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In this paper, we investigate the internal second, third, and fourth boundary value problems of the three-dimensional
Cosserat elasticity by means of potential theory. The obtained integral representations differ from the classical ones.
These results complete the ones related to the first BVP, which have recently been obtained by the authors. Copyright ©
2014 John Wiley & Sons, Ltd.
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1. Introduction

The main boundary value problems of the Cosserat theory are four. They consist in finding the elastic oscillation state when on
the boundary is given the displacements and rotations in the first problem, the force and couple-stress in the second problem, the
displacements and couple-stresses in the third problem, and the rotations and force-stresses in the fourth problem.

These problems have been studied by means of potential theory (see, e.g., [1, 2] and [3–5] and the reference therein for the first and
second problems in plane, anti-plane deformations and in the bending of plates).

Recently, in [6], we have considered the first problem, and by using an indirect boundary integral method, we have obtained the
solution in the form of a simple layer potential instead of the usual double layer potential. The method we used was introduced for the
first time in [7] for the Dirichlet problem for Laplacian and, later, applied also to other PDEs ([8–13]). It hinges on the theory of reducible
operators (see, e.g., [14,15]) and on the theory of differential forms (see, e.g, [16,17]). We remark that our method uses neither the theory
of pseudodifferential operators nor the concept of hypersingular integral. For a sketch of the method in the simple but significant case
of Laplacian, we refer to [11, Section 2, p. 2].

In the present paper, we consider the other three main problems in the Cosserat theory, and extending the results of Cialdea et al. [6],
we obtain integral representations different from the ones obtained in [2].

We remark that these boundary value problems could be posed in the fractional Sobolev space W1C 1
p ,p
.�/ (see, e.g., [18, Sec. 14.3,

pp. 483-489]). By means of mapping properties of integral operators and uniqueness theorems (in suitable quotient spaces) for the
boundary value problems considered here and in [6], one could deduce that the potentials we find are the solutions in W1C 1

p ,p
.�/.

However, we have preferred to avoid the related technicalities and focus on the analysis of the integral equations arising from
our ansatz.

2. Preliminary

Throughout this paper, we consider � as a bounded domain of R3 such that its boundary @� is a Lyapunov surface † (i.e., † has a
uniformly Hölder continuous normal field of some exponent l 2 .0, 1�) and such that R3 �� is connected; �.y/ D .�1.y/, �2.y/, �3.y//
denotes the outward unit normal vector at the point y D .y1, y2, y3/ 2 †.

Given the set of constants �,�,˛, ", v,ˇ satisfying the conditions

˛,ˇ,�, v > 0; 3�C 2� > 0; 3"C 2v > 0,
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the homogeneous equation of statics of a Cosserat continuum has the form [2, p. 50]�
.�C ˛/�uC .�C � � ˛/grad divuC 2˛ rot ! D 0 in�
.v C ˇ/�! C ."C v � ˇ/grad div! C 2˛ rot u � 4˛! D 0 in�

(1)

where u D .u1, u2, u3/ is the displacement vector and! D .!1,!2,!3/ is the rotation vector. It is convenient to write the basic equations
(1) in a matrix form. To this end, we introduce the block matrix

M D

�
M1 M2

M3 M4

�
whose entries are .3 � 3/-matrices of differential operators given by

M1
ij D .�C ˛/ıij�C .�C � � ˛/

@2

@xi@xj
,

M2
ij D M3

ij D �2˛
3X

kD1

ıijk
@

@xk
,

M4
ij D ıijŒ.v C ˇ/� � 4˛�C ."C v � ˇ/

@2

@xi@xj

for i, j D 1, 2, 3, where ıkj denotes Kronecker’s symbol and ıjkp is the Levi-Civita’s symbol ‡. Thus, Equation (1) becomes

MU D 0, in � (2)

where U D .u,!/0 is a six-component column vector.
We denote by T the stress operator [2, p. 59]

T D

�
T.1/ T.2/

0 T.4/

�
T.i/ D

�
T.i/kj

�
k, j D 1, 2, 3, i D 1, 2, 4, (3)

where

T.1/u D �.divu/� C .2�/
@u

@�
C .� � ˛/.� ^ rot u/,

T.2/u D 2˛.� ^ u/,

T.4/u D ".div u/� C .2v/
@u

@�
C .v � ˇ/.� ^ rot u/.

