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Summary – Grapevine (Vitis vinifera) is the most widely cultivated and economically relevant crop in the world, but its
productivity is menaced by aridification in some wine-growing regions such as theMediterranean Basin. The impacts of climate
on vines depend on regional conditions, cultivar, and vine age, among other factors. Hence, a better understanding of vine radial-
growth responses to climate in different regions is sorely needed. First, we related climate data and drought severity with a
long-term series of vine leaf unfolding from NE Spain to test if climate warming is advancing the onset of the growing season.
Second, we used growth rings to estimate age and quantify climate-growth relationships of vines using dendrochronology. Three
sites from different designations of origin and vine varieties were studied: Logroño in northern Spain (La Rioja, Tempranillo),
SanMartín del Río in northeast Spain (Calatayud, Garnacha) andAnzi in southern Italy (Aglianico, Aleatico). Vine leaf unfolding
occurred earlier as winter-spring conditions were warmer and drier. Vine ages ranged between 16 (Logroño, Anzi) and 56 years
(S. Martín del Río), and growth rates declined in the two youngest grapevines. Ring widths varied between 1.19 (S. Martín del Río)
and 1.80 mm (Logroño), with Anzi showing intermediate values (1.37 mm). February precipitation enhanced vine growth in San
Martín del Río (r = 0.64) and Anzi (r = 0.49), whereas the correlation with soil moisture peaked in March in San Martín del Río
(r = 0.83). Vine growth rates positively responded to September minimum temperatures in San Martín del Río (r = 0.51) and
Logroño (r = 0.50). Garnacha cultivar in San Martín del Río showed the highest responsiveness to water availability. Therefore,
similar old grapevines from continental, seasonally dry areas could be the most negatively affected by future warmer and drier
climate conditions.
Keywords –Dendro-viticulture, drought, Garnacha, growth ring, vine cultivar, vineyard.

Introduction

Grapevine is a major and iconic crop in regions with a Mediterranean climate where wine production provides
important economic and cultural benefits (Keller 2015). Several climate models indicate that climate warming may
lead to the loss of about 20% of viticulture areas by the late 21st century, with countries traditionally producing high-
quality wines such as Spain and Italy being severely impacted and losing grapevine-producing areas (Hannah et al.
2013; Sgubin et al. 2023). Vitis species are climbing vines, often found in riparian habitats, with the grapevine (Vitis
vinifera subsp. vinifera L.) showing a prominent economic importance inMediterranean areas (Keller 2015). However,
vine cultivationmaybedisproportionately affected by aridification in theMediterraneanBasin, as this region is prone
to the negative impacts of climate extremes such as droughts (Ali et al. 2022).
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Conditions required for grapevine cultivation and high-quality wine production depend on several climatic
variables including temperature and precipitation (Jones et al. 2005; Jones & Alves 2012). Temperature is critical for
the development of important phenological phases such as bud break, leaf unfolding and fruit maturity (García de
Cortázar-Atauri et al. 2017), and thermal conditions also affect vine physiology, fruit composition, and wine quality
(Coombe 1987; Jones 2006). Rainfall amount is also critical since dry conditions can reduce grape productivity in the
absence of irrigation (Moutinho-Pereira et al. 2004),whilst excessive precipitation reduceswine quality and increases
the incidence of pests (van Leeuwen et al. 2019). In general, it is considered that climate warming will advance vine
leaf phenology and increase thewater demand (Hannah et al. 2013). However, how these changes relate to vine xylem
growth is understudied. In addition, vine xylem responses to environmental conditions depend on the cultivar and
pedoclimatic conditions (Schultz 2003; Roig-Puscama et al. 2021).
Spain and Italy are among the main wine producers and accounted for 33% of wine production in the world in

