf", "allOf", "$ref", and others.
This grammar specifies the predefined keywords, the type of the associated value (here JVal is

the set of all JSON values, and plain-name denotes any alphanumeric string starting with a letter),
and their order. We do not formalize here further restrictions on patterns ? , absolute URIs absURI ,
and fragment identifiers 5 . A valid schema must also satisfy two more constraints: (1) every URI
that is the argument of "$ref" or "$dynamicRef" must reference a schema, and (2) any two adjacent
keywords must have different names.

4 JSON SCHEMA VALIDATION

JSON values � are either base values, or nested arrays and objects; the order of object fields is
irrelevant.

B ∈ Str, 3 ∈ Num, = ∈ Int, = ≥ 0, ;8 ∈ Str

� ::= null | true | false | 3 | B | [�1, . . . , �=] | { ;1 : �1, . . . , ;= : �= } 8 ≠ 9 ⇒ ;8 ≠ ; 9

4The empty fragment identifier after absURI ·"#" refers to the root of the resource absURI .
5The "$defs" keyword is the “Modern” version of the "definitions" keyword of Classical JSON Schema, and the act of

collecting all embedded resources in the "$defs" section is described as “bundling” in Draft 2020-12, Section 9.3.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

https://json-schema.org/draft/2020-12/json-schema-core#name-compound-documents

Validation of Modern JSON Schema: Formalization and Complexity 49:9

@ ∈ Num, 8 ∈ Int, : ∈ Str, absURI ∈ Str, 5 ∈ Str, format ∈ Str, ? ∈ Str, � ∈ JVal

Tp ::= "object" | "number" | "integer" | "string" | "array" | "boolean" | "null"

S ::= true | false | { IK (, IK)∗ (, FLD)∗ (, SLD)∗ }
| { FLD (, FLD)∗ (, SLD)∗ } | { SLD (, SLD)∗ } | { }

IK ::= "minimum" : @ | "maximum" : @ | "pattern" : ? | "required" : [:1, . . . , :=]
| "type" : Tp | "type" : [Tp1, . . . , Tpn] | "$defs" : { :1 : (1, . . . , := : (= }
| "$id" : absURI | "$ref" : absURI ·"#"·f | "$dynamicRef" : absURI ·"#"·f
| "$anchor" : plain-name | "$dynamicAnchor" : plain-name
| "anyOf" : [(1, . . . , (=] | "allOf" : [(1, . . . , (=] | "not" : (
| "patternProperties" : { ?1 : (1, . . . , ?< : (< }
| "properties" : { :1 : (1, . . . , :< : (< }
| : : � (with : not previously cited)

FLD ::= "additionalProperties" : (| "items" : (
SLD ::= "unevaluatedProperties" : (| "unevaluatedItems" : (

Fig. 6. Minimal grammar of normalized JSON Schema Dra� 2020-12.

In this paper, we reserve the notation { . . . } to JSON objects, hence we use {| 01, . . . , 0= |} and
{| 08 |}

8∈� to indicate a set. When the order of the elements is relevant, we use the list notation
[| 01, . . . , 0= |]; we also use ®0 to indicate a list.
Given a pattern ? , we will use !(?) to denote the language generated by ? , i.e., the set of all

strings that match that pattern.

4.1 Introduction to the Proof System

We are going to define a judgment that describes the result and the annotations that are returned
when a keyword = : :% is applied to an instance � in a context� , where� provides the information
needed to interpret dynamic references. Hence, we read the judgment � ⊢K � : → (A, ^) as: the
application of the keyword to the instance � , in the context � , returns the boolean A and the
annotations ^ . The annotations, as defined in [Wright et al. 2022], are a complex data structure, but
we only represent here the small subset that is relevant for validation, that is, the set of evaluated
children, of the instance � . The evaluated children of an object are represented by their names, and
the evaluated children of an array by their position, so that:

� ⊢K � : → (A, ^) ∧ � = { :1 : �1, . . . , := : �= } ⇒ ^ ⊆ {| :1, . . . , := |}

� ⊢K � : → (A, ^) ∧ � = [�1, . . . , �=] ⇒ ^ ⊆ {| 1, . . . , = |}

� ⊢K � : → (A, ^) ∧ � a base value ⇒ ^ = ∅

Hence, the set of annotations ^ can contain member names (strings) or array positions (integers).
We define a similar schema judgment� ⊢S � : (→ (A, ^) in order to describe the result of applying

a schema (to an instance � , and we define a list evaluation judgment� ⊢L � : [| 1, . . . , = |] → (A, ^)
in order to apply a list of keywords to � , passing the annotations produced by a sublist [| 1, . . . , 8 |]
to the following keyword 8+1. Observe that the letters K, S, and L that appear on top of ⊢ are not
metavariables but just symbols used to differentiate the three judgments.
In the next sections, we define the rules for keywords and for schemas. Keywords are called

assertions when they assert properties of the analyzed instance, so that "$id" : absURI is not an
assertion, while "type" : Tp is. Assertions are called applicators when they have schema parameters,
such as (1 and (2 in "anyOf" : [(1, (2], that they apply either to the instance, in which case they are

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:10 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

in-place applicators (e.g, "anyOf" : [(1, (2]), or to elements or items of the instance, in which case
they are object applicators or array applicators (e.g., "properties" : { :1 : (1, :2 : (2 }).
In the following, we present the rules for “terminal” assertions, Boolean in-place applicators,

and for object and array applicators. We also illustrate the rules for sequential evaluation and for
the schema judgments and, finally, for static and dynamic references. Rules are shown in Figure 7.

4.2 Terminal Assertions

Terminal assertions are those that do not contain any subschema to reapply. The great majority of
them are conditional on a type) : they are trivially satisfied when the instance � does not belong
to) , and they otherwise verify a specific condition on � . Hence, these keywords are defined by a
couple of rules, as exemplified here for the keyword "minimum" : @. Rule (minimumTriv) (Figure 7)
always returns T (true) when � is not a number, while rule (minimum), applied to numbers, returns
the same boolean A ∈ {| T , F |} as checking whether � ≥ @. The set of evaluated children is ∅: in
our model, these two rules do not generate an annotation.
These typed terminal assertions are completely defined by a type and a condition; a complete

list of these keywords, with the associated type and condition, is in the full version.
We also have four type-uniform terminal assertions, that do not single out any specific type for

a special treatment; they are "enum", "const", "type" : [Tp1, . . . , Tp=], and "type" : Tp. The rule for a
type-uniform terminal assertion is completely defined by a condition, as reported in Table 1.

In Figure 7 we show the rule for "type" : Tp, where TypeOf (�) extracts the type of the instance � .

Table 1. Boolean conditions for type-uniform terminal assertions.

assertion: kw :J’ condition: cond(J, kw :J’)

"enum" : [�1, . . . , �=] � ∈ {| �1, . . . , �= |}

"const" : �2 � = �2
"type" : Tp TypeOf (�) = Tp
"type" : [Tp

1
, . . . ,Tp=] TypeOf (�) ∈ {| Tp

1
, . . . ,Tp= |}

4.3 Boolean Applicators

JSON Schema boolean applicators, such as "anyOf" : [(1, ..., (=], apply a list of schemas to the
instance, obtain a list of intermediate boolean results, and combine the intermediate results using
a boolean operator. For the annotations, all assertions always return a union of the annotations
produced by their subschemas, even when the assertion fails; this should be contrasted with the
behavior of schemas, where a failing schema never returns any annotation (Section 4.5).6

The rule for the disjunctive applicator "anyOf" combines the intermediate results using the ∨
operator, and a child of � is evaluated if, and only if, it has been evaluated by any subschema (8 .

The rules for "allOf" and for "not" are analogous: "allOf" is successful if all premises are successful,
and negation is successful if its premise fails.

4.4 Independent Object and Array Applicators (Independent Structural Applicators)

Independent structural applicators are those that reapply a subschema to some children of the
instance (structural) and whose behavior does not depend on adjacent keywords (independent).
We start with the rules for the "patternProperties" applicator that asserts that if � is an object,

then every property of � whose name matches a pattern ? 9 has a value that satisfies (9 . This rule
constrains all instance fields whose name matches any pattern ? 9 in the applicator, but it does not

6Other interpretations of the specifications of Draft 2020-12 are possible; see the full version for a discussion.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

Validation of Modern JSON Schema: Formalization and Complexity 49:11

TypeOf (�) ≠ number
� ⊢K � : "minimum" : @ → (T, ∅)

(minimumTriv)

A = (TypeOf (�) = Tp)

� ⊢K � : "type" : Tp→ (A, ∅)
(type)

TypeOf (�) = number A = (� ≥ @)

� ⊢K � : "minimum" : @ → (A, ∅)
(minimum)

� ⊢S � : (→ (A, ^)

� ⊢K � : "not" : (→ (¬A, ^)
(not)

∀8 ∈ {| 1 . . . = |} . � ⊢S � : (8 → (A8 , ^8) A = ∨({| A8 |}
8∈{| 1...= |})

� ⊢K � : "anyOf" : [(1, ..., (=] → (A,
⋃
8∈{| 1...= |} ^8)

(anyOf)

∀8 ∈ {| 1 . . . = |} . � ⊢S � : (8 → (A8 , ^8) A = ∧({| A8 |}
8∈{| 1...= |})

� ⊢K � : "allOf" : [(1, ..., (=] → (A,
⋃
8∈{| 1...= |}^8)

(allOf)

TypeOf (�) ≠ object
� ⊢K � : "patternProperties" : { ?1 : (1, . . . , ?< : (< } → (T, ∅)

(pa�ernPropertiesTriv)

� = { :′
1
: �1, . . . , :

′
= : �= } {| (81, 91), . . . , (8; , 9;) |} = {| (8, 9) | :′8 ∈ ! (? 9) |}

∀@ ∈ {| 1 . . . ; |} . � ⊢S �8@ : (9@ → (A@ , ^@) A = ∧({| A@ |}@∈{| 1...; |})

� ⊢K � : "patternProperties" : { ?1 : (1, . . . , ?< : (< } → (A, {| :′81
, . . . , :′8;

|})
(pa�ernProperties)

� = { :′
1
: �1, . . . , :

′
= : �= } {| (81, 91), . . . , (8; , 9;) |} = {| (8, 9) | :′8 = : 9 |}

∀@ ∈ {| 1 . . . ; |} . � ⊢S �8@ : (9@ → (A@ , ^@) A = ∧({| A@ |}@∈{| 1...; |})

� ⊢K � : "properties" : { :1 : (1, . . . , :< : (< } → (A, {| :′81
, . . . , :′8;

|})
(properties)

� ⊢S � : true→ (T, ∅) (true)

� ⊢L � : [| 1, . . . , = |] → (T, ^)

� ⊢S � : { 1, . . . , = } → (T, ^)
(schema-true)

� ⊢S � : false→ (F, ∅) (false)

