
GENERALIZED SCHRÖDINGER-NEWTON SYSTEM

IN DIMENSION N > 3: CRITICAL CASE
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Abstract. In this paper we study a system which is equivalent to a nonlocal version of the
well known Brezis Nirenberg problem. The difficulties related with the lack of compactness
are here emphasized by the nonlocal nature of the critical nonlinear term.
We prove existence and nonexistence results of positive solutions when N = 3 and existence
of solutions in both the resonance and the nonresonance case for higher dimensions.

Contents

1. Introduction and statement of the main results 1
2. Preliminaries 3
2.1. The reduction method 3
2.2. The Palais-Smale condition 6
3. The dimension N = 3: positive solutions 8
3.1. An existence result 9
3.2. A nonexistence result 11
4. The dimensions N > 4 12
4.1. Positive solutions 12
4.2. The geometrical properties for the Linking Theorem 13
4.3. Sign changing solutions: the nonresonance case 15
4.4. Sign changing solutions: the resonance case 16
References 17

1. Introduction and statement of the main results

In this paper we consider the following Schrödinger-Newton type system
−∆u = λu+ |u|2∗−3uφ in Ω

−∆φ = |u|2∗−1 in Ω

u = φ = 0 on ∂Ω

(SN )

where Ω ⊂ RN , N > 3, is a smooth and bounded domain and 2∗ = 2N
N−2 is the critical Sobolev

exponent.
By applying a standard reduction, it is easy to see that (SN ) is equivalent to the following
critical version of a Choquard type equation in a bounded domain, with Dirichlet boundary
conditions −∆u = λu+

(∫
Ω
G(x− y)|u(y)|2∗−1 dy

)
|u|2∗−3u in Ω,

u = 0 on ∂Ω,
(1.1)

where G is the Green function of the Laplacian in the domain Ω with Dirichlet homogeneous
boundary conditions (see e.g. [6]). As emphasized in [1], where (SN ) has been firstly introduced
and positive solutions have been considered, the problem we are going to study is variational,
and the particular choice of the powers in the first and the second equations brings as a
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derivate parziali nonlineari”, Università degli Studi della Basilicata. G. Vaira is also partially supported by
MIUR-PRIN project-201274FYK7 005.

1



2 A. AZZOLLINI, P. D’AVENIA, AND G. VAIRA

consequence difficulties in questions related with compactness.
The analogy arising by a comparison with the classic problem of finding solutions to{

−∆u = λu+ |u|2∗−2u in Ω,

u = 0 on ∂Ω,
(1.2)

leads to interpret (1.1) as a nonlocal version of the well known Brezis-Nirenberg problem, sug-
gesting approaches similar to those in [3] and in [4, 7].

As observed by Brezis and Nirenberg in [3], the presence of a nonlinearity critically growing
causes problems in obtaining compactness for the Palais-Smale sequences unless they lie on a
certain sublevel of the functional associated to the problem. As a consequence, it is quite clear
that large values of λ give a positive contribution in gaining compactness.
On the other hand, it was also observed that, if λ is greater than the first eigenvalue of the
Laplacian with zero Dirichlet condition on Ω, we have no positive solution to (1.2). The
question related to the existence of sign-changing solutions of (1.2) for λ > λ1 was handled
and solved in dimension N > 4 in [4], and successively reconsidered in [7] in presence of a
general nonlinearity g(x, u) in the place of the linear term λu.

In accordance with what is expected, the dimension of the space where we set the problem
and the position of λ with respect to the eigenvalues in the spectrum of the Laplacian play a
very important role also when we try to solve (SN ). In particular, while for λ not belonging to
the spectrum and N > 4 suitable estimates on the functional permit to achieve results similar
to those already known for the Brezis-Nirenberg problem, the three-dimensional case and the
so called “resonance case” are quite more delicate.

In order to present our results, let us first introduce some notations. Let λk’s, k ∈ N, be
the eigenvalues of −∆ with homogeneous Dirichlet boundary conditions on Ω. It is well known
that

0 < λ1 < λ2 < . . . . . . < λk < . . .

with λk → +∞ as k →∞. We denote by σ(−∆) the spectrum of −∆.

We recall the following results whose proofs are essentially contained in [1].

Proposition 1.1. Problem (SN ) has no positive solution for λ > λ1 and, if Ω is starshaped,
no solution for λ 6 0.
Moreover, if N = 3 and Ω corresponds to the ball BR centered in 0 with radius R > 0, the
problem (SN ) has at least a positive radial ground state solution for any λ ∈

]
3
10λ1, λ1

[
.

We are able to improve results in [1] as follows

Theorem 1.2. Assume N = 3 and Ω corresponding to the ball BR centered in 0 with radius
R > 0. Then

(i) problem (SN ) has a positive radial ground state solution for any λ ∈
] (

1
4 + 2

5π2

)
λ1, λ1

[
;

(ii) problem (SN ) has no positive solution for λ ∈]0, λ∗], where λ∗ ∈
]
λ1
16 ,

9
64λ1

[
is explicitly

determined as a solution of a suitable equation.

We specify that when we say positive solution we mean a couple (u, φ) where both the
functions are positive in Ω.

The existence result has been obtained by means of refined estimates on the explicit ex-
pression of the solution φ of the second equation, when u in chosen inside the well known one
parameter family of functions introduced by Brezis and Nirenberg in [3]. We recall that the
components of such a family, obtained cutting off the solutions of the critical problem (1.2) set
in Ω = RN , are used by Brezis and Nirenberg as test functions to prove that there exists at
least a Palais-Smale sequence lying in the compactness sublevel.
As regards the nonexistence result, we are going to use an argument exploited in [3] for (1.2),
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and based on the a priori information about the radial symmetry of any positive solution of
(1.2). To this end, we preliminarily prove an analogous result on the symmetry of all positive
solutions of (SN ) by showing that, since the general assumptions of the maximum principle
hold, the moving plane method applies in a quite natural way to the solutions of our system.

Higher dimensions permit to obtain more convenient estimates by which not only we enlarge
the range of existence for what concerns positive solutions, but we are also able to study the
presence of sign changing solutions for λ > λ1. The situation changes considerably depending
wheter λ is in the spectrum or not.

We have the following two results.

Theorem 1.3. Assume N > 4. Then problem (SN ) has

(i) a positive ground state solution for any λ ∈]0, λ1[;
(ii) a sign changing solution for every λ ∈]λk, λk+1[.