2021 (OIV 2022). In Spain, it is estimated that almost one-quarter of the vineyards (ca. 235 000 ha) are very exposed
to climate warming, which could also lead to the loss of old grapevines belonging to rare cultivars. Such old vines
are being increasingly appreciated by winegrowers because they are considered to be more tolerant to drought due
to their deeper roots and allow the production of high-quality, distinctive, and expensive wines (Grigg et al. 2018).
Furthermore, increasing cultivar diversity, including old vines, could also buffer potential losses of winegrowing
regions under climate warming (Wolkovich et al. 2018; Morales-Castilla et al. 2020). Therefore, some of Spain’s main
designations of origins have put in new legislation to define grapevine age as part of superior classification levels. For
instance, the new “Viñedo Singular” category in La Rioja (northern Spain) requires the grapevines to be at least 35
years old. Nevertheless, many old vines are uprooted and replaced by young productive vines (Lasanta et al. 2016),
despite grapevines reaching a maximum age of 80–120 years (Vršič et al. 2011; Keller 2015).
Despite the interest in climate warming impacts on grapevine performance, there is scarce long-term data on vine

age, ring growth, and wood anatomy and how they respond to climate variability (Roig-Puscama et al. 2021; Damiano
etal. 2023).The studyof annual growth rings in vines usingdendrochronology (dendro-viticulture)wouldhelp answer
how grapevine growth depends on age and how it responds to regional climate variability and aridification (Tyminski
2013; Maxwell et al. 2016).
Vines are considered vulnerable to drought stress (Matthews et al. 1987; Lovisolo et al. 1998; Pellegrino et al. 2005;

Jacobsen et al. 2015). Such vulnerability is partially related to its bimodal distribution of vessel diameters (Carlquist
1985), with wide vessels beingmore hydraulically efficient but alsomore vulnerable to embolism than narrow vessels
formed in the late growing season (Pratt 1974; Shtein et al. 2017; Munitz et al. 2018; Brandes et al. 2022; but see Bouda
et al. 2019). Therefore, drier conditions are expected to induce a loss of hydraulic function and a reduction in radial
growth, particularly in cultivars from the most arid sites or growing on shallow or rocky soils. Ring-width data allow
quantifying the magnitude of the vine response to droughts of different severity or duration.
In vine, cambial activity begins about 14 days after bud break (Bernstein & Fahn 1960) and new leaves are formed

ca. 60 days after bud break (Romero et al. 2010). Current-year vessels are functional at least 54 days after bud break
(Jacobsen et al. 2015), when canopy development has almost finished, whereas radial growth rates peak from early
April to mid-May (Matthews et al. 1987). These phenological phases indicate that leaf and xylem phenology may be
coupled but respond differently to climate warming. Comparing series of leaf phenology and ring width would allow
checking if warmer conditions trigger earlier unfolding dates and enhance grapevine growth.
Here, we study growth rings of old grapevines corresponding to different designations of origin and growing under

different climate and soil conditions in vineyards located in northern Spain, northeastern Spain, and southern Italy,
respectively. Our specific objectives are: (i) to relate climate data and a drought index to leaf unfolding dates to test
if climate warming is leading to an earlier start of the growing season, which could be linked to enhanced growth,
(ii) to estimate the ages of sampled vines, and (iii) to assess climate-growth relationships using climate variables
(temperature, precipitation). Combining growthandphenologydata strengthensour approach sincephenologyplays
a major role in the tolerance to climate warming of vines (García de Cortázar-Atauri et al. 2017).
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Material andmethods

Study designations of origin

We selected three old grapevines located in three designations of origin: Logroño in “La Rioja” region (northern
Spain), San Martín del Río in “Calatayud” region (northeastern Spain), and Anzi in “Aleatico” region (southern
Italy), respectively (Fig. A1 in the Appendix). Regarding pruning management, it was similar in all sites, but the
training system differed with vertical shoot position and double Guyot systems in the Spanish and Italian grapevines,
respectively. In studies on grapevine responses to drought, the Garnacha cultivar was among the most efficient and
produced the smallest leaves when subjected to strong water limitation (Gómez del Campo et al. 2003).
The three study grapevines experience a Mediterranean climate characterized by warm and dry summers (Fig. A2

in the Appendix). However, climate conditions change among sites. The wettest site is Anzi with 815 mm of total
annual precipitation, followed by SanMartín del Río (422 mm) and Logroño (411 mm) (Fig. A3 in the Appendix). The
highest meanmaximum temperature (30.1°C) is recorded in July in SanMartín del Río, followed by Logroño (29.6°C)
andAnzi (28.3°C). The lowestmeanminimum temperature (−1.2°C) is recorded in January, also in SanMartín del Río,
followed by Anzi (−0.6°C) and Logroño (2.1°C). Therefore, SanMartín del Río is themost continental site. In Logroño,
soils are basic with a silty loam texture. In SanMartín del Río, soils are acid and stony, developed on slates, with a clay
texture. In the Italian site, soils are basic and sandy. The main grapevine varieties in the study sites are Tempranillo,
Garnacha, and Aleatico in the Logroño, San Martín del Río, and Anzi study sites, respectively (Table 1). According to
local managers, grapevines were not grafted.

