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rent SOC stocks and the spatial identification of the main drivers of SOC changes is

of agricultural systems in the EU. In this context, changes of SOC stocks (A SOCs) for
the EU + UK between 2009 and 2018 were estimated by fitting a quantile generalized
additive model (qGAM) on data obtained from the revisited points of the Land Use/
Land Cover Area Frame Survey (LUCAS) performed in 2009, 2015 and 2018. The
analysis of the partial effects derived from the fitted qGAM model shows that land
use and land use change observed in the 2009, 2015 and 2018 LUCAS campaigns
(i.e. continuous grassland [GGG] or cropland [CCC], conversion grassland to cropland
(GGC or GCC) and vice versa [CGG or CCG]J) was one of the main drivers of SOC
changes. The CCC was the factor that contributed to the lowest negative change on
A SOC with anestimated partial effect of ~0.04 +0.01 g Ckg™* year™, while the GGG the
highest positive change with an estimated partial effect of 0.49 +0.02gCkgyear™.
This confirms the C sequestration potential of converting cropland to grassland.
However, it is important to consider that local soil and environmental conditions may
either diminish or enhance the grassland's positive effect on soil C storage. In the
EU + UK, the estimated current (2018) topsoil (0-20cm) SOC stock in agricultural land
below 1000 m a.s.| was 9.3 Gt, with a A SOC of -0.75% in the period 2009-2018. The
highest estimated SOC losses were concentrated in central-northern countries, while
marginal losses were observed in the southeast.
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1 | INTRODUCTION

Globally, soils store approximately 2135Gt of soil organic carbon
(SOC) in the first metre (Wang et al., 2022) making them the larg-
est terrestrial reservoir of carbon (Terrer et al., 2021; Todd-Brown
et al.,, 2014). However, factors such as land use and management
practices coupled with rising temperatures due to climate change,
may potentially trigger a transition of soils from carbon storage
to becoming a significant source of atmospheric carbon dioxide
(CO,) (Bond-Lamberty & Thomson, 2010; Lal, 2004; Rodrigues
et al., 2021). Given the magnitude of this terrestrial carbon pool,
even minor shifts in soil carbon stocks, on the scale of a few per-
centage points, could substantially influence atmospheric CO, con-
centrations and the C balance at global scale (Paustian et al., 2016,
2019; Smith et al., 2020).

In this context, the European Commission strengthens the con-
tribution of the land use, land use change and forestry (LULUCF)
sector to the European Union's (EU) increased climate ambition
and recognizes the need to reverse the current declining trend
of carbon removals (McGrath et al., 2023). The EU Soil Strategy
2030, ‘Reaping the benefits of healthy soils for people, food, na-
ture, and climate’ (COM(2021) 699 final), recognizes that targeted
and sustained sustainable soil management practices can contrib-
ute to achieve climate neutrality by increasing the amount of C
stored in agricultural soils.

The amended LULUCEF legislation proposes an EU target for net
removals of greenhouse gases of at least 310million tonnes of CO,
equivalent per year in the sector by 2030, distributed among mem-
ber states as binding targets. Therefore, quantifying current SOC
changes and identifying their drivers is paramount in developing
targeted strategies and policies to increase SOC stock and enhance
the resilience of agricultural systems. Indeed, adopting practices
that improve SOC stock has been shown to concurrently enhance
the physical attributes of the soils (Watts & Dexter, 1998), reduce
susceptibility to erosion and significantly exceed the crop yield per-
formance and stability exhibited by conventionally managed agricul-
tural systems, particularly in periods of drought stress (Lal, 2004;
Oldfield et al., 2019; Pan et al., 2009; Paustian et al., 2019; Zhang
et al., 2016). However, an incomplete understanding of how land
use and edaphic drivers influence SOC changes at different scales
(Bispo et al., 2017; Stockmann et al., 2015) adds complexity to the
development of EU policies. A large body of research based on
mid-to-long-term field experiments has greatly contributed to in-
crease knowledge on SOC dynamics and the development of SOC
sequestration rates, particularly following land use change (Richter
et al., 2007).

In line with the proposed Intergovernmental Panel on Climate
Change (IPCC) Tier 2 approach, CO, emission factors (where avail-
able) are currently used to monitor and report changes in SOC
stocks at the country level. Although those factors, often derived
from mid-to-long-term experiments better reflect local condi-
tions, there is a potential issue. Over time, they might be used
to estimate linear changes in SOC, even when the actual SOC

temporal dynamics display a nonlinear pattern (Lugato, Bampa,
et al., 2014), especially involving land use changes. Furthermore,
the existing geographical spread of mid-to-long-term experiments
and the limited representativeness of soil management practices
prevent a comprehensive coverage of all regions in Europe or
globally (Bellassen et al., 2022; Smith et al., 2020). Therefore, the
conclusions drawn from these point estimates may not accurately
reflect larger spatial scales (Mishra et al., 2012; VandenBygaart
et al., 2004).