Theorem 1.4. Assume N > 6 and λ ∈ σ(−∆). Then (SN ) possesses a sign changing solution.

Comparing these results with those in [7], we observe the loss of the dimension N = 5 when
we are in the resonance case. The differences between the resonance and the nonresonance
case, already pointed out by Gazzola and Ruf for the Brezis Nirenberg problem, here are
emphasized by the behaviour of the nonlocal nonlinear term when we compute the functional
on finite dimensional subspaces of H1

0 (Ω). In particular, it is quite interesting to observe that,
differently from what happens for the critical term in the functional associated to the problem
(1.2), in finite dimensional subspaces the integral of the nonlocal term does not have the growth
of the norm to the critical power, but it behaves as the norm to the power 2(2∗ − 1).

The paper is so organized: in Section 2, after having recalled the reduction method which
classically applies to this kind of problems, we present some useful properties related with the
reduced functional, and in particular we study the compactness of its Palais-Smale sequences.
In Section 3 we are interested in positive solutions when N = 3 and we prove the existence
and the nonexistence results contained in Theorem 1.2.
Finally in Section 4 we consider the case N > 4 looking for positive and sign changing solu-
tions. In particular for the existence of the latter we take advantage of the Linking Theorem
in [11] which we apply both in the resonance and in the nonresonance case in order to prove
Theorem 1.3 and Theorem 1.4.

Notations: In what follows we let H1
0 (Ω) the usual Sobolev space equipped with the norm

‖u‖ := (
∫

Ω |∇u|
2 dx)

1
2 and, for any u ∈ Lq(Ω) we let |u|q :=

(∫
Ω |u|

q dx
) 1
q . Moreover, with

C,Ci we denote positive constants that can vary also from line to line and by Br the ball in
RN centered at zero with radius r.

2. Preliminaries

2.1. The reduction method. As it is classical in the study of this type of systems, for every
u ∈ H1

0 (Ω) there exists a unique φu ∈ H1
0 (Ω) that solves the second equation of (SN ). Hence

we can reduce the system (SN ) to the boundary value problem{
−∆u = λu+ |u|2∗−3uφu in Ω,

u = 0 on ∂Ω.
(2.1)

In fact it can be easily proved that (u, φ) ∈ H1
0 (Ω)×H1

0 (Ω) is a solution of (SN ) if and only
if u solves (2.1) and φ = φu.
Moreover, solutions of (2.1) can be found as critical points of the C1 one-variable functional
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I : H1
0 (Ω)→ R

I(u) =
1

2

∫
Ω
|∇u|2 dx− λ

2

∫
Ω
|u|2 dx− 1

2(2∗ − 1)

∫
Ω
|∇φu|2 dx

=
1

2

∫
Ω
|∇u|2 dx− λ

2

∫
Ω
|u|2 dx− 1

2(2∗ − 1)

∫
Ω
φu|u|2

∗−1 dx

since for all u, v ∈ H1
0 (Ω) we have

I ′(u)[v] =

∫
Ω
∇u∇v dx− λ

∫
Ω
uv dx−

∫
Ω
|u|2∗−3uφuv dx.

In the next lemma we summarize the properties of such a function φu that will be useful in
the following.

Lemma 2.1. For every fixed u ∈ H1
0 (Ω) we have:

(i) φu > 0 a.e. in Ω;
(ii) for all t > 0, φtu = t2

∗−1φu;

(iii) ‖φu‖ 6 S−
2∗
2 ‖u‖2∗−1, where S = infv∈H1(RN )\{0} ‖∇v‖22/‖v‖22∗;

(iv) ‖φu‖2 > 2δ|u|2∗2∗ − δ2‖u‖2 for any δ > 0.

Moreover

(v) for every u, v ∈ H1
0 (Ω),∫

Ω
φu|v|2

∗−1 dx =

∫
Ω
φv|u|2

∗−1 dx;

(vi) for every u, u1, . . . , uk ∈ H1
0 (Ω),∣∣∣∣∣φu −

k∑
i=1

φui

∣∣∣∣∣
2∗

6
1

S

∣∣∣∣∣|u|2∗−1 −
k∑
i=1

|ui|2
∗−1

∣∣∣∣∣
2∗

2∗−1

;

(vii) if (un) in H1
0 (Ω) and u ∈ H1

0 (Ω) are such that un ⇀ u in H1
0 (Ω), then, up to subse-

quences, φun ⇀ φu in H1
0 (Ω) and strongly in Lp(Ω) for all p ∈ [1, 2∗). Moreover∫

Ω
φun |un|2

∗−1 dx−
∫

Ω
φun−u|un − u|2

∗−1 dx =

∫
Ω
φu|u|2

∗−1 dx+ on(1); (2.2)

(viii) if W ⊂ H1
0 (Ω) is a finite dimensional subspace, then there exists C = C(W ) > 0 such

that for any w ∈W we have

C−1‖w‖2∗−1 6 ‖φw‖ 6 C‖w‖2
∗−1.

Proof. Property (i) is trivial (see e.g. [5]) and (ii) easily follows from

−∆φtu = t2
∗−1|u|2∗−1 = −∆(t2

∗−1φu) in Ω

and φtu = φu = 0 on ∂Ω.
Multiplying the second equation of (SN ) by φu, integrating and using Hölder and Sobolev
inequalities we have

‖φu‖2 =

∫
Ω
φu|u|2

∗−1 dx 6 |φu|2∗ |u|2
∗−1

2∗ 6 S−
2∗
2 ‖u‖2∗−1‖φu‖

and then (iii).
Moreover, multiplying the second equation of (SN ) by |u| and integrating we have

|u|2∗2∗ =

∫
Ω
∇φu∇|u| dx 6

1

2δ
‖φu‖2 +

δ

2
‖u‖2 for any δ > 0

and so (iv).
To obtain (v) we observe that∫

Ω
φv|u|2

∗−1 dx =

∫
Ω
∇φu∇φv dx =

∫
Ω
φu|v|2

∗−1 dx.
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A further simple computation gives∣∣∣∣∣φu −
k∑
i=1

φui

∣∣∣∣∣
2

2∗

6
1

S

∥∥∥∥∥φu −
k∑
i=1

φui

∥∥∥∥∥
2

=
1

S

∫
(φu −

k∑
i=1

φui)(|u|2
∗−1 −

k∑
i=1

|ui|2
∗−1) dx

6
1

S

∣∣∣∣∣φu −
k∑
i=1

φui

∣∣∣∣∣
2∗

∣∣∣∣∣|u|2∗−1 −
k∑
i=1

|ui|2
∗−1

∣∣∣∣∣
2∗

2∗−1

and (vi) follows.
To prove the first part of (vii) we can proceed as in [12, Proposition 2.4]. Furthermore by
applying (v) we get∫

Ω
φun |un|2

∗−1 dx−
∫

Ω
φun−u|un − u|2

∗−1 dx

=

∫
Ω

(φun − φun−u)
(
|un|2

∗−1 − |un − u|2
∗−1
)
dx+ 2

∫
Ω

(φun − φun−u) |un − u|2
∗−1 dx.