The block matrix of the fundamental solution of the homogeneous system (2) is given by

‰.x/ D

�
‰.1/.x/ ‰.2/.x/
‰.3/.x/ ‰.4/.x/

�
x 2 R3 n f.0, 0, 0/g

where‰.i/.x/ D
�
‰
.i/
kj .x/

�
k, j D 1, 2, 3, i D 1, : : : , 4 are the following .3 � 3/-matrices [2, p. 93]:

‰
.1/
kj .x/ D

ıkj

2�

"
1

�jxj
�

˛

�.˛ C �/

e��jxj

jxj

#
C

1

2��

@2

@xk@xj

"
�
.�C �/

2.�C 2�/
jxj C

ˇ C v

4�

e��jxj � 1

jxj

#
;

‰
.2/
kj .x/ D ‰

.3/
kj .x/ D

1

4��

3X
pD1

ıjkp
@

@xp

1 � e��jxj

jxj
;

‰
.4/
kj .x/ D

ıkj

2�.ˇ C v/

e��jxj

jxj
C

1

8�

@2

@xk@xj

"
e��jxj � e��jxj

˛jxj
�

e��jxj � 1

�jxj

#
,

	 D
q

4˛�
.�C˛/.vCˇ/ and 
 D

q
4˛
"C2v .

‡ıjkp D 1 or ıjkp D �1 depending on whether j, k, p have an even or odd number of transpositions of the numbers 1, 2, 3 and ıjkp D 0 if at least two of three indices
j, k, p are equal.
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Lemma 1
The matrix‰.x/ defined by (2) can be written as

‰1
kj.x/ D

1

4�

�
�C 3�C ˛

.�C ˛/.�C 2�/

ıkj

jxj
C

�C � � ˛

.�C ˛/.�C 2�/

xkxj

jxj3

�
C Ckj.x/,

‰2
kj.x/ D ‰

3
kj.x/ D O.1/,

‰4
kj.x/ D

1

4�

�
"C 3v C ˇ

.v C ˇ/."C 2v/

ıkj

jxj
C

"C v � ˇ

.v C ˇ/."C 2v/

xkxj

jxj3

�
C Dkj.x/,

where

Ckj.x/ D
e��jxj � 1

jxj

�
�
ıkj

2��

˛

�C ˛
C

˛

2��.�C ˛/

xkxj

jxj2

�
C

1

2��

ˇ C v

4�

�
3xkxj

jxj2
� ıkj

�"
.1C 	 jxj/e��jxj � 1C 1

2	
2jxj2

jxj3

#
, (4)

Dkj.x/ D

�
ıkj

2�.ˇ C v/
�

1

8�

�
1

˛
C

1

�

�
xkxj

jxj2
	2

�"
e��jxj � 1

jxj

#
C

1

8�˛

xkxj

jxj2

2

"
e��jxj � 1

jxj

#
C

C

�
3

8�˛

xkxj

jxj2
�

1

8�˛
ıkj

�"
.1C 
jxj/e��jxj � 1C 1

2

2jxj2

jxj3

#
C

C

�
1

8�

�
1

˛
C

1

�

�
ıkj �

3

8�

�
1

˛
C

1

�

�
xkxj

jxj2

�"
.1C 	 jxj/e��jxj � 1C 1

2	
2jxj2

jxj3

#
.

(5)

The functions Ckj.x/ and Dkj.x/ are bounded.

2.1. Basic problems

The basic problems of statics consist in finding a six-component vector U solution of (2) and satisfying one of the following boundary
conditions, where f is an assigned vector function:

� the first internal basic problem or Problem .I/C :

U C.y/ D f .y/, 8y 2 †;

� the second internal basic problem or Problem .II/C :

ŒTU �C.y/ D f .y/, 8y 2 †;

where T is given by (3);
� the third internal basic problem or Problem .III/C :

ŒHU �C.y/ D f .y/, 8y 2 †,

where

H D

�
I 0
0 �T.4/

�
;

� the fourth internal basic problem or Problem .IV/C :

ŒRU �C.y/ D f .y/, 8y 2 †,

where

R D

�
T.1/ T.2/

0 I

�
.