At the highest level of the IPCC Tier approach, Tier 3, efforts are
made to overcome the limitations of the lower tiers. This approach
utilizes measured-based methods, such as a high spatial resolution
soil monitoring system, and validated process-based models to ac-
curately assess SOC changes. However, the Tier 3 approach, despite
reducing the uncertainty in estimating SOC changes, is currently
only adopted in a limited number of countries due to the high tech-
nical expertise requirements and economic burden associated with
deploying a high spatio-temporal resolution soil monitoring system
(Paustian et al., 2019; Smith et al., 2020). At European scale, spatial
estimates of SOC changes have been assessed by employing pro-
cess-based models (Lugato, Bampa, et al., 2014; Lugato, Panagos,
et al.,, 2014). The high spatial resolution modelled SOC stock esti-
mates were found to be in agreement with aggregated SOC stock
at the regional administrative level. However, these estimates were
validated with a single point in time and do not allow for the as-
sessment of the model's sensitivity to small detectable changes that
generally occur in a short-term time frame (5-10years).

In the context of inventory-driven Tier 3 method, spatially strati-
fied temporal observational data can be employed to assess changes
in SOC stocks over time, particularly following the implementation
of management practices in the short to mid time frame (Stockmann
et al., 2013). While such data already exist and, in conjunction with
data-driven modelling approaches, have been instrumental in as-
sessing SOC changes at national level [e.g. in Argentina (Heuvelink
et al., 2021), Hungary (Szatmari et al., 2019), England and Wales
(Bellamy et al., 2005), Finland (Heikkinen et al., 2022), Denmark
(Taghizadeh-Toosi et al.,, 2014) and Sweden (Andrén et al., 2008)]
they have not yet been employed to assess SOC changes at the
European continental level. A comprehensive and harmonized
pan-European analysis is key to understanding the combined effects
of land use and climate that transcend national borders. Given the
previously unexplored nature of a pan-European assessment, this
research primarily aims to leverage spatially stratified temporal ob-
servational data to investigate changes in SOC stocks of croplands
and grasslands at the continental scale across Europe. Achieving this
broader view is particularly critical as the insights derived will di-
rectly inform and assist policymakers and stakeholders in evaluating
the objectives of the European Green Deal. For the purposes, in this
study, a data-driven spatial SOC changes modelling approach was
employed, utilizing SOC temporal change data obtained from the
Land Use/Land Cover Area Frame Survey (LUCAS) conducted across
EU member states in 2009, 2015 and 2018. This novel approach pro-
vided for the first time estimate of SOC changes at the European
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continental level based on observational stratified spatio-temporal
data. This methodology offers the potential to further elucidate how
climate, land use and management and edaphic factors influence
SQOC changes across the EU and the United Kingdom (UK).

2 | MATERIALS AND METHODS

Changes in SOC content, hereafter defined as A SOCc (gC kg'1 yea )
across EU and UK during the period 2009-2018, were assessed
by fitting a quantile generalized additive model (qGAM) (Fasiolo
et al.,, 2021) using the mgcViz R package (Fasiolo et al., 2020) on
A SOCc calculated from SOC content data obtained from the revis-
ited points of LUCAS topsoil (0-20cm) surveys of 2009 and 2018.
The trained model was then used to predict A SOCc at spatial level
using gridded predictors at 500 m resolution. The predicted gridded
A SOCc were then converted in SOC stocks (A SOCs) at 0-20cm
depth.

2.1 | Modelling approach and data source

The qGAM was employed to estimate the location-specific median
of A SOCc across EU and UK. GAM models are semi-parametric re-
gression models that have the ability to capture the nonlinear rela-
tionship between response and explanatory variables, via so-called
smooth effects.

Standard GAMSs require selecting a parametric model (e.g.
Gaussian) for the conditional distribution of the response variable.
This choice is important because choosing the wrong distribution
can lead to invalid p-values for the significance of the effects and
to inaccurate estimates of, for example, the conditional mean of the
response to be fitted to the data, which in turn requires assump-
tions about the distribution of the conditional error. This can lead
to uncertainties when selecting an appropriate model. In contrast,
the gGAMs are non-parametric models that are able to fit the con-
ditional quantile of interest, without making any parametric assump-
tion. This means that it does not require prior assumptions about the
conditional distribution of the conditional response variable. This
makes qGAMs more robust under heteroscedasticity, which occurs
when the variance of the response variable varies with the explan-
atory variables. Furthermore, qGAMs are fitted by minimizing a pe-
nalized pinball loss, which makes them less sensitive to outliers than
regression models fitted by penalized least-squares regression. This
is important in the context of this study, where the data on A SOCc
may contain outliers due to natural variation in SOC content, as well
as potential errors in data collection or measurement.