� ⊢L � : [| 1, . . . , = |] → (F, ^)

� ⊢S � : { 1, . . . , = } → (F, ∅)
(schema-false)

� = { :1 : �1, . . . , := : �= } � ⊢L � : ® → (A, ^)

{| 81, . . . , 8; |} = {| 8 | 1 ≤ 8 ≤ = ∧ :8 ∉ ^ |}

∀@ ∈ {| 1 . . . ; |} . � ⊢S �8@ : (→ (A@ , ^@) A ′ = ∧({| A@ |}@∈{| 1...; |})

� ⊢L � : (® + "unevaluatedProperties" : () → (A ∧ A ′, {| :1 . . . , := |})
(unevaluatedProperties)

� = { :1 : �1, . . . , := : �= } � ⊢L � : ® → (A, ^)

{| 81, . . . , 8; |} = {| 8 | 1 ≤ 8 ≤ = ∧ :8 ∉ ! (propsOf(®)) |}

∀@ ∈ {| 1 . . . ; |} . � ⊢S �8@ : (→ (A@ , ^@) A ′ = ∧({| A@ |}@∈{| 1...; |})

� ⊢L � : (® + "additionalProperties" : () → (A ∧ A ′, {| :1 . . . , := |})
(additionalProperties)

 ∈ IK � ⊢L � : ® → (A; , ^;) � ⊢K � : → (A, ^)

� ⊢L � : (® +) → (A; ∧ A, ^; ∪ ^)

(klist-(n+1))

� ⊢L � : [| |] → (T, ∅) (klist-0)

(′ = get(load(absURI), f) � + absURI ⊢S � : (′ → (A, ^)

� ⊢K � : "$ref" : absURI · "#" · f → (A, ^)

($ref)

dget(load(absURI), f) = ⊥

(′ = get(load(absURI), f) � + absURI ⊢S � : (′ → (A, ^)

� ⊢K � : "$dynamicRef" : absURI · "#" · f → (A, ^)

($dynamicRefAsRef)

dget(load(absURI), f) ≠ ⊥ fURI = fstURI(� + absURI , 5)

(′ = dget(load(fURI), f) � + fURI ⊢S � : (′ → (A, ^)

� ⊢K � : "$dynamicRef" : absURI · "#" · f → (A, ^)

($dynamicRef)

Fig. 7. Validation rules.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:12 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

force any of the ? 9 ’s to be matched by any property name, nor any property name to match any ? 9 ;
if there is no match, the keyword is satisfied. Patterns ? 9 may have a non-empty intersection of
their languages, so that a single instance field may match two or more patterns.

We first have the trivial rule (pa�ernPropertiesTriv) for the case where � is not an object: non-object
instances trivially satisfy the operator.
In the non-trivial case (rule (pa�ernProperties)), where � = { : ′

1
: �1, . . . , :

′
= : �= }, we first collect

the set {| (81, 91), . . . , (8; , 9;) |} of all pairs (8, 9) such that:
′
8 ∈ !(? 9), where !(? 9) is the language of the

pattern ? 9 . For each such pair (8@, 9@), we collect the boolean A@ that specifies whether� ⊢S �8@ : (9@
holds or not, and the entire keyword is successful over � if the conjunction A = ∧({| A@ |}

@∈{| 1...; |})
is T (true). According to the standard convention, the empty conjunction ∧({| |}) evaluates to T ,
hence this rule does not force any matching.

The evaluated properties are all the properties :8@ for which a corresponding pattern ?8@ exists,
independently of the result A@ of the corresponding validation, and independently of the overall
result A of the keyword. Observe that the sets ^@ of the children that are evaluated in the subproofs
are discarded; this happens because elements of ^@ are children of a child �8@ of � ; we collect
information about the evaluation of the children of � , and we are not interested in children of
children.

The rule (properties) for "properties" : { :1 : (1, . . . , :< : (< } is essentially the same, with equality
: ′8 = : 9 taking the place of matching : ′8 ∈ !(? 9), hence ; is the number of pairs (8, 9) such that
: ′8 = : 9 ; likewise, no name match is required, but in case of a match, the corresponding child of �
must satisfy the subschema with the same name.
Of course, we also have the trivial rule (propertiesTriv), analogous to rule (pa�ernPropertiesTriv):

when � is not an object, "properties" is trivially satisfied. The rules for the other independent
object and array applicators can be found in the full version.

The independent keywords presented in this section (and in the previous one) produce (respec-
tively, collect and transmit) annotations that influence the behavior of the dependent keywords,
which are "additionalProperties", "items", "unevaluatedProperties", and "unevaluatedItems". All
these dependencies are formalized in the following sections.

4.5 The Semantics of Schemas: Sequential Evaluation of Keywords

We have defined the semantics of the independent keywords. We now introduce the rules for
schemas and for sequential executions of keywords.
The rules (true) and (false) for the true and false schemas are trivial.

The rules (schema-true) and (schema-false) for an object schema { ® } are based on the keyword-

list judgment � ⊢L � : ®
®A
→ ^, which applies the keywords in the ordered list ® , passing the

annotations from left to right.
Rule (schema-true) just reuses the result of the keyword-list judgment, but (schema-false) specifies

that, as dictated by [Wright et al. 2022], when schema validation fails, all annotations are removed,
and hence no instance child is regarded as evaluated. This is a crucial difference with keyword-lists,
since the � ⊢K � : → (A, ^) judgment may return non-empty annotations even when A = F .7

We now describe the rules for the sequential evaluation judgment � ⊢L � : ® → (A, ^). The rules

are specified for each list ® + by induction on | ® | + | | and by cases on .

We start with the crucial rule (unevaluatedProperties), for ® + "unevaluatedProperties" : (, which

forces all unevaluated properties to conform to (. To evaluate ® + "unevaluatedProperties" : (we

7See the discussion in the full version.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

Validation of Modern JSON Schema: Formalization and Complexity 49:13

first evaluate ® , which yields a set of evaluated children ^ , we then evaluate (on the other children,
and we combine the results by conjunction. We return every property of the instance as evaluated.

The rule for ® + "additionalProperties" : ((additionalProperties) is identical, apart from the
fact that we only eliminate the properties that have been evaluated by adjacent keywords. The
specifications [Wright et al. 2022] indicate that this information should be passed as annotation,
but that a static analysis is acceptable if it gives the same result. We formalize this second approach

since it is slightly simpler. We define a function propsOf(®) that extracts all the patterns and all the

names that appear in any "properties" and "patternProperties" keywords that appear in ® and

combines them into a pattern; a property is directly evaluated by a keyword in ® if, and only if, it

belongs to !(propsOf(®)). The notation ki used in the first line indicates a pattern whose language

is {| :8 |}; ∅ in the third line is a pattern such that !(∅) = ∅.

propsOf("properties" : { :1 : (1, . . . , :< : (< }) = k1 ·"|"· . . . ·"|"·kn

propsOf("patternProperties" : { ?1 : (1, . . . , ?< : (< }) = ?1 ·"|"· . . . ·"|"·?<

propsOf() = ∅ otherwise

propsOf([| 1, . . . , = |]) = propsOf(1) ·"|"· . . . ·"|"·propsOf(=)

The keyword "additionalProperties" was already present in Classical JSON Schema, and, as
shown by our formalization, it does not need to access the annotations passed by the previous
keywords, but can be implemented on the basis of information that can be statically extracted from
"properties" and "patternProperties"; critically, it is not influenced by what is evaluated by an
adjacent "$ref", as happens to "unevaluatedProperties" in the example of Figure 3. Modern JSON
Schema introduced the new keyword "unevaluatedProperties" in order to overcome this limitation.
The rules for "unevaluatedItems" : (and "items" : (are similar and can be found in the full

version.
Having exhausted the rules for the dependent keywords, we have a catch-all rule (klist-(n+1))

for all other keywords, that says that, when is an independent keyword, we combine the results

of � ⊢L � : ® → (A; , ^;) and � ⊢K � : → (A, ^), but no information is passed between the two
judgments. Rule (klist-0) is just the base case for induction.

4.6 Static and Dynamic References

Annotation-dependent validation and dynamic references are the two additions that characterize
Modern JSON Schema. Dynamic references are those that had the greatest need for formalization.
The reference operators "$ref" : absURI · "#" · fragmentId and "$dynamicRef" : absURI · "#" ·

fragmentId are in-place applicators that allow a URI-identified subschema to be applied to the
current instance, but the two applicators interpret the URI in a very different way.
"$ref" : absURI ·"#"·fragmentId retrieves the resource (identified by absURI , which may be the

current schema or a different one, retrieves the subschema (′ of (identified by fragmentId, and
applies (′ to the current instance � (rule ("$ref")). The "$dynamicRef" keyword, instead, interprets
the reference in a way that depends on the dynamic scope, which is, informally, the ordered list of
all resources that have been visited in the current branch of the proof tree, which we represent in
the rules by listing their URIs in the context � .

Specifically, as shown in rule ("$ref"), the evaluation of "$ref" : absURI ·"#"·fragmentId changes
the dynamic scope, by extending the context � in the premise with absURI — in the rule, ! + 4
denotes the operation of adding an element 4 at the end of a list !.
In rule ($ref), load(absURI) returns the schema (identified by absURI , an operation that we

cannot formalize since the standards leave it undefined [Berners-Lee et al. 2005; Wright et al. 2022];

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:14 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

we can regard it as an access to an immutable store that associated URIs to schemas. get((, f) returns
the subschema identified by 5 inside (; the fragment 5 may either be empty, hence identifying the
entire (, or a plain-name, which is matched by a corresponding "$anchor" operator inside (,8 or a
JSON Pointer, that begins with “/” and is interpreted by navigation. The get function is formally
defined in the full version.
For simplicity, we assume that the schema has already been analyzed to ensure the following

properties; it would not be difficult to formalize these conditions in the rules:

(1) the load(absURI) invocation will not fail, that is, absURI is a valid URI;
(2) the get(load(absURI), f) invocations will not fail, that is, load(absURI) contains a subschema

identified by 5 (which is either a JSON Pointer or an anchor name);
(3) the dget(load(fURI), f) invocation will not fail, that is, load(fURI) contains a subschema

identified by the dynamic anchor 5 ;
(4) every "$id" operator assigns to its schema a URI that is different from the URI of any other

resource recursively reachable from its schema;
(5) there exist no two "$anchor" and "$dynamicAnchor" keywords that assign the same name to

two different schemas inside one specific resource.

If any of these conditions does not hold, the validator should raise a failure.
The behavior of "$dynamicRef" is very different from that of "$ref", and is defined as follows (see

[Wright et al. 2022] Section 8.2.3.2):

If the initially resolved starting point URI includes a fragment that was created by the
"$dynamicAnchor" keyword, the initial URI MUST be replaced by the URI (including
the fragment) for the outermost schema resource in the dynamic scope (Section 7.1) that
defines an identically named fragment with "$dynamicAnchor". Otherwise, its behavior
is identical to "$ref", and no runtime resolution is needed.