An easy variant of the classical Brezis-Lieb Lemma (see also [10, Lemma 2.5]) yields that

|un|2
∗−1 − |un − u|2

∗−1 → |u|2∗−1 in L
2∗

2∗−1 (Ω) as n→ +∞

and applying (vi) we get that

φun − φun−u → φu in L2∗(Ω) as n→ +∞. (2.3)

Hence ∫
Ω

(φun − φun−u)
(
|un|2

∗−1 − |un − u|2
∗−1
)
dx→

∫
Ω
φu|u|2

∗−1 dx as n→ +∞.

Moreover, applying again [13, Proposition 5.4.7], we have |un−u|2
∗−1 ⇀ 0 in L

2∗
2∗−1 (Ω). Hence,

since φu ∈ L2∗(Ω) and using also (2.3),

∫
Ω

(φun − φun−u) |un − u|2
∗−1 dx

=

∫
Ω

(φun − φun−u − φu) |un − u|2
∗−1 dx+

∫
Ω
φu|un − u|2

∗−1 dx→ 0

as n→ +∞.
Finally, in order to see (viii), consider W a finite dimensional subspace of H1

0 (Ω). The second
inequality is already known by (iii) and it actually does not depend on W .
Now, pick any w ∈W and consider the second equation of (SN ).
Multiplying by |w|, integrating and applying the Holder inequality, we have

|w|2∗2∗ =

∫
Ω
∇φw∇|w| dx 6 ‖φw‖‖w‖.

By equivalence of norms in finite dimensional spaces, we have that there exists C depending
on W such that C‖w‖ 6 |w|2∗ , and then we are done. �

We conclude this section observing that, applying (iv) in Lemma 2.1 for δ = 1, we have that
for all u ∈ H1

0 (Ω)

I(u) 6
N

N + 2
‖u‖2 − λ

2
|u|22 −

N − 2

N + 2
|u|2∗2∗ . (2.4)
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2.2. The Palais-Smale condition. As usual, in order to have compactness, a first crucial
step consists in checking the Palais-Smale (PS for short) condition. We recall that a sequence
(un) ⊂ H1

0 (Ω) is called a PS sequence for I at level c if I(un)→ c and I ′(un)→ 0 in [H1
0 (Ω)]−1.

The functional I satisfies the PS condition at level c, if every PS sequence at level c has a
convergent subsequence in H1

0 (Ω).
Since we are in the critical case, we do not know if the functional I satisfies the PS condition
at all levels. However there is a set of values in which it is preserved.

Lemma 2.2. The functional I satisfies the Palais-Smale condition in
]
−∞, 2

N+2S
N
2

[
.

Proof. Let (un) ⊂ H1
0 (Ω) be a PS sequence for I at level c < 2

N+2S
N
2 . First we show that (un)

is bounded. In what follows all the convergences are meant up to a subsequence.
Indeed, using also (iv) of Lemma 2.1, we have

2c+ on(1)‖un‖ = 2I(un)− I ′(un)[un] =
2∗ − 2

2∗ − 1
‖φun‖2 > C1|un|2

∗
2 − C2‖un‖2

so that

‖φun‖2 6 C(1 + ‖un‖)
and

|un|2
∗

2 6 C(1 + ‖un‖2).

Hence

‖un‖2 = 2I(un) + λ|un|22 +
1

2∗ − 1
‖φun‖2 6 C

(
1 + ‖un‖

4
2∗ + ‖un‖

)
and, since 2 < 2∗, it follows that (un) is bounded.
Then we can assume that there exists u ∈ H1

0 (Ω) such that un ⇀ u in H1
0 (Ω), un → u in Lq(Ω)

for every q ∈ [1, 2∗) and a.e. in Ω.
Now, let us set f(s) := |s|2∗−3s. Since (un) is bounded in L2∗(Ω), then (f(un)) is bounded

L
2∗

2∗−2 (Ω) and so, in a standard way, it follows that f(un) ⇀ f(u) in L
2∗

2∗−2 (Ω). Then, for
all ϕ ∈ C∞0 (Ω), using also (vii) of Lemma 2.1, Hölder and Sobolev inequalities, and since

φuϕ ∈ L
2∗
2 (Ω),∣∣∣∣∫

Ω
f(un)φunϕdx−

∫
Ω
f(u)φuϕdx

∣∣∣∣ 6 ∣∣∣∣∫
Ω

(φun − φu) f(un)ϕdx

∣∣∣∣+

∣∣∣∣∫
Ω

(f(un)− f(u))φuϕdx

∣∣∣∣
6 C|ϕ|∞‖un‖2

∗−2|φun − φu| 2∗
2

+ on(1) −→ 0

as n→ +∞. Hence

I ′(un)[ϕ]→ I ′(u)[ϕ]

and, by density, we get

0 = I ′(u)[u] = ‖u‖2 − λ|u|22 − ‖φu‖2,
from which

I(u) =
2∗ − 2

2(2∗ − 1)
‖φu‖2 > 0. (2.5)

Since un ⇀ u in H1
0 (Ω) we get

‖un‖2 = ‖un − u‖2 + ‖u‖2 + on(1).

Then, by using the strong convergence un → u in L2(Ω) and (2.2) we get

I(un) = I(u) + I0(un − u) + on(1) (2.6)

with

I0(u) =
1

2
‖u‖2 − 1

2(2∗ − 1)
‖φu‖2.
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Furthermore

on(1) = I ′(un)[un − u] = (I ′(un)− I ′(u))[un − u]

= ‖un − u‖2 − λ|un − u|22 −
∫

Ω
φunf(un)(un − u) dx+

∫
Ω
φuf(u)(un − u) dx.

(2.7)

Since un ⇀ u in L2∗(Ω) and φuf(u) ∈ L
2∗

2∗−1 (Ω),∫
Ω
φuf(u)(un − u) dx = on(1).