Field sampling

Sampling was carried out from July-August 2020 to June 2021. In each site, we took a basal cross-section of 15–25
vines showing crooked, multiple stems, two aspects associated with old individuals (Vršič et al. 2011). We further
checked this information with local managers and owners who confirmed that grapevines were planted more than
15 years ago. Usually, some of the sampled vines showed rotten pith or heartwood and we discarded them keeping 8
to 23 individuals per site for dendrochronological analyses (Table 1).

Climate and SPEI data

Climate data from local stations were used to describe the climatic conditions of the study sites (Fig. A2 in the
Appendix), but they were not long enough for analysing climate-growth relationships. Due to the lack of long-term
homogeneous climate series near the three study sites, we used daily andmonthly climate data (meanmaximumand
minimum temperatures, total precipitation) from the 0.1°-gridded E-OBS ver. 27.0e dataset considering the period
1960–2020 (Cornes et al. 2018). Daily and monthly temperature data corresponded to averages of hourly and daily
data, respectively, whereas daily and monthly precipitation data corresponded to summed hourly and daily data, in
that order, used in Europe in similar tree-ring analyses (usually considering forest tree species) and it is available at
different spatial resolutions or grids (0.1, 0.25 and 0.5°). This is a complete, clean, and homogeneous climate dataset
that has been used in previous studies relating climate variables and phenology or growth data (Valeriano et al.
2023). We also obtained monthly data of shallow (0–10 cm) soil moisture (period 1980–2018) from the 0.1°-gridded
Land Data Assimilation Systems dataset (Rodell et al. 2004). Lastly, we obtained weekly data of the Standardized
Precipitation Evapotranspiration Index (SPEI) at 1-month long scales (period 1961–2020) for the Spanish site to assess
if leaf unfolding responded to drought severity. These data correspond to the 1.1 km2-gridded Spanish SPEI dataset
(Vicente-Serrano et al. 2017). The SPEI has positive and negative values for wet and dry conditions, respectively, and
it is calculated as a function of a cumulative water balance considering precipitation and atmospheric evaporative
demand. The SPEI data are available online at http://monitordesequia.csic.es/.
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Table 1.Main features of the three study grapevines. The number of measured series correspond to the cross-dated andmeasured
radii.

Site Latitude Longitude Elevation
(m a.s.l.)

Variety No. sampled
individuals

No. measured
series

Logroño 42.446°N 2.515°W 453 Tempranillo 23 47
San Martín del Río 41.052°N 1.425°W 938 Garnacha 8 16
Anzi 40.463°N 15.965°E 704 Aleatico 21 29

Data on leaf unfolding date

Data on grapevine leaf unfolding dateswere available from a site located in northeastern Spain (Cardedeu, 41°34′N,
2°21′E). Phenological data were taken from 1953 to 2000, but they were available only for 28 years since data were
missing for 1957–1968, 1970–1971, 1975–1979 and 1985 (Peñuelas et al. 2002). Phenological events were recorded with
an estimated accuracy of ±1 day. At least six individual plants per species were monitored and the phenophase was
recorded once the whole plant had reached the functional phenological stage.

Dendrochronological methods

Wood cross-sections were air-dried and carefully sanded with sandpapers of different grains until rings were
clearly visible. Then, they were visually cross dated under the binocular scope and scanned at 1200 dpi (Epson
Expression 10 000XL). The ring widths were measured with a 0.001 mm resolution along two radii per sample
using the CooRecorder software (Larsson & Larsson 2018). The visual cross-dating was checked using the COFECHA
software which calculates moving correlations between individual tree-ring width series and the mean site series of
ring widths (Holmes 1983). Age was quantified by counting the number of annual growth rings from bark to pith
along the two cross-dated and measured radii of each section. In most cases, particularly for vines older than 20
years, the pith was rotten. In those individuals, we calculated the theoretical age by fitting a concentric template
and estimated the number of missing rings assuming a similar growth rate as in the innermost rings (Norton et al.
1987).
To calculate climate–growth relationships, the individual ring-width serieswere converted into indexed ring-width

