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a b s t r a c t

This paper tackles an estimation problem in networked systems. A given time-varying signal is
assumed to be measured or computed by only a subset of agents, named sources, while the other
agents, the users, are required to estimate this signal in a distributed way. Each agent communicates
only with a subset of neighbouring mates and the communication topology is described by a directed
graph with relatively weak connectivity properties. The problem is solved for two class of signals
with, respectively, null or bounded derivative of a given order, by resorting to a bank of distributed
estimators of the signal and its derivatives run by each user agent. Convergence properties and noise
rejection capabilities are investigated. Simulations are run to show the effectiveness of the approach
and assess its performance.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Applications of networked multi-agent systems, such as net-
orks of sensing devices, distributed surveillance systems or
ooperative multi-robot systems, require that each agent shares
suitable amount of information with the mates (Ren, Beard,
Atkins, 2007). A key problem in this domain is to design

ontrol and/or estimation algorithms by exploiting only local
ommunications among the neighbouring agents (Ge, Han, Ding,
hang, & Ning, 2018). Thus, in the last two decades, huge research
fforts have been devoted to develop distributed control and es-
imation approaches, with applications in several domains, such
s robotics, smart distribution grids, logistics and transportation
ystems. In several of such applications, it is required to esti-
ate a given variable, known or measured by only a subset of
gents in the system. This is the case when, in distributed sensor
etworks (Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002), a
iven physical variable is measured by only a subset of sensing
odes and has to be propagated across the whole network, as
ften required, e.g., in environmental sensing networks (Hart &
artinez, 2006). On the other hand, the goal of several distributed
ontrol schemes for multi-agent systems (e.g., teams of mobile
obots) is to track a given reference trajectory known by only a
ubset of agents. This is the case when the agents in the system
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was recommended for publication in revised form by Associate Editor Luca
Schenato under the direction of Editor Christos G. Cassandras.
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are required to track the state of a (virtual) leader agent which, in
turn, communicates with only a subset of agents, as, e.g., in Hong,
Chen, and Bushnell (2008), Miao, Liu, Wang, Yi, and Fierro (2018)
and Ren and Sorensen (2008). A common feature of the above
mentioned applications is that a given information, usually rep-
resented by a time-varying signal, has to be propagated across a
networked system. Frailties of the centralized approaches, where
a single central unit transmits the signal to each agent, could be
partially overcome by resorting to flooding across the network,
i.e., each agent that receives the signal forwards it to its neigh-
bours in the communication network. However, this approach
shares many drawbacks of centralized solutions and works rea-
sonably well for relatively small-size networks (Kia et al., 2019).
Thus, an alternative is distributed estimation of the variable,
based only on local interactions among agents.

Distributed estimation problems usually require each agent
in the system to compute a local estimate of the state of a
dynamical system, based on local measurements and/or estimates
from neighbouring agents, as, e.g., in Carli, Chiuso, Schenato,
and Zampieri (2008), Li, Dong, Li, and Wang (2019) or Antonelli,
Arrichiello, Caccavale, and Marino (2014) and Smith and Hadaegh
(2006), where the collective state of the multi-agent system has
to be estimated. In Calafiore and Abrate (2009), the problem of
estimating an unknown constant parameter from noisy measure-
ments collected by a network of sensors is solved via a distributed
consensus diffusion scheme. Distributed state estimation has
been exploited to achieve fault diagnosis in networked systems
as well (Arrichiello, Marino, & Pierri, 2015; Marino, Pierri, &
Arrichiello, 2017). Often, approaches based on dynamic consen-
sus (Olfati-Saber & Jalalkamali, 2012; Olfati-Saber & Shamma,
2005; Spanos, Olfati-Saber, & Murray, 2005; Xu, Li, Xie, & Lum,
2011), where the agents are required to achieve consensus on
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given time-varying signal, are conveniently exploited to build
istributed estimation and filtering schemes. In Olfati-Saber and
alalkamali (2012), the estimation problem is related to the state
f a moving target, where all the sensing agents measure the
tate of the target via different partial-state noisy measurements.
n Olfati-Saber and Shamma (2005), all the agents measure the
ame signal (but with a different noise superimposed to it) and
he goal is that of reaching ε-consensus on the signal, assumed to
ave a uniformly bounded rate. In Spanos et al. (2005), a signal
s associated to each agent and the problem is the asymptotic
racking of the average of such signals. In Xu et al. (2011),
onsensus-based dynamic output feedback protocols are designed
or consensus and formation control problems, even in the pres-
nce of time-varying topologies.
However, differently from the above discussed contributions,

he problem tackled in this paper is not related to average con-
ensus but to the estimation of a variable known (i.e., computed
r measured) by only a subset of agents, called sources, where the
ariable is not necessarily the state of a given dynamical system.
he other agents, the users, are required to estimate the signal
n a decentralized way, without resorting to flooding strategies.
uch a problem can be encountered in coordinated control of
ulti-robot systems, where the goal is to track the reference

rajectories for a set of variables defined at team level, that
ncode the task to be executed by the robotic system (Antonelli
t al., 2014; Ren, Sosnowski, & Hirche, 2020). Often, solutions
o this class of problems (see, e.g., Antonelli et al. (2014)) re-
uire that each agent (robot) knows the reference trajectories
or the task variables and their time derivatives up to a given
rder. However, in some application scenarios (e.g., exploration
f large unstructured environments, limited onboard comput-
ng resources), this requirement cannot be met and only a few
obotic agents receive from a central task planner (or are able
o compute) the reference task variables. Thus, the other robots
re required to estimate the reference task variables by resorting
nly to local interactions with neighbouring teammates. In other
pplications, the signal to be estimated can represent a physical
ariable, measured by only a subset of agents, that shall be shared
ith all the other agents in the system. Such problems could
rise in networked sensing systems, where only some nodes are
ble to measure certain physical variables or compute a function
f them (e.g., an indicator), which have to be propagated across
he network without resorting to flooding or global broadcasting
trategies. The above outlined estimation problem can be tackled
ia containment control approaches, whose objective is to con-
train the state of a subset of agents (followers) in the convex
ull of the states of another subset of agents (leaders) (Cao, Ren, &
gerstedt, 2012; Liu, Xie, & Wang, 2012; Yang, Ren, & Liu, 2014).
f the leaders play the role of sources and their states coincide
ith the signal to be estimated, the convex hull coincides with
he signal itself. However, containment control strategies can be
ffectively adopted to solve the estimation problem for relatively
arrow classes of signals (e.g., signals with bounded first-order
erivative) and require suitable conditions on the gains of the
stimators.
Here, the goal is achieved by adopting a bank of cascaded

onsensus-based estimators, which allows each user agent to
rack the signal and its time derivatives up to a given order, un-
er suitable assumptions on the topology of the communication
etwork, described by a directed graph. Noticeably, the adopted
equirement for the connectivity of the communication graph is
onsiderably weaker than assumptions usually adopted in the
iterature (e.g., graph strongly connected or containing a directed
panning tree). It is shown that estimation errors converge expo-
entially for the class of time-varying signals with null derivatives

f a given order. Convergence proofs are based on a result related

2

to subgraphs of a directed graphs, which might be of general
interest for future work on multi-agent systems. The performance
of the estimation scheme are assessed for a more general class of
signals having a bounded derivative of a certain order, by devising
a bound on the estimation errors. The filtering features of the
developed estimation scheme are then investigated to analyse its
robustness with respect to measurement noise and disturbances.
In addition, the performance of the developed scheme are inves-
tigated in the presence of switching topologies as well. Finally,
simulation case studies are developed to assess the performance
of the proposed estimation strategy.