Moreover∫
Ω
φunf(un)(un − u) dx =

∫
Ω
φun |un|2

∗−1 dx−
∫

Ω
φu|u|2

∗−1 dx

−
∫

Ω
(φun − φu) f(un)u dx−

∫
Ω
φuu (f(un)− f(u)) dx.

(2.8)

Since the sequence ((φun − φu)f(un)) is bounded in L
2∗

2∗−1 (Ω), φun → φu and f(un) → f(u)
a.e. in Ω, by [13, Proposition 5.4.7] we have∫

Ω
(φun − φu) f(un)u dx = on(1) (2.9)

and, analogously, we can prove that∫
Ω
φuu (f(un)− f(u)) dx = on(1). (2.10)

Then, using (2.2), (2.9) and (2.10) in (2.8), we obtain∫
Ω
φunf(un)(un − u) dx =

∫
Ω
φun−u|un − u|2

∗−1 dx+ on(1).

Moreover, by (2.7) we get

‖un − u‖2 −
∫

Ω
φun−u|un − u|2

∗−1 dx = on(1) (2.11)

and so

I0(un − u) =
1

2
‖un − u‖2 −

1

2(2∗ − 1)
‖un − u‖2 + on(1) =

2

N + 2
‖un − u‖2 + on(1).

On the other hand, from (2.6) we get, using also (2.5),

I0(un − u) = I(un)− I(u) + on(1) 6 c+ on(1) <
2

N + 2
S
N
2 .

Then it follows that

lim sup
n
‖un − u‖2 < S

N
2

and so, by (2.11) and (iii) of Lemma 2.1,

on(1) = ‖un−u‖2−
∫

Ω
φun−u|un−u|2

∗−1 dx > ‖un−u‖2
[

1−
(
‖un − u‖2

S
N
2

)2∗−2
]
> C‖un−u‖2.

Hence un → u in H1
0 (Ω). �
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3. The dimension N = 3: positive solutions

In dimension 3 this type of problems turns out to be rather delicate even in the Brezis-
Nirenberg problem (1.2) (see [3]) and so we consider only the case in which Ω is a ball. Moreover,
for simplicity but without losing generality, we take Ω = B1 so that λ1 = π2.

Before we present our existence and nonexistence results, we introduce the following im-
portant symmetry property of all positive solutions, essentially based on the moving plane
technique due to Gidas, Ni and Nirenberg [8]. To prove it we use a standard argument suitably
adapted for our purposes. We point out that the dimension N does not have any role in the
proof, even if we are here interested only in the case N = 3.

Lemma 3.1. If Ω = B1, any positive solution (u, φ) of (SN ), with u, φ ∈ C2(B1)∩C(B̄1), is
such that both u and φ are radially symmetric.

Proof. Assume u ∈ C1(B̄1) in order to compute the derivatives in ∂B1 (this further assumption
can be removed generalizing the meaning of the derivatives on the boundary) and λ > 0 since
we have no solution for λ 6 0.
Define for any µ ∈ [0, 1] the sets

Pµ = {x ∈ R3 | x3 = µ}

and

Eµ = {x ∈ B1 | µ < x3 < 1}.
Moreover, for any x = (x1, x2, x3) ∈ R3, let xµ = (x1, x2, 2µ − x3) be the reflection of x with
respect to Pµ and assume the following notation for any x ∈ Eµ:

uµ(x) = u(xµ).

By the Hopf Lemma (see for example [9, Lemma 3.4]), we have that for all µ ∈]0, 1[ the outward
derivative ∂u

∂ν is negative in ∂Eµ ∩ ∂B1. Of course, since ∇u and ν have the same direction,

this means that the verse of ∇u is inward, and then we deduce that ∂u
∂x3

< 0 in ∂Eµ ∩ ∂B1.

By continuity, we deduce that for values of µ close to 1, we have ∂u
∂x3

< 0 everywhere in Eµ∪Ẽµ,

where Ẽµ = {x ∈ B1 | xµ ∈ Eµ}. Of course, this fact implies that values of µ close to 1 are in
A := {µ ∈]0, 1] | ∀x ∈ Eµ : u(x) < uµ(x)}.
Now, define µ0 = inf{µ ∈]0, 1] | η ∈ A, ∀η ∈ [µ, 1]}.
We want to prove by contradiction that µ0 = 0 so that we assume µ0 > 0.

Observe that in Eµ we have −∆uµ = (−∆u)µ,
∂uµ
∂x3

= −
(
∂u
∂x3

)
µ

and φuµ = (φu)µ.

Denote φ = φu, φµ = (φu)µ and w = uµ0 − u.

Of course we have w > 0 in Eµ0 and

−∆w = λw + u2∗−2
µ0 φµ0 − u2∗−2φ in Eµ0 . (3.1)

Since we have

−∆(φµ0 − φ) = u2∗−1
µ0 − u2∗−1 > 0 in Eµ0 ,

φµ0 − φ > 0 on ∂Eµ0 ,

by the weak maximum principle we deduce that φµ0 > φ in Eµ0 .
Now, by (3.1), we have that −∆w > 0 in Eµ0 and then, by the strong maximum principle and
since w = 0 in Pµ0 , we have that either w > 0 in Eµ0 or w is constant. Of course w is not
constant since w > 0 on ∂Eµ0 \ Pµ0 and then w is positive in Eµ0 .

Moreover, by the Hopf Lemma, in Pµ0 we have ∂w
∂x3

> 0 and then, since x = xµ0 , we get
∂u
∂x3

= −1
2
∂w
∂x3

< 0.

Then, again by continuity, there exists V a neighborhood of Pµ0 such that ∂u
∂x3

< 0 in V ∩B1.

In conclusion, since u < uµ0 in Eµ0 and ∂u
∂x3

< 0 in V ∩B1, we deduce that actually there exists
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ε > 0 such that µ0 − ε > 0 and [µ0 − ε, 1] ⊂ A: a contradiction.
We deduce that µ0 = 0 which implies

u 6 u0 in E0. (3.2)

Since the same arguments can be repeated replacing the interval ]0, 1] with [−1, 0[, Eµ with
Fµ = {x ∈ B1 | −1 < x3 < µ} and defining µ0 = sup{µ ∈ [−1, 0[ | η ∈ A, ∀η ∈ [−1, µ]}, we can
prove that

u 6 u0 in F0. (3.3)

It is easy to see that (3.2) and (3.3) together imply that u = u0 in B1. Since this conclusion
can be obtained in the same way for any reflection plane containing the origin, we deduce that
u is radial. The symmetry of φ comes easily from that of u. �

3.1. An existence result. This section is devoted to the proof of (i) of Theorem 1.2. Since
the geometrical assumptions of the Mountain Pass Theorem are satisfied, we set

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ =
{
γ ∈ C([0, 1], H1

0 (Ω)) : γ(0) = 0, I(γ(1)) < 0
}

and, by Lemma 2.2, we only have to
prove that

c <
2

5
S

3
2 =

3
√

3

10
π2.