series through standardization and detrending (Fritts 1976). These procedures allow removing size-related trends in
ring-width data and emphasize high-frequency growth variability. We fitted 12-year cubic smoothing splines with a
50% frequency response cut-off to individual ring-width series and obtained ring-width indices by dividing observed
by fitted values. The length of the spline was selected to retain high-frequency (annual to decadal) growth variability.
Then, we fitted autoregressive models to remove most of the first-order autocorrelation in a series of dimensionless
ring-width indices. The residual or pre-whitened individual series were averaged using a bi-weight robust mean to
obtain mean residual series for each site (Fritts 1976). These procedures were done using the dplR package (Bunn
2010) in R (R Development Core Team 2023).
Lastly,we calculated several statistics for the common, best-replicatedperiod (2000–2020).This periodwasdefined

based on the values of the Expressed Population Signal (EPS) and we considered the best-replicated period with
EPS�0.85 as the one inwhich the calculated chronologies approached the theoretically perfect chronologies (Wigley
et al. 1984).We also characterized themean site chronologies by calculating themean and standard ring-width values,
the mean first-order autocorrelation of ring widths (AR1), which accounts for year-to-year persistence in growth, the
mean interseries correlation (rbar), and the correlation with the mean site series (Briffa & Jones 1990).
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Statistical analyses

To calculate climate-growth relationships, the site mean series or chronologies of ring-width indices were related
tomonthly climate data (meanmaximum andminimum temperatures, total precipitation, soil moisture, SPEI) using
the Treeclim R package (Zang & Biondi 2015). The window of analysis was from September of the year previous to
growth to September of the growth year and the consideredperiodwas 2000–2020.Ordinary least squares regressions
were also fitted between daily climate data (mean minimum and maximum temperatures, total precipitation) and
series of ring-width indices. Analogously, leaf unfolding dates were also related to monthly climate data (from the
previous October to the current April) andweekly SPEI data (considering 1-month SPEI data), to evaluate the climate
drivers of leaf unfolding.

Results

Phenology of leaf unfolding

On average, vine leaf unfolding started the 13th of April (DOY,mean ± SD 104 ± 12) ranging between the 16thMarch
(DOY 76) and the 2nd May (DOY 123). Leaf unfolding occurred earlier as maximum temperatures from February
to April and minimum temperatures and radiation from February to March increased (Fig. 1). Wet conditions from
March to early April were linked to delayed leaf unfolding.

Growth rate and age

The oldest vine (56 years) was sampled in San Martín del Río (Fig. A4 in the Appendix), where the mean age was
significantly (p < 0.05) higher than in the other two sites (Table 2). These two sites showed significant negative trends
in growth (Kendall τ = −0.44 in Logroño; τ = −0.67 in Anzi; p < 0.01 in both cases), whereas this was not the case in
San Martín del Río (τ = −0.05; Fig. 2). This is an age-based growth decrease because the detrended ring-width series
did not show this trend. No significant correlation was found among the site series of ring-width indices suggesting
different patterns in year-to-year growth variability.
The mean ring width was higher in Logroño (1.80 mm) than in the other two sites (Anzi, 1.37 mm; San Martín del

Río, 1.19mm). The highest first-order autocorrelationwas found in SanMartín del Río, whereas the highest correlation
with the mean site series and EPS was found in Anzi. The age of grapevines and the mean ring width were negatively
associated and the best fit corresponded to a power function (ring width = 14.195 age−0.71745; Fig. A4 in the Appendix).

Responses to climate variables and drought severity

Vine growth was enhanced by high February precipitation in the case of SanMartín del Río and Anzi (Fig. 3). Cool
conditions from February to March also improved growth in San Martín del Río, while high minimum September
temperatures of the current year did it in San Martín del Río and also in Logroño. However, high minimum
temperatures in the previous December were related to low growth indices in Anzi.
In the case of the monthly SPEI data, grapevine growth indices mainly responded to 1-month April SPEI values

(San Martín del Río, r = 0.59, p < 0.01; Logroño, r = 0.44, p < 0.05) and May (Anzi, r = 0.54, p < 0.01). In San Martín
del Río and Anzi, significant correlations were also found for 2-month SPEI values of the same months (April, May).
Overall, vines from San Martín del Río were the most sensitive to winter-spring water availability because elevated
soil moisture from January to March enhanced growth there (Fig. 4). In contrast, wet soil conditions in the previous
December were negatively correlated with growth indices in Logroño.
Correlations between daily climate data and ring-width indiceswere in agreementwith those found usingmonthly

climate data (Fig. A5 in the Appendix). This was the case of the positive relationships between ring-width indices and
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mid-Septemberminimum temperatures in Logroño (Fig. 5) or early-February precipitation in Anzi (Fig. 6). However,
analyses based on daily climate data also uncovered some new relationships such as the positive association between
ring-width indices and late-March minimum temperatures in San Martín del Río (Fig. 7).