The response variable A SOCc, expressed as the arithmetic dif-
ferences hetween SOC content of 2018 and 2009 was calculated
from the revisited points of LUCAS soil surveys collected from spe-
cific agricultural lands (i.e. cropland and grassland). The LUCAS sur-
vey is a project to monitor land use and land cover changes across
the EU. A soil module was performed in 2009, 2015 and 2018 across

EU Member States. The LUCAS programme is the largest compre-
hensive and harmonized source of topsoil data across the EU. For
each survey around 22,000 locations spanning various land covers
were sampled and analysed for their physical and chemical proper-
ties following ISO standard procedures. The sample analyses were
performed by a single laboratory, contributing to data compara-
bility by avoiding uncertainties due to analysis based on different
methods or different calibrations in multiple laboratories. Further
details regarding LUCAS soil module and soil related chemical anal-
ysis can be found in Orgiazzi et al. (2018). Of the roughly 22,000
initial locations sampled across all land uses in the 2009/12 soil sur-
vey, 5722—specifically from cropland and grassland—were revisited
in the two subsequent soil surveys (2015 and 2018). These 5722
locations underwent filtering to exclude sites with organic-rich soils
(SOC>160gCkg™), those with over 5% CaCO,, and those missing
either SOC values or particle size analysis, leaving 5307 locations.
Additionally, a meticulous quality control process was implemented
to pinpoint changes between 2009 and 2018 unrelated to agricul-
tural practices. This involved inspecting the cover photos from each
LUCAS survey (d'Andrimont et al., 2022). The objective was to iden-
tify changes, such as cropland conversions to service roads or dis-
crepancies in sampling centroids across the three surveys (2009/12,
2015 and 2018). From this refined dataset of 4482 observations, the
A SOCc values were derived.

Since the first LUCAS collection for Romania (RO) and Bulgaria
(BG) was completed in the 2012, the total A SOCc was divided by
the number of years between the first (Yt,) and the last soil survey
(Yt,) to normalize the differences in terms of time interval across
EU+UK (i.e. 6years for BG and RO and 9years for the rest of the
countries) using Equation (1).

9G;, —96,

ASOCc (g Ckgt year‘l) =g 1)
e

The effect included in the model for A SOCc were:

(i) Linear effect of land use information for each revisited LUCAS
point in 2009, 2015 and 2018 for cropland (C) and grassland (G).
These data provided useful information to assess the effect of
land use and land use change, that is, continued grassland (GGG)
or cropland (CCC), grassland to cropland (GGC or GCC) and vice
versa (CGG or CCG) on A SOCc.

(ii) Smooth, nonlinear interaction of SOC content (gCkg™) and
soil clay content (%) at 0-20cm depth in the 2009/12, obtained
from the 2009/12 LUCAS soil data.

(iif) Smooth, nonlinear interaction of annual long-term mean precipi-
tation (P, mm) with precipitation seasonality (coefficient of vari-
ation, P_CV) and of annual long-term temperature (mean annual
temperature [MAT], °C) with temperature seasonality (standard
deviation, T_SD) extracted from the WorldClim climatic data-
sets (Fick & Hijmans, 2017). The WorldClim datasets have av-
erage monthly climate data for minimum, mean and maximum
temperatures and for precipitation for 1970-2000 at a resolu-

tion of 1km.
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The annual precipitation, precipitation seasonality and SOCc of
2009 were log transformed, while the soil clay content was square
root transformed to achieve better dispersion of the observed vari-
ables (Wood, 2006). Apart from the median (q0.5), the first (g0.25)
and the third (q0.75) quantiles were also modelled to assess the vari-
ation of A SOCc. The model formula was as follows:

q;(A SOCc) ~ Land Use + fl(log(SOCm], \ﬂClay) +F,(MAT,MAT_SD) + fy(log(P), log(P_CV))  (2)

The contribution of each variable included in the model's pre-
dictions was assessed by visually inspecting partial dependence
plots (PD plots). PD plots serve as an effective tool to illustrate
the marginal effect of a single predictor variable on the pre-
dicted outcome, while holding all other variables constant (Hastie
et al., 2009). This technique isolates and visualizes the relationship
between a specific variable and the response, providing a clearer
understanding of how changesin a predictor correspond to changes
in the response variable. The performance of the final model was
assessed using tenfold cross-validation. The dataset was randomly
divided into 10 equally sized folds, with nine of them being used
to train the gGAM model and one to assess the quality of A SOCc
predictions. This process was repeated 10 times, with each itera-
tion setting aside a different fold, to ensure a robust evaluation of
the model's performance. The model's predictions were compared
against the observations, and assessed via the root mean squared
error, index of agreement (d, Equation 3) and the coefficient of
determination (r?). Statistical analyses and graphical presentations
(ggplot2; Wickham, 2016) were performed in the R statistical en-
vironment (R Core Team, 2021).

", (Obs;—Sim;)?

d=1- -
¥, (|Sim; — pObs|+| Obs; — uObs| )

2.2 | Upscaling model predictions

The trained model was used to upscale A SOCc predictions across
the EU+ UK, using spatially explicit covariates at a resolution of
500m. The initial SOCc in 2009 (Figure S1) and soil clay content
(Figure S2) were obtained from the European Soil Data Centre
(Ballabio et al., 2016; Panagos et al., 2022). Long-term MAT (°C,
Figure S3), inter-annual temperature variation (Figure S4), annual
precipitation (P, mm, Figure S5) and inter-annual precipitation vari-
ation were obtained from the high-resolution WorldClim datasets
(Fick & Hijmans, 2017). The land cover/use data were obtained from
the Corine Land Cover dataset (https://land.copernicus.eu/pan-
european/corine-land-cover), using the closest years to the LUCAS
sampling surveys and resampled to a resolution of 500m. The pre-
dicted values were then converted in A SOC stocks (A SOCs) at
0-20cm depth. The soil bulk density used to convert SOC concerta-
tion to stocks was predicted using an empirically derived pedotrans-
fer function, adapted from Hollis et al. (2012) and corrected for
coarse fragments content (Poeplau et al., 2017) similar to Lugato,
Panagos, et al. (2014) and Schneider et al. (2021). Comparison

between predicted adjusted soil bulk density and measured soil bulk

density obtained from LUCAS soil survey 2018 is shown in Figure S7.