2. Mathematical preliminaries and problem formulation

Let In denote the (n × n) identity matrix, On the (n × n) null
matrix, 0n the (n×1) null vector, 1n the (n×1) vector of all ones,

· ∥ the 2-norm for vectors and matrices and ⊗ the Kronecker
product (Brewer, 1978). If S is a finite set, |S| < ∞ denotes its
cardinality.

Let σ(t) : t ∈ R → σ ∈ Rm be a smooth vector function of
time. Let σ(h)(t) denote its time derivative of order h; when useful
to simplify notation, the widely adopted symbols σ(t), σ̇(t) and
σ̈(t) will be used in lieu of σ(0)(t), σ(1)(t) and σ(2)(t), respectively.
Of course, it is σ(h+1)(t) = σ̇(h)(t).

It is worth reporting some preliminary results related to input-
to-state stability of a class of cascaded linear systems, as they will
be exploited to investigate convergence of the estimation errors.
Consider p + 1 linear and time-invariant cascaded systems, with
state vectors xh ∈ Rn (h = p, p − 1, . . . , 1, 0)

ẋh(t) = Axh(t) + Bhuh(t) + xh+1(t), (1)

where xp+1(t) = 0n, ∀t ≥ 0, uh(t) ∈ Rm is the input of the hth
system, and A, Bh are matrices of appropriate dimensions. Given
any ϵ ≥ 0, there exists a ρ ≥ 1 such that the transition matrix
Φ(t) = exp (At) satisfies the well-known inequality (Kågström,
1977)

∥Φ(t)∥ ≤ ρ e−αt , ∀t ≥ 0, (2)

where α = − (λM (A) + ϵ) and λM (·) denotes the maximal real
part of the eigenvalues of a matrix (i.e., its spectral abscissa).
Notice that, when A is a Hurwitz matrix, it is λM (A) < 0 and
ϵ can be always chosen small enough such that −α < 0. On the
other hand, ρ is the condition number of a matrix which depends
on ϵ and the structure of the Jordan form of A; it increases as ϵ
decreases (Kågström, 1977). Thus, the bound (2) becomes more
conservative as ϵ decreases, especially for small values of t , while
it becomes closer to ∥Φ(t)∥ for large values of t .

When the inputs uh(t) are all identically null, the following
result readily follows from the fact that each system (1) is either
an autonomous exponentially stable linear time-invariant system
(for h = p) or an exponentially stable linear time-invariant
system with the asymptotically vanishing input xh+1(t) (for h <
p):

Lemma 1. Consider the cascaded linear systems defined by (1) and
assume that:

• A is Hurwitz,
• uh(t) = 0m, ∀h = p, p − 1, . . . , 1, 0, ∀t ≥ 0.

Then, xh(t) converges to 0n as t → ∞, ∀h = p, p − 1, . . . , 1, 0.

Notice that the dynamics of x =
[
xTp x

T
p−1 . . . xT1 x

T
0

]T is char-
acterized by a block-triangular matrix, with blocks along the
diagonal all equal to A. Hence, exponential convergence of x(t)
to 0n(p+1) follows under the assumptions of Lemma 1.

On the other hand, when the inputs uh(t) are all uniformly
bounded, the following result, whose proof is reported in Ap-

pendix A, holds:
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emma 2. Consider the cascaded linear systems defined by (1) and
ssume that:

• A is Hurwitz,
• the inputs uh(t) are bounded, i.e., there exist positive numbers,

ūh < ∞, such that ∥uh(t)∥ ≤ ūh, ∀h = p, p − 1, . . . , 1, 0,
∀t ≥ 0.

Then, xh(t) can be bounded as follows, ∀h = p, p − 1, . . . , 1, 0,
∀t ≥ 0:

∥xh(t)∥ ≤

p∑
l=h

t l−he−αt x̄l(0) +

p∑
l=h

b̄lūl, (3)

where

x̄l(0) =
ρ l−h+1

(l − h)!
∥xl(0)∥ , b̄l = bl

(ρ

α

)l−h+1
, (4)

and bl = ∥Bl∥, while ρ and α are the defined by (2).

Clearly, the first term in (3) vanishes as t → ∞, and, thus, the
bound asymptotically reduces to

∑p
l=h b̄lūl. Notice that Lemma 1

can be proven as a direct consequence of Lemma 2 and the first
term in (3) can be seen as a time-varying upper bound on xh(t)
when all the external inputs are null.

2.1. Multi-agent system and communication topology

Consider a system composed of N agents, each identified by an
index belonging to the setN = {1, . . . ,N}. Let the topology of the
communication flow among the agents be described by a directed
graph G = {E,N }, where the N vertices (nodes) of the graph
represent the agents in the systems and E ⊆ N × N is the set of
edges (arcs) connecting the nodes. If all the communication links
between the agents are bi-directional (i.e., (i, j) ∈ E ⇒ (j, i) ∈ E),
the graph is undirected. Consider an edge (i, j) ∈ E: i is called
parent node and j child node. A subgraph, G′

=
{
E ′,N ′

}
, of G is a

graph such that N ′
⊆ N and E ′

⊆ E ∩
(
N ′

× N ′
)
.

The (N × N) adjacency matrix of G is given by

A = {aij}i,j∈N : aii = 0, aij =

{
1 if (j, i) ∈ E
0 otherwise, (5)

whose element aij (i ̸= j) is non-null if j ∈ Ni, where Ni =

{j ∈ N : (j, i) ∈ E} is the set of indexes of the neighbours (i.e., the
parent nodes) of the ith agent, whose cardinality is denoted by
Ni = |Ni|.

The (N × N) Laplacian matrix of G

L = {lij}i,j∈N : lii =

N∑
j=1,j̸=i

aij, lij = −aij, i ̸= j, (6)

plays a key role in consensus problems over graphs (see, e.g.,
Olfati-Saber and Murray (2004)). The Laplacian matrix has all
eigenvalues with non-negative real parts and at least a zero
eigenvalue with 1N as the corresponding right eigenvector. Notice
that −L is a Metzler matrix, i.e., its off-diagonal elements are all
non-negative. A directed graph is called strongly connected (SC)
if any two distinct nodes of the graph can be connected via a
directed path, i.e., a path that follows the direction of the edges
of the graph. Moreover, the adjacency and Laplacian matrices
are both irreducible (i.e., it is not possible to put them in block-
triangular form via permutation of rows and columns) if and
only if the associated graph is SC. An undirected graph is called
connected if there is an undirected path between every pair of
distinct nodes. A node of a directed graph is balanced if its in-
degree (i.e., the number of incoming edges) and its out-degree

(i.e., the number of outgoing edges) are equal; a directed graph

3

is called balanced if each node of the graph is balanced. Any
undirected graph is balanced.

Consider a directed graph, G = {N , E}, with Laplacian matrix
L, and let N be partitioned into two disjoint subsets, Na (with
Na = |Na|) and Nb (with Nb = |Nb|), i.e., Nb = N \ Na; hereafter,
[Na,Nb] will denote a graph G with such a partition. Connec-
ivity between the two subgraphs Ga = {E ∩ (Na × Na) ,Na} and
Gb = {E ∩ (Nb × Nb) ,Nb} can be characterized by the following
roperty:

roperty 1. The directed graph G [Na,Nb] is said to satisfy the
ubgraph connectivity (SGC) property (or, simply, the graph is SGC)
f, for any node i ∈ Nb, there exists a directed path from some node
∈ Na to i.