This sentence is not easy to decode, but it means that, given an assertion "$dynamicRef" : absURI ·
"#"·f , one first verifies whether the resource referenced by the “starting point URI” absURI contains
a dynamic anchor "$dynamicAnchor" : 5 ′ with 5 ′ = 5 . If this is the case, "$dynamicRef" : absURI ·"#"·f
will be interpreted according to the dynamic interpretation specified in the second part of the
sentence, otherwise it will be interpreted as if it were a static reference "$ref"; this verification
is formalized by the premises dget(load(absURI), f) ≠ ⊥ and dget(load(absURI), f) = ⊥ of the
two rules that we present above for "$dynamicRef". The function dget((, 5) looks inside (for a
subschema that contains "$dynamicAnchor" : 5 , but it returns⊥ if there is no such subschema.9 After
this check is passed, the dynamic interpretation focuses on the fragment 5 , and it looks for the
first (the “outermost”) resource in �+ that contains a subschema identified by "$dynamicAnchor" : 5 ,
where �+ is the dynamic context � extended with the initial URI absURI .

We formalize this specification using two functions: dget((, f) and fstURI(�, f). The function
dget((, f) returns the subschema (′ that is identified in (by a plain-name f that has been defined
by "$dynamicAnchor" : "f", and returns ⊥ when no such subschema is found in (, and its definition
is given in the full version. The function fstURI(!, f) returns the first URI in the list ! that defines
5 , that is, such that dget(load(absURI), f) ≠ ⊥.
We can finally formalize the dynamic reference rule ($dynamicRef). It first checks that the initial

URI refers to a dynamic anchor, but after this check, the result of load(absURI) is forgotten. Instead,

8Actually, it can also be matched by a "$dynamicAnchor" operator, which, in this case, is interpreted as exactly as "$anchor".
9Observe that dget(load(absURI), f) ≠ ⊥ is a static check that may be performed once for all when the schema is loaded.

This check is called “the bookending requirement”, and it may be dropped in future Drafts (see Remove $dynamicRef

bookending requirement), yet this decision would not affect our results.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

https://json-schema.org/draft/2020-12/json-schema-core.html#name-dynamic-references-with-dyn
https://github.com/json-schema-org/json-schema-spec/issues/1064
https://github.com/json-schema-org/json-schema-spec/issues/1064

Validation of Modern JSON Schema: Formalization and Complexity 49:15

we look for the first URI fURI in � + absURI where the dynamic anchor 5 is defined, and extract
the corresponding subschema (′ by executing dget(load(fURI), 5).

Example 1. The dynamic references mechanism allows one to definemultiple successive refinements
of a same schema. One may first refine the trees of Figure 2 to the strict trees of Figure 3, and then
to the integer strict trees of Figure 8 below.

1 { "$id": "http :// mjs.ex/strict −int −tree",

2 " $dynamicAnchor ": "tree",

3 "$ref": "http:// mjs.ex/strict −tree#tree",

4 " properties ": { "data" : { "type" : " integer " } }

5 }

Fig. 8. Refining a refined type.

In an empty context, a reference "$ref" : "http://mjs.ex/strict-int-tree#tree" would invoke
this schema, which would then invoke the strict-tree of Figure 3, which would invoke the simple-
tree of Figure 2. At this point we find the only dynamic reference, the following line in Figure 2,
which says that the children of a tree are trees:

1 " children ": { "type": " array ", " items ": { " $dynamicRef ": "http://mjs.ex/simple-tree#tree" }}}}

Here, the dynamic context � is:

[| "http://mjs.ex/strict-int-tree", "http://mjs.ex/strict-tree", "http://mjs.ex/simple-tree" |]

The dynamic reference is resolved as "http://mjs.ex/strict-int-tree#tree", since
"http://mjs.ex/strict-int-tree" is the first resource in � that defines the dynamic anchor "tree".

Remark 1. Observe that fstURI(� + absURI , 5) searches fstURI into a list that contains the dynamic
context extended with the URI absURI . We have the impression that the specifications (as copied
above) would rather require fURI = fstURI(�, 5), but we contacted the authors and checked some
online verifiers that are widely adopted. There seems to be a general agreement that fURI =

fstURI(� + absURI , 5) is the correct formula (see the full version for a concrete example).
This is a typical example of the problems generated by natural language specifications, where

different readers interpret the same document in different ways, and one needs to discover the
current consensus by social interaction and experiments. Formal specifications would be extremely
useful to address this kind of problem.

The second rule for "$dynamicRef" (rule ($dynamicRefAsRef)) applies when the initially resolved
starting point URI does not include a fragment that was created by the "$dynamicAnchor" keyword
(dget(load(absURI), f) = ⊥), in which case "$dynamicRef" behaves as "$ref".

4.7 Compressing the Context by Saturation

The only rule that depends on the context � is rule ($dynamicRef) that uses fstURI(� + absURI , 5)
to retrieve, in� + absURI , the first*'� that identifies a schema that contains f as a dynamic anchor.
When*'� is already present in � , its addition at the end of � does not affect the result of fstURI,
hence, for each*'� , we could just retain its first occurrence in � . Let us define �+?*'� , that we
read as� saturated with*'� , as�+?*'� = � when*'� ∈ � and�+?*'� = � +*'� when*'� ∉ � .
By the observation above, we can substitute � +*'� with �+?*'� in the premises of rules ($ref),
($dynamicRef), and ($dynamicRefAsRef), obtaining, for example the following rule.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:16 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

dget(load(absURI), f) ≠ ⊥ fURI = fstURI(�+?absURI , 5)

(′ = dget(load(fURI), f) �+?fURI ⊢S � : (′ → (A, ^)

� ⊢K � : "$dynamicRef" : absURI ·"#"·f → (A, ^)
($dynamicRef2)

This observation will be crucial in our complexity evaluations. From now on, we adopt this
version of the reference rules and assume that contexts are URI lists with no repetition.

4.8 Ruling Out Infinite Proof Trees

A proof tree is a tree whose nodes are judgments and such that, for every node # of the tree, there
is a deduction rule that allows # to be deduced from its children. A judgment # is proved when
there is a finite proof tree whose root is # .
The naive application algorithm, given a triple � , � , (, builds the proof tree rooted in � ⊢S � :

(→ (A, ^) by finding the deduction rule whose conclusion matches � , � , (, and by recurring on all
the judgments in its premises.
Consider now a schema that reapplies itself to the current instance, such as:

(loop = { "$id" : "here", "allOf" : [{ "$ref" : "here" }] }.

The naive algorithm would produce an infinite loop when applied to a triple (�, � , (loop), for any �
and � , which reflects the fact that any proof tree whose root is � ⊢S � : (loop → (A, ^) is infinite.
The JSON Schema specifications forbid any schema which may generate infinite proof trees.

Pezoa et al. [Pezoa et al. 2016] formalized this constraint for Classical JSON Schema as follows (we
use the terminology of [Attouche et al. 2022]).

Definition 1 (Unguardedly references in Classical JSON Schema; well-formed schema). Given a
closed Classical JSON Schema schema (, a subschema (8 of (“unguardedly references” a sub-
schema (9 of (if the following three conditions hold:

(1) "$ref" : absURI ·"#"·f is a keyword of a subschema (′8 of (8 (that is, "$ref" : absURI ·"#"·f is
one of the fields of the object (′8);

(2) every keyword (if any) in the path from (8 to (
′
8 is a boolean applicator ((′8 is unguarded);

(3) "$ref" : absURI ·"#"·f refers to (9 , that is: get(load(absURI), f) = (9 ,

A closed schema (is well-formed if the graph of the “unguardedly references” relation is acyclic.

For example, the schema (loop above unguardedly references itself (all operators in the path to
the subschema { "$ref" : "here" } are boolean) hence it is not well-formed; instead, the reference in
the following schema is guarded by a "properties" keyword, hence the schema is well-formed.

1 { "$id": "http:// mjs.ex/gd", " properties ": { "data": { "$ref": "http :// mjs.ex/gd" }}}

Observe that this is an over-conservative criterion: a schema containing an unguarded cycle that
is unreachable from the root would be judged ill-formed, but would never generate infinite proofs.
We can extend this definition to Modern JSON Schema as follows. Observe that the new form

of (3) means that, while a static keyword "$ref" : absURI ·"#"·f “unguardedly references” exactly
one schema, a dynamic keyword "$dynamicRef" : absURI ·"#" ·f “unguardedly references” all the
schemas that define 5 as a dynamic anchor, regardless of their URI .

Definition 2 (Unguardedly references for Modern JSON Schema, well-formed). Given a closed
Modern JSON Schema schema (, a subschema (8 of (“unguardedly references” a subschema (9
of (if either (8 “unguardedly references” subschema (9 accordingly to Definition 1, or if:

(1) "$dynamicRef" : absURI ·"#"·f is a keyword of a subschema (′8 of (8 ;
(2) every keyword (if any) in the path from (8 to (

′
8 is a boolean applicator;

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

Validation of Modern JSON Schema: Formalization and Complexity 49:17

(3) "$dynamicAnchor" : f is a keyword of (9 .

A closed schema (is well-formed if the graph of the “unguardedly references” relation is acyclic.

For example, consider a closed schema that embeds the two schemas in Figures 2 and 3. Let us
use (3A to indicate the subschema that immediately encloses the dynamic reference "$dynamicRef" :
"http://mjs.ex/simple-tree#tree" in Figure 2. The subschema (3A unguardedly references the
entire schemas of Figure 2 and of 3, since both contain a dynamic anchor tree. However, the schema
of Figure 2 does not unguardedly reference itself, nor the schema of Figure 3, since its subschema (3A
is guarded by the intermediate "properties" keyword. Moreover, no other subschema references
(3A , hence the graph of the unguardedly references relation is acyclic.

When a closed schema (is well formed, then every proof about any subschema of (is finite.

Theorem 3 (Termination). If a closed schema (is well formed, then, for any � that is formed
using URIs of (, for any � , A , and ^, there exists one and only one proof tree whose root is
� ⊢S � : (→ (A, ^), and that proof tree is finite.

From now on, we will assume that our rules are only applied to well-formed schemas, so that
every proof-tree is guaranteed to be finite. Of course, all schemas that we will use in our examples
will be well-formed.

5 PSPACE HARDNESS: USING DYNAMIC REFERENCES TO ENCODE A QBF

SENTENCE

Validation is usually regarded as a low-cost test to be embedded in efficient processes such as
distributed function invocation: The server declares the expected schema of its parameters and,
for every invocation, each parameter is validated by the declared schema. Hence, data-definition
languages are usually designed in order to get a high expressive power with a low validation cost. In
practice, one would like the validation problem to run in polynomial time in the worst case. This is
the case for Classical JSON Schema, whose validation is P-complete [Pezoa et al. 2016]. The input of
the validation problem is a couple (� , (), for which we ask whether [| baseURI |] ⊢S � : (→ (T , ^),
(where baseURI is the base URI of (), for some ^; hence, for Classical JSON Schema, the time bound
is a polynomial function 5 whose argument is the total input size, |� | + |(|.