We observe the following identity
ŒRxŒHy‰.x � y/�0�0 D HyŒRx‰.y � x/�0. (6)

Let us consider some potential-type integrals:

W Œˆ�.x/ D

Z
†

ŒTy‰.y � x/�0ˆ.y/d	y ; (7)

U Œˆ�.x/ D

Z
†

‰.y � x/ˆ.y/d	y ; (8)

RŒˆ�.x/ D

Z
†

ŒRy‰.y � x/�0ˆ.y/d	y ; (9)

H Œˆ�.x/ D

Z
†

ŒHy‰.y � x/�0ˆ.y/d	y . (10)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Integrals (7) and (8) are the double and simple layer potential, respectively. Usually (see, e.g., [2]), the solutions of the problems .I/C �
.IV/C are sought in the form of the potentials (7)–(10), respectively.

In this paper, p indicates a real number such that p 2 �1,C1Œ. We denote by ŒLp.†/�j (j 2 N n f0g) the space of all measurable
vector-valued functions u D .u1, : : : , uj/ such that juij

p (i D 1, : : : , j) is integrable over †.
	

W1,p.†/

j

(j 2 N n f0g) is the space of all
measurable vector-valued functions u D .u1, : : : , uj/ such that ui (i D 1, : : : , j) belongs to the Sobolev space W1,p.†/. The symbols
Dp, Rp, and Hp stand for the class of double layer potentials (7) with density in

	
W1,p.†/


6
, the class of potentials (9) with density in	

W1,p.†/

3
� ŒLp.†/�3 and the class of potentials (10) with density in ŒLp.†/�3 �

	
W1,p.†/


3
, respectively.

Let us consider the following singular integral systems:

�ˆ.z/C

Z
†

ŒTy‰.y � z/�0ˆ.y/d	y D f .z/; (11)

�ˆ.z/C

Z
†

HzŒRy‰.y � z/�0ˆ.y/d	y D f .z/; (12)

˙ˆ.z/C

Z
†

RzŒHy‰.y � z/�0ˆ.y/d	y D f .z/. (13)

The corresponding homogeneous integral equations (f D 0) will be denoted by the same symbols with the subscript 0.
We recall that a complete system of linearly independent solutions of (11)�0

˚
'.h/.x/

�
, h D 1, : : : , 6 is given by [2, Theorem 2.7,

p. 502]:
'.1/.x/ D .1, 0, 0, 0, 0, 0/; '.4/.x/ D .0,�x3, x2, 1, 0, 0/;
'.2/.x/ D .0, 1, 0, 0, 0, 0/; '.5/.x/ D .x3, 0,�x1, 0, 1, 0/;
'.3/.x/ D .0, 0, 1, 0, 0, 0/; '.6/.x/ D .�x2, x1, 0, 0, 0, 1/.

(14)

The system
˚
'.h/.x/

�
, h D 1, 2, 3 forms a complete system of linearly independent solutions of (12)�0 [2, Theorem 2.12, p. 507].

The following result is proved in [6, Theorem 3.1, p. 10] (note that in [6], we have considered the generalized stress operator S, which
includes T as a particular case).

Theorem 1
Let W be the double layer potential (7) with density U D .u,!/0 2

	
W1,p.†/


6
. We have for any x 2 �

@

@xs
Wj.x/ D Kjs.du/.x/C

@

@xs

Z
†

�
Ty‰

3

kj
.y � x/!k.y/d	y ,

@

@xs
WjC3.x/ D Fjs.d!/.x/C

@

@xs

Z
†

heDkj.y � x/!k.y/C .Ty‰/
2
kj.y � x/uk.y/

i
d	y ,

where du D .du1, du2, du3/, d! D .d!1, d!2, d!3/,

Kjs. /.x/ D 2‚s. j/.x/ � ı
123
pkq

Z
†

@

@xs

h
H1

jp.y � x/
i
^  k.y/ ^ dyq,  2

	
Lp

1.�/

3

,

Fjs.'/.x/ D 2‚s.'j/.x/ � ı
123
pkq

Z
†

@

@xs

h
H2

jp.y � x/
i
^ 'k.y/ ^ dyq, ' 2

	
Lp

1.�/

3

,

H1
jp.y � x/ D

1

4�

�
.�C �/.�C 3�C ˛/

.�C ˛/.�C 2�/
� 2

�
ıjp

jy � xj
C

C
1

4�

.�C �/.�C � � ˛/

.�C ˛/.�C 2�/

1

jy � xj

@

@yj
jy � xj

@

@yp
jy � xj C .�C �/Cjp.y � x/,

H2
jp.y � x/ D

1

4�

�
.C v/."C 3v C ˇ/

.v C ˇ/."C 2v/
� 2

�
ıjp

jy � xj
C

C
1

4�

.C v/."C v � ˇ/

.v C ˇ/."C 2v/

1

jy � xj

@

@yj
jy � xj

@

@yp
jy � xj C .C v/Djp.y � x/

and eDkj.y � x/ D
1

2�
�k.y/

@

@yj

e��jy�xj � 1

jy � xj
�

1

2�
�j.y/

@

@yk

e��jy�xj � 1

jy � xj
C

1

2�
ıkj
@

@�

e��jy�xj � 1

jy � xj
. (15)

Here, S, Cjp, and Djp are given by (3), (4), and (5), respectively.