Fig. 1. Relationships found between (a) monthly climate data or (b) weekly SPEI data and leaf unfolding phenology in the
Cardedeu site. The SPEI data were calculated considering 1-month cumulative water balance data. In plot (a), lowercase and
uppercase letters indicate months of the previous and current years. Abbreviations: TMx, mean maximum temperature; TMn,
mean minimum temperature; Pre, total precipitation; Rad, mean radiation. Horizontal dashed and dotted lines show the 0.05
and 0.01 significance levels, respectively. In plot (b), values located outside the grey box are significant (p < 0.05).

Table 2. Ring-width statistics of the three study grapevines.

Site Period Age
(years)

Ring width
(mm)

SD AR1, first-order
autocorrelation

Correlation
with the mean

site series

rbar EPS,
Expressed
Population

Signal

Logroño 1992–2020 21 ± 4b 1.80 ± 0.41a 0.97 ± 0.34 0.43 ± 0.26 0.52 ± 0.13 0.40 0.86
San Martín del Río 1962–2020 33 ± 6a 1.19 ± 0.32b 0.63 ± 0.30 0.53 ± 0.28 0.49 ± 0.14 0.36 0.85
Anzi 1987–2020 23 ± 4b 1.37 ± 0.45b 0.83 ± 0.39 0.45 ± 0.27 0.53 ± 0.12 0.42 0.88

Values aremeans ± SD. The statistics (ringwidth, SD, AR1, correlationwithmean site series, rbar and EPS) were calculated for the
common, best-replicated period 2000–2020. Different letters indicate significant (p < 0.05) differences between sites according
to Mann–Whitney tests.
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Fig. 2.Mean series of ring-width (a) and ring-width indices (b) of the three study grapevines. Series are presented for the common,
best-replicated 2000–2020 period. In plot (a) the inset shows one of the cross-dated andmeasured vine cross-sections fromAnzi.

Discussion

Warmer spring conditions seem to trigger an earlier onset of leaf unfolding in vines, in agreement with previous
findings in other areas (García de Cortázar-Atauri et al. 2017; Koch & Oehl 2018; Alikadic et al. 2019). According to
Peñuelas et al. (2002) the grapevine leaf unfolding advanced 17.4 days from the 1950s to 2000 in response to warmer
conditions from January toApril. However, an earlier leaf flushing is not necessarily related to enhanced radial growth
in seasonally dry areas where an earlier budburst can affect plants facing dry winter-spring conditions (Camarero
et al. 2022). Several recent papers have found that photosynthesis, the growing season, and the annual amount of
growth are not in sync in trees, especially during drought (Cabon et al. 2022; Dow et al. 2022; Kannenberg et al. 2022).
According to our data, growing season length does not seem to change the amount of growth in vines as has been
found in trees.
Vine radial growth is positively correlated with high soil moisture levels and low drought severity from winter to

spring. This is the period when soil recharge happens in seasonally continental dry sites such as the San Martin del
Río site. Here, the oldest vine individuals were also found. The dryness of this site and the elevated age of sampled
vines may explain the high responsiveness to precipitation and soil moisture in the previous winter. Remarkably, we
found a tight relationship between vine diameter and age in the San Martin del Río site, where diameter explained
73% of age variability (Fig. A4b in the Appendix). This could be due to the wide age range we found in this vineyard
(22–56 years).
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Fig. 3. Climate-growth relationships based on the correlations calculated between site series of ring-width indices and monthly
climate variables (a, mean minimum temperature; b, mean maximum temperature; c, total precipitation). Correlations were
calculated from the previous to the current September. Months corresponding to the prior and current years are abbreviated
by lower- and uppercase letters, respectively. Horizontal dashed and dotted lines indicate the 0.05 and 0.01 significance levels,
respectively.