2.3 | Land use change scenarios

To assess the potential impact of land use change on cumulative
A SOCs, two different land use change modelled scenarios were ex-
amined: converting cropland to grassland (C_to_G) and vice versa
(G_to_C). The A SOCs estimates obtained from both scenarios were
ranked on a scale from 0 to 100, representing the lowest negative
A SOCs and the highest positive A SOCs within each country respec-
tively. For each scenario (C_to_G and G_to_C), cumulative A SOCs
was calculated for each gradual conversion of land use, using 5%
increments, ranging from the lowest to the highest A SOCs rank for
C_to_G and from the highest to the lowest A SOCs rank for G_to_C.
The starting point of the gradual conversion differed for each sce-
nario: for C_to_G, it was set to the lowest rank, in order to maximize
the positive effect of grassland on SOC gains in high-loss hotspots,
and to identify the minimum cropland area that needs to be con-
verted into grassland to achieve a net balance of gains and losses
across the study area. For G_to_C, the starting point was set to the
highest rank, in order to minimize the negative effect of cropland
expansion on SOC stocks.

3 | RESULTS

3.1 | Modelling A SOC using gGAM

The revisited LUCAS points in Figure 1 showed A SOCc values rang-
ing from -0.83 to 0.98gCkg year™ (q0.05 and g0.95 respectively),
with a median of 0.004gCkg lyearl. Notably, continuous grass-
land (GGG) and the transition from cropland to grassland (CGG) dis-
played the highest median A SOCc values of 0.3gCkg year and
0.28g(:i<g'1year'1 respectively. Conversely, continuous cropland
(CCC) and the transition from grassland to cropland (GCC) exhib-
ited the lowest median A SOCc values of 0.001gCkg *year™ and
-0.01gC kg'1 yrt-:‘ar'1 respectively.

The qGAM accurately predicted A SOCc with a mean absolute
error of O.Sngg‘iyear'1 (Figure 2), demonstrating its reliability.
The high d value of 0.70 and r? value of .40 further confirmed the
good correlation between predicted and observed values. The par-
tial effect plots of the qGAM covariates (Figure 3) revealed that
continuous grassland (GGG) had a significant positive influence on
ASOCc,contributinganestimated0.49 iO.OZgCkg_lyear‘1(p<.001,
Figure 3a). The transition from cropland to grassland also had a pos-
itive effect, although only significant for CGG with a contribution of
0.32+0.03gC kg'lyear'1 (p<.001). Conversely, continuous cropland
(CCC) showed a significant negative influence on SOC changes, with
an estimated contribution of -0.04 +0.01 g(:kg'lyear‘1 (p<.001).

The combined effect of initial SOC content (SOC,,,,) and

soil clay content is shown in Figure 3b. Higher soil clay content
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FIGURE 1 (a)Soil organic carbon
(SOC) content by land use/land use
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(b) correspondent A SOCc in the period
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at lower SOC,,,, content had a positive effect on A SOCc, while
increasing SOC,,,, content had a negative influence on A SOCc.
Additionally, for the MAT covariate (Figure 3c), a negative influ-
ence up to —0.25ngg'1year'1 was observed for temperatures
above 12°C with low inter-annual variability. In contrast, high an-
nual mean precipitation (P, Figure 3d) at any level of inter-annual
variability (P_CV) had a positive influence, providing a gain of up to
1gCkgtyear™

3.2 | Spatial prediction of A SOCs across Europe

Total SOCs losses from cropland and grassland across EU+UK
for the period 2009-2018 were relatively low and accounted for
the 0.75% (70 Mt C) of the 2009 total estimated SOC stocks of
9.3GtC at 0-20cm depth. Spatial predictions of A SOCs for the
second (g0.50, Figure 4a), first (q0.25, Figure 4b) and third (q0.75,

Figure 4c) quantiles for grassland and cropland for the period

ASOC (gCkg 'year)