Unfortunately, this is not the case for Modern JSON Schema. Dynamic references add a seemingly
minor twist to the validation rules, but this twist has a dramatic effect on the computational
complexity of validation: we prove here that dynamic references make validation PSPACE-hard.
Following [Sipser 2012], we recall here that PSPACE is the class of decision problems that can be
solved in polynomial space by a deterministic Turing machine; a decision problem B is PSPACE-hard
if every problem in PSPACE is polynomial time reducible to B. It is well known that % ⊆ #% ⊆
%(%���. While there is still no proof that the inclusions are proper, no reduction from %(%��� to
#% , or to % , is known, hence %(%���-hard problems are currently regarded as “intractable”.

We prove that validation is PSPACE-hard by reducing quantified Boolean formulas (QBF) validity,
a well-known PSPACE-complete problem [Stockmeyer andMeyer 1973], to JSON Schema validation.
In detail, we encode an arbitrary closed QBF formulak as a schema (k whose size is linear ink
and with the property that, given any JSON instance � , the assertion [| baseURI |] ⊢S � : (k returns
(T , ∅) if, and only if, the formulak is valid.
Observe that the actual value of � is irrelevant: in our encoding, the schema (k is either satisfied

by any instance, or by none at all: (k is a trivial schema, where trivial indicates a schema that
returns the same result when applied to any instance � , as happens for the schemas true and false.
Hence, we actually prove that the validation problem is PSPACE-hard even when restricted to
trivial schemas only.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:18 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

1 { "id": "urn:psi",

2 " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",

3 " allOf ": [{ "$ref": "urn: truex1 # afterq1 " }, { "$ref": "urn: falsex1 # afterq1 " }],

4 " $defs ": {

5 "urn: truex1 ": {

6 "$id": "urn: truex1 ",

7 " $defs ": {

8 "x1": { " $dynamicAnchor ": "x1", " anyOf ": [true] },

9 "not.x1": { " $dynamicAnchor ": "not.x1", " anyOf ": [false] },

10 " afterq1 ":

11 { " $anchor ": " afterq1 ",

12 " anyOf ": [{ "$ref": "urn: truex2 # afterq2 " }, { "$ref": "urn: falsex2 # afterq2 " }]

13 }}},

14 "urn: falsex1 ": {

15 "$id": "urn: falsex1 ",

16 " $defs ": {

17 "x1": { " $dynamicAnchor ": "x1", " anyOf ": [false] },

18 "not.x1": { " $dynamicAnchor ": "not.x1", " anyOf ": [true] },

19 " afterq1 ":

20 { " $anchor ": " afterq1 ",

21 " anyOf ": [{ "$ref": "urn: truex2 # afterq2 " }, { "$ref": "urn: falsex2 # afterq2 " }]

22 }}},

23 "urn: truex2 ": {

24 "$id": "urn: truex2 ",

25 " $defs ": {

26 "x2": { " $dynamicAnchor ": "x2", " anyOf ": [true] },

27 "not.x2": { " $dynamicAnchor ": "not.x2", " anyOf ": [false] },

28 " afterq2 ": { " $anchor ": " afterq2 ", "$ref": "urn:phi#phi" }

29 }},

30 "urn: falsex2 ": {

31 "$id": "urn: falsex2 ",

32 " $defs ": {

33 "x2": { " $dynamicAnchor ": "x2", " anyOf ": [false] },

34 "not.x2": { " $dynamicAnchor ": "not.x2", " anyOf ": [true] },

35 " afterq2 ": { " $anchor ": " afterq2 ", "$ref": "urn:phi#phi" }

36 }},

37 "urn:phi": {

38 "$id": "urn:phi",

39 " $defs ": {

40 "phi": {

41 " $anchor ": "phi",

42 " anyOf ": [

43 { " allOf ":[{ " $dynamicRef ": "urn:truex1#x1" }, { " $dynamicRef ": "urn:truex2#x2" }]},

44 { " allOf ":[{ " $dynamicRef ": "urn:truex1#not.x1"}, { " $dynamicRef ": "urn:truex2#not.x2"}]}]

45 }}}}

Fig. 9. Encoding ∀G1. ∃G2. (G1 ∧ G2) ∨ (¬G1 ∧ ¬G2).

We start with an example. Consider the following QBF formula:∀G1. ∃G2. (G1∧G2)∨(¬G1∧¬G2);
Figure 9 shows how it can be encoded as a JSON Schema schema (we use here URIs based on "urn:"
rather than on "https:", for space reasons).

For each variable G8 we define a resource "urn:truex"·8 (lines 5-13 and 23-29 of Figure 9), which
defines two dynamic schemas, one with plain-name "x"·8 and value true, and the other one with
plain-name "not.x"·8 and value false10 (lines 8-9 and 26-27). For each variable G8 we also define a
resource "urn:falsex"·8 (lines 14-22 and 30-36), where, on the contrary, "x"·8 has value false, and
"not.x"·8 has value true.

The formulaq is encoded in the schema "urn:phi#phi" (lines 40-45). All variables in "urn:phi#phi"
are encoded as dynamic references, so that their value depends on the resources that are in-scope
when "urn:phi#phi" is evaluated. Consider, for example, "$dynamicRef" : "urn:truex1#x1" inside

10More precisely, it is "anyOf" : [false], since we cannot add an anchor to a schema that is just false; "anyOf" : [true] in

the body of "x" ·8 is clearly redundant, and is there only for readability.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

Validation of Modern JSON Schema: Formalization and Complexity 49:19

"urn:phi#phi". A dynamic anchor "x1" is defined in "urn:truex1" and in "urn:false1", hence, if the
context of the evaluation of "urn:phi#phi" contains the URI "urn:truex1" before "urn:false1", or
without "urn:false1", then "$dynamicRef" : "urn:truex1#x1" resolves to the true subschema defined
in "urn:true1". If the context of the evaluation contains "urn:false1" before, or without, "urn:true1",
then "$dynamicRef" : "urn:truex1#x1" resolves to the false subschema defined in "urn:falsex1#x1".
Observe that a dynamic reference "$dynamicRef" : "urn:falsex1#x1" would behave exactly as
"$dynamicRef" : "urn:truex1#x1" — a fundamental feature of dynamic references is that the absolute
URI before the "#" is substantially irrelevant, a fact that we indicate by underlining it.
Now we describe how we encode the quantifiers. The first quantifier is encoded in the root

schema; if the quantifier is∀, as in this case, then we apply "allOf" to two references (line 3), one that
checks whether the rest of the formula holds when G1 is true, by invoking "urn:truex1#afterq1",
which sets G1 to true by bringing "urn:truex1" in scope, and the second one that checks whether
the rest of the formula holds when G1 is false, by invoking "urn:falsex1#afterq1", which sets G1 to
false by bringing "urn:falsex1" in scope.

The formulas "urn:truex1#afterq1" and "urn:falsex1#afterq1", which are identical, encode the
evaluation, in two different contexts, of the rest of the formula ∃G2. (G1∧ G2) ∨ (¬G1∧¬G2). They
encode the existential quantifier (lines 12 and 21) in the same way as the universal one in line 3,
with the only difference that "anyOf" substitutes "allOf", so that "urn:truex1#afterq1" holds if the
rest of the formula holds for at least one boolean value of G2, when G1 is true, and similarly for
"urn:falsex1#afterq1" when G1 is false. This technique allows one to encode any QBF formula with
a schema whose size is linear in the size of the formula &1G1 . . . &=G= . q : the size of "urn:phi#phi"
is linear in |q |, and the rest of the schema is linear in |&1G1 . . . &=G= |.
Observe that the schema is well-formed: every maximal path in the unguardedly-references

graph has shape r-aq1-aq2-phi-var, where

(1) r is the root schema;
(2) aq1 matches "urn:(true|false)x1#afterq1";
(3) aq2 matches "urn:(true|false)x2#afterq2";
(4) phi is "urn:phi#phi";
(5) var matches "urn:(true|false)xi#[not.]xi".

We now formalize this encoding.

Definition 4 ((k). Consider a generic closed QBF formula: k = &1G1 . . . &=G= . q , where &8 ∈
{| ∀, ∃ |} and q is generated by:

q ::= G8 | ¬G8 | q ∨ q | q ∧ q.

The schema (k contains 2= + 2 resources: "urn:psi" (the root), "urn:truex"·8 and "urn:falsex"·8 ,
for 8 in {| 1 . . . = |}, and "urn:phi".
The root encodes the outermost quantifiers as follows:

boolOp : [{"$ref" : "urn:true1#afterq1"} , {"$ref" : "urn:false1#afterq1"}]

where boolOp = "allOf" when &1 = ∀, and boolOp = "anyOf" when &1 = ∃.
Every other resource defines a set of named subschemas, each containing a "$anchor" or a

"$dynamicAnchor" keyword that assigns it a name, and one more keyword that we call its “body”.
For each G8 , the resource "urn:truex"·8 contains 3 named subschemas: "x"·8 , "not.x"·8 , and "afterq"·8 .

The body of "x"·8 is "anyOf" : [true], and the body of "not.x"·8 is "anyOf" : [false].
When 8 < =, the body of "afterq"·8 encodes &8+1G8 . q as follows:

boolOp : [{"$ref" : "urn:truex"·8 ·"#afterq"·8} , {"$ref" : "urn:falsex"·8 ·"#afterq"·8}]

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:20 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

where boolOp = "allOf" when &8+1 = ∀, and boolOp = "anyOf" when &8+1 = ∃. When 8 = =, the
body of "afterq"·8 is just "$ref" : "urn:phi#phi".
Finally, the "urn:phi" resource only contains a schema "phi", whose body is (q , which is recur-

sively defined as follows:

(G8 = {"$dynamicRef" : "urn:truex"·8#"x"·8} (q1∨q2 = "anyOf" : [(q1 , (q2]

(¬G8 = {"$dynamicRef" : "urn:truex"·8#"not.x"·8} (q1∧q2 = "allOf" : [(q1 , (q2] .

The following theorem states the correctness of the translation.

Theorem 5. Given a QBF closed formulak = &1G1 . . . &=G= . q and the corresponding schema (k ,k
is valid if, and only if, for every � , [| "urn:psi" |] ⊢S � : (k → (T , ∅).

Since the encoding has linear size, PSPACE-hardness is an immediate corollary. In our encoding
we use the eight operators "$ref", "$anchor", "$dynamicRef", "$dynamicAnchor", "anyOf", "allOf", true,
and false, but true, "$ref", and "$anchor" are only used to improve readability: every "anyOf" :
[true] could just be removed, while "$ref" and "$anchor" could be substituted by "$dynamicRef"
and "$dynamicAnchor". Hence, only the operators we list below are really needed for our results.

