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Abstract—This paper outlines a strategy for identifying sensors
in a passive locating system that are not functioning properly.
The framework is based on the information extracted from delay
estimation errors, obtained from solving a system of equations
in which the cross- and cross-cross-correlation methods are both
used. Hence, we remove equations with the highest errors and use
a statistical test to identify which sensor is experiencing failure.
Our approach is analyzed through numerical simulations and
real-recorded data, and compared to heuristic and conventional
methods to prove its advantages.

Index Terms—cross-cross-correlation, failure detection, fourth-
order moments, outlier measurements, SDR, TDOA.

I. INTRODUCTION

Passive radars often rely on time difference of arrival
(TDOA) to estimate the position of non-cooperative targets
[1]–[4]. This method involves computing the time of arrivals
by identifying the time at which the highest correlation be-
tween the incoming signal and a reference one occurs [5]–[7].

Sometimes, in realistic contexts, outliers can impact the
accuracy of certain measurements, which can result in a re-
duction of performance. A sensor may fail due to interference
or physical damage. Therefore, it is crucial to ensure that the
entire system correctly works. This involves not only removing
outliers from measurements (as done in several references,
e.g., [8], [9]) but also identifying if any sensors are faulty and
excluding all measurements from them.

In this respect, the methodology followed in this paper
allows to detect faulty sensors in passive radars. More pre-
cisely, this framework involves a two-stage algorithm that
firstly identifies outliers and then determines whether a sen-
sor is in failure. To identify outliers, we compute multiple
cross-correlations (CCs) and cross-cross-correlations (CCCs)
of signal replicas acquired at all receiving nodes. The given
moments are utilized to create a set of equations, and their
solutions are the delay estimates. Afterward, an approach for
detecting and removing outliers, on the bases of the highest
values of mean square error (MSE), is applied sequentially.
A warning score is generated for each sensor based on the
eliminated equations associated with it. These scores are then
used to create a decision statistic that asserts the sensor under
consideration is experiencing a failure. At last, the equations
pertaining to the malfunctioning sensors are eliminated from
the position estimation process.

Several tests are performed on simulated data as well as
utilizing real-recorded data of frequency modulated (FM)
signals acquired with a software defined radio (SDR) device.
The presented numerical examples demonstrate the validity
of the proposed approach also with respect to its competitor
based on heuristic assumptions as well as the conventional
estimator.

II. TDOA ESTIMATION IN MULTIPLE RECEIVERS PASSIVE
RADAR

The considered system model refers to a localization system
with M > 2 noncolocated sensors operating in an anechoic
scenario. The signal samples collected at time instants nT by
the i-th detection node is ri(nT ) = γis(nT − ti) + wi(nT ),
i = 0, . . . ,M − 1, where ti is the unknown delay at receiver,
s(·) ∈ C is the (not known) signal radiated by target, γi ∈ C is
a parameter accounting for the transmitted power and channel
effects, and wi(·) ∈ C is the noise component.

Resorting to a compact matrix form, the TDOA estimation
problem can be written as [7]

X

 t1
...

tM−1

 = Xt =

 b̂1
...
b̂Q

 , (1)

where b̂1, . . . , b̂Q are Q measurements (with Q > M ) eval-
uated from the position of the peak of the magnitude of all
the possible correlations between the M signals, including the
classical second-order CC and (optionally) the fourth-order
CCC recently proposed in [7]. Moreover, the model matrix
X ∈ RQ×(M−1) has nonzero elements at the positions de-
noted by the indices of the signals involved in each correlation.
Obviously, the value assumed by Q depends on the specific
algorithm, viz. CC, CCC, or both of them (denoted as CCC2)
[7]. The solution of the resulting overdetermined system (1)
is obtained through the least squares (LS) approach.

III. PROPOSED FRAMEWORK FOR FAILURE DETECTION

Notice that each equation in (1) comes from the correlations
between a group of receiving nodes, and an outlier equation
provides a warning of a possible failure of the sensors asso-
ciated with it. The warning score of each sensor is defined as
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the number of equations associated with it and classified as
outliers. When all sensors correctly work, the wrong equations
(caused by noise) generate randomly distributed outliers; such
distribution is expected uniform. On the other hand, when
there is a faulty sensor, a higher value in its warning score
is observed. This behavior motivates the idea of performing
a test on the warning score for failure detection even under
noisy scenarios.