So we consider a smooth positive function ϕ = ϕ(r) such that ϕ(0) = 1, ϕ′(0) = 0 and ϕ(1) = 0.
Following [3] we set r = |x|,

uε(r) =
ϕ(r)

(ε+ r2)
1
2

and we get the estimates

‖uε‖2 = K1ε
− 1

2 + 4π

∫ 1

0
|ϕ′(r)|2 dr +O(ε

1
2 ), |uε|22 = 4π

∫ 1

0
ϕ2(r) dr +O(ε

1
2 ),

where

K1 :=

∫
R3

|x|2

(1 + |x|2)3
dx =

3

4
π2.

We have that

sup
t>0

I(tuε) = I(tεuε) =
2

5

(
‖uε‖2 − λ|uε|22

) 5
4

‖φuε‖
1
2

(3.4)

where

tε := 8

√
‖uε‖2 − λ|uε|22
‖φuε‖2

.

Moreover (
‖uε‖2 − λ|uε|22

) 5
4 = K

5
4
1 ε
− 5

8

(
1 +

5

4

A(ϕ)

K1

√
ε+ o(

√
ε)

)
(3.5)

where

A(ϕ) := 4π

(∫ 1

0
|ϕ′(r)|2 dr − λ

∫ 1

0
ϕ2(r) dr

)
.

Now, since uε is radial and smooth, also φuε is radial and smooth. Moreover, for s ∈ (0, 1)

φ′′uε(s) + 2
φ′uε(s)

s
= −u5

ε(s),

namely,

(s2φ′uε(s))
′ = −s2u5

ε(s).
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Integrating in (0, r), for r ∈ (0, 1), and using the smoothness of φuε (φ′uε(0) = 0), we get

φ′uε(r) = − 1

r2

∫ r

0
s2|uε(s)|5 ds

= − 1

r2

∫ r

0

ϕ5(s)s2

(ε+ s2)
5
2

ds

= − 1

r2

(∫ r

0
s2ϕ

5(s)− 1

(ε+ s2)
5
2

ds+

∫ r

0

s2

(ε+ s2)
5
2

ds

)

and so, using the fact that ϕ(0) = 1 and ϕ′(0) = 0,

‖φuε‖2 = 4π

∫ 1

0

1

r2

(∫ r

0
s2ϕ

5(s)− 1

(ε+ s2)
5
2

ds+

∫ r

0

s2

(ε+ s2)
5
2

ds

)2

dr

> 4π

∫ 1

0

1

r2

(∫ r

0

s2

(ε+ s2)
5
2

ds

)2

dr

+2

∫ 1

0

1

r2

(∫ r

0
s2ϕ

5(s)− 1

(ε+ s2)
5
2

ds

)(∫ r

0

s2

(ε+ s2)
5
2

ds

)
dr

]

> 4π

∫ 1

0

1

r2

(∫ r

0

s2

(ε+ s2)
5
2

ds

)2

dr

−C
∫ 1

0

1

r2

(∫ r

0

s4

(ε+ s2)
5
2

ds

)(∫ r

0

s2

(ε+ s2)
5
2

ds

)
dr

]

= 4π

[
1

9ε2

∫ 1

0

r4

(ε+ r2)3
dr

−C
3ε

∫ 1

0

(
log

(
r +
√
ε+ r2

√
ε

)
− r(4r2 + 3ε)

3(ε+ r2)
3
2

)
r

(ε+ r2)
3
2

dr

]

=
π2

12
ε−

5
2

(
1− 16

3π

√
ε+ o(

√
ε)

)
Hence

‖φuε‖
1
2 >

4

√
π2

12
ε−

5
8

(
1− 16

3π

√
ε+ o(

√
ε)

) 1
4

=
4

√
π2

12
ε−

5
8

(
1− 4

3π

√
ε+ o(

√
ε)

)
. (3.6)

Then, using (3.5) and (3.6) in (3.4), we get

sup
t>0

I(tuε) 6
2

5
S

3
2

(
1 +

5A(ϕ) + 4π

3π2

√
ε+ o(

√
ε)

)
.

If we take ϕ(r) = cos
(
πr
2

)
, then A(ϕ) = 2π

(
π2

4 − λ
)

and we conclude assuming that

λ > λ1

(
1

4
+

2

5π2

)
.

It can be showed that, applying usual arguments, we are allowed to assume u nonnegative.
As a trivial consequence of the strong maximum principle applied to both the equations, we
actually deduce that the solution is positive and, by Lemma 3.1, radial.

Finally we prove it is a ground state arguing as in of [1, Step 2 of the Proof of Theorem 1.1].
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3.2. A nonexistence result. In this section we prove the (ii) of Theorem 1.2. We reason
as in [3], taking into account that, by Lemma 3.1, we are allowed to consider the ODE radial
formulation of our problem. So, we write u(x) = u(r) and φ(x) = φ(r) where r = |x| and we
assume by contradiction (u, φ) is a positive solution of

− u′′ − 2

r
u′ = λu+ φu4 on (0, 1) (3.7)

− φ′′ − 2

r
φ′ = u5 on (0, 1) (3.8)

with the following boundary conditions

u′(0) = u(1) = 0, φ′(0) = φ(1) = 0.

Let ψ be any smooth function such that ψ(0) = 0.
We multiply (3.7) by r2ψu′, we integrate on (0, 1) and we get

−ψ(1)(u′(1))2

2
+

∫ 1

0

(
r2

2
ψ′ − rψ

)
(u′)2 dr = −λ

2

∫ 1

0
(r2ψ′ + 2rψ)u2 dr

− 1

5

∫ 1

0
(r2ψ′ + 2rψ)φu5 dr − 1

5

∫ 1

0
r2u5ψφ′ dr.