The positive response of vine growth indices to September temperatures in Logroño and San Martín del Río may
correspond to a second period of xylem formation in autumn, after the main spring growth peak, which suggests a
facultative bimodal growth strategy as has been found for other Mediterranean tree and shrub species (Camarero et
al. 2010). This idea could be further examined by obtaining and analyzing long-term series of automatic dendrometer
data in the field. In Anzi, warm nights in December could lead to higher respiration rates, reducing reserves such as
non-structural carbohydrates, and leading to lower growth rates in spring (Schnitzer & van der Heijden 2019).
Lianas, including vines, show several xylem traits conferring resistance to tension-induced cavitation such as long

and dimorphic vessels and small pit diameters, ensuring both hydraulic efficiency and safety (Carvalho et al. 2015).
These and other traits (e.g., vulnerability segmentation and leaf shedding) may allow vines to show fast growth rates
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Fig. 4. Relationships between monthly soil moisture and site series of ring-width indices. Correlations were calculated from the
previous to the current September.Months corresponding to the prior and current years are abbreviated by lower- and uppercase
letters, respectively. Horizontal dashed and dotted lines indicate the 0.05 and 0.01 significance levels, respectively.

without compromising resistance to cavitation under drought (Charrier et al. 2018; van der Sande et al. 2019). The
ability to grow during the dry season may also be related to the amount and use of stores such as non-structural
carbohydrates (Schnitzer & van der Heijden 2019), but our analyses did not find any significant relationships
between growth indices and summer climate in vines. Consequently, the role played by winter precipitation and
low evapotranspiration rates to recharge soil moisture prior to cambium reactivation in spring seems to be critical in
continental sites such as San Martín del Río.
In vines, radial growth may be a more comprehensive proxy of long-term changes in soil moisture as compared to

short-term ecophysiological proxies such as soil water potential or gas exchange variables (stomatal conductance and
photosynthesis rates) (Gambetta et al. 2020). As drought develops, tissue expansion is themost sensitive indicator of
diminishedwater status (Hsiao 1973), and cambial activity integrates water deficit effects on growth over the previous
and current growing seasons (Fritts 1976). Furthermore, several components of vegetative growth in grapevines (e.g.,
internode extension, leaf expansion and elongation of tendrils) are easy to measure and related to changes in soil
water potential, crop yield and grape quality (Hardie&Martin 2000; Pellegrino et al. 2005). Therefore, thesemeasures
of vegetative growth couldbe recordedover several years and comparedwith grapevine crops and retrospective xylem
variables such as ring width or vessel lumen area (DeMicco et al. 2018). For instance, it could be tested if narrow rings
correspond to reduced leaf areas and decreasing grape production because of excessive fruit exposure to elevated
temperatures (Jackson & Lombard 1993).
The xylem anatomy of vines and changes in radial growth reflect the responses to soil water availability but also

depend on the cultivar considered (De Micco et al. 2018; Roig-Puscama et al. 2021). There are differences between
varieties in their sensitivity to drought stresswith someof them (e.g., Tempranillo) showing a lowwater-use efficiency
and a poorer adaptation to withstand warm and dry stressful conditions (Medrano et al. 2003). In contrast, the
responsive Garnacha cultivar should show a high water-use efficiency to tolerate water deficit including isohydric
(water-saving) behavior (Schultz 2003; Charrier et al. 2018). Isohydry would reflect a strong stomatal control of
transpiration rate resulting in small fluctuations in leaf water potential (Tardieu & Simonneau 1998). Contrastingly,
fast-growing varieties such Tempranillo (Logroño site) could follow anisohydric (water-spending) strategies and
exhibit less stomatal control over evaporative demand and soil moisture, allowing large fluctuations in leaf water
potential and also contribute to heat dissipation (Soar et al. 2009).
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Fig. 5. Relationships (Pearson correlations) between daily mean minimum temperatures (red line) of the day of year (DOY) 261
(17 September) and ring-width indices (black line) in Logroño (see also Fig. A5 in the Appendix). The plots show (a) the temporal
series of both variables and (b) a scatter relating them. The summary statistics of the linear regression (y = 0.465 + 0.041x) are
r2 = 0.31 and p = 0.012.