Corollary 6 (PSPACE-hardness). Validation in any fragment of Modern JSON Schema that includes
"$dynamicRef", "$dynamicAnchor", "anyOf", "allOf", and false, is PSPACE-hard.

6 VALIDATION IS IN PSPACE

We present here a polynomial-space validation algorithm, hence proving that the PSPACE bound is
tight. To this aim, we consider the algorithm that applies the typing rules through recursive calls,
using a list of already-met subproblems in order to cut infinite loops. This list could be replaced by
a static check of well-formedness, but we prefer to employ this dynamic approach, since the list is
useful for the complexity evaluation.

For each schema, Algorithm 1 evaluates its keywords, passing the current value of the boolean
result and of the evaluated children from one keyword to the next. Independent keywords (such
as "anyOf" and "patternProperties") execute their own rule and update the current result and the
current evaluated items using conjunction and union, as dictated by rule (klist-(n+1)), while each
dependent keyword (such as "unevaluatedProperties"), updates these two values as specified by
its own rule.
In Algorithm 1 we exemplify in-place independent applicators ("anyOf"), in-place applicators

that update the context ("$dynamicRef"), structural independent applicators ("patternProperties"),
and dependent applicators ("unevaluatedProperties").

Function SchemaValidate (Cont, Inst, Schema, StopList) applies Schema in the context Cont, that
is, a list of absolute URIs without repetitions, to Inst, and uses StopList in order to avoid infinite
recursion. The Cont list is extended by the evaluation of dynamic and static references using the
function Saturate (Cont, URI) (line 30), which adds URI to Cont only if it is not already there. The
StopList records the (Cont, Inst, Schema) triples that have been met in the current call stack. It stops
the algorithm when the same triple is met twice in the same evaluation branch, which prevents
infinite loops, since any infinite branch must find the same triple infinitely many times, because
every instance and schema that is met is a subterm of the input, and only finitely many different
contexts can be generated.
Now we prove that this algorithm runs in polynomial space. To this aim, the key observation

is the fact that we have a polynomial bound of the length of the call stack. The call stack is a
sequence of alternating tuples SchemaValidate (Cont, Inst, Schema, StopList) - KeywordValidate
(. . .) - k(...) - SchemaValidate (Cont′, Inst′, Schema′, StopList′), where :(. . .) is the keyword-specific

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

Validation of Modern JSON Schema: Formalization and Complexity 49:21

Algorithm 1: Validation

1 SchemaValidate(Cont,Inst,Schema,StopList)

2 if (Schema == True)) then return (True,EmptySet) ;

3 if (Schema == False)) then return (False,EmptySet) ;

/* “Input” represents a triple */

4 Input := (Cont,Inst,Schema);

5 if (Present (Input,StopList)) then raise (“error: infinite loop”) ;

/* Res and Eval are initialized, and then updated by each call to KeywordValidate */

6 Res := True; Eval := EmptySet;

7 for Kw in Keywords (Schema) do (Res,Eval) := KeywordValidate (Cont, Inst, Kw, Res, Eval, StopList+Input) ;

8 if Result == True then return (Res,Eval);

9 else return (Res,EmptySet) ;

10

11 KeywordValidate(Cont,Inst, Kw, PrevResult, PrevEval, StopList)

12 switch Kw do

13 case “anyOf”: List do

14 return (AnyOf (Cont,Inst,List,PrevResult,PrevEval,StopList));

15 case “dynamicRef”: absURI “#” fragmentId do

16 return (DynamicRef (Cont,Inst,absURI,fragment,PrevResult,PrevEval,StopList));

17 . . .

18

19 AnyOf(Cont, Inst, List, PrevResult, PrevEval, StopList)

20 Res := True; Eval := EmptySet;

21 for Schema in List do

22 (SchRes,SchEval) = SchemaValidate (Cont, Inst, Kw, StopList) ;

23 Res := Or (Res,SchRes); Eval := Union (Eval,SchEval);

24 return (And (PrevResult,Res), Union (PrevEval,Eval));

25

26 DynamicRef(Cont, Inst, AbsURI, fragment, PrevResult, PrevEval, StopList)

27 if (dget(load(AbsURI),fragment) = bottom)) then return (StaticRef (...));

28 for URI in Cont+AbsURI do if (dget(load(URI),fragment) != bottom) then { fstURI := URI; break; }

29 fstSch ::= get(load(fstURI),fragment);

30 (SchRes,SchEval) = SchemaValidate(Saturate (Cont,fstURI), Inst,fstSch,StopList);

31 return (And (PrevResult,SchRes), Union (PrevEval,SchEval));

32

33 PatternProperties(Cont, Inst, Schema, PrevResult, PrevEval, StopList)

34 if (Inst is not Object) then return (True,EmptySet) ;

35 Res := True; Eval := EmptySet;

36 for (name,J) in Inst do

37 for (patt,Schema) in Schema do

38 if (name matches patt) then

39 (SchRes,Ign) = SchemaValidate (Cont, J, Schema, StopList) ;

40 Res := And (Result,SchRes); Eval := Union (Singleton (name),Eval);

41 return (And (PrevResult,Res), Union (PrevEval,Eval));

42

43 UnevaluatedProperties(Cont, Inst, Schema, PrevResult, PrevEval, StopList)

44 if (Inst is not Object) then return (True,EmptySet) ;

45 Res := True;

46 for (a,J) in Inst do

47 if (a not in PrevEval) then

48 (SchRes,Ign) = SchemaValidate (Cont, J, Schema, StopList) ;

49 Res := And (Result,SchRes);

50 return (And (PrevResult,Res), NamesOf (Inst));

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:22 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

function invoked by KeywordValidate. We focus on the sequence of SchemaValidate (Cont, Inst,
Schema, StopList) tuples, ignoring the intermediate calls. This sequence can be divided in at most =
subsequences, if = is the input size, the first one with a context that contains only one URI, the
second one with contexts with two URIs, and the last one having a number of URIs that is bound by
the input size, since no URI is repeated twice in a context. In each subsequence all the (Inst, Schema)
pairs are different, since the stoplist test would otherwise raise a failure. Since every instance in a
call stack tuple is a subinstance of the initial one, and every schema is a subschema of the initial one,
we have at most =2 elements in each subsequence, and hence the entire call stack never exceeds =3.
We finally observe that every single function invocation can be executed in polynomial space plus
the space used by the functions it invokes, directly and indirectly; the result follows, since these
functions are never more than $ (=3) at the same time. This is the basic idea behind the following
Theorem, whose full proof can be found in the full version. Since our algorithm runs in polynomial
space, the problem of validation for Modern JSON Schema is PSPACE-complete.

Theorem 7. For any closed schema (and instance � whose total size is less than =, Algorithm 1
applied to � and (requires an amount of space that is polynomial in =.

7 POLYNOMIAL TIME VALIDATION FOR STATIC REFERENCES AND POLYNOMIAL

TIME DATA COMPLEXITY

While dynamic references make validation PSPACE-hard, annotation-dependent validation alone
does not change the P complexity of Classical JSON Schema validation. We prove this fact by
restricting our attention to the set of all schemas that contain at most : references, where : is a
fixed integer; for this set of schemas we define an optimized variant of Algorithm 1 that runs in
polynomial time in situations where there is a fixed bound on the maximum number of dynamic
references, hence, a fortiori, for schemas where no dynamic reference is present.
Our optimized algorithm exploits a memoization technique: When, during the computation of

[| 1 |] ⊢S � : (→ (A, ^), we complete the evaluation of an intermediate judgment �′ ⊢S � ′ : (′ →
(A ′, ^′), we store this intermediate result. However, while there is only a polynomial number of (′

and � ′ that may be generated while proving [| 1 |] ⊢S � : (→ (A, ^), there is an exponential number
of different�′, corresponding to different subsets of URIs that appear in (and to different reordering
of these subsets; this phenomenon occurs, for example, in our leading example (Figure 9). We
solve this problem in the case of a fixed bound on the number of dynamic references by observing
that two different contexts �1 and �2 are equivalent, with respect to a specific validation problem
�′ ⊢S � ′ : (′ → (A ′, ^′) , when the two resolve in the same way any dynamic reference that is
actually expanded during the analysis of that specific problem. In the bounded case, this equivalence
relation on contexts has a polynomial number of equivalence classes, which allows us to recompute
the result of �′ ⊢S � ′ : (′, for a fixed pair � ′, (′, only for a polynomial number of different contexts
�′.

In greater detail, our algorithm returns, for each evaluation of (over � in a context� , not only the
boolean result and the evaluated children, but also a DFragSet, that returns the set of fragment ids
5 such that fstURI(_, 5) has been computed during that evaluation. For each evaluated judgment
� ⊢S � : (→ (A, ^), we add the tuple (�, � , (, A, ^,DFragSet) to an updatable store. When, during
the same validation, we evaluate again � and (in an arbitrary context �′, we retrieve any previous
evaluation with the same pair (� , (), and we verify whether the new�′ is equivalent to the context
� used for that evaluation, with respect to the set of fragments that have been actually evaluated,
reported in the DFragSet; here equivalent means that, for each fragment 5 in DFragSet, fstURI(�, 5)
and fstURI(�′, 5) coincide. If the two contexts are equivalent, then we do not recompute the result,
but we just return the previous (A, ^,DFragSet) triple. It is easy to prove that, when the number of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

Validation of Modern JSON Schema: Formalization and Complexity 49:23

different dynamic references is bounded, this equivalence relation has a number of equivalence
classes that are polynomial in size of (, hence that memoization limits the total number of function
calls below a polynomial bound.

For simplicity, in our algorithm, we keep the UpdatableStore and the StopList separated; it would
not be difficult to merge them in a single data structure that can be used for the purposes of both.
We show here how SchemaValidate changes from Algorithm 1. In the full version, we also report
how KeywordValidate is modified.

Algorithm 2: Polynomial Time Validation

/* The UpdatableStore maps each evaluated Instance-Schema pair to the list, maybe empty, of

all contexts where it has been evaluated, each context paired to the associated result */

1 SchemaValidateAndStore(Cont,Inst,Schema,StopList,UpdatableStore)

2 if (Schema == True) then return (True,EmptySet,EmptySet) ;

3 if (Schema == False) then return (False,EmptySet,EmptySet) ;

4 Input := (Cont,Inst,Schema);

5 if (Present (Input,StopList)) then raise (“error: infinite loop”) ;

6 PrevResultSameSchemaInst := UpdatableStore.get(Inst,Schema);

7 for (OldCont,OldRes,OldEval,OldDFragSet) in PrevResultSameSchemaInst do

8 if (Equivalent (Cont,OldCont,OldDFragSet)) then /* If the current Cont is equivalent to the

OldCont we reuse the old output */

9 return (OldOutput);

10 Output := (True,EmptySet,EmptySet);

11 for Keyword in Keywords (Schema) do

12 Output := KeywordValidate (Cont, Inst, Keyword, Output, StopList+Input,UpdatableStore) ;

13 (Res,Eval,DFragSet) := Output;

14 UpdatableStore.addToList((Inst,Schema),(Cont,Res,Eval,DFragSet));

15 if Res == True then return (Res, Eval, DFragSet) ;

16 else return (Res, EmptySet, DFragSet);

17

18 Equivalent (Cont,OldCont,DFragSet)

19 Res := True;

20 for f in DFragSet do Res := And (Res, (FirstURI (Cont,f) ==FirstURI (OldCont,f)));

21 return (Result);

This optimized algorithm returns the same result as the base algorithm and runs in polynomial
time if the number of different dynamic fragments is limited by a fixed bound.