(3.9)

We multiply (3.8) by r2ψφ′, we integrate by parts on (0, 1) and we get

− ψ(1)(φ′(1))2

2
+

∫ 1

0

(
r2

2
ψ′ − rψ

)
(φ′)2 dr =

∫ 1

0
r2u5ψφ′ dr. (3.10)

Then, by (3.9) and (3.10) we obtain

−ψ(1)(u′(1))2

2
− ψ(1)(φ′(1))2

10

+

∫ 1

0

(
r2

2
ψ′ − rψ

)
(u′)2 dr +

1

5

∫ 1

0

(
r2

2
ψ′ − rψ

)
(φ′)2 dr

= −λ
2

∫ 1

0
(r2ψ′ + 2rψ)u2 dr − 1

5

∫ 1

0
(r2ψ′ + 2rψ)φu5 dr.

(3.11)

Now, multiplying (3.7) by
(
r2

2 ψ
′ − rψ

)
u and integrating in (0, 1) we have

− 1

4

∫ 1

0
r2ψ′′′u2 dr +

∫ 1

0

(
r2

2
ψ′ − rψ

)
(u′)2 dr =

∫ 1

0

(
r2

2
ψ′ − rψ

)
(λu2 + φu5) dr (3.12)

and, multiplying (3.8) by
(
r2

2 ψ
′ − rψ

)
φ and integrating in (0, 1), we have∫ 1

0

(
r2

2
ψ′ − rψ

)(
φ′
)2
dr − 1

4

∫ 1

0
φ2r2ψ′′′ dr =

∫ 1

0

(
r2

2
ψ′ − rψ

)
φu5 dr. (3.13)

Combining (3.11), (3.12) and (3.13) we get∫ 1

0
r2

(
1

4
ψ′′′ + λψ′

)
u2 dr +

1

20

∫ 1

0
r2φ2ψ′′′ dr

=
ψ(1)(u′(1))2

2
+
ψ(1)(φ′(1))2

10
+

4

5

∫ 1

0
u5φr(ψ − rψ′) dr.

(3.14)

Our aim is to find those λ > 0 for which there exists a smooth function ψλ such that
ψλ(0) = 0 and (3.14) does not hold.

As a first step, consider 0 < λ 6 λ1
16 and set ψλ(r) = sin(

√
4λr) as in [3]. We have ψλ(1) > 0

and 1
4ψ
′′′
λ + λψ′λ = 0. Moreover, for any r ∈]0, 1],

ψ′′′λ (r) 6 0 < ψλ(r)− rψ′λ(r)

and then equality (3.14) is violated.
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Now, for k > 0 and λ ∈ J :=
]
λ1
16 ,

λ1
4

[
, consider

ψk,λ(r) = 1− 2λr2 + k sin(
√

4λr)− cos(
√

4λr)

and observe that, for all r ∈]0, 1],

1

4
ψ′′′k,λ(r) + λψ′k,λ(r) < 0 < ψk,λ(r)− rψ′k,λ(r).

Moreover, for λ ∈ J , we have

sup
r∈]0,1]

ψ′′′k,λ(r) 6 0 ⇐⇒ ψ′′′k,λ(1) 6 0 ⇐⇒ k 6 − tan(
√

4λ)

and

ψk,λ(1) > 0 ⇐⇒ k >
cos(
√

4λ)− 1 + 2λ

sin(
√

4λ)
.

Then

cos(
√

4λ)− 1 + 2λ

sin(
√

4λ)
6 − tan(

√
4λ),

namely

1 + (2λ− 1) cos(
√

4λ) > 0,

which holds if λ ∈
]
λ1
16 , λ

∗], where λ∗ is the unique solution of 1 + (2λ− 1) cos(
√

4λ) = 0 in J .

4. The dimensions N > 4

In this section we are interested in studying (SN ) for N > 4 in the resonance and in the
nonresonance case in order to provide the proofs of Theorem 1.3 and Theorem 1.4.
In particular, first we use similar arguments as those in Section 3.1 to prove the existence of
a positive solution at the mountain pass level when 0 < λ < λ1. Then, after checking the
geometrical assumptions of the Linking Theorem in [11], we show that sign changing solutions
exist for λ > λ1 both in the resonance and, provided N > 6, in the nonresonance case.

4.1. Positive solutions. We are reduced to prove that c < 2
N+2S

N
2 . As in [3] we define

uε(x) =
ϕ(|x|)

(ε+ |x|2)
N−2

2

,

where ϕ is a smooth positive function compactly supported in Ω such that ϕ(x) = 1 in some
neighborhood of 0. We have

|∇uε|22 =
K1

ε
N−2

2

+O(1), |uε|22∗ =
K2

ε
N−2

2

+O(ε)

and

|uε|22 =

{
K3ε

−N−4
2 +O(1) if N > 5

K3| log ε|+O(1) if N = 4

where K1,K2,K3 are positive constants and K1/K2 = S (see [3]).
Then, using (2.4), we have the following estimate of the mountain pass level

c 6 max
t>0

I(tuε) 6
2

N + 2

(
|∇uε|22 − N+2

2N λ|uε|22
|uε|22∗

)N
2

6
2

N + 2

(
S + ε

N−2
2 (O(1)− ψ(ε))

)N
2

where ψ is a function such that limε→0 ψ(ε) = +∞.
Of course, if ε is sufficiently small, we conclude.
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4.2. The geometrical properties for the Linking Theorem. In this section we investigate
the geometrical properties of the functional I in order to verify the assumptions of the Linking
Theorem. In what follows, we recall the geometrical construction developed in [7] to find sign
changing solutions for λ > λ1.

Let us denote by ej the eigenfunctions relative to λj ∈ σ(−∆) such that |ej |2 = 1.
Let k ∈ N and let us define

H− := span {ej : j = 1, . . . , k} ; H+ :=
(
H−
)⊥
.

Without loss of generality let 0 ∈ Ω and let us take m so large such that B 2
m
⊂ Ω. Consider

the function ζm : Ω→ R defined by

ζm(x) :=


0 if x ∈ B 1

m

m|x| − 1 if x ∈ Am := B 2
m
\B 1

m

1 if x ∈ Ω \B 2
m
.