Three caveats should be considered regarding our study. First, there are notable differences between study sites
which limit our comparisons. For instance, the leaf phenology data were taken in a site (Cardedeu) which is not
located in amajor designation of origin area. In addition, grapevine productivity depends also onmanypedo-climatic
factors and cultivation management. So, more precise information on the role played by soil in the regulation of
water availability should be considered in future studies on grapevine growth and hydraulic architecture (Roig-
Puscama et al. 2021). Second, the soil moisture data were downloaded from the Land Data Assimilation Systems
rather than measured on-site. Future research based on long-term series of soil moisture such as those available at
the International Soil Moisture Network (Dorigo et al. 2021) would strengthen the robustness of similar findings. Our
findings probably reflect regional rather than local vine responses to climate given that we lacked on-site climatic
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Fig. 6. Relationships (Pearson correlations) between daily precipitation (blue line) of the day of year (DOY) 40 (9 February) and
ring-width indices (black line) in Anzi (see also Fig. A5 in the Appendix). The plots show (a) the temporal series of both variables
and (b) a scatter relating them. The summary statistics of the linear regression (y = 0.867 + 0.028x) are r2 = 0.55 and p = 0.0004.

measurements. Third, growth (ring width) data should be complemented with wood anatomy parameters which are
strong proxies of changes in water transport efficiency and safety in grapevine (Bouda et al. 2019; Brook et al. 2020;
Roig-Puscama et al. 2021; Damiano et al. 2023).
This study illustrates howdendrochronologicalmethods applied to vine (dendro-viticulture) could be further used

to improve our knowledge of climate stressors of grapevine growth to make grapevine management more water-use
efficient (Tyminski 2013; Maxwell et al. 2016).
To conclude, vine radial growth positively responded to wet-cool conditions and high soil moisture levels from

late winter to early spring in the continental-dry San Martín del Río site corresponding to the Garnacha cultivar. In
this site, we found the lowest growth rate and the oldest vines, which were 56 years old, whereas in the other sites,
growth rates were higher and declined as vines aged. Vine ages were probably higher but pith rotting complicated age
estimation. Old vine individuals of cultivars that endure water deficit (e.g., Garnacha) should be further investigated
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Fig. 7. Relationships (Pearson correlations) between daily mean minimum temperatures (red line) of the day of year (DOY) 89
(29March) and ring-width indices (black line) in SanMartín del Río. The plots show (a) the temporal series of both variables and
(b) a scatter relating them. The summary statistics of the linear regression (y = 0.779 + 0.042x) are r2 = 0.43 and p = 0.0011.

as genetic sources of drought tolerance. Vine varieties showed different growth responses to monthly and climate
variables. Estimating vine age and establishing climate-growth relationships are necessary steps to forecast future
winegrape yields and to prepare management plans considering increased aridification.
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Appendix

Fig. A1. (a) Map showing the main distribution of grapevines in southern Europe (yellow patches) highlighting the three study
designations of origin (wine regions). The three study grapevines are indicated with bold characters. The star shows the location
of the site from north eastern Spain with leaf unfolding data (Cardedeu). (b) View of two old grape vines located in San Martín
del Río, north eastern Spain.
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Fig. A2.Climate diagrams of the threemeteorological stations used for the (a) Logroño (Logroño station, 42.45°N, 2.33°W, 353m,
period 1950–2020), (b) San Martín del Río (Daroca station, 41.11°N, 1.41°W, 779 m, period 1950–2020) and (c) Anzi (Laurenzana
station, 40.46°N, 15.97°E, 704 m, period 2000–2020) study sites. Climate diagrams were created with the ClimateCharts.net
webpage (Zepner L, Karrasch P,Wiemann F, Bernard L. 2021. ClimateCharts.net— an interactive climate analysis web platform,
Int. J. Digital Earth 14(3): 338–356. DOI: 10.1080/17538947.2020.1829112.
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Fig. A3. Climate water balances for the (a) Logroño, (b) San Martín del Río and (c) Anzi sites.
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Fig. A4. (a) Relative frequency of sampled grape vines according to their age considering 5-year age classes. (b) Linear regressions
relating grapevine stem diameter and age in the three study sites. The statistics show the amount of explained variance (r2) and
its probability level (p). (c) Power function relating vine age and mean ring width.
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Fig. A5. Relationships (Pearson correlations) between vine ring-width indices and (a) daily mean minimum temperatures in
Logroño and (b) precipitation in Anzi. The filled symbols indicate significant (p < 0.05) correlations. The line shows smoothed
correlation values based on a 1-degree polynomial loess function (with 0.1 sampling proportion).
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