2009-2018 are shown in Figure 4. The average A SOCs (q0.5) for
the EU+UK was -0.4tCha™ (Figure 4d), with the highest A SOCs
ranging from 1.5 to 3tCha™t in Austria and Slovenia respectively
(Figure 4d). The lowest mean A SOCs (g0.5) at country level ranged
from -4.9 to -4.2tCha"* for Finland and Denmark respectively.
However, Finland and Denmark together represent less than the
2% of the total cropland and grassland in the EU+ UK. The high-
est losses were located in northern and north-eastern part of the
EU + UK, with an estimated A SOCs (q0.50) up to -4.5tCha™
(Figure 4d). In particular, SOC losses between -3 and -5tCha™
were observed in clustered areas of north-eastern part of Europe,
a region characterized by a relatively low soil clay content below
30% (Figure S2). Apart from Poland, the same areas also display
high initial SOC values (SOC,,,,) on average above 45tCha™
(0-20cm depth, Figure S1). For countries in the north-east part of
Europe, even the best-case scenario (q0.75) did not show signifi-
cant positive changes in SOC content as A SOCs ranged between
-1.5 and 1.5tCha™t (Figure 3c,d). Considerable losses between
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FIGURE 2 Density scatter plot of predicted against observed
A SOCc (ngg’1 year’l) at 0-20cm for 2009-2018. Solid line is the
1:1 line. d, index of agreement; rz, coefficient of determination;
RMSE, root mean squared error; SOC, soil organic carbon.

3 and 8tCha™! were estimated for southeast England while, for
Ireland where ?0% of agricultural land is under grassland culti-
vation, A SOCs ranged from -1.5 to an increase above 8tha™
(Figure 4a). SOCs in central Europe, were generally stable for the
period 2009-2018 and SOCs overall changes ranged between -3
and 1.5tCha™%. For countries in the Mediterranean basin charac-
terized by an average annual temperate above 13°C and annual
precipitation below 600 mm, spatial estimated A SOCs ranged be-
tween -5 and 1.5tCha™%. Notably, initial SOC content (50C,505)
for countries in the Mediterranean basin was also the lowest
(<40tCha™, Figure S1) among all countries. Mean A SOCs was
-1.1 and -0.46tCha™* for Italy and Spain respectively (Figure 4d).
The A SOCs spatial estimates for the period 2009-2018 obtained
with qGAM were also compared against A SOCs process-based
simulations obtained from the DayCent modelling framework
(Lugato et al., 2017) updated at 1 km gridded level. Overall, gGAM
mean A SOCs estimates at country level were in agreement with
A SOCs estimates obtained using the biogeochemical model
DayCent. Larger discrepancies between models estimates were
observed at the two tails of the A SOCs mean spatial distribution
(Figure 4d).

3.3 | Land use change effect on SOC changes
across Europe

The ranking of A SOCs within each European country for the
conversion of grassland to cropland (G_to_C), cropland to grass-
land (C_to_G) and the estimates of total changes in SOC stock for

each gradual conversion are presented in Figure 5. The gradual

conversion of grassland to cropland starting from the top 5% best
performing grasslands (i.e. rank >95) always provided a net SOCs
losses (Figure 5a,b). The relative SOC losses in G_to_C conversion
scenario went from -0.8% if the top 5% grasslands would be con-
verted (2Mha) to -4.8% if the total current area of grassland (45 Mha)
would be converted to cropland in a 9 year period. In contrast, the
gradual conversion of cropland to grassland starting from the worst
5% performing cropland area (i.e. rank <5) provided a net increase
in SOC stocks (Figure 5¢,d). With the conversion of the worst 7.5%
croplands within each country for a total of 8.6 Mha a net 0 A SOCs
across Europe could be achieved in a 9-year period. With the further
conversion of cropland to grassland an increase up to 12.1% of SOC
stock was estimated.

4 | DISCUSSION
41 | Drivers of SOC changes across European
agricultural soils

Changes in SOC content by land use class between 2009 and 2018
(Figure 1) confirm the beneficial gain in SOC content obtained
from continuous grassland or the conversion of cropland to grass-
land. Continuous grassland (GGG, Figure 3) or the conversion of
cropland to grassland (CGG) could contribute to an increase in
SOC content by 0.48+0.01 and 0.33+0.04gC kg'iyear'l, (~1.2
and O.8tCha\'1\,fear"1 respectively) across European pedoclimatic
conditions. This aligns with previous modelling studies (Lugato,
Bampa, et al., 2014; Poeplau et al., 2011; Schneider et al., 2021)
and meta-analysis (Conant et al., 2017; Deng et al., 2016), which
found that grassland can increase SOC stocks between 0.1 and
1tCha'1year'l. A recent ensemble modelling of land surface-at-
mosphere CO2 flux across Europe (McGrath et al., 2023) revealed
that grasslands act as net sinks, while croplands are net sources of
CO,. Although there is agreement in trends between the present
study and the ensemble models results, the magnitudes of these
roles differ significantly.

In grassland, the majority of the C inputs are allocated below-
ground via root degradation and C-rich roots exudates (Jackson
etal., 2017). These belowground C inputs are more likely to be incor-
porated in the mineral-associated organic matter (MAOM), a stable
form or soil organic matter with a residence time in the soil that spans
decades to centuries, therefore contributing to long-term carbon se-
questration in soil (Bai & Cotrufo, 2022). In contrast, qGAM partial
effect analysis highlighted a net negative influence on SOC content
for continuous cropland (CCC) up to -0.03+0.005gCkg tyear™.
Continuous cropland, especially monoculture, or the conversion of
grassland to cropland (e.g. GCC), even under conservation agricul-
ture practices, have been identified as major detrimental factors for
SOC storage in agricultural systems (DuPont et al., 2010; Wiesmeier
etal, 2019).