Lemma 2
Let W 2 D2 be a double layer potential with densityˆ D .',#/ 2

	
W1,2.†/


6
. ThenZ

�

E.W , W / dx D

Z
†

ŒW TW �C d	 , (16)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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where

E.U , U 0/ D
3�C 2�

3

X
i,j

@ui

@xi

@u0j
@xj
C
�

2

X
i,j

"
@ui

@xj
C
@uj

@xi
�

2

3
ıij

X
k

@uk

@xk

#

�

"
@u0i
@xj
C
@u0j
@xi
�

2

3
ıij

X
k

@u0k
@xk

#
C
˛

2

X
ij

"
@uj

@xi
�
@ui

@xj
C 2

X
k

"kji!k

#

�

"
@u0j
@xi
�
@u0i
@xj
C 2

X
k

"kji!
0
k

#
C

3"C 2�

3

X
i,j

@!i

@xi

@!0j

@xj

C
�

2

X
i,j

"
@!i

@xj
C
@!j

@xi
�

2

3
ıij

X
k

@!k

@xk

#"
@!0i
@xj
C
@!0j

@xi
�

2

3
ıij

X
k

@!0k
@xk

#

C
ˇ

2

X
ij

�
@!j

@xi
�
@!i

@xj

�"
@!0j

@xi
�
@!0i
@xj

#
,

with U D .u,!/, U 0 D .u0,!0/ six-component vectors and u D .u1, u2, u3/, ! D .!1,!2,!3/ , u0 D
�

u01, u02, u03


, !0 D
�
!01,!02,!03


.

Proof
Let .ˆk/k�1 be a sequence of functions in

	
C1,h.†/


6
(0 < h < l, l being the Lyapunov exponent of†) such thatˆk ! ˆ in

	
W1,2.†/


6
.

Setting

WkŒˆk�.x/ D

Z
†

	
Ty‰.x � y/


0
ˆk.y/ d	y ,

we have that WkŒˆk� 2
	

C1,h.�/

6

, MWkŒˆk� D 0 and then

Z
�

E.Wk , Wk/ dx D

Z
†

ŒWkTWk�
C d	 . (17)

Fromˆk ! ˆ in
	

L2.†/

6

, it follows that Wk ! W in
	

L2.†/

6

because of [2, Theorem 3.36, p. 211].

One can check that @
@xs

�
Ty‰

2

kj
.x � y/ D O

�
1
jx�yj2

�
and @

@xs

�
Ty‰

3

kj
.x � y/ D O

�
1
jx�yj2

�
, while @

@xs
eD.x � y/ D O

�
1
jx�yj

�
. This implies

Ksj.d'k/! Ksj.d'/, Fsj.d#k/! Fsj.d#/,

@

@xs

Z
†

	
.Ty‰/

3

0
.y � x/#k.y/d	y !

@

@xs

Z
†

	
.Ty‰/

3

0
.y � x/#.y/d	y ,

@

@xs

Z
†

heD0.y � x/#k.y/C
	
.Ty‰/

2

0
.y � x/'k.y/

i
d	y !

@

@xs

Z
†

heD0.y � x/#.y/C
	
.Ty‰/

2

0
.y � x/'.y/

i
d	y

in L2.�/. By applying Theorem 1, we see thatrWk ! rW in
	

L2.�/

6

. Moreover, because Ksj.d'k/! Ksj.d'/
�
Fsj.d#k/! Fsj.d#/


also in L2.†/ [9, Lemma 3.2 and Lemma 3.3], it follows from [6, Lemma 4.3] that TWk ! TW in

	
L2.†/


6
. We obtain the claim by letting

k!C1 in (17).

3. Problem .II/C

In this section, we look for the solution of the second BVP (18) in the form of a double layer potential instead of the simple layer potential.

