

14th World Meeting

on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology 18 - 21 March 2024 | Vienna, Austria

A nanoformulated weed with antioxidant and hypoglycemic activity: Sonchus asper (L.) Hill

Immacolata Faraone^{1,2}; Valentina Parisi³; Valentina Santoro³; Nadia Benedetto¹; Nunziatina De Tommasi³; Luigi Milella¹; Antonio Nesticò⁴; Gabriella Maselli⁴; Anna Maria Fadda⁵; Carla Caddeo⁵; Antonio Vassallo^{1,6}

> ¹Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy ² Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100 Potenza, Italy ³ Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy ⁴ Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy ⁵ Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 Km 0.700, 09042 Monserrato, Italy ⁶Spinoff TNcKILLERS srl, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy

2 IN I NOUDON I ION

Sonchus asper (L.) Hill is an annual or biennial wild edible herb belonging to the Asteraceae family. It is widely used in traditional Mediterranean cuisine typically eaten as a side dish or a soup in southern Italy. Moreover, different scientific studies report the numerous beneficial properties of *S. asper* attributable to the polyphenols, terpenes, and carotenoids present in fresh leaves and their extracts [1-4].

> Eudragit-coated liposomes with extract of *S. asper*

Sonchus asper (L.) Hill

antioxidant and hypoglycemic activities.

• Rediscovery of ancient dishes along with the preservation and sustainable use of biological diversity.

Evaluation the non-edible leaves of *S. asper* for

recovery and valorization of food waste through the

creation of a nanoformulation with potential

METHODS

EXTRACTION: Ultrasound assisted extraction was carried out for 15 minutes, using an hydroalcoholic mixture (EtOH:H₂O 7:3), with plant material to solvent ratio of 1:10 (w/v).

PHYTOCHEMICAL CHARACTERIZATION: The extract was analyzed with Q-ExactiveTM Hybrid QuadrupoleTMOrbitrapTM Mass Spectrometer Q-trap (Thermo Fisher Scientific, Milan, Italy) coupled with an UltiMate 3000 UHPLC system (Thermo Fisher Scientific) [5].

leaves of *S. asper* **NANOFORMULATION**: For a potential application in health and nutritional fields, the extract from discarded non-edible leaves was incorporated in Eudragit-

coated liposomes to provide protection during transit in the gastrointestinal tract, improving the bioavailability and efficacy of the extract's bioactive compounds [6].

Discarded non-edible

BIOLOGICAL ACTIVITY: The content of phenolic compounds (TPC), and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl radixcal - DPPH, Ferric Reducing Antioxidant Power – FRAP) were evaluated. Then the potential hypoglycemic effect of the extract was carried out by *in vitro a*-amylase and *a*-glucosidase inhibition assays. The enteroendocrine cell line STC-1 was used to study the cytotoxicity by MTT assay, the effect of the extract on glucose absorption using the fluorescent deoxyglucose analog probe 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) and of the secretion of the incretin hormone Glucagon like Peptide 1 (GLP-1) by ELISA assay [7-10].

The non-edible leaves extract of *S. asper* (S) showed the presence of 45 compounds as reported in Table 1.