Theorem 8. Algorithm 2 applied to (�, � , (, ∅, ∅) returns (A, ^, 3), for some 3 , if, and only if, � ⊢S � :

(→ (A, ^).

Theorem 9. Consider a family of closed schemas (and judgments � such that (|(| + |� |) ≤ =, and
let� be the set of different fragments 5 that appear in the argument of a "$dynamicRef" : initURI·"#"·f

in (. Then, Algorithm 2 runs on (and � in time $ (=:+|� |) for some constant : .

Corollary 10. Validation is in P if we fix a constant bound on the maximum number of different
fragments 5 that appear in the argument of a "$dynamicRef" : initURI ·"#"·f in (.

P data complexity. There are situations where the schema is fixed and has a very small size by
comparison to the instance size, hence it is important to understand how the cost of evaluating
[| 1 |] ⊢S � : (depends on the size of � , when (is fixed; this is analogous to the notion of data
complexity that is standard in the database field [Vardi 1982]. When the schema is fixed, then, a

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:24 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

fortiori, also the number of different fragments that are argument of "$dynamicRef" is fixed; hence,
by Corollary 10, the problem of validating arbitrary instances using any fixed schema is in P.

Corollary 11 (Fixed-schema complexity). When (is fixed, the validation problem [| 1 |] ⊢S � : (→
(A, ^) is in P with respect to |� |.

Fixed-schema complexity is similar to data complexity in query evaluation, but the parallelism is
not precise: while queries are, in practical cases, almost invariably much smaller than data, there
are many situations where JSON Schema documents are bigger than the checked instances, for
example, when complex schemas are used in order to validate function parameters.

8 ELIMINATION OF DYNAMIC REFERENCES

As we have seen, dynamic references change the computational and algebraic properties of JSON
Schema. We define here a process to eliminate dynamic references, by substituting them with static
references; this allows us to reuse results and algorithms that have been defined for Classical JSON
Schema. Specifically, we will prove here that dynamic references can be substituted with static
references, at the price of a potentially exponential increase in the size of the schema.
A dynamic reference "$dynamicRef" : initURI · "#" · f is resolved, during validation, to a URI

reference fstURI(�+?initURI , 5) · "#" · f that depends on the context � of the validation (Section
4.6), so that the same schema (behaves in different ways when applied in different contexts. This
context-dependency extends to static references: A static reference "$ref" : absURI ·"#"·f is always
resolved to the same subschema; however, when this subschema invokes some dynamic reference,
directly or through a chain of static references, then the validation behavior of this subschema
depends on the context, as happens with "$ref" : "urn:phi#phi" in our example, which is a static
reference, but the behavior of the schema it refers to depends on the context.

To obtain the same effect without dynamic references, we observe that, if the context � is fixed,
then every dynamic reference has a fixed behavior, and it can be encoded using a static reference
"$ref" : fstURI(�+?initURI , 5) ·"#"·f . Every dynamic reference can be eliminated if we iterate this
process by defining, for each subschema (′ and for each context � , a context-injected version
CI(�, (′), which describes how (′ behaves when the context is � . The context-injected CI(�, (′) is
obtained by (1) substituting in (′ every dynamic reference "$dynamicRef" : initURI·"#"·f with a static
reference to the context-injected version of the schema identified by fstURI(�+?initURI , 5) ·"#"·f ,
and (2) substituting every static reference "$ref" : absURI · "#" · f with a static reference to the
context-injected version of the schema identified by absURI ·"#"·f . Step (2) is crucial, since a static
reference may recursively invoke a dynamic one, hence the context must be propagated through
the static references.
Before giving a formal definition of the process that we outlined, we start with an example.

Consider the context � = [| "urn:psi", "urn:truex1", "urn:falsex2", "urn:phi" |] and a reference
"$ref" : "urn:phi#phi", which refers to the following schema (′, which contains four dynamic
references, and which can be found inside the resource "urn:phi".

1 { " $anchor ": "phi",

2 " anyOf ": [{" allOf ": [{" $dynamicRef ": "urn:truex1#x1"}, {" $dynamicRef ": "urn:truex2#x2"}]},

3 {" allOf ": [{" $dynamicRef ": "urn:truex1#not.x1"}, {" $dynamicRef ": "urn:truex2#not.x2"}]}]}

The corresponding context-injected schema CI(�, (′) is the following. When a schema is identi-
fied by absURI ·"#"·f , we identify its context-injected version CI(�, (′) using absURI ·"#"·� ·f , where
� is an invertible encoding of � into a plain-name.11

11In the example, we encode a sequence of absolute URIs such as [| "urn:psi", "urn:truex1", "urn:falsex2", "urn:phi" |]

as "urn:psi_urn:truex1_urn:falsex2_urn:phi_", that is, we escape any underscore inside the URIs (not exemplified

here), and we terminate each URI with an underscore.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

Validation of Modern JSON Schema: Formalization and Complexity 49:25

1 { " $anchor ": "urn: psi_urn : truex1_urn : falsex2_urn : phi_phi ",

2 " anyOf ": [

3 {" allOf ": [{"$ref": "urn: truex1 #urn: psi_urn : truex1_urn : falsex2_urn : phi_x1 " },

4 {"$ref": "urn: falsex2 #urn: psi_urn : truex1_urn : falsex2_urn : phi_x2 " }]},

5 {" allOf ": [{"$ref": "urn: truex1 #urn: psi_urn : truex1_urn : falsex2_urn : phi_not .x1"},

6 {"$ref": "urn: falsex2 #urn: psi_urn : truex1_urn : falsex2_urn : phi_not .x2"}

7]}]},

In this example, it is interesting to observe how the underlined absolute URI "urn:truex2" of
"$dynamicRef" : "urn:truex2#x2" and "$dynamicRef" : "urn:truex2#not.x2" (lines 3 and 4) has been
substituted with "urn:falsex2" (lines 4 and 6), which reflects the fact that the context � contains
"urn:falsex2" but does not contain "urn:truex2". On the other hand, the underlined absolute URI
"urn:truex1" has been substituted with a static reference to "urn:truex1", reflecting the presence
of "urn:truex1" in �; the complete unfolding is in the full version.
We can now give a formal definition of the translation process. For simplicity, we assume that

all fragment identifiers referred to by "$ref" are plain-names defined using "$anchor", without loss
of generality, since JSON Pointers can be easily translated using the anchor mechanism.

Given a judgment (0 with base URI 1, we first define a “local” translation function CI that maps
every pair (�, (), where � is a list of URIs from (0 without repetitions and (is a subschema of (0,
into a schema CI(�, () without dynamic references, and that maps every pair (�,) to a keyword
CI(�,) without dynamic references. This function maps references as specified below, and acts
as a homomorphism on all the other operators, as exemplified here with "anyOf".

CI(�, "$dynamicRef" : absURI ·"#"·f) = "$ref" : fstURI(�+?absURI , f) ·"#"·� ·f

CI(�, "$ref" : absURI ·"#"·f) = "$ref" : absURI ·"#"·� ·f

CI("anyOf" : [(1, . . . , (=]) = "anyOf" : [CI(�, (1), . . . , CI(�, (=)]

. . .

Consider now a schema (0 and the set C of all possible contexts, that is, of all lists with no
repetitions of absolute URIs of resources inside (0; a fragment of (0 is any subschema that is
identified by a static or a dynamic anchor (e.g., the subschema identified by "urn:phi#phi" is a
fragment). The static translation of (0, Static((0), is obtained by substituting, in (0, each fragment
(5 identified by absURI·"#"·f with many fragments�·f , one for any context� ∈ C, where the schema
identified by each absURI · "#" ·� · f is CI(�, (5), as exemplified in the full version. If we have =*
absolute URIs in (0, we have Σ8∈{| 0...=* |} (8!) lists of URIs without repetitions, hence, if we have =5
fragments, the possible (�, (5) pairs are (Σ8∈{| 0...=* |} (8!)) ×=5 , which is included between =* !×=5
and (=* + 1)! × =5 . This exponential expansion was to be expected, since this transformation can
be used to reduce the validation problem of � using (0, that is PSPACE-complete with respect to
|� | + |(0 |, to validation using Static((0), which is P with respect to |� | + |Static((0) |.
We can now prove that this process preserves the schema behaviour.

Theorem 12 (Encoding correctness). Let (be a closed schema with base URI b. Then:

[| b |] ⊢S � : Static(() → (A, ^) ⇔ [| b |] ⊢S � : (→ (A, ^)

9 DYNAMIC REFERENCES IN DRAFT 2019-09: "$recursiveAnchor" AND "$recursiveRef"

Dynamic references have first been introduced in Draft 2019-09, in a restricted form, where (1)
dynamic anchors have no name, which means that they behave as if they all shared a unique name,
and (2) the initial reference of every dynamic reference is the root of its own resource.

In detail, the dynamic references of Draft 2019-09 are based on two keywords, "$recursiveAnchor" :
1, with 1 ∈ {| true, false |}, and "$recursiveRef" : "#". The keyword "$recursiveAnchor" : true,12

12The keyword "$recursiveAnchor" : false has no effect at all.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

49:26 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

placed at the top-level of its resource, has the same effect as "$dynamicAnchor" : RecRoot in Draft
2020-12, where RecRoot is an arbitrary unique anchor name: it associates a dynamic anchor to the
entire resource; please note that a unique anchor name RecRoot must be used to interpret every
"$recursiveAnchor" and every "$recursiveRef" in the schema and in all schemas that are reachable
from it. The keyword "$recursiveRef" : "#" is equivalent to "$dynamicRef" : baseURI ·"#" ·RecRoot,
where baseURI is the base URI of the current resource. Hence, "$recursiveRef" : "#" is a dynamic
reference that initially refers to the root of the resource where the keyword is found; for this reason,
it is called a dynamic recursive reference. Here “initially refers to...” indicates the target of the static
interpretation of baseURI ·"#"·RecRoot, but, at validation time, a dynamic reference is resolved to
the outermost resource that defines an anchor with the same name, which will often not coincide
with the static “initial” target.