Theorem 2
Given f 2 ŒLp.†/�6, the second BVP 8<:

U 2 Dp

MU D 0 in�
ŒTU �C D f on†

(18)

admits a solution if, and only if, Z
†

fk.y/d	y D 0, k D 1, 2, 3;

Z
†

24f3Ck.y/C
3X

i,jD1

ıkijyifj.y/

35 d	y D 0, k D 1, 2, 3.
(19)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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The density of double layer potential (7) is given by a simple layer potential (8) U Œˆ�, ˆ 2 ŒLp.†/�6 being a solution of the singular
integral system

�ˆC J2ˆ D f , (20)

where

Jˆ.x/ D

Z
†

TxŒ‰.y � x/�ˆ.y/d	y , x 2 †. (21)

Moreover, the solution is determined up to an additive rigid displacement .u,!/, where u D a ^ x C b, ! D a,
�

a, b 2 R3

.

Proof
Let W be a double layer potential with density U 2

	
W1,p.†/


6
. It is proved in [6, p. 17] that

TW ŒU Œˆ��.x/ D �ˆ.x/C J2ˆ.x/, x 2 †,

where J is defined in (21). The boundary condition ŒTW �C D f can be written as in (20). There exists a solution of (18) in the form of a
double layer potential if, and only if, the singular system (20) is solvable. To this end, assume that conditions (19) hold and consider the
following integral system

� � C J� D f . (22)

Because the homogeneous adjoint of (22) (which is (11)C0 , see [2, Theorem 2.1, p. 496]) has only the trivial solution [2, Theorem 2.5,
p. 500], there exists a solution � 2 ŒLp.†/�6 of (22) for any f 2 ŒLp.†/�6. We now consider

ˆC Jˆ D � , (23)

where � is a solution of (22). In this case, there existsˆ 2 ŒLp.†/�6 solution of (23) if, and only if,Z
†

�.x/'.h/.x/d	x D 0, (24)

where
˚
'.h/.x/

�
is a complete system of linearly independent solutions of (11)�0 given by (14). We haveZ

†

f .x/'.h/.x/d	x D

Z
†

Œ�IC J��.x/'.h/.x/d	x D

D �

Z
†

�.x/'.h/.x/d	x C

Z
†

'.h/.x/d	x

Z
†

ŒTx‰.y � x/��.y/d	y D

D �

Z
†

�.x/'.h/.x/d	x C

Z
†

�.y/d	y

Z
†

ŒTx‰.y � x/�0'.h/.x/d	x D

D �

Z
†

�.x/'.h/.x/d	x �

Z
†

�.y/'.h/.y/d	y D

D �2

Z
†

�.x/'.h/.x/d	x .

Then compatibility conditions (24) hold by virtue of (19).
Conversely, if U is a solution of (18), from [6, Lemma 4.3] and Lemma 2, we haveZ

†

f .y/'.h/.y/d	y D

Z
†

TU .y/'.h/.y/d	y D

Z
�

E.U .y/,'.h/.y//dy D 0,

because E.U ,'.h// D 0 (as one can be verified by a straightforward calculation).
Finally, we pass to discuss the uniqueness. Let V1 and V2 be solutions of (18) with datum f . Then, U D V1 � V2 is the solution of the
corresponding homogeneous problem. We observe that

U TU D u.T.1/uC T.2/!/C !T.4/!, on†, (25)

where U D .u,!/. Because ŒTU �C D 0, it follows from (16) that E.U , U / D 0. Then, u D a ^ x C b, ! D a, (a, b 2 R3).

4. Problem .III/C

Here, we solve the third BVP (29) by means of the potential H (10). In this case, we need an additional term to H (34). We start by a
lemma.

Lemma 3
We have that

ŒHH ŒRRŒˆ���C D �ˆC L2ˆ, ˆ 2
	

W1,p.†/

3
� ŒLp.†/�3

where

Lˆ.x/ D

Z
†

HxŒRy‰.y � x/�0ˆ.y/d	y , x 2 † (26)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014

6

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

symbol
Cross-Out

symbol
Replacement Text
Since

symbol
Inserted Text
Since



UN
CO

RR
EC

TE
D

PR
O

O
F

A. CIALDEA, E. DOLCE AND A. MALASPINA

H ŒRRŒˆ��.x/ D

Z
†

ŒHy‰.y � x/�0RRŒˆ�.y/d	y , x 2 � (27)

and RŒˆ� is given by (9).