Table 1. LC-HRESIMS profile of S. asper extract from discarded non-edible leaves

Peak	RT	Compounds	[M-H] ⁻	MS ²						
		Phenolic acids								
1	7.6	Vanillic acid hexoside	329.0882	167, 152						
2	7.7	Protocatechuic acid hexoside	315.0722	153, 109						
3	11.1	Syringic acid hexoside	359.0986	197, 153						
4	11.9	Caffeoyl quinic acid hexoside	515.1407	191, 179, 161						
5	12.8	Caffeoyl hexoside	341.0867	179, 135						
6	12.9	Caftaric acid	311.0410	179, 149, 135						
7	16.6	Chlorogenic acid	353.0880	191, 179						
8	16.9	Caffeoyl hexoside isomer 1	341.0867	179, 135						
9	17.0	Caffeoyl hexoside isomer 2	341.0867	179, 135						
10	19.4	Caffeoyl quinic acid isomer	353.0880	191, 179						
11	27.2	Dicaffeoyl quinic acid	515.1193	353, 191, 179						
12	27.8	Chicoric acid	473.0718	179, 149, 133						
Flavonoids										
13	17.9	Quercetin-O-hexosyl uronide	639.1210	463, 301						
14	19.3	Quercetin-O-hexosyl uronide isomer	639.1210	463, 301						
15	21.3	Luteolin-O-dihexoside	609.1459	285						
16	21.5	Luteolin-O-hexosyl uronide	623.1249	285						
17	22.1	Apigenin-O-hexosyl uronide	607.1307	431, 269						
18	22.8	Luteolin dihexoside isomer	609.1459	285						
19	24.1	Luteolin-O-hexosyl uronide isomer	623.1249	285						
20	24.9	Luteolin-O-hexosyl deoxyhexoside	593.1512	285						
21	25.7	Luteolin-7-O-glucoside	447.0935	285						
22	26.3	Luteolin-O-uronide	461.0970	285						
23	28.2	Apigenin-7-O-glucoside	431.0724	269						
24	29.2	Apigenin-O-uronide	445.0771	269						
25	34.4	Luteolin	285.0407	193, 149						
26	38.7	Apigenin	269.0454	191, 179						
		Coumarins and glycoside								
27	13.7	Esculin	339.0721	177, 133, 105						
28	17.1	Aesculetin	177.0185	133, 105						
29	19.8	Roseoside	385.1866	205, 135						
30	25.5	Dihydroroseoside	387.0756	207						
		Fatty acids								
31	35.8	Trihydroxyoctadecadienoic acid	327.2180	229, 211						
32	42.1	Trihydroxyoctadecenoic acid	329.2116	229, 211						
33	58.5	Hydroxy C18:3	291.2000	185, 121						
34	58.7	Hydroxy C18:3	291.2000	185, 121						
35	59.0	Hydroxy C18:2	293.2115	275, 195						
36	59.3	Hydroxy C18:2	293.2115	275, 195						
37	63.6	Linolenic acid	277.2160	259, 231, 181						
38	64.8	Linoleic acid	279.2322	261, 209, 187						
20	1.05	Essential aminoacids	147 1100	120 70						
39	1.35	Lysine	147.1128	130, 79						
10	1.66	Threonine Isoleucine	120.0655 132.1019	79 86-70						
40	3 50	ISOLEIICINE	132.1019	86, 79						
41	3.58		122 1010	86 70						
41 42	3.94	Leucine	132.1019	86, 79 120, 79						
41			132.1019 166.0862 205.0971	86, 79 120, 79 188, 79						

Empty uncoated liposomes displayed small size, good homogeneity, and positive charge due to stearylamine. The loading of the extract did not affect these values significantly. On the other hand, the Eudragit coating induced an increase in size and in homogeneity and a decrease in zeta potential due to anionic Eudragit. The entrapment efficiency of the Eudragit-coated liposomes was very high (~90%). The Eudragit coating protected the vesicles and increased their physical stability with an optimal resistance to the gastrointestinal environments (Table 2).

able 2.	Composition	and main	features	of the	liposome	formulations
---------	-------------	----------	----------	--------	----------	--------------

Formulations	P90G	SA	S	PBS	Eu in PBS (0.1% w/v)	pН	time	MD nm ± SD	P.I.	ZP mV ± SD	EE % ± SD
Empty liposomes	120 mg	6 mg		1 mL				80 ± 5.6	0.25 ± 0.02	$+8 \pm 0.8$	
S liposomes	120 mg	6 mg	4 mg	1mL				81 ± 4.2	0.24 ± 0.02	$+7 \pm 0.6$	
Empty Eu-liposomes	120 mg	6 mg		1mL	1 mL			**103 ± 13.9	$^{**}0.36 \pm 0.06$	$^{**}+6 \pm 1.4$	
S Eu-liposomes	120 mg	6 mg	4 mg	1mL	1 mL			**108 ± 15.2	**0.39 ± 0.05	**+6 ± 0.9	Luteolin- glucuronide 93 ± 3.2 Apigenin- glucuronide 94 ± 2.3
			Inc	cubation	with gastroi	ntestina	l media	a at 37°C		•	
						1.2	t ₀	91 ± 7.5	0.29 ± 0.08	$+10 \pm 0.8$	
Slinosomos						1.2	t _{2h}	97 ± 2.9	0.35 ± 0.01	$+11 \pm 1.0$	
S liposomes						7.0	t ₀	105 ± 9.0	0.31 ± 0.03	$+4 \pm 1.4$	
						7.0	t _{6h}	103 ± 3.6	0.32 ± 0.05	$+4 \pm 0.3$	
						1.2	t ₀	94 ± 2.6	0.31 ± 0.09	$+11 \pm 0.7$	
S Eu-liposomes							t _{2h}	94 ± 1.2	0.29 ± 0.06	$+10 \pm 0.7$	
5 Eu-nposonies						7.0	t ₀	90 ± 0.7	0.31 ± 0.05	$+4 \pm 1.0$	
						7.0	t _{6h}	97 ± 4.3	0.34 ± 0.07	$+2 \pm 0.1$	

lean diameter (MD), polydispersity index (P.I.), zeta potential (ZP), and entrapment efficiency (EE). Mean values ± SDs are reported (n=10). **values statistically different (p<0.01) from uncoated liposomes. MD, P.I. and ZP of S. asper (S) liposomes and Eudragit-coated liposomes are reported upon dilution (t_0) with gastrointestinal media (pH 1.2 or 7.0) and incubation at 37°C for 2 h (t_{2h}) or 6 h (t_{6h}). Mean values ± SDs are reported (n=4). Phospholipid (P90G), stearylamine (SA), S. asper extract from discarded non-edible leaves (S), phosphate buffered saline (PBS), Eudragit® L100 (Eu).