Besides the lower soil C inputs of croplands compared to
grasslands (Janzen et al., 2022), SOC losses in cropland have been
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FIGURE 3 Partial dependence plots for predictive variables included in quantile generalized additive model. (a) Land use 2009-2015-
2018 (C, cropland; G, grassland). (b) Interaction of initial SOC content (SOC,,,) and soil clay content. (c) Interaction of annual long-term
temperature (MAT, °C) with temperature seasonality (standard deviation, T_SD). (d) Interaction of annual long-term mean precipitation
(P, mm) with precipitation seasonality (coefficient of variation, P_CV). SOC, soil organic carbon. MAT, mean annual temperature.

attributed to a faster SOC turnover due to increased aeration (that
promotes soil organic matter oxidation) and the disruption of soil ag-
gregates, both promoted by tillage events (Herzfeld et al., 2021). The
latter is not a common practice in grassland. However, at a European
scale, SOC losses have also been estimated for long-term continuous
grassland, such as in Ireland (Figure 4), where SOC content was es-
timate to be above 150tCha™ or >50gCkg™ (Figure 5). The gqGAM
partial effect plots showed a negative effect on SOC changes up
to —Zngg'1 year'1 at high initial SOC content (SOC,,) (Figure 3b),
which could potentially be explained by saturation of stable organic
matter (MAOM) and subsequent accumulation of more labile C in the
particulate organic matter fraction more sensitive to perturbation
(Cotrufo et al., 2019).

However, the amount of SOC that can be stored and protected
in the soil profile is not only constrained by the available mineral
surface area (Chenu et al., 2019; Derrien et al.,, 2023; Lavallee
et al., 2020; Wiesmeier et al., 2019) but also by other soil edaphic

and environmental factors. In this study, it was found that the

combination of low initial SOC content and high soil clay content
positively influenced A SOCc (Figure 3). Conversely, in regions char-
acterized by low soil clay content, high SOC losses have been es-
timated, including in countries with favourable climatic conditions
for SOC sequestration (Figure 3). Favourable climatic conditions for
SOC accumulation are generally identified as humid and relatively
low temperatures (Wiesmeier et al., 2019). In this study, long-term
MAT <13°C and annual precipitation above 700mm have a positive
influence on SOC between 2009 and 2018 (Figure 3). Contrary,
warm and semi-arid climatic conditions (i.e. Mediterranean climate)
promoted SOC losses (Figure 3c). The patterns of these effects align
with findings from previous studies conducted across Europe (Rial
etal,, 2017; Schneider et al., 2021). While MAT is an important factor
in determining SOC changes, it alone does not fully explain the spa-
tio-temporal trend of losses across Europe. Instead, the combination
of MAT and temperature seasonality has a greater impact on SOC
changes. It is not surprising that high and steady MAT has a neg-
ative effect on SOC stocks. However, low MAT (<10°C) combined
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with high levels of temperature seasonality, were also found to have
a negative effect on SOC. These findings are consistent with a re-
cent assessment of SOC trends in Finland (Heikkinen et al., 2022),
where increased temperature during the summer period was iden-
tified as one of the drivers of SOC losses. Indeed, for Nordic coun-
tries (Denmark, Finland, Sweden and Estonia) even the q0.75 model
(Figure 4) estimated SOC losses. These estimates are in agreement
with similar studies conducted at national level (Bellamy et al., 2005;
Lettens et al., 2005; Meersmans et al.,, 2011; Taghizadeh-Toosi
et al., 2014). This estimated decline in SOC, is concerning given that

these countries have the highest SOC stocks, and therefore large
potential for losses.

Projected climate scenarios suggest that by 2050, MAT will
increase by 1-2°C and there will be extended periods of drought.
These conditions could lead to a monotonic increase in SOC losses
into the atmosphere, particularly at high latitudes, exacerbating the
negative feedback on climate change.

It is important to note that soil systems have a finite capacity for
storing SOC. For instance, observed increases in SOC under specific

land management scenarios, such as the conversion of cropland to
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grassland, may plateau as the soil system approaches this equilib-
rium. Notably, SOC changes exhibit a sinusoidal function between
new and prior steady states. Recent literature, including Gocke
et al. (2023), suggests ambiguity about when this equilibrium state
is attained, and even the 20-year time frame suggested by the IPCC
(2006) may be inadequate for capturing these complex dynamics. In
the context of short-to-medium-term studies/surveys, like LUCAS

surveys from 2009 to 2018, calculating the delta from repeated data
points serves as an insightful methodology, capturing both steady-
state and non-steady-state conditions of SOC. Addressing the
multi-dimensional complexities that influence SOC, this study strate-
gically combined static and dynamic drivers (land cover/use change)
capturing cumulative effects observed over the 9-year period related

to complex anthropogenic and environmental driver interactions.
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4.2 | Uncertainty in data-driven A SOC modelling
across Europe