Shortly, after the signal emitted by the target is acquired at
the sensor nodes, their second- and fourth-order correlations
are computed. They are then used to build-up a system
of equations whose solution are the delay estimates of the
incoming replicas. However, in practical scenarios, a high
delay estimation errors could be observed for some of the
equations, that appear to significantly differ from the remain-
ders. This effect can be the consequence for instance of
intentional or unintentional interference, or malfunctions of
sensors/communication links. Then, the equations showing the
highest errors are canceled from the equations system and
the new solution is derived. In particular, firstly, the weak
(low warning scores) and then the strong outlier equations
are rejected. Finally, after the outlier equations cancellation,
the detection of a failed sensor is performed as detailed in
Subsection III-B. So, if a failure is declared, all the related
measurements are rejected and the final delay estimate is
derived. Conversely, in the absence of failures, only the
outliers are removed.

A. Outliers cancellation

The applied algorithm evaluates the absolute error associ-
ated with the estimated delay vector t, that is

e = |Xt̂− b|, (2)

where b is the measurements vector involved in the LS
equations and detailed in [7], t̂ is the vector whose entries are
the delay estimates, whereas | · | returns a vector containing
the absolute values of each element in its input vector.

Outliers identification is performed comparing each value
of e with a threshold to decide for the presence of outlier.
Hence, after these tests, all the equations in the system labeled
as outliers (i.e., those for which the threshold is overcame)
are removed from the entire set and a new reduced-size
LS problem is derived. More details about the cancellation
procedure can be found in [10].

B. Statistical method for failure detection

For each sensor, the warning score is computed by summing
all warnings to it assigned. A sensor receives a warning when
the removed equation derives from the computation of the CC
and CCC in which its measurements are involved. Specifically,
the following situations can arise:

• 2 sensors take a warning when the removed equation is
related to a cross-correlation;

• 3 (resp. 4) sensors take a warning when the removed
equation is related to a cross-cross-correlation derived
from 3 (resp. 4) measurements.

It should be noticed now that, when no failures occur, all
the warning scores are expected to be close to each others,
with approximately the same amount of rejected equations.
Differently, in the presence of a faulty receiver, its correspond-
ing warning score should be much higher than the others.
Therefore, under the null hypothesis H0, a fully-random model
for the warning scores is assumed, where all the errors are
independent of each other and due to random noise only
(hence, the warnings can be assumed uniformly distributed).
Denoting by N2 (resp., N3 and N4) the number of equations
labeled as outliers related to 2 (resp., 3 or 4) sensors, we
can define the probability mass function (pmf) of the number
of warning scores associated with each sensing node. More
precisely, the warning scores associated to the rejection of
an equation involving 2 (resp., 3 or 4) sensors is a binomial
random variable with parameters N2 and 2/M (resp., N3 and
3/M , or N4 and 4/M ). As a matter of fact, 2/M (resp., 3/M
and 4/M ) is the probability of selecting one sensor). As a
consequence, for each sensor, the total number of warning
scores is obtained as the sum of the three above that, under
the assumption of independence, is a random variable whose
pmf is given by the convolution between their pmfs [10].

Now, the resulting problem to discriminate between the
presence or not of a failure, is defined for each receiving node
as the following binary hypothesis test{

HF,0 : absence of failure
HF,1 : presence of failure (3)

The above binary hypothesis testing problem rejects the null
hypothesis by comparing the warning score x for sensor i (say
x(i)) to a specific significance level α, i.e.,

x(i)

HF,1
>
<

HF,0

α, (4)

with α a threshold set in the null hypothesis to ensure a desired
percentile of false failure detections.

Another simple way to perform failure detection could
consist in comparing the warning score of each sensor with
a heuristic threshold, ζP , with P the overall number of
equations associated with the quoted sensor and ζ ∈ [0, 1)
a parameter tuning the capability of the method to inhibit a
given sensor. This method is referred to as heuristic sensor
failure (HSF) in the next analyses.