hypoglycemic activities of <i>S. asper,</i> in solution or in Eudragit- coated liposomes and empty eudragit-coated liposomes								
	TPC mg GAE/g (mg GAE/mL)	DPPH mg TE/g (mg TE/mL)	FRAP mg TE/g (mg TE/mL)	<i>a</i> -amylase inhibition IC₅₀ µg/mL				
Extract (S)	63.36±3.73 ^a (1.69±0.10 ^a)	209.56±19.14 ^a (9.00±0.94 ^a)	1540.77± 110.28 ^b (12.33±0.88 ^b)	114.60±1.08				
Eudragit- liposomes (SL)	79.17±6.03 ^a (2.02±0.02 ^a)	266.58±23.53 ª (11.46±1.10ª)	2526.34± 151.25° (20.35±2.85ª)	nd				
Empty Eu- liposomes (EL)	(0.26±0.04 ^b)	(4.15±1.06 ^b)	(1.52±0.22 ^c)	nd				

Table 3. Total phenolic content (TPC), antioxidant and

The nanoformulation process did not alter the extract's phenolic content and antioxidant activity. The *a*-glucosidase enzyme was not inhibited by the extract and the liposomes (**Table 3**). The treatment for 2 h with the extract at different concentrations (1-200 µg/mL) did not affect

markedly cell viability of STC-1 cells. Eudragit-coated liposomes induced a slight reduction in cell viability probably due to the presence of the stearylamine in the formulation. The inhibition of intestinal glucose absorption represents a key strategy for the treatment of diabetes, which was significantly inhibited by S. asper extract and liposomal formulation (Figure 4). S 100

The levels of GLP-1, an incretin hormone involved in insulin secretion and suppression of glucagon production, are increased at the tested concentrations of S. asper extract compared to the control and further increase when the extract was nanoformulated (Figure 5).

mg GAE/g (mL), mg gallic acid equivalents per gram (mL) of dried extract; mg TE/g, mg of trolox equivalents per gram of dried extract; IC₅₀, half maximal inhibitory concentration. Different letters (a-c) indicate significant differences among extracts ($p \le 0.05$; Tukey's test). nd= not determinable at tested concentrations.

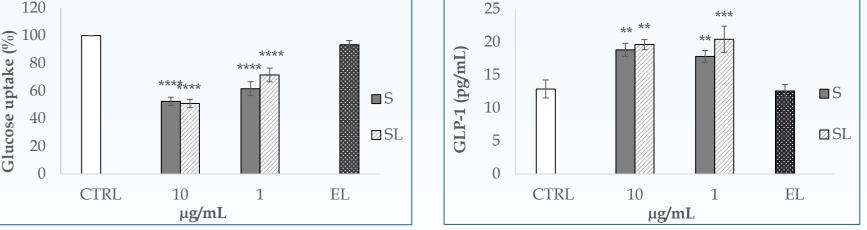


Figure 4. Glucose uptake measured on STC-1 cells treated for 2 h with different concentrations of S. asper (S) extract, Eudragit-coated liposomes (SL) and empty liposomes (EL) by using the 2-NBDG fluorescent glucose analog. ****p<0.0001 vs CTRL.

Figure 5. ELISA assay used to measure GLP-1 secretion in STC-1 cells treated for 2 h with different concentrations of S asper (S) extract, Eudragit-coated liposomes (SL) and empty liposomes (EL). ****p*<0.001, ***p*<0.01 vs CTRL.

REFERENCES 1. Altin, G. *et al.* Med. J. Nutrition. Metab., 14, 207-218 (2021); 2. Fratianni, A. et al. Foods, 10, 960 (2021); 3. Khan, I.U. et al. Asian J. QR Chem., 26, 2699 (2014); 4. Panfili, G. et al. Plant Foods Hum. Nutr., 75, 540-546 (2020); 5. Parisi, V. et al. Antioxidants, 11, 2262 (2022); 6. Caddeo, C. et al. Int. J. Pharm., 565, 64-69 (2019); 7. Faraone, I. et al. Foods, 9, 144 (2020); 8. Faraone, I. et al. Phytochemistry, 187 (2021); 9. Sinisgalli, C. et al. Antioxidants, 9, 428 (2020); 10. Yamamoto, N. et al. Curr. Protoc. Pharmacol., 71, 12-14 (2015).

This study valorizes S. asper non-edible leaves, ensuring that they do not become waste but become a source of metabolites with an interesting antioxidant and hypoglycemic potential activity. Furthermore, the development of a nanoformulation, stable under mimicked code gastrointestinal conditions, rich in bioactive compounds, maximized its health-promoting properties that could contribute to an economic return.