If you consider the schemas of Figures 2 and 3, their Draft 2019-09 versions are obtained by
replacing every "$dynamicAnchor" : "tree" with "$recursiveAnchor" : true, and every "$dynamicRef" :
"...#tree" with "$recursiveRef" : "#" — "tree" plays the role of RecRoot. Similarly, the Draft 2019-09
version of the metaschema in Figure 4 is obtained by replacing every "$dynamicAnchor" : "meta"
with "$recursiveAnchor" : true, and every "$dynamicRef" : "...#meta" with "$recursiveRef" : "#".

Hence, the two restrictions of Draft 2019-09 do not prevent dynamic references from being used
for their most important application, the representation of JSON Schema metaschema as a collection
of many fragments. However, the presence of only one dynamic anchor name (which we indicate
as RecRoot) means that every dynamic reference will be resolved, in a fixed dynamic context, to the
same target, the root of the first resource in the context that has "$recursiveAnchor" : true at its
root, which makes it very complicated to mix different uses of dynamic references into a single
project, as we crucially do in our encoding of QBF.

The unique-name restriction drastically reduces the expressive power of the mechanism, but it
makes validation polynomial: since a schema in Draft 2019-09 corresponds to a schema in Draft
2020-12 with a single dynamic anchor name then, by Corollary 10, its validation time is in P.

Corollary 13. Validation of a JSON instance by a schema that respects Draft 2019-09 is in P.

10 EXPERIMENTS

We implemented Algorithm 2 for the entire JSON Schema language in Scala, applying the rules
described here and in the full version.

10.1 Correctness of Formalization

We applied our algorithm to the official JSON Schema test suite [Bergman 2023b].13 Out of a total
of 1,210 tests, we pass all apart from 14 pertaining to schemas with the following unsupported
features: special characters in patterns or in URI references, unknown keywords, a vocabulary
different from JSON Schema, a decimal with a high precision.
This experiment shows that the rules that we presented, and which are faithfully reflected by

our algorithm, are correct and complete w.r.t. the standard test suite.

10.2 Complexity

Validation for Modern JSON Schema is PSPACE-complete in the presence of dynamic references,
while it is in P when dynamic references are bound by a constant; this is not something that may
be proved by a finite set of experiments, but we already provided a formal proof for this.
In the upcoming experiment, we test a rich set of validators, in order to see (1) whether there

exist test cases where the PSPACE-hardness result is reflected by considerable validation times

13We only focus on main schemas and do not consider the optional ones, and use the version with git commit hash 6afa9b3.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

Validation of Modern JSON Schema: Formalization and Complexity 49:27

with small schemas and instances and (2) whether the difference between schemas with a variable
number of variables and with a fixed number of variables is visible, by this set of validators.

Schemas. We define three families of artificial schemas, designed in order to stress-test a generic
JSON validator, and we validate the instance null against each of them; the schemas are satisfied by
any instance. The schemas can be inspected online at https://github.com/sdbs-uni-p/mjs-schemas.
The dyn schema family comprises schemas "dyn1.js" up to "dyn100.js" and generalizes our

running example; the file "dyn"·8 ·".js" contains the encoding of

∀G1. ∃G2∀G28−1. ∃G28 . ((G1 ∧ G2) ∨ (¬G1 ∧ ¬G2)) ∧ . . . ∧ ((G28−1 ∧ G28) ∨ (¬G28−1 ∧ ¬G28))

as defined in Section 5; schema "dyn"·8 ·".js", hence, contains 8 pairs of variables.
The corresponding stat schema family comprises Draft-04 schemas "stat1.js" up to "stat100.js",

where each keyword "$dynamicRef" is just substituted with the keyword "$ref", without applying
the expansion we described in Section 8.
The dyn_bounded schema family, from "dyn.bounded1.js" up to "dyn.bounded100.js", encodes

∀G1. ∃G2∀G28−1 . ∃G28 . ((G1 ∧ G28) ∨ (¬G1 ∧ ¬G28)).

Hence, the dyn_bounded schemas only contain four dynamic references, a fact that, according to
Corollary 10, allows an optimized algorithm to run in polynomial time. Observe that the size of
"dyn"·8 ·".js", "dyn.bonded"·8 ·".js", and "stat"·8 ·".js" schemas grows linearly with 8 .

Validators. For third-party validators, we employ the meta-validator Bowtie [Bergman 2023a],
which invokes validators encapsulated in Docker containers. We tested all 16 different open-source
validators currently14 provided by Bowtie that support Draft 4 or Draft 2020. They are written in
11 different programming languages, as detailed in Table 3 of the full version. We also integrated
within Bowtie the academic validator from [Pezoa et al. 2016], as well as our own implementation.

Execution environment. Our execution environment is a 40-core Debian server with 384GB of
RAM.15 Each core runs with with 3.1Gz and CPU frequency set to performance mode. We are
running Docker version 20.10.12, Bowtie version 0.67.0, and Scala version 2.12.
All runtimes were measured as GNU time, averaged over five runs, and include the overhead

of invoking Bowtie and Docker. We overrode the default timeout setting in Bowtie, to allow for
longer-running experiments.
In the figures showing the measured runtimes, plotted lines terminate when the validator

produces a logical validation error, a runtime exception (most commonly, a stack overflow), or
when Bowtie reports “no response” by the validator.

Results. In Figures 10a-10c we show the results of our evaluation. In all figures, the x-axis indicates
the 8 index of schemas, while the y-axis reports the runtime. We distinguish the runtimes for the
Draft-04 and Draft 2020-12 validators, as well as our own prototype implementation, by different
line styles. The tics denote the data points, where data points can lie outside the plotted area.
Results on the dyn and stat schemas show that, on this specific example, the difference in

the asymptotic complexity of the static and the dynamic versions is extremely visible for our
validator (red line): we see that validation with dynamic references can become impractical even
with reasonably-sized files (e.g., schema "stat5.js" counts fewer than 250 lines when pretty-
printed), while the runtime remains very modest when dynamic references are substituted with

14As of July 2023, the time of writing this paper.
15The 40 cores allow us to run experiments in parallel. However, the experiment may just as well run on a commodity

laptop. In fact, in our reproduction package, we evaluate all experiments sequentially, assuming that 2 CPUs and 6MB of

memory are assigned to the virtual machine.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

https://github.com/sdbs-uni-p/mjs-schemas

49:28 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30

E
la

p
s
e
d

 r
u

n
ti

m
e
 (

s
e
c
)

(a) dyn schemas.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80

E
la

p
s
e
d

 r
u

n
ti

m
e
 (

s
e
c
) Draft4

D2020
mjs

(b) stat schemas (Dra� 4 compatible).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80

E
la

p
s
e
d

 r
u

n
ti

m
e
 (

s
e
c
) Size of schema file 8 in kB

8 dyn stat dyn_bounded
1 4 4 4
10 24 24 20
20 44 48 40
30 64 72 60
40 84 96 76
50 104 116 96
60 128 140 116
70 148 164 132
80 168 188 152

(c) dyn_bounded schemas.

Fig. 10. Runtimes of validators on the three schema families, where the tics on the horizontal axes denote
the index of the schema, (e.g, 10 is the index of schema "dyn"·10·".js"); the table in Subfigure 10c maps the
schema indexes to the actual file sizes in kB. The tested validators support Dra�-04 (green lines) or Dra�
2020-12 (blue lines). “mjs” (red line) refers to our implementation.

static references. The runtime on the dyn_bounded family reflects Corollary 10, which shows the
effectiveness of the proposed optimization on this specific example.

The results on the stat family strongly suggest that all other validators have chosen to implement
an algorithm that is exponential even when there is no dynamic reference present. This is not
surprising for the validators designed for Draft 2020-12, since we have been the first to describe an
algorithm (Algorithm 2) that runs in polynomial time over the static fragment of Draft 2020-12. It
is somewhat more surprising for the validators for Draft-04, especially for the one published as
additional material for [Pezoa et al. 2016]: for Draft-04, as for Classical JSON Schema in general,
the validation problem is in P, as proved for the first time in that same paper [Pezoa et al. 2016].

Discussion. This experiment shows that there are families of schemaswhere the PSPACE-hardness
of the problem is visible (Figure 10a), and that the algorithm we describe in Section 7 is extremely
effective when dynamic references are replaced with static references (Figure 10b), or limited in
number (Figure 10c). In this paper, we focus on worst-case asymptotic complexity, and we do not
make claims about real-world relevance of our algorithm, which is an important issue, but is not in
the scope of this paper.

11 RELATED WORK

To the best of our knowledge, Modern JSON Schema has not been formalized before, nor has
validation in the presence of dynamic references been studied.

Overviews over schema languages for JSON can be found in [Baazizi et al. 2019a,b; Bourhis
et al. 2017; Pezoa et al. 2016]. In [Pezoa et al. 2016] Pezoa et al. proposed the first formalization
of Classical JSON Schema Draft-04 and studied the complexity of validation. They proved that
JSON Schema Draft-04 expressive power goes beyond MSO and tree automata, and showed that
validation is PTIME-complete. They also described and experimentally analyzed a Python validator
that exhibits good performance and scalability. Their formalization of semantics and validation,
however, cannot be extended to modern JSON Schema due to the presence of dynamic references
and annotation-dependent validation.

In [Bourhis et al. 2017] Bourhis et al. refined the analysis of Pezoa et al. They mapped Classical
JSON Schema onto an equivalent modal logic, called recursive JSL, and studied the complexity of
validation and satisfiability. In particular, they proved that validation for recursive JSL and Classical
JSON Schema is PTIME-complete and that it can be solved in $ (|� |2 |(|) time; then they showed
that satisfiability for Classical JSON Schema, i.e., checking whether there exists at least one instance

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

Validation of Modern JSON Schema: Formalization and Complexity 49:29

that is validated by the input schema, is EXPTIME-complete for schemas without uniqueItems and
is in 2EXPTIME otherwise. Again, their approach does not seem very easy to extend to modern
JSON Schema, as it relies on modal logic and a very special kind of alternating tree automata.
While we are not aware of any other formal study about JSON Schema validation, dozens of

validators have been designed and implemented in the past (please, see [val 2023] for a rather
complete list of about 50 implementations). Only some of them (about 21), like ajv [ajv 2023] and
Hyperjump [hyp 2023], support modern JSON Schema and dynamic references. These validators
usually compile schemas to an efficient internal representation, that is later used for validation
purposes. ajv, for instance, uses modern code generation techniques and compiles a schema into a
specialized validator, designed to support advanced v8 optimization.
Validation has been widely studied in the context of XML data (see [Martens et al. 2009, 2006],

for instance). However, schema languages for XML are based on regular expressions, while JSON
Schema exploits record types, recursion, and full boolean logics, and this makes it very difficult to
import techniques from one field to the other.
Schema languages such as JSON Schema and type systems for functional languages are clearly

related, and a lot of work has been invested in the analysis of the computational complexity of type
checking and type inference for programming languages and for module systems (we will only cite
[Henglein and Mairson 1994], as an example). We are well aware of this research field, but we do
not think that it is related to this specific work, since in that case the focus is on the analysis of
code while JSON Schema validation analyzes instances of data structures.