The qGAM model was trained and validated (Figure 2) with spatio-
temporally extended data collected on specific revisited locations
across Europe between 2009 and 2018. The revised soil sampling
regime of the LUCAS soil module, for the first time, reduced the
uncertainty on data source for model training at continental scale.
When only a single set of data in time is available, data-driven ap-
proaches to estimate SOC changes at continental scale tend to
derive a static map of SOC employing geostatistical models and
then use the derived model covariates coefficients to project SOC
predictions in time (e.g. Yigini & Panagos, 2016). This approach as-
sumes that covariates, fitted to predict the spatial distribution of
the dependent variable, are also fit to predict the temporal trend.
However, this is not always the case, especially when SOC changes
are relatively small in a relatively short time frame (e.g. 3-5years).
For instance, estimates of the spatial distribution of the dependent
variable (in this case, large background SOC stocks) have an asso-
ciated uncertainty. If the associated uncertainty is larger than the
naturally occurring slow C changes in short time frame, it becomes
clear that final estimates of the changes are affected by a large
uncertainty. Indeed, when estimating perceivable changes in SOC
stocks at the field, region or continental scale, an added complexity
arises from detecting relative small SOC changes that are driven by
climate within the considered time frame (Smith et al., 2020; Stanley
et al., 2023). This study, by leveraging on the temporal component
of LUCAS soil survey, directly modelled SOC changes. Modelling di-
rectly SOC changes reduced the possible error associated with co-
variates influence, and reduced the uncertainty in estimating small
SOC changes. The estimated changes in SOC (A SOCc) over time at-
tributed to initial SOC (SOC,,,) were relatively small, ranging from
-2.5 to 1.3gCkg tyear™ (Figure 3b). In contrast, the background of
SOC content (SOC,,,) can vary significantly, ranging from 1.5 to
over 50gCkg™. Given the small magnitude of SOC change relative
to the much larger background, even a minor error in estimating the
background of SOC could significantly impact the accuracy of esti-
mating the change over time.

Overall, the A SOCs spatial estimates obtained with gGAM
model were in agreement with A SOCs estimates obtained with
the tested mechanistic model DayCent. Large discrepancy be-
tween models was mainly observed at the extreme latitudes
within the mean ASOCs distribution (Figure 4d). The observed
discrepancies between model predictions are attributed to the
training dataset variance, distribution and size for data-driven
approaches, while for mechanistic models to the inherent char-
acteristics of the model itself. Data-driven approaches may face
potential limitations due to biases present in the training dataset,
such as unevenly distributed sampling locations, and the ahsence
of temporal measurements for certain variables, such as soil bulk
density. For the current study, soil bulk density, also corrected
for the rock fragment content, was estimated using an empiri-
cal pedotransfer function, as the bulk density in LUCAS was not

measured in 2009. Frequently, national and continental soil inven-
tories estimate soil bulk density using established pedotransfer
functions (Poeplau et al., 2017). The widely recognized pedotrans-
fer function from Hollis et al. (2012) was used and its predictive
capacity was further validated. Despite the large variability within
the measured soil bulk density, the values predicted by this func-
tion aligned strongly with those measured in the 2018 LUCAS soil
survey (Figure S7). However, it is important to note that soil bulk
density measurements are subject to random errors that can reach
up to 40% (Zhou et al., 2023). Furthermore, the LUCAS sampling
depth is confined to the 0-20cm depth range, which does not ac-
count for dilution effects in SOCc attributed to tillage events that
can reach depths of up to 0-30cm in croplands. Despite these
limitations, the LUCAS soil dataset remains the only harmonized
soil survey at a European scale. Future refined LUCAS surveys are
expected to address these limitations, improving the accuracy and
reliability of soil data at the European level.

Multi-model ensemble approach proved to be an effective way
to reduce the uncertainty in climate and crop modelling (Asseng
et al., 2013; Martre et al., 2015). The benefit of multi-model ensem-
ble approach has also been proven for SOC estimates at spatial scale.
Riggers et al. (2019) combined and evaluated predictions of six dif-
ferent model concepts across Germany and found that the ensemble
model predictions outperform the single model predictions. Multi-
model ensemble approach reduces the structural uncertainty linked
to the way each model simulates dynamic processes, sets parameters
and uses input variables (Asseng et al., 2013; Riggers et al., 2019;
White et al., 2011). Ensemble data-driven approaches have also
shown promising results in estimating SOC (Biney et al., 2022;
Szatmari et al., 2019) as well as in predicting soil mineral-associated
organic carbon fractions (Xiao et al., 2022). Although modelling
approaches have demonstrated their ability to effectively reproduce
observational data, questions remain regarding their transferability
and scalability where no or scarce data are available at the conti-
nental scale. The reliability of models and their parameterization
and verification require comprehensive, harmonized and tempo-
rally resolved datasets that to date, mainly exit in temperate zones.
To this end, comprehensive information from under-represented
zones can be obtained from detailed spatial soil surveys coupled
with long-term field experiments. This information could enable the
development of accurate and robust models that can effectively
reproduce obhservational data and inform decision-making in the
context of sustainable land management from continental to
regional scale.