Let emj := ζmej be the approximating eigenfunctions and let

H−m := span{emj : j = 1, . . . , k}.
We have the following

Lemma 4.1. As m→∞ we have

emj → ej in H1
0 (Ω) and max

w∈H−
m;|w|2=1

‖w‖2 6 λk + ckm
2−N (4.1)

where ck > 0.
Moreover, if λ > λk,

sup
w∈H−

m

I(w) = O(m−
N2−4

4 ). (4.2)

Proof. The first part is proved in [7, Lemma 2].
Moreover for all m ∈ N∗ and w ∈ H−m, by (4.1) and (viii) of Lemma 2.1,

I(w) 6
ckm

2−N

2(λk + ckm2−N )
‖w‖2 − C‖w‖2(2∗−1) 6 Cm−

N2−4
4 .

�

We consider the family of functions

u∗ε(x) := αN
ε
N−2

2

(ε2 + |x|2)
N−2

2

, ε > 0, (4.3)

where αN := [N(N − 2)]
N−2

4 , which solve{
−∆u = u2∗−1 in RN

u ∈ H1(RN )

and satisfy ∫
RN
|∇u∗ε|2 =

∫
RN
|u∗ε|2

∗
= S

N
2

for all ε > 0.
Let η ∈ C∞c (B 1

m
) be a positive cut-off function such that η ≡ 1 in B 1

2m
, η 6 1 in B 1

m
,

|∇η|∞ 6 4m and consider

uε(x) := η(x)u∗ε(x). (4.4)

As ε→ 0 we have the following estimates due to Brezis and Nirenberg [3]

‖uε‖2 = S
N
2 +O

(
εN−2

)
, |uε|2

∗
2∗ = S

N
2 +O

(
εN
)
. (4.5)
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For v ∈ H−m ⊕ R+{uε} we write v = w + tuε. By definition

supp(uε) ∩ supp(w) = ∅.

We have

Lemma 4.2. If u,w ∈ H1
0 (Ω) are such that supp(u) ∩ supp(w) = ∅, then for v = u + w we

have

I(v) = I(u) + I(w)− 1

2∗ − 1

∫
Ω
φw|u|2

∗−1 dx. (4.6)

Proof. Of course, ‖v‖2 = ‖w‖2 + ‖u‖2 and |v|22 = |w|22 + |u|22.
Moreover, if u,w ∈ H1

0 (Ω) have disjoint supports, then

−∆φv = |u|2∗−1 + |w|2∗−1 = −∆(φu + φw) in Ω

and φv = 0 = φu + φw on ∂Ω.
By uniqueness,

φv = φu + φw.

So we have

I(v) =
1

2
‖u‖2 +

1

2
‖w‖22 −

λ

2
|u|22 −

λ

2
|w|22 −

1

2(2∗ − 1)
‖φu + φw‖2

= I(u) + I(w)− 1

2∗ − 1

∫
Ω
∇φu∇φw dx

= I(u) + I(w)− 1

2∗ − 1

∫
Ω
φw|u|2

∗−1 dx

and then we conclude. �

Let Pk : H1
0 (Ω)→ H− the orthogonal projection. In view of Lemma 4.1 if m is large enough

then (see [7])

PkH
−
m = H− and H−m ⊕H+ = H1

0 (Ω).

Moreover, let us define

H = {h ∈ C(Q̄mε , H
1
0 (Ω)) : h|∂Qmε = id∂Qmε }

where

Qmε := {w ∈ H−m : ‖w‖ < R} ⊕ [0, R]{uε}.
Now we verify that the geometrical assumptions of the Linking Theorem hold in our case.

Lemma 4.3. Let λk 6 λ < λk+1. We have that there exist 0 < ρ < R such that, uniformly
for ε sufficiently small,

(a) {u ∈ H+ : ‖u‖ = ρ} and ∂Qmε link;
(b) the functional I is bounded from below by a positive constant on {u ∈ H+ : ‖u‖ = ρ};
(c) supu∈∂Qmε I(u) 6 ωm with ωm → 0 as m→∞.

Proof. Property (a) is standard (see [2, Lemma 1.3]).
Moreover, by (iii) of Lemma 2.1, we have

I(u) >
1

2
‖u‖2 − λ

2
|u|22 − C‖u‖2(2∗−1).

Since λ < λk+1, if u ∈ H+ we find

I(u) > C(‖u‖2 − ‖u‖2(2∗−1))

for any u ∈ H+. Therefore, if ρ is small enough, we get that

I(u) > C > 0
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for all u ∈ {u ∈ H+ : ‖u‖ = ρ} and so (b) is proved.
To prove (c) we observe that, by (4.2), I(w) 6 ωm.
Moreover, by (2.4) and (4.5), we have

I(Ruε) 6
NR2

N + 2
‖uε‖2 −

N − 2

N + 2
R2∗ |uε|2

∗
2∗

=
S
N
2 R2

N + 2

[
N +O(εN−2)−

(
N − 2 +O(εN )

)
R2∗−2

]
and this becomes negative for R large enough and uniformly for ε small. Then, by (4.2) and
(4.6), we have I(w +Ruε) 6 ωm.
Finally, since max06r6R I(ruε) < +∞ and for all w ∈ H−m with ‖w‖ = R we have

I(w) 6
N

N + 2
R2 − CR2∗ ,

by (4.6) we conclude that I(v) 6 0 in {w ∈ H−m : ‖w‖ = R} ⊕ [0, R]{uε} if R is sufficiently
large. �

Let us set

c := inf
h∈H

sup
v∈Qmε

I(h(v)).

Since id∂Qmε ∈ H we have

c 6 sup
v∈Qmε

I(v)

and, of course, c > 0 by (a) and (b) of Lemma 4.3.
We complete our proofs if we show that for ε small enough

max
v∈Qmε

I(v) <
2

N + 2
S
N
2 . (4.7)

This is the aim of the last part of the section. We distinguish two cases:

• λ 6∈ σ(−∆), and λ > λ1;
• λ ∈ σ(−∆) and N > 6.

4.3. Sign changing solutions: the nonresonance case. Here we assume that there exist
k ∈ N∗ and θ > 0 such that

λk + θ 6 λ < λk+1. (4.8)

We prove (4.7) under condition (4.8).
Let us choose m so large such that

ckm
2−N < θ (4.9)

where ck is as in Lemma 4.1.
By contradiction let us assume that for all ε > 0

sup
v∈Qmε

I(v) >
2

N + 2
S
N
2 .