This property can be interpreted in terms of information flow
etween the nodes in the two subgraphs, ensuring that the in-
ormation carried by the nodes in Na is conveyed to the nodes in
Nb. Clearly, the SGC property is weaker than requiring the graph
to be SC.

Consider the (Nb × Nb) principal submatrix, L̄, obtained by
deleting the rows and the columns of L with indexes belonging
to Na. Let ri (i ∈ N̄b = {1, . . . ,Nb}) be the index of the ith node
elonging to Nb. It can be recognized that L̄ can be written as

¯ = Lb + Dba, (7)

here Lb is the Laplacian of the subgraph Gb, Dba=diag
{
Na,ri

}
ri∈Nb

nd Na,ri ≥ 0 is the number of parent nodes of ri belonging to Na.
hen, the following result, whose proof is reported in Appendix B,
an be established:

heorem 1. If the directed graph G [Na,Nb] satisfies the SGC
roperty, then −L̄ is Hurwitz. If the graph does not satisfy the SGC
roperty, the eigenvalues of −L̄ have all non-positive real parts and
t least one of them is null.

Consider two partitions of G, G
[
N ′

a,N
′

b

]
and G

[
N ′′

a ,N ′′

b

]
,

where N ′′
a and N ′′

b are obtained by removing a set of nodes,
Nδ ⊆ N ′

b, from N ′

b and adding them to N ′
a (i.e., N ′′

a = N ′
a ∪Nδ and

N ′′

b = N ′

b \ Nδ), while the graph edges remain all unchanged.
Notice that if G

[
N ′

a,N
′

b

]
satisfies the SGC property, the same

holds for G
[
N ′′

a ,N ′′

b

]
. Then, the following result, whose proof is

reported in Appendix C, holds:

Proposition 1. Consider a graph G with the two partitions,
G

[
N ′

a,N
′

b

]
and G

[
N ′′

a ,N ′′

b

]
, obtained as detailed above. Let G[

N ′
a,N

′

b

]
satisfy the SGC property and L̄′ (respectively, L̄′′) be the

principal submatrix obtained from the graph Laplacian by removing
the rows and columns with indexes belonging to N ′

a (respectively,
N ′′

a ). Then, the following inequality holds:

λM (−L̄′′) ≤ λM (−L̄′), (8)

which is strict if G′

b =
{
E ∩

(
N ′

b × N ′

b

)
,N ′

b

}
is SC.

Consider now two directed graphs G′[Na,Nb] and G′′[Na,Nb],
which differ only for the edges connecting the nodes in Na to
those in Nb. Then, it is L̄′

= Lb + D′

ba and L̄′′
= Lb + D′′

ba,
respectively. The following result, whose proof is reported in
Appendix D, holds:

Proposition 2. If G′ [Na,Nb] and G′′ [Na,Nb] satisfy the SGC
property and D′′

ba ≥ D′

ba, where the matrix inequality is understood
component-wise, the following inequality holds

λM (−L̄′′) ≤ λM (−L̄′), (9)
′ ′′
which is strict if Dba ̸= Dba and Gb is SC.
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.2. Estimation problem

It is assumed that only a subset of agents (called sources) in the
ystem measures (or computes) the smooth time-varying vector
ignal σ(t) ∈ Rm. The indexes of source agents belong to the
set Ns ⊆ N , with Ns = |Ns|. The other agents (called users),
hose indexes belong to the set Nu = N\Ns (with Nu = |Nu|),

do not have access to σ(t) and are required to estimate it and,
possibly, its time derivatives σ(h)(t) up to the pth order. Notice
that the communication graph can be partitioned as G [Ns,Nu]
and the two subgraphs, Gs = {E ∩ (Ns × Ns) ,Ns} and Gu =

{E ∩ (Nu × Nu) ,Nu}, can be defined as in Section 2.1. Hereafter,
Nu,i = Ni∩Nu will denote the subset (with Nu,i =

⏐⏐Nu,i
⏐⏐) of parent

nodes of the ith agent which are users, while Ns,i = Ni∩Ns is the
subset (with Ns,i =

⏐⏐Ns,i
⏐⏐) of parent nodes of the ith agent which

are sources.
The estimate of the hth derivative computed by the ith user

agent (i ∈ Nu) will be denoted by îσh(t), i.e., the left superscript
will identify the agent and the right subscript the order of the
estimated derivative.1

The signal σ(t) is required to satisfy the following assumption:

Assumption 1. There exists an integer p ≥ 0 such that
σ(p+1)(t) = 0m, ∀t ≥ 0.

In many applications, Assumption 1 would be too strong and
a weaker condition will be considered as well:

Assumption 2. There exist an integer p ≥ 0 and a constant,
σ̄p+1 < ∞, such that ∥σ(p+1)(t)∥ ≤ σ̄p+1, ∀t ≥ 0.

In some cases, e.g., when σ(t) represents a reference trajectory
for a multi-robot system, fulfilment of Assumption 2 can be im-
posed with user-defined p and σ̄p+1. Otherwise, when the prop-
erties of σ(t) cannot be suitably imposed, Assumption 2 requires
that it must be sufficiently slowly varying and the achievable per-
formance of the estimation scheme will depend on the magnitude
of the bound.

3. Distributed estimation scheme

If the ith agent is a source (i.e., i ∈ Ns), its estimate coincides
with σ(h)(t), i.e.
îσh(t) = σ(h)(t), i ∈ Ns, h = p, p − 1, . . . , 1, 0. (10)

If the ith agent is a user (i.e., i ∈ Nu), it has to estimate σ(t)
and its derivatives up to a given order (less than or equal to p).
The estimation scheme is composed of a chain of p + 1 cascaded
estimators: each of them computes an estimate of the derivative
of order h (with h = p, p − 1, . . . , 1, 0), îσh(t), as follows
i ˙̂σh(t) = ko

∑
j∈Ni

(ĵσh(t) −
îσh(t)

)
+

îσh+1(t), (11)

where îσp+1(t) = 0m, ∀i ∈ Nu, ∀t ≥ 0, and ko is a positive gain.
The first term on the right-hand side of (11) represents a classical
consensus term (Olfati-Saber & Murray, 2004), which is needed to
propagate the information across the network. The second term is
aimed at compensating the effects of the higher-order derivatives
of σ(t) on the estimates.

In view of (10), the dynamics of the estimation error, ĩσh =

σ(h)
−

îσh, can be written as
i ˙̃σh(t) = −ko

∑
j∈Ni

(ĩσh(t) −
j̃σh(t)

)
+

1 This notation, although a bit involved, is needed, since i ˙̂σh ̸=
iσ̂h+1 , and

thus the use of the superscript (h) for the estimate of the hth derivative would
be misleading.
4

δhpσ
(p+1)(t) + δ̄hp

ĩσh+1(t)

= −koNi
ĩσh(t) + ko

∑
j∈Nu,i

j̃σh(t)+

δhpσ
(p+1)(t) + δ̄hp

ĩσh+1(t), (12)

here δ̄hp = 1 − δhp, and δhp is the Kronecker delta (i.e., δhp = 1,
hen h = p, otherwise δhp = 0). Let mu = mNu and let σ̃h =
ĩσh

}
i∈Nu

∈ Rmu be the vector collecting the estimation errors
or the user agents. Then, the dynamics of σ̃h(t) is given

˙ h(t) = −L̄oσ̃h(t) + δhpµ(t) + δ̄hpσ̃h+1(t), (13)

here µ(t) = 1Nu ⊗ σ(p+1)(t),

¯o = ko
(
L̄ ⊗ Im

)
, (14)

nd L̄ is the (Nu ×Nu) matrix extracted from the graph Laplacian,
, by deleting the rows and the columns with indexes belonging
o Ns.