12 CONCLUSIONS AND OPEN PROBLEMS

Modern JSON Schema introduced annotation-dependent validation and dynamic references, whose
exact interpretation is regarded as difficult to understand [Neal 2022], [Jacobson 2021]. The changes
to the evaluation model invalidate the theory developed for Classical JSON Schema.

Here we provide the first published formalization for Modern JSON Schema. This formalization
provides a language to unambiguously describe and discuss the standard, and a tool to understand
its subtleties, and it has been discussed with the community of JSON Schema tools developers. The
formalization has been expressed as a Scala program, which passes the tests of the standard JSON
Schema validation test suite and is available in the full version.
We use our formalization to study the complexity of validation of Modern JSON Schema. We

proved that the problem is PSPACE-complete, and that a very small fragment of the language is
already PSPACE-hard. We proved that this increase in asymptotic complexity is caused by dynamic
references, while annotation-dependent validation without dynamic references can be decided in
polynomial time. We have implemented and experimented with an explicit algorithm to this aim.

We defined a technique to eliminate dynamic references, at the price of a potential exponential
increase in the schema size.
Many interesting problems remain open, such as the definition of a new notion of schema

equivalence and inclusion that is compatible with annotation-dependent validation, the study of its
properties, and the study of the computational complexity of the problems of satisfiability, validity,
inclusion, and example generation.

ACKNOWLEDGMENTS

This work is partly funded byDeutsche Forschungsgemeinschaft (DFG, German Research Foundation)
grant #385808805.

This work is partly supported by the European Union under the scheme HORIZON-INFRA-2021-
DEV-02-01 — Preparatory phase of new ESFRI research infrastructure projects, Grant Agreement
n.101079043, “SoBigData RI PPP: SoBigData RI Preparatory Phase Project”.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

https://github.com/json-schema-org/json-schema-spec/issues/1172
https://github.com/orgs/json-schema-org/discussions/57

49:30 L. A�ouche, M. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger

This work is partly supported by Ministero dell’Università e della Ricerca (MUR, Ministry of
University and Research) under the PRIN Project “BioConceptum” (grant #2022AEEKXS).

The authors thank Stefan Klessinger and Sajal Jain for integrating academic validators with the
Bowtie framework, and Thomas Kirz for assisting with the gnuplot visualizations. The authors
thank Julian Bergman, author of the Bowtie framework, for making timeouts configurable for our
experiments.

DATA AVAILABILITY STATEMENT

We provide our code, scripts, and data within a reproduction package hosted on Zenodo [Attouche
et al. 2023b].
For reuse purposes, the code of our validator is available here [Attouche et al. 2023a].

REFERENCES

2023. Ajv JSON Schema validator. https://ajv.js.org Retrieved 10 January 2023.

2023. Hyperjump JSON Schema Validator. https://json-schema.hyperjump.io/ Online tool. Retrieved 10 January 2023.

2023. JSON Schema validators. https://json-schema.org/implementations.html#validators Retrieved 10 January 2023.

Henry Andrews. 2023. Modern JSON Schema. Available online at https://modern-json-schema.com/.

Lyes Attouche, Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger. 2022.

Witness Generation for JSON Schema. Proc. VLDB Endow. 15, 13 (2022), 4002–4014. https://www.vldb.org/pvldb/vol15/

p4002-sartiani.pdf

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger. 2023a.

ModernJSONSchemaValidator. https://gitlab.lip6.fr/jsonschema/modernjsonschemavalidator

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger. 2023b.

Reproduction Package for: Validation of Modern JSON Schema: Formalization and Complexity. https://doi.org/10.5281/

zenodo.10019663

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger. 2023c.

Validation of Modern JSON Schema: Formalization and Complexity. arXiv:2307.10034 [cs.DB]

Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019a. Schemas And Types For JSON Data. In

Proc. EDBT. 437–439.

Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019b. Schemas and Types for JSON Data: From

Theory to Practice. In Proc. SIGMOD Conference. 2060–2063.

Julian Bergman. 2023a. Bowtie JSON Schema Meta Validator. https://github.com/bowtie-json-schema/bowtie Online tool.

Version 0.67.0.

Julian Bergman. 2023b. JSON-Schema-Test-Suite (draft2020-12). https://github.com/json-schema-org/JSON-Schema-Test-

Suite/tree/main/tests/draft2020-12

T. Berners-Lee, R. Fielding, and L. Masinter. January 2005. Uniform Resource Identifier (URI): Generic Syntax. Technical

Report. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/rfc3986

Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. 2017. JSON: Data model, Query languages and

Schema specification. In Proc. PODS. 123–135. https://doi.org/10.1145/3034786.3056120

Pierre Bourhis, Juan L. Reutter, and Domagoj Vrgoc. 2020. JSON: Data model and query languages. Inf. Syst. 89 (2020),

101478. https://doi.org/10.1016/j.is.2019.101478

Francis Galiegue and Kris Zyp. 2013. JSON Schema: interactive and non interactive validation - draft-fge-json-schema-validation-

00. Technical Report. Internet Engineering Task Force. https://tools.ietf.org/html/draft-fge-json-schema-validation-00

Fritz Henglein and Harry G. Mairson. 1994. The Complexity of Type Inference for Higher-Order Typed lambda Calculi. J.

Funct. Program. 4, 4 (1994), 435–477. https://doi.org/10.1017/S0956796800001143

Mark Jacobson. 2021. The meaning of "additionalProperties" has changed. Available online at https://github.com/orgs/json-

schema-org/discussions/57.

Wim Martens, Frank Neven, and Thomas Schwentick. 2009. Complexity of Decision Problems for XML Schemas and Chain

Regular Expressions. SIAM J. Comput. 39, 4 (2009), 1486–1530. https://doi.org/10.1137/080743457

Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan Bex. 2006. Expressiveness and complexity of XML Schema.

ACM Trans. Database Syst. 31, 3 (2006), 770–813. https://doi.org/10.1145/1166074.1166076

Oliver Neal. 2022. Ambiguous behaviour of “additionalProperties” when invalid. Available online at https://github.com/json-

schema-org/json-schema-spec/issues/1172.

JSON Schema Org. 2022. JSON Schema. Available at https://json-schema.org.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

https://ajv.js.org
https://json-schema.hyperjump.io/
https://json-schema.org/implementations.html#validators
https://modern-json-schema.com/
https://www.vldb.org/pvldb/vol15/p4002-sartiani.pdf
https://www.vldb.org/pvldb/vol15/p4002-sartiani.pdf
https://gitlab.lip6.fr/jsonschema/modernjsonschemavalidator
https://doi.org/10.5281/zenodo.10019663
https://doi.org/10.5281/zenodo.10019663
https://arxiv.org/abs/2307.10034
https://github.com/bowtie-json-schema/bowtie
https://github.com/json-schema-org/JSON-Schema-Test-Suite/tree/main/tests/draft2020-12
https://github.com/json-schema-org/JSON-Schema-Test-Suite/tree/main/tests/draft2020-12
https://datatracker.ietf.org/doc/html/rfc3986
https://doi.org/10.1145/3034786.3056120
https://doi.org/10.1016/j.is.2019.101478
https://tools.ietf.org/html/draft-fge-json-schema-validation-00
https://doi.org/10.1017/S0956796800001143
https://github.com/orgs/json-schema-org/discussions/57
https://github.com/orgs/json-schema-org/discussions/57
https://doi.org/10.1137/080743457
https://doi.org/10.1145/1166074.1166076
https://github.com/json-schema-org/json-schema-spec/issues/1172
https://github.com/json-schema-org/json-schema-spec/issues/1172
https://json-schema.org

Validation of Modern JSON Schema: Formalization and Complexity 49:31

Felipe Pezoa, Juan L. Reutter, Fernando Suárez, Martín Ugarte, and Domagoj Vrgoc. 2016. Foundations of JSON Schema. In

Proc. WWW. 263–273.

Michael Sipser. 2012. Introduction to the Theory of Computation - Third Edition. Cengage.

Larry J. Stockmeyer and Albert R. Meyer. 1973. Word Problems Requiring Exponential Time: Preliminary Report. In

Proceedings of the 5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas, USA, Alfred V.

Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd, Michael A. Harrison, Richard M. Karp, and H. Raymond

Strong (Eds.). ACM, 1–9. https://doi.org/10.1145/800125.804029

Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages (Extended Abstract). In Proceedings of the 14th Annual

ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, Harry R. Lewis, Barbara B.

Simons, Walter A. Burkhard, and Lawrence H. Landweber (Eds.). ACM, 137–146. https://doi.org/10.1145/800070.802186

A. Wright, H. Andrews, and B. Hutton. 2019. JSON Schema Validation: A Vocabulary for Structural Validation of JSON - draft-

handrews-json-schema-validation-02. Technical Report. Internet Engineering Task Force. https://tools.ietf.org/html/draft-

handrews-json-schema-validation-02 Retrieved 19 September 2022.

A. Wright, H. Andrews, B. Hutton, and G. Dennis. 2022. JSON Schema: A Media Type for Describing JSON Documents -

draft-bhutton-json-schema-01. Technical Report. Internet Engineering Task Force. https://json-schema.org/draft/2020-

12/json-schema-core.html Retrieved 15 October 2022.

A. Wright, G. Luff, and H. Andrews. 2017. JSON Schema Validation: A Vocabulary for Structural Validation of JSON - draft-

wright-json-schema-validation-01. Technical Report. Internet Engineering Task Force. https://tools.ietf.org/html/draft-

wright-json-schema-validation-01 Retrieved 19 September 2022.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 49. Publication date: January 2024.

https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800070.802186
https://tools.ietf.org/html/draft-handrews-json-schema-validation-02
https://tools.ietf.org/html/draft-handrews-json-schema-validation-02
https://json-schema.org/draft/2020-12/json-schema-core.html
https://json-schema.org/draft/2020-12/json-schema-core.html
https://tools.ietf.org/html/draft-wright-json-schema-validation-01
https://tools.ietf.org/html/draft-wright-json-schema-validation-01

	Abstract
	1 Introduction
	2 Modern JSON Schema through examples
	3 Formalizing JSON Schema syntax
	4 JSON Schema Validation
	5 PSPACE hardness: using dynamic references to encode a QBF sentence
	6 Validation is in PSPACE
	7 Polynomial time validation for static references and polynomial time data complexity
	8 Elimination of dynamic references
	9 Dynamic references in Draft 2019-09: "$recursiveAnchor" and "$recursiveRef"
	10 Experiments
	11 Related Work
	12 Conclusions and Open Problems
	References