IV. PERFORMANCE ANALYSES

This section evaluates the effectiveness of the devised
pipeline in detecting failures of the i-th sensor. To do this, the
considered figure of merit is represented by the probability of
correct failure detection (P (i)

CFD). The simulations are carried
out using a signal transmitted by the target (s[n]) consisting
of 103 samples. The designed approach makes no assumptions
about the nature of incoming signals, so the simulations use
random Gaussian signals, which are the most common in
practical scenarios. Therefore, the signal is generated as a



stationary zero-mean complex Gaussian random process with
unit variance and a Gaussian-shaped auto-correlation function
[11] with a variance of σ2

a, set equal to 2 in the experiments.
At each of the M−1 receiving nodes, a copy of the signal s[n]
is produced with a delay randomly chosen from the interval
[0, 1] second. Moreover, without loss of generality, the delay
at the first sensor is set to 0 seconds for all the conducted
experiments. The noise term is modeled as a white circularly
symmetric complex Gaussian vector with the same variance of
σ2 for all M sensors, and γi = 1 for convenience, resulting
in an SNR level of 1/σ2. Moreover, to account for a sensor
failure, its received replica is modeled with only the noise
component. Since we don’t have closed-form expressions for
the performance metric P

(i)
CFD, we adopt the Monte Carlo

counting technique to estimate it reproducing Mc = 103 in-
dependent tests. The analysis of detection performance begins
with Figure 1, which shows the plot of P (i)

CFD versus the SNR.
Among the total of 8 available sensors, sensor i = 3 is selected
to be under failure, i.e., its corresponding signals are enforced
to contain the noise contribution only. The figure compares the
statistical sensor failure (SSF) procedure of Section III applied
to CC, CCC, and CCC2 (shortly denoted as SSF-CC, SSF-
CCC, and SSF-CCC2), with respect to the HSF counterparts
(denoted with the acronyms HSF-CC, HSF-CCC, and HSF-
CCC2). For the SSF-based algorithms, the detection thresholds
are chosen so as the nominal false failure detection probability
is 10−2, whereas for the HSF-based algorithms, ζ is set equal
to 1/2 for all simulations.

The results demonstrate that both SSF-CCC and SSF-
CCC2 can accurately estimate failures. Even their heuristic
counterparts perform well at low SNR values, even with fewer
sensors (e.g., M = 8 sensors). However, as the SNR increases,
the capabilities of these methods in correctly detecting a
failure reduce. This can be explained by the fact that as the
SNR increases, the LS provides a more accurate sub-optimal
solution due to a better estimate of the correlation peaks,
resulting in a reduction in the number of rejected equations.
The observed detection losses are hence a result of the joint
combination of the above phenomenon together with the fixed
heuristic thresholds. On the other hand, the SSF-CCC and
SSF-CCC2 can ensure the same level of detection regardless
of the SNR by adaptively setting their thresholds based on the
number of deleted equations. However, the SSF-CC produces
the worst estimation. This is because the SSF-CC provides a
low number of equations, which does not significantly differ
from the number of rejected outliers across different sensors.
This issue can be resolved by increasing the number of used
sensors, which will result in a higher number of equations
overall.

In the following tests, we create a partially-simulated en-
vironment utilizing a signal recorded through real measure-
ments to emulate a passive radar system. To accomplish this,
we exploits real-recorded data collected from a SDR device
"R820T2 RTL2832U RTL-SDR MCX" [12]. The device is ca-
pable of recording signals in the frequency interval [25, 1750]

Figure 1: PCFD (%) versus SNR for sensor 3 (over a total of
M = 8 receiving nodes) when it is under failure.

Figure 2: Utilized test-bed consisting of an RTL-SDR device
connected through USB to a PC for real data recording.

MHz. Moreover, the received signal is firstly downconverted
to an intermediate frequency of 3.57 MHz, and then digitized
(using a 8bit ADC) and digitally downconverted to baseband
to obtain the I&Q samples. Figure 2 shows the testbed used for
signal acquisition consisting of the above RTL-SDR connected
to a PC through a USB port.