It is worth noticing that, without the additional term îσh+1(t)
n (11), the dynamics (13) would become ˙̃σh(t) = −L̄oσ̃h(t) +
(h+1)(t), for any h. Hence, the behaviour of the estimation errors
ould be influenced by the (possibly unbounded) (h+1)th deriva-
ive of the signal, thus preventing convergence (respectively,
oundedness) of σ̃h(t) when σ(h+1)(t) is not null (respectively, not
ounded).

.1. Convergence of estimation errors

Matrix −L̄o satisfies the following Lemma:

emma 3. If the communication graph G [Ns,Nu] satisfies the
GC property, then, matrix −L̄o is Hurwitz and, given any ϵo ≥ 0,
here exists a ρo ≥ 1 such that the corresponding transition matrix
o(t) = exp

(
−L̄ot

)
satisfies the inequality

∥Φo(t)∥ ≤ ρo e−αot , ∀t ≥ 0, (15)

here αo = −(λM (−L̄o) + ϵo) and λM (−L̄o) = λM (−ko(L̄ ⊗ Im)) =

oλM (−L̄) < 0.

roof. Since the communication graph is assumed to satisfy the
GC property, L̄ satisfies the assumptions of Theorem 1, and thus
L̄ is Hurwitz. Since any eigenvalue of the Kronecker product
L̄ ⊗ Im arises as a product of eigenvalues of −L̄ and Im (Brewer,
978), −ko

(
L̄ ⊗ Im

)
is Hurwitz as well. Hence, (15) follows di-

ectly from (2). ■

Of course, as already noticed in Section 2, it is always possible
o choose ϵo small enough such that αo < 0 (and so will be
ssumed in the following). On the other hand, the eigenvalues of
L̄o are those of −(L̄ ⊗ Im), which are fixed for a given topology,
caled by ko; thus, −λM (−L̄o) increases with ko. Moreover, since
he structure of the Jordan normal form of −L̄o is not influenced
y ko, ρo is not influenced by ko. Therefore, since αo increases
ith ko, ρo/αo decreases with ko and, thus, for any ϵo, it is always
ossible to find a value of ko large enough such that ρo/αo < 1.
When Assumption 1 holds, σ(p+1)(t) is identically null and the

dynamics (13) has the same cascaded structure defined by (1),
with A = −L̄o and uh(t) = 0mu , ∀h = p, p−1, . . . , 1, 0 and ∀t ≥ 0.
Thus, the following result follows directly from Lemmas 1 and 3:

Theorem 2. If Assumption 1 holds and the communication graph
G [Ns,Nu] satisfies the SGC property, then σ̃h(t) converges to 0mu as
t → ∞, ∀h = p, p − 1, . . . , 1, 0.



F. Caccavale and F. Pierri Automatica 155 (2023) 111116

t
e

t

(
−

o
a

T
G
∀

w

σ

˜

h
β

1

Clearly, in view of (15), since −λM (−L̄o) increases with ko,
he larger is ko the faster is the convergence of the estimation
rrors. Notice that the dynamics of σ̃ =

[̃
σT
p σ̃T

p−1 . . . σ̃T
1 σ̃T

0

]T
is

characterized by a block-triangular matrix, with blocks along the
diagonal all equal to −L̄o. Hence, exponential convergence of σ̃(t)
o 0mu(p+1) follows.

On the other hand, when Assumption 2 holds, the dynamics
13) has the same cascaded structure defined by (1), with A =

L̄o, Bh = Imu and uh(t) = δhpµ(t). Thus, a time-varying bound
n the collective estimation error can be computed as a direct
pplication of Lemma 2, with ūp =

√
Nuσ̄p+1 and, ∀h < p, ūh = 0:

heorem 3. If Assumption 2 holds and the communication graph
[Ns,Nu] satisfies the SGC property, then σ̃h(t) can be bounded,
h = p, p − 1, . . . , 1, 0 and ∀t ≥ 0, as follows

∥̃σh(t)∥ ≤

p∑
l=h

t l−he−αot σ̄l(0) + β̄p

√
Nuσ̄p+1, (16)

here

¯l(0) =
ρ l−h+1
o

(l − h)!
∥̃σ l(0)∥ , β̄p =

(
ρo

αo

)p−h+1

. (17)

The first term in (16) vanishes as t → ∞, and, thus, the bound
asymptotically reduces to β̄p

√
Nuσ̄p+1. Notice that Theorem 2 can

be proven as a direct consequence of Theorem 3 and the first term
in (16) can be seen as an upper bound on σ̃h(t) when σ(p+1)(t) is
identically null.

Notice that, assuming ko large enough such that ρo/αo < 1,
Eq. (17) shows that the more the index h decreases (i.e., pro-
ceeding along the chain of estimators) the more the effect of
σ(p+1) on the estimation errors is reduced, since (ρo/αo)p−h+1 < 1
decreases as h approaches 0. Moreover, since ρo/αo decreases
for increasing values of ko, β̄p decreases as well. Of course, the
above remarks are not be regarded as strict design guidelines,
since inequality (15) could be rather conservative, especially for
small values of t , but a way to remark that the estimation errors
can be reduced by increasing ko and that the effect of a non-null
σ(p+1)(t) is progressively reduced along the chain of estimators.

Finally, similarly to Tu and Sayed (2013), it is worth studying
the effect of the number and distribution of sources in the net-
work on the performance of the proposed distributed estimation
scheme. To this aim, Proposition 1 can be exploited. Let the com-
munication graph G

[
N ′

s ,N
′
u

]
satisfy the SGC property. Then, if a

set of users Nδ (with Nδ = |Nδ|) is removed from N ′
u and added

to N ′
s , a new partition of the graph is generated, G

[
N ′′

s ,N ′′
u

]
, with

N ′′
s = N ′

s ∪ Nδ and N ′′
u = N ′

u \ Nδ , which is still SGC and
characterized by the (N ′

s − Nδ)× (N ′
s − Nδ) principal submatrix of

the Laplacian, L̄′′, obtained by deleting the rows and the columns
corresponding to new set of source nodes. Then, according to
(8), λM (−L̄′′) is not larger (respectively, smaller, if G′

u is SC) than
λM (−L̄′). When Gu is not SC, since inequality (8) is not strict, it
is not guaranteed that any arbitrary users/sources shift leads to
a decrease of the spectral abscissa of −L̄. Notice that, however,
such a monotonic behaviour is guaranteed only if N ′′

s = N ′
s ∪ Nδ

and N ′′
u = N ′

u \Nδ , i.e., if the set of sources is enriched by shifting
some users to sources.

Let ri (i ∈ N̄u = {1, . . . ,Nu}) be the index of the ith node
belonging to Nu and Ns,ri ≥ 0 the number of parent nodes of ri
belonging to Ns. It can be recognized that L̄ can be expressed as in
(7) and Proposition 2 can be invoked to conclude that λM (−L̄), for
a given fixed partition, G [Ns,Nu], does not increase (respectively,
decreases, if Gu is SC) when at least one Ns,ri increases. In other
words, when Gu is SC, λM (−L̄) becomes more negative as new
source-user communication links are added, which can happen,
e.g., when new users enter the communication range of one
or more sources. Otherwise, when Gu is not SC, such a strict

monotonic behaviour is not guaranteed.