However, the transferability of such modelling frameworks
from regional to field scale is questioned due to the inverse rela-
tionship between spatial scale and the uncertainty in SOC estimate
(Oldfield et al., 2022). In fact, Ogle et al. (2010) demonstrated that
uncertainty in SOC estimates increases significantly from +118%
for regional estimates to +739% at the site scale. It is essential to
consider these uncertainties when implementing modelling frame-
works to evaluate SOC changes, particularly given the current

rapid expansion of voluntary carbon markets. In these markets,
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numerous measurement, reporting and verification (MRV) proto-
cols issue credits solely based on modelling outcomes. Therefore,
to ensure accurate and reliable assessments, it is crucial to account
for these uncertainties in SOC estimates when using modelling
frameworks for MRV purposes.

Another important source of uncertainty for spatially explicit
model estimates is represented by the accuracy of the large grid-
ded data inputs required to obtain spatially explicit predictions. For
instance, similar to Stockmann et al. (2015), in this study, the dy-
namic variable to predict changes was the land use/land use change
information obtain from LUCAS surveys three times (2009, 2015
and 2018) over a 9-year period. The uncertainty associated with
missing information on land use between soil surveys might greatly
influence the variable effect in predicting A SOC. Furthermore, the
land use change variable derived from LUCAS for model training
and CORINE land cover for upscaling prediction at continental level
implicitly considered land use-specific variables such as the level of
agrotechnology employed at the farm-region level. This increases
the uncertainty in model predictions. However, accurate time series
information of land use-specific variables at continental scale is dif-

ficult to estimate and to date not publicly available.

4.3 | Strategic land use change effect on
SOC changes

Grassland is widely recognized as the agricultural practice that pro-
motes the highest SOC storage. In fact, converting current crop-
land to grassland could increase SOC by more than 10% within a
9-year period across Europe. In contrast, converting grassland to
cropland, which encompasses 47 Mha, could lead to a net loss of
up to 4.8% of current SOC stocks. Despite the scenario of convert-
ing 116 Mha of cropland to grassland is rather utopic, as food se-
curity targets through crop production must be maintained in the
EU, the incremental conversion approach can provide useful indi-
cation under different socio-economic scenarios. For instance, the
proposed strategic approach of only converting the top 7.5% high-
risk SOC losses cropland within each Member State, could balance
SOC losses and gains across the EU (‘Net Zero Emissions'). This
approach would enable the preservation of cropland necessary
for food security while promoting SOC storage in areas with the
greatest potential for success. For effective climate change mitiga-
tion and emissions offsetting, it is necessary to maintain grassland
converted from cropland over time (beyond the time frame consid-
ered in this study), as this is crucial for SOC stocks to remain at their
maximum levels following the establishment of a new equilibrium
(Moinet et al., 2023). However, the applicability of this measure
needs to take into account its direct economic impact on farms busi-
ness, as farmers generate higher profits from using arable land for
crop production (Gocht et al., 2016). Income from private soil car-
bon sequestration initiatives is unlikely to bridge this financial gap as
they cannot ensure permanence beyond the length of the contract
(Paul et al., 2023). Over time, it is expected that the rates of SOC
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sequestration will gradually decrease until steady state is achieved
(Minasny et al., 2017), which can lead to reduced carbon credits for
farmers who participate in carbon crediting schemes. Consequently,
the income generated from SOC sequestration schemes is likely
to decrease over time. Furthermore, SOC sequestration rates are
constrained by various environmental factors, such as temperature
and rainfall (Figure 3c,d), as well as site-specific factors such as soil
clay content (Figure 3b), which cannot be altered by management
practices. Therefore, crediting farmers solely based on the absolute
amount of carbon sequestered, apart from the uncertainties associ-
ated with measuring, reporting and verification (previous section),
will lead to a disparity in opportunities across the continent and hin-
der the homogenous uptake of the practice at a continental scale.
But, if the pricing of sequestered CO, is not merely dependent on
the absolute amount, but also includes additional environmental
co-benefits and considers site-specific environmental constraints,
the crediting system could be steered towards greater balance and
impartiality. Therefore, finding ways to incentivize long-term main-
tenance of permanent grasslands across the whole continent, while
also addressing the economic challenges faced by farmers, will be
crucial for the success of this emissions mitigation strategy.

The proposed spatial mitigation strategy has limitations in that
it only examined the impact of pedoclimatic conditions and land
use changes on SOC stocks from a general and simplistic perspec-
tive, as it did not consider the effect of other specific agricultural
soil management. Within this context, it is acknowledged that some
scenario representations, especially those involving extreme land
use changes, are theoretical constructs meant to highlight poten-
tial impacts rather than propose direct policy actions. However, the
proposed strategic approach, which considers the inherent SOC
sequestration constraints of specific regions, could help policymak-
ers identify areas where the implementation of mitigation practices
would be most effective. Empowering policymakers with such spa-
tial information could facilitate the delineation of targeted spatial ac-
tion plans to achieve compliance with the latest LULUCF regulation,
which requires each Member State to offset accounted emissions

from land use with equivalent removals in the sector.
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