It is easy to see that the supremum is attained and then, for all ε > 0, there exist wε ∈ H−m
and tε > 0 such that

I(vε) = max
v∈Qmε

I(v) >
2

N + 2
S
N
2 , (4.10)

where vε := wε + tεuε.
Observe that by Lemma 4.1, (4.8) and (4.9) we have

I(wε) 6
ckm

2−N − θ
2(λk + ckm2−N )

‖wε‖2 −
1

2(2∗ − 1)

∫
Ω
φwε |wε|2

∗−1 dx 6 0, (4.11)

which improves the estimate (4.2).
Moreover we have the following property of the family (tε).
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Lemma 4.4. There exists C > 0 such that tε > C for all ε > 0. In particular we have that
there exists a sequence (εn) ⊂ R∗+ such that εn → 0 and tεn → 1 as n→ +∞.

Proof. By (4.6), (4.10) and (4.11) we deduce that tε > C > 0 for all ε > 0.
Since (tε) is bounded, there exists (εn) ⊂ R∗+ such that εn → 0 and tεn → t0 as n→ +∞. For
simplicity we label ε = εn and so ε→ 0.
By (4.3) we have that |tεuε|22 → 0 as ε→ 0. Hence, by (2.4) and (4.5) we have

I(tεuε) 6

(
N

N + 2
t20 −

N − 2

N + 2
t2

∗
0

)
S
N
2 + o(1).

Then, by Lemma 4.2,

I(vε) 6 I(wε) + I(tεuε) 6 I(wε) + ϕ(t0)S
N
2 + o(1) (4.12)

where

ϕ(t) =
N

N + 2
t2 − N − 2

N + 2
t2

∗
.

We note that

max
t>0

ϕ(t) = ϕ(1) =
2

N + 2
and ϕ(t) <

2

N + 2
∀t > 0, t 6= 1.

So, taking into account (4.11), if it was t0 6= 1, then for ε small inequality (4.12) would
contradict (4.10). �

Moreover we recall the following result.

Lemma 4.5 ( [7, Lemma 5]). There exists a function τ = τ(ε) such that τ(ε)→ +∞ as ε→ 0
and ∫

Ω
|tεuε|2 dx > τ(ε)εN−2

for ε small.

Hence we can conclude the proof in this case.

Proof of (ii) of Theorem 1.3 completed. First we observe that, by (2.4), (4.5), Lemma 4.5

I(tεuε) 6
N

N + 2
t2ε‖uε‖2 −

λ

2
|t2εuε|22 −

N − 2

N + 2
t2

∗
ε |uε|2

∗
2∗

6

(
N

N + 2
t2ε −

N − 2

N + 2
t2

∗
ε

)
S
N
2 + C(1− τ(ε))εN−2

<
2

N + 2
S
N
2

for ε small enough. Then by (4.6) and (4.11) we get

I(vε) <
2

N + 2
S
N
2

which contradicts (4.10).
Hence, the Linking Theorem can be applied using Lemma 2.2 and Lemma 4.3. �

4.4. Sign changing solutions: the resonance case. Let λ = λk and µ ∈ (λk, λk+1). As in
the previous section we want to show that (4.7) holds.
By contradiction assume that for all m and all ε > 0 there exists vmε = wmε + tmε u

m
ε ∈ Qmε such

that

I(vmε ) >
2

N + 2
S
N
2 (4.13)

where umε is defined in (4.4).
Then, as in Lemma 4.4, but using (4.2) instead of (4.11), the sequence (tmε ) satisfies again

tmε > C > 0 (4.14)
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uniformly for m large enough and ε > 0.
As in [7, Lemma 6] one can prove the following result.

Lemma 4.6. Let m→ +∞ and assume that ε = ε(m) = o( 1
m); then

‖umε ‖2 = S
N
2 +O[(εm)N−2], |umε |2

∗
2∗ = S

N
2 +O[(εm)N ].

Moreover, ∫
Ω
|tmε umε |2 dx > Cε2.

Proof. We only prove the last estimate: for any m large enough such that (4.14) holds and ε
small enough such that Bε ⊂ B 1

2m
, we have∫

Ω
|tmε umε |2 dx > C

∫ ε

0

εN−2

(ε2 + r2)N−2
rN−1 dr = Cε2.

�

Hence we can conclude as follows.

Proof of Theorem 1.4 completed. We choose ε = ε(m) in order to deal only with the parameter
m and to have a contradiction to (4.13) for m large enough. We take

ε(m) = m−
N−2
N−4 log−

1
2 (m).

Therefore, as m→ +∞ then ε(m) = o( 1
m) and Lemma 4.6 applies.

From now on, we express only the dependence on m.
By (2.4), Lemma 4.6, if N > 5 and m is large enough we have

I(tmum) 6
N

N + 2
t2m‖um‖2 −

λk
2
|t2mum|22 −

N − 2

N + 2
t2

∗
m |um|2

∗
2∗

6

(
N

N + 2
t2m −

N − 2

N + 2
t2

∗
m

)
S
N
2 −

(
C1 − C2 log−

N−4
2 (m)

)
m−

2(N−2)
N−4 log−1(m)

6
2

N + 2
S
N
2 − Cm−

2(N−2)
N−4 log−1(m).

Then, using also (4.6) and (4.2), we have

I(vm) 6 I(tmu
m) + I(wm)

6
2

N + 2
S
N
2 − C1m

− 2(N−2)
N−4 log−1(m) + C2m

−N
2−4
4

=
2

N + 2
S
N
2 −

(
C1 log−1(m)− C2m

− (N−2)(N2−2N−16)
4(N−4)

)
m−

2(N−2)
N−4

which, for m large enough and N > 6, contradicts (4.13).
Hence, the Linking Theorem, through Lemma 2.2 and Lemma 4.3, allows us to conclude. �
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[5] T. D’Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell
equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 893–906. 4

[6] L.C. Evans, Partial differential equations, Graduate Studies in Mathematics 19, American Mathematical
Society, Providence, RI, 2010. 1



18 A. AZZOLLINI, P. D’AVENIA, AND G. VAIRA

[7] F. Gazzola, B. Ruf, Lower-order perturbations of critical growth nonlinearities, Adv. Differential Equations
2 (1997), 555–572. 2, 3, 13, 14, 16, 17

[8] B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm.
Math. Phys. 68 (1979), 209–243. 8

[9] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin,
2001. 8

[10] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative prop-
erties and decay asymptotics. J. Funct. Anal. 265 (2013), 153–184. 5

[11] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS
Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, RI, 1986. 3,
12

[12] D. Ruiz, On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases,
Arch. Ration. Mech. Anal. 198 (2010), 349–368. 5

[13] M. Willem, Functional analysis. Fundamentals and applications, Cornerstones, Birkhäuser/Springer, New
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