5

3.2. Effect of noise and disturbances

When σ(t) and its derivatives are measured by source nodes,
they can be corrupted by noise, which can be further amplified
when only σ(t) is measured and its derivatives are computed nu-
merically. Thus, it is important to assess the filtering capabilities
of the proposed estimation scheme. To this aim, assume that the
hth derivative of σ(t) transmitted by the jth source is affected by
an additional disturbance input, jυh(t)
ĵσh(t) = σ(h)(t) +

jυh(t), j ∈ Ns, (18)

which is assumed, as in He, Zhou, Cheng, Shi, and Chen (2016),
to be bounded, i.e., ∀h = p, p − 1, . . . , 1, 0 and ∀j ∈ Ns, it isjυh(t)

 ≤
jῡh < ∞, ∀t ≥ 0. (19)

The estimation error dynamics, for i ∈ Nu, is given by
i ˙̃σh(t) = −koNi

ĩσh(t) + ko
∑
j∈Nu,i

j̃σh(t)+

δhpσ
(p+1)(t) + δ̄hp

ĩσh+1(t) − koυh,i(t), (20)

where

υh,i(t) =

∑
j∈Ns,i

jυh(t).

Let υh =
{
υh,i

}
i∈Nu

∈ Rmu , the dynamics of the collective

estimation error for the users becomes

σ̇h(t) = −L̄oσ̃h(t) + δhpµ(t) − koυh(t) + δ̄hpσ̃h+1(t), (21)

where, in view of (19), υh can be bounded as follows

∥υh(t)∥ ≤

∑
i∈Nu

∑
j∈Ns,i

jυh(t)
 ≤ ῡh, (22)

with ῡh =
∑

i∈Nu

∑
j∈Ns,i

jῡh.
Therefore, the dynamics (21) has the same cascaded structure

defined by (1), with A = −L̄o, Bh = Imu and uh(t) = δhpµ(t) −

koυh(t). When Assumption 1 holds, by invoking Lemma 2, with
ūh = koῡh (∀h = p, p − 1, . . . , 1, 0), boundedness of the
estimation errors follows:

∥̃σh(t)∥ ≤

p∑
l=h

t l−he−αot σ̄l(0) + ko
p∑

l=h

β̄lῡl, (23)

where β̄l = (ρo/αo)
l−h+1. As expected, convergence of estimation

errors is not achieved, due to the additional term ko
∑p

l=h β̄lῡl in
(23), accounting for the effect of noise and disturbances. Notice
that β̄l decreases when h approaches 0, i.e., proceeding along
the chain of estimators, hence mitigating the effect of noise and
disturbances on the estimates. On the other hand, when Assump-
tion 2 holds, since it is ūp =

√
Nuσ̄p+1 + koῡp and ūh = koῡh (for

< p), the upper bound on ∥̃σh(t)∥ contains the additional term
¯p

√
Nuσ̄p+1 with respect to that in (23).

It is worth noticing that system (21) is characterized by the
transfer matrix (s ∈ C denotes the complex variable)

Φo(s) =
(
sImu + L̄o

)−1
, (24)

having poles all strictly negative. Thus, it represents the transfer
matrix of a proper stable low-pass filter. Due to the cascaded
structure of the estimation filters, koυh affects σ̃h after being
filtered by the MIMO low-pass filter with transfer matrix Φo(s),
while it affects σ̃ l (for l < h) after being filtered by h − l +

identical MIMO low-pass filter with transfer matrix Φo(s). In
other words, the filtering effect is strengthened by proceeding
along the chain of estimators, thanks to the cascade of low-pass
filtering of the upstream signals. On the other hand, by increasing
ko, the bandwidth of each filter is increased and, thus, the filtering
effect of high-frequency noise components is weakened.
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.3. Extension to switching topology

In several applications, e.g. networks of moving agents, exist-
ng communication links can disappear and/or new links between
gents can be created. In terms of the network topology, this
mplies that some edges are added or removed from the graph
t some, unpredictable, times. Thus, in such cases, the network
s described by a switching topology, i.e., a finite collection of
graphs with N nodes, Γ = {G1, . . . , GK }. Each graph in Γ

is characterized by its adjacency matrix, Ak, and its Laplacian
matrix, Lk, with k ∈ K = {1, . . . , K }. For any Lk, the correspond-
ng matrix, L̄k, extracted from Lk by deleting the rows and the
olumns corresponding to the source nodes in Gk ∈ Γ , can be
defined. The switching rule, which determines, at each time, the
index of the active topology in Γ , can be expressed via the scalar
piecewise constant function of time s(t) : t ∈ [t0, +∞) → K,
where t0 is the initial time. Thus, all the above defined matrices
can be modelled as piecewise constant functions of time: As(t) ∈

{A1, . . . ,AK }, Ls(t) ∈ {L1, . . . , LK } and L̄s(t) ∈
{
L̄1, . . . , L̄K

}
.

The estimation error dynamics (13) can be written, ∀ h =

p, p − 1, . . . , 1, 0, as

σ̇h(t) = −L̄o,s(t)σ̃h(t) + δhpµ(t) + δ̄hpσ̃h+1(t), (25)

where the constant matrix L̄o is replaced by the time-varying
piece-wise constant matrix L̄o,s(t) = ko

(
L̄s(t) ⊗ Im

)
. If each Gk ∈ Γ

is SGC and balanced, by using the same arguments in Olfati-Saber
and Murray (2004) and Antonelli et al. (2014), it can be shown
that the autonomous counterpart of (25),

σ̇h(t) = −L̄o,s(t)σ̃h(t), (26)

is a globally exponentially stable system and, thus, there exist
two constants, ρo > 0 and αo > 0, such that the state transition
matrix Φo(t, t0) = exp

(
−L̄o,s(t) (t − t0)

)
can be bounded, for any

t0 ∈ R, as follows (Khalil, 1996)

∥Φo(t, t0)∥ ≤ ρo e−αo(t−t0), ∀t ≥ t0. (27)

Therefore, under Assumption 1, each system defined by (25) is
either an autonomous exponentially stable linear time-varying
system (for h = p) or an exponentially stable linear time-
varying system with the asymptotically vanishing input σ̃h+1(t)
(for h < p), and, thus, Theorem 2 can be extended to the case
of switching topology as well, with the additional assumption
that each graph in Γ is balanced. Similarly, when Assumption 2
holds, looking at the proof of Lemma 2, it can be easily recognized
that inequality (27) allows to extend Theorem 3 to the case of
switching topology, with the additional assumption that each
graph in Γ is balanced.