A FM signal is acquired at central frequency of 103.8 MHz,
setting the sample rate equal to 1.024 MHz. The signals have
been filtered to select the specific FM channel using a low
pass finite impulse response (FIR) filter with a normalized
frequency of 0.1. Moreover, a decimation with factor 4 has
been applied to reduce the number of samples to 103 I&Q
samples. Figure 3 shows the power spectral density (PSD)
obtained using the method of Welch of the three recorded
signals.

By applying a random delay and adding Gaussian noise, we
derive replicas for M = 8 sensors with specific SNR values.
As for the simulated environment, Figure 4 displays the results
in terms of PCFD versus SNR. The two subplots show the case
in which sensor 2 and sensor 3 experience failure, respectively.



Figure 3: PSD (dB) of the FM signal acquired with the RTL-
SDR device centered at 103.8 MHz.

It is interesting to note that the curves shares the same behavior
observed over fully simulated data, with the SSF-CCC and
SSF-CCC2 having the best performances in both scenarios.

Further confirmation of the previous test results can be
seen in Figure 5, which reports the PCFD for two faulty
sensors as the SNR varies for the above described partially-
simulated environment. The test is conducted using 102 Monte
Carlo trials, and a challenging scenario featuring M = 10
sensors was considered with both sensors number 2 and 3 set
in a faulty condition at the same time. Both SSF-CCC and
SSF-CCC2 performed satisfactorily, while all other detectors
struggled to identify a couple of failures. This is due to the fact
that the other detectors often only reveal the presence of one
failure among the two. As a result, these detectors, in which
the threshold is a priori set, are unable to detect both types of
failures simultaneously.

To finally demonstrate the advantages of the proposed
algorithms for TDOA estimation under sensor failure con-
dition, we estimate the corresponding RMSE by removing
the delay associated with each sensor declared in failure.
Furthermore, we report the Cramér-Rao lower bound (CRLB)
for delay estimation to show a benchmark in the performance.
Specifically, it is based on the CRLB derived for two sensors
in the complex case [13] generalized to multiple sensors
[14], [15]. The results are presented in Figure 6 and show
the RMSE as a function of the number of sensors having
set the SNR to 0 dB. For comparison purposes, we have
also considered the CC, CCC, and CCC2 not performing
sensor failure detection as summarized in Section II. In the
given plot, subplot a) displays the performance of all sensors
when they are working correctly. Classic methods such as
CC, CCC, and CCC2 work better than their counterparts
performing failure detection. However, the respective losses
are still limited, especially for SSF-CCC and SSF-CCC2. In
contrast, subplot b) shows that the classic CC/CCC/CCC2
methods cannot provide satisfactory estimation performance

(a)

(b)

Figure 4: PCFD (%) for faulty sensor versus SNR for real-
recorded data; M = 8 sensors and sensor number a) 2 and b)
3 in failure.

if even one sensor is in failure. Both SSF-CCC and SSF-
CCC2 show good performances with a significant gain over
their heuristic counterparts. The graphs demonstrate that the
RMSE decreases as more sensors are used, approaching the
benchmark. The SSF-CCC2 method performs the best as it
utilizes all the equations from the accurate sensors, resulting
in improved delay estimations.

V. CONCLUSIONS

The paper suggested a new design for estimating delays in
passive radars based on the processing of the signal emitted
by a non-cooperative target, even when there might be sensor
failures. The overall pipeline consists of two stages: in the
first stage, some equations marked as outliers are canceled,
and in the second one, a failure identification procedure
based on the statistical behavior of warning scores is used
to identify and discard measurements from one or more



Figure 5: PCFD (%) for faulty sensor versus SNR for real-
recorded data; M = 10 sensors and sensors number 2 and 3
both in failure.

faulty sensors. Numerical simulations (also conducted starting
from real measurements) have confirmed that the algorithm
is successful in recognizing and dismissing a faulty sensor
while accurately calculating the delays of the incoming signals.
Additionally, it has been shown that the proposed methods are
robust even in situations where no sensors are failing, with
only minor deviations from the standard method. As possible
future researches, it would be interesting to extend the analyses
to sets of sensors under different operating principles.
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