The assumptions that each graph belonging to Γ is SGC and
balanced might be rather restrictive in some application scenarios
and can be relaxed, as proposed in Jadbabaie, Lin, and Morse
(2003) and Ren and Beard (2005) for consensus problems. How-
ever, if in Γ there are graphs that do not satisfy the SGC property,
it can be shown, via simple counterexamples, that exponen-
tial stability is not guaranteed for arbitrary switching sequences.
Hence, the assumptions on Γ can be relaxed if some restrictions
on the switching rule are considered. In detail, assume that at
least one of the graphs in Γ is SGC (but not necessarily balanced).
Notice that, when a graph Gk ∈ Γ is not SGC, according to
Theorem 1, the corresponding matrix −L̄o,k = −ko

(
L̄k ⊗ Im

)
is

not Hurwitz, as it admits at least m null eigenvalues. Then, the
set L̄ =

{
−L̄o,1, . . . ,−L̄o,K

}
can be partitioned in the two disjoint

subsets, L̄H ̸= ∅ and L̄N , collecting, respectively, the matrices
−L̄o,k ∈ L̄ that are Hurwitz (corresponding to graphs satisfying
the SGC property) and not Hurwitz (corresponding to graphs not

satisfying the SGC property); the index set K can be partitioned

6

accordingly, i.e., K = KH ∪ KN . According to (15), for any k ∈ K
and any ϵo,k ≥ 0, there exists a constant ρo,k ≥ 1 such thatexp (

−L̄o,kt
) ≤ ρo,k e−αo,kt , ∀t ≥ t0,

where ϵo,k ≥ 0 can be chosen such that −αo,k = λM
(
−L̄o,k

)
+ϵo,k

is negative, if k ∈ KH , while it is non-negative, if k ∈ KN .
Let a = maxk∈K

{
ln

(
ρo,k

)}
≥ 0, αH = maxk∈KH

{
−αo,k

}
<

0 and αN = maxk∈KN

{
−αo,k

}
≥ 0. Let the integer S (to, t)

denote the number of times s(t) switches over the interval [to, t)
and TH (t0, t) (respectively, TN (t0, t)) the total activation time of
the SGC (respectively, not SGC) topologies in the interval [t0, t).
Assume that there exists a given α′

∈ (0, αH), such that

TH (t0, t)
TN (t0, t)

≥
αN + α′

αH − α′
, ∀t ≥ t0, (28)

nd, for some S0 ≥ 0 and α ∈
(
0, α′

)
, the switching signal s(t)

satisfies

S(t0, t) ≤ S0 +
t − t0

τ ′

d
, ∀t ≥ t0, (29)

here τ ′

d = a/(α′
− α), which can be interpreted as an average

well time (i.e., the average interval between consecutive switch-
ng events) and S0 is the so-called chatter bound (Hespanha &
orse, 1999; Zhai, Hu, Yasuda, & Michel, 2001). Then, by using

he same arguments in Zhai et al. (2001), it can be shown that
he system (26) is globally exponentially stable, i.e., letting ρo =
a(S0+1) and αo = α, (27) holds for all s(t) satisfying (29), for
ny average dwell time τd ≥ τ ′

d and any S0 ≥ 0. Therefore,
heorems 2 and 3 can be extended to the case of switching
opology, under the assumptions that at least a graph in Γ is SGC
nd conditions (28), (29) hold. In the case L̄N = ∅, i.e., all the
raphs in Γ are SGC, but not necessarily balanced, condition (28)
s trivially satisfied, as TN (t0, t) = 0, and, thus, only condition (29)
as to be satisfied.

. Simulation results

In order to validate the proposed estimation scheme, nu-
erical simulations are carried out. In all the case studies, the
stimators (11) are implemented via a discrete-time first-order
pproximation with a fixed time step of T = 0.005 s.

.1. First case study

A multi-agent system composed of N = 6 agents (2 sources
nd 4 users) is in charge of estimating a scalar 3rd-order polyno-
ial σ (t) (i.e., m = 1, p = 3). Since σ (4)(t) = 0, the signal satisfies
ssumption 1 with p+1 = 4; thus, 4 decentralized estimators are
dopted. The communication graph, which is SGC but not SC, is
eported in Fig. 1. The agents 1 and 6 are the sources. A white
oise has been superimposed to σ (t), with standard deviation
qual to 0.05, while the noise superimposed to its non-null time
erivatives of order h = 1, 2, 3 has standard deviation equal to
.1, 0.15 and 0.2, respectively. The time histories of the signal and
ts non-null time derivatives are reported in Fig. 2. The gain of the
stimation filters has been set to ko = 10.
Fig. 3 reports the estimation errors for the users. As expected,

ll the errors are exponentially decaying to zero and the effect
f noise is progressively reduced as h decreases. The filtering
apabilities of the estimation scheme are confirmed by the results
n Fig. 4, which reports the singular values of the transfer matrix

(s).
o
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Fig. 1. First case study: topology of the communication graph. The nodes in
red are the sources, the nodes in black are the users. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. First case study: signal σ (t) and its time derivatives.

Fig. 3. First case study: estimation errors for the user agents.

Fig. 4. First case study: singular values of the transfer matrix Φo(s).
7

Table 1
Root mean square estimation errors for agent 2.

h = 1 h = 0

ko = 5 2.73 · 10−1 5.45 · 10−2

ko = 10 1.38 · 10−1 1.41 · 10−2

ko = 50 2.17 · 10−2 6.23 · 10−4

ko = 100 1.38 · 10−2 1.73 · 10−4

4.2. Second case study

In the second case study, a different system of N = 5 agents
is in charge of estimating a new scalar signal σ (t) given by
he sum of a 2nd-order polynomial and a sinusoidal function
ith frequency of 2π Hz. Since σ̈ (t) ≤ σ̄2 = 2, but non-null,
nly Assumption 2 is satisfied. The time histories of the signal
nd its time derivatives are reported in Fig. 5. The decentralized
stimators have been designed by assuming p = 1. Agent 1 is
he only source in the system. The communication network is
epresented by the SC graph in Fig. 6.

In Fig. 7 the estimation errors for the user agent with index 2,
or different values of the gain ko are reported. It can be noticed
hat, as expected, the errors do not converge to zero but are only
ounded; it can be recognized that the effect of σ̈ (t) is reduced
hen h decreases and ko increases, as confirmed by the results

n Table 1, which reports the root mean square errors of the two
stimators run by agent 2 for different values of ko. The behaviour
f the other users’ estimators is similar and is not reported here
or the sake of compactness.

The proposed estimation scheme is compared to a different
pproach, based on the containment control scheme developed
n Liu et al. (2012) with dynamic leaders. Namely, the source
gents play the role of leaders, the state of each coincides with the
ignal σ (t). The user agents play the role of followers. According
o Liu et al. (2012), assuming that G contains a directed spanning
orest, if each user (i ∈ Nu) runs the following estimation filter⎧⎪⎨⎪⎩

i ˙̂σ 0(t) =
iσ̂1(t)

i ˙̂σ 1(t) = ko,0
∑

j∈Ni

(
jσ̂0(t) −

iσ̂0(t)
)
+

ko,1
∑

j∈Ni

(
jσ̂1(t) −

iσ̂1(t)
)
,

(30)

hen, for p ≤ 1 and under suitable assumptions on the positive
ains ko,0 and ko,1, iσ̂0(t) asymptotically converges to the convex
ull spanned by the sources (leaders), which, of course, coincides
ith σ (t). In order to carry out a fair comparison, ko,0 and ko,1
ave been chosen equal to ko (i.e., ko = ko,0 = ko,1 = 50).
he results obtained by adopting the estimation filter (30), im-
lemented via the sampled-data protocol adopted in Liu et al.
2012), are reported in Fig. 8. It can be recognized that both
chemes lead to bounded errors on σ̇ (t) of the same order of
agnitude. However, the proposed method allows to obtain an
stimation of σ (t) much more accurate, since the effect of σ̈ (t) on
he estimation errors is reduced thanks to the cascaded structure
f the estimation scheme. Moreover, it must be noticed that (30)
oes not lead to convergence of the estimation errors when p > 1
even for signals with null p + 1th derivative).

.3. Third case study

In this case study, a system of N = 5 agents is in charge of
stimating the signal σ (t) in Fig. 2. The directed communication
raph switches among the topologies in Fig. 9: at time t1 = 0.5 s
he graph switches from the SC and balanced topology in Fig. 9a
o that in Fig. 9b, which is not SGC, at t2 = 1.5 s it switches again
o the topology in Fig. 9c, neither SC nor balanced, but SCG. It can
e verified that there exist α′, S and τ ′ such that conditions (28)
0 d
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c
t

Fig. 5. Second case study: signal σ (t) and its time derivatives.

Fig. 6. Second case study: topology of the communication graph. The node
in red represents the source, the nodes in black represent the users. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Second case study: estimation errors for agent 2 with different values of
the gain ko . (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8. Second case study: comparison between the estimation errors for agent
2 obtained by using the approach proposed in this paper (blue line) and the
estimation filter in Eq. (30) proposed in Liu et al. (2012) (red line). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

and (29) are satisfied for all t ≥ 0. The gain of the estimation
filters has been set to ko = 10.

Fig. 10 reports the estimation errors for the users. It can be
noticed that, when the non-SCG topology is active, the errors of
the fourth agent drift away. On the same way, also the estimates
8

Fig. 9. Third case study: topologies of the communication graphs: (a) SC
topology in the time interval [0,0.5]; (b) non-SCG topology in the time interval
(0.5,1.5]; (c) SCG topology in the time interval (1.5,4]. The node in red represents
the source, the nodes in black represent the users. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Third case study: estimation errors for the user agents. The dashed lines
represent the instant of topology switching. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

of agent 5 are affected by errors, due to the fact that the estimates
computed by agent 4 act as a disturbance on the error dynamics
for agent 5. However, after the last switch, all the errors converge
exponentially to zero.

4.4. Fourth case study

In this case study, a system composed of N = 50 agents
is considered. Two different topologies are considered for the
communication graph: a simple directed cycle and an undirected
SC graph. Then, for each topology, starting from a configuration
in which only one node plays the role of source, at each step a
new set of sources is selected (such that Ns = |Ns| is increased
by one unit) and the corresponding spectral abscissa, λM (−L̄),
is computed. In a first numerical experiment (Fig. 11, top), the
new set of sources is selected randomly among all the agents: it
can be recognized that, in the case of the undirected SC graph,
λM (−L̄) does not decrease monotonically with Ns. Noticeably,
for the cycle graph, the subgraph Gs is never SC and λM (−L̄) is
onstant, regardless the number and distribution of sources. On
he other hand, if, at each step, the new set of sources is obtained
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Fig. 11. Fourth case study: spectral abscissa of −L̄ for a cycle (red circles) and
SC undirected graph (blue squares) as a function of the number of sources.
op: new sources are randomly selected among all agents. Bottom: new sources
re randomly selected among only user agents.

y adding to the old one a randomly selected user agent, such that
he assumptions of Proposition 1 are satisfied, for the undirected
C graph, λM (−L̄) is a strictly decreasing function of Ns (Fig. 11,
ottom), except in one case (i.e., when Ns goes from 26 to 27) in
hich the subgraph Gs is not SC. On the other hand, again, in the
ase of the cycle, λM (−L̄) remains constant.
Then, the proposed estimation method is compared with a

imple flooding approach, where, starting from the sources, each
ode transmits σ (t) to its neighbours. The chosen graph topology
s the directed cycle with a single source, which is a quite critical
onfiguration when transmission delays are present. In order to
arry out a fair comparison, the information exchange between
n agent and its neighbours is characterized by a transmission
elay of τt = 0.001 s, while the estimation filters (11) are run
ith a time step of T = 0.005 s (assuming that the computation
f the output takes a time Tc = T − τt ) and a gain ko = 150.
he signal σ (t) to be estimated is the same 3rd-order polynomial
onsidered in the first case study. The results are shown in Fig. 12,
eporting the estimation errors for σ (t) of four different user
gents. It can be recognized that the longer is the path from
he source to the user, the larger is the peak estimation error
or both the approaches. However, for the proposed estimation
cheme, after an initial peak in the transient phase, the error
onverges to zero. On the other hand, for the flooding approach,
he estimation errors do not exhibit a convergent behaviour, as
hey are not determined by an asymptotically stable dynamics,
nd are characterized by larger root mean square values, which
epend on the transmission delays and the derivatives of σ (t);
oreover, the noise is transmitted unaltered to all the users. In
um, the results confirm that flooding approaches perform poorly
or large networks with a relatively small number of sources.

. Conclusions and future work

In this paper, a solution to a distributed estimation problem
or multi-agent networked systems has been developed and anal-
sed. The approach is aimed at estimating a time-varying vector
ignal known by only a subset of source agents. The proposed
stimation scheme is based on a bank of cascaded estimators
un by the agents which do not have access to the signal (the
ser agents). Convergence properties of the estimation errors
re investigated by assuming that the inter-agent communica-
ion graph satisfies a suitable connectivity property, weaker than
trong connectivity, and under two different assumptions on the
ignal to be estimated. Simulations have been carried out to
ssess the performance of the proposed estimation scheme. The
eveloped estimation approach can be conveniently adopted in
9

Fig. 12. Fourth case study: estimation errors of the signal σ (t) for 4 different
user agents in the presence of one source (red line) compared with the
estimation error obtained with a simple flooding approach (blue line). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

different application fields. In fact, ongoing work is focused on
the use of the estimation scheme in the framework of centroid
and formation control of groups of mobile robots.

Appendix A. Proof of Lemma 2

For h = p, Eq. (1) describes the dynamics of a linear and time-
invariant system with the bounded input up(t). Thus, xp(t) can be
expressed as

xp(t) = e−Atxp(0) +

∫ t

0
e−A(t−τ )Bpup(τ )dτ .

By taking into account (2), the following chain of inequalities can
be devisedxp(t) ≤ ρe−αt

xp(0) + bpρūp

∫ t

0
e−α(t−τ )dτ

≤ ρe−αt
xp(0) + bp

ρ

α
ūp,

.e.,
xp(t) can be upper bounded by the function x̄p(t) =

e−αt
xp(0) + bp (ρ/α) ūp.

For h = p − 1, Eq. (1) describes a linear and time-invariant
ystem with the bounded inputs up−1(t) and xp(t). Thus, xp−1(t)
an be expressed as

p−1(t) = e−Atxp−1(0)+∫ t

0
e−A(t−τ ) (Bp−1up−1(τ ) + xp(τ )

)
dτ ,

hich, by virtue of (2) and the bound on xp(t) computed above,
eads to the following chain of inequalities

xp−1(t)
 ≤ ρe−αt

xp−1(0)
+

bp−1
ρ

α
ūp−1 + ρ

∫ t

0
e−α(t−τ )x̄p(τ )dτ

≤ ρe−αt
xp−1(0)

 + ρ2te−αt
xp(0)

bp−1
ρ

α
ūp−1 + bp

(ρ

α

)2
ūp,

i.e.,
xp−1(t)

 can be upper bounded by the function x̄p−1(t) =

ρe−αt
xp−1(0)

+te−αtρ2
xp(0)+bp−1 (ρ/α) ūp−1+bp (ρ/α)2 ūp.

The same argument can be adopted for any h < p, since

xh(t) = e−Atxh(0) +

∫ t

e−A(t−τ )(Bhuh(τ ) + xh+1(τ )) dτ ,

0
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i
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N
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h
N
a
N⏐⏐
|

nd

xh(t)∥ ≤ ρe−αt
∥xh(0)∥ + bh

ρ

α
ūh + ρ

∫ t

0
e−α(t−τ )x̄h+1(τ )dτ ,

from which (3) and (4) can be devised by induction.

Appendix B. Proof of Theorem 1

It is worth reporting the following result on diagonally dom-
inant matrices (Shivakumar & Chew, 1974), which will be ex-
ploited in the proof:

Theorem 4. A complex (N × N) matrix M =
{
mij

}
i,j∈N is

non-singular if:

• M is diagonally dominant: |mii| ≥
∑

j̸=i |mij|, ∀i ∈ N ;
• there exists an index set I ⊆ N such that |mii| >

∑
j̸=i |mij|,

∀i ∈ I;
• for each i /∈ I, there exists a sequence of indexes i1, i2, . . . , iq,

such that mii1 , mi1 i2 , . . . , miq−1iq are all non-null and iq ∈ I.

Let ri ∈ Nb denote the index of the ith node in Nb, where
∈ N̄b = {1, . . . ,Nb}. Since the graph is assumed to satisfy the
GC property, the set of indexes

ba =
{
ri ∈ Nb : Na,ri > 0

}
, (B.1)

s non-empty, i.e., there exists at least one node ri ∈ Nb which
as a parent node belonging to Na. On the other hand, the set
bb = Nb\Nba is empty when Nb = Nba, i.e., all nodes in Nb have
t least one parent node in Na. Let N̄ba =

{
i ∈ N̄b : ri ∈ Nba

}
,

¯bb =
{
i ∈ N̄b : ri ∈ Nbb

}
, Nba =

⏐⏐N̄ba
⏐⏐ = |Nba| and Nbb =

N̄bb
⏐⏐ = |Nbb|. Then, since Lb is a Laplacian matrix, in view of

(6) and (7), matrix L̄ =
{
l̄ij
}
i,j∈N̄b

is diagonally dominant and

l̄ii| >
∑
j̸=i

|̄lij|, ∀i ∈ N̄ba. (B.2)

If N̄ba = N̄b, then L̄ is strictly dominant and, thus, it is a full-rank
matrix. When N̄ba ⊂ N̄b (i.e., N̄bb is not empty), if, starting from
any row of L̄ with index i0 ∈ N̄bb (i.e., ri0 ∈ Nbb), a sequence
of indexes, i0, i1, . . . , ip, such that l̄i0 i1 , l̄i1 i2 , . . . , l̄iq−1iq are all non-
null and iq ∈ N̄ba (i.e., riq ∈ Nba) exists, then, according to
Theorem 4, L̄ is full rank. Given the definition of graph Laplacian,
such a sequence exists if and only if there exists a directed path in
Gb, with edges

(
riq , riq−1

)
, . . . ,

(
ri2 , ri1

)
,
(
ri1 , ri0

)
, connecting some

node riq ∈ Nba to the node ri0 ∈ Nbb. Since G is assumed to be
SGC, such a path exists. In fact, since ri0 ∈ Nbb, by definition, it
cannot be child of a node in Na; however, according to the SGC
property, it must be reached by a path with origin in Na. Thus,
ri0 must be necessarily reached by a path in Nb originated from
a node riq ∈ Nba. Hence, L̄ is a full-rank matrix even in the case
N̄ba ⊂ N̄b.

According to the Gers̆gorin disc theorem (Horn & Johnson,
1990), the eigenvalues of −L̄ are located in the union of the Nb
discs centred in −l̄ii with radii di =

∑
j̸=i |̄lij| (i ∈ Nb). Since l̄ii ∈ R

and l̄ii > 0, ∀i ∈ Nb, the discs are all centred on the negative real
axis and, due to diagonal dominance, are contained in the left-half
complex plane and cannot intersect the imaginary axis but in the
origin. On the other hand, since −L̄ is full rank, and thus cannot
admit null eigenvalues, all its eigenvalues have strictly negative
real parts. This proves the first statement of the Theorem.

The Gers̆gorin disc theorem implies that all the eigenvalues
of −L̄ have non-positive real parts. Thus, in order to prove the
second statement of the Theorem, it must be shown that at least
one of its eigenvalues is null when G is not SGC. To this aim, notice
that G is not SGC if at least one of the following conditions holds:
10
(i) Nba = ∅;
(ii) any node in Nbb has not parents in Nba;
(iii) at least one node in Nbb has not parents.

In the first case, since Dba = ONb , it is −L̄ = −Lb and, thus,
at least one of its eigenvalues is null, being Lb a Laplacian. In the
second case, if i ∈ N̄bb, it is l̄ij = 0 for any j ∈ N̄ba. Hence, it
is always possible, through permutation of rows and columns of
L̄, rewrite L̄ such that the first Nba rows (columns) correspond
to the nodes in Nba and the last Nbb rows (columns) correspond
to the nodes in Nbb. The resulting matrix is block-triangular and
the lower-right (Nbb ×Nbb) block is the Laplacian of the subgraph
Gbb (E ∩ (Nbb × Nbb) ,Nbb). Hence, this block (and L̄) admits at
least a null eigenvalue. Finally, in the third case, the rows in L̄
corresponding to the nodes without parents are null; thus, also
in this case at least one eigenvalue of −L̄ is null.

Appendix C. Proof of Proposition 1

The proof is based on the following property of the spectral
abscissa of Metzler matrices (Bullo, 2022, Ch. 10):

Lemma 4. Let A and B be Metzler matrices of the same dimensions:

• if A ≥ B, then λM (A) ≥ λM (B);
• if, in addition, A ̸= B and A is irreducible, then λM (A) > λM (B),

where the matrix inequality is understood component-wise.

First, notice that −L̄′ is a Metzler matrix. Let N ′′

b = |N ′′

b | and
Nδ = |Nδ|. Then, since N ′′

a = N ′
a ∪ Nδ and N ′′

b = N ′

b \ Nδ , matrix
−L̄′ can be written, eventually via a permutation of rows and
columns, as follows:

−L̄′
=

[
−L̄′′ C
R −L̄′

δ

]
≥ −L̆′

=

[
−L̄′′ O
R −L̄′

δ

]
,

where the matrix inequality is understood component-wise, R
and C are, respectively, (Nδ × N ′′

b ) and (N ′′

b × Nδ) non-negative
matrices, O is the (N ′′

b × Nδ) null matrix and −L̄′

δ is the (Nδ × Nδ)
matrix collecting the elements −l̄′ij for i, j ∈ Nδ . Then, the first
part of the claim follows directly from Lemma 4, by noting that
−L̆′ is Metzler and λM (−L̆′) = max{λM (−L̄′

δ), λM (−L̄′′)}. The
second part follows from the fact that, if G′

b is SC, L̄′ is irreducible
(since it can expressed as the sum of an irreducible matrix, the
Laplacian of G′

b, and a diagonal matrix, D′

ba) and L̄′
̸= L̆′ (since C

is non-null, otherwise L̄′ would be in block-triangular form).

Appendix D. Proof of Proposition 2

The claim follows from Lemma 4, since both −L̄′ and −L̄′′ are
Metzler matrices and −L̄′

≥ −L̄′′, being −D̄′

ba ≥ −D̄′′

ba. On the
other hand, if Gb is SC, then Lb is irreducible and, thus, −L̄′ and
−L̄′′ are both irreducible (each being the sum of an irreducible
matrix and a diagonal matrix), this implies that inequality (9)
holds strictly if D′

ba ̸= D′′

ba.
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