Proof
Letˆ 2

	
W1,p.†/


3
� ŒLp.†/�3 . Because RŒˆ� 2

	
W1,p.†/


6
, we have RRŒˆ� 2 ŒLp.†/�3 �

	
W1,p.†/


3
. Then H ŒRRŒˆ�� 2

	
W1,p.†/


6
.

From [2, Theorem 1.2, p. 492], we have

H ŒRR�.x/ D 2R.x/C

Z
†

ŒRy‰.y � x/�0HR.y/d	y , x 2 �.

It is also known that [2, (1.24), p. 493]�
H

�Z
†

ŒRy‰.y � x/�0ˆ.y/d	y

��C
D �ˆ.x/C Hx

Z
†

ŒRy‰.y � x/�0ˆ.y/d	y , x 2 †. (28)

So we have

ŒHH ŒRR�.x/�C D

�
H

�
2R.x/C

Z
†

ŒRy‰.y � x/�0HR.y/d	y

��C
D

D

�
2HR.x/C Hx

Z
†

ŒRy‰.y � x/�0HR.y/d	y

�C
D

D 2HR.x/ � HR.x/C Hx

Z
†

ŒRy‰.y � x/�0HR.y/d	y D

D HR.x/C Hx

Z
†

ŒRy‰.y � x/�0HR.y/d	y .

Keeping in mind (9), (28), and (26)

ŒHH ŒRRŒˆ��.x/�C D Hx

�Z
†

ŒRy‰.y � x/�0ˆ.y/d	y

�
C

Hx

Z
†

ŒRy‰.y � x/�0Hy

�Z
†

ŒRz‰.z � y/�0ˆ.z/d	z

�
d	y D

D �ˆ.x/C Hx

Z
†

ŒRy‰.y � x/�0ˆ.y/d	y � Hx

Z
†

ŒRy‰.y � x/�0ˆ.y/d	yC

Hx

Z
†

ŒRy‰.y � x/�0Hy

Z
†

ŒRz‰.z � y/�0ˆ.z/d	zd	y D

D �ˆ.x/C

Z
†

HxŒRy‰.y � x/�0
Z
†

HyŒRz‰.z � y/�0ˆ.z/d	zd	y D

D �ˆ.x/C L2ˆ.x/.

Proposition 1
Given f 2 ŒW1,p.†/�3 � ŒLp.†/�3, the third BVP 8<:

U 2 Hp

MU D 0 in�
ŒHU �C D f on†

(29)

admits a unique solution represented by the potential (27) if the following conditionsZ
†

f .x/ .h/.x/d	x D 0, h D 1, 2, 3 (30)

are satisfied, f .h/g being a complete system of linearly independent solutions of (13)C0 . Moreover, the density of (27) is given by the
potential RRŒˆ�, whereˆ 2

	
W1,p.†/


3
� ŒLp.†/�3 satisfies the following singular integral system

�ˆC L2ˆ D f (31)

L being given by (26).

Proof
Assume that (30) hold. The system (31) can be rewritten as .�IC L/.ˆC Lˆ/ D f . Let � 2

	
W1,p.†/


3
� ŒLp.†/�3 be a solution of

�� C L� D f .

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Such a solution does exist, because its homogeneous adjoint system (13)�0 has no eigensolutions [2, Theorem 2.10, p. 505]. The
following system

ˆC Lˆ D �

admits solution if and only if Z
†

�.x/ .h/.x/d	x D 0, h D 1, 2, 3, (32)

where
˚
 .h/

�
forms a complete system of linearly independent solutions of (13)C0 . Keeping in mind (6) and that  .h/ satisfies (13)C0 ,

we have Z
†

f .x/ .h/.x/d	x D

Z
†

Œ�IC L��.x/ .h/.x/d	x D

D �

Z
†

�.x/ .h/.x/d	x C

Z
†

 .h/.x/d	x

Z
†

HxŒRy‰.y � x/�0�.y/d	y D

D �

Z
†

�.x/ .h/.x/d	x C

Z
†

�.y/d	y

Z
†

RyŒHx‰.y � x/�0 .h/.x/d	x D

D �

Z
†

�.x/ .h/.x/d	x �

Z
†

�.y/ .h/.y/d	y D

D �2

Z
†

�.x/ .h/.x/d	x .

Then, (32) is satisfied by virtue of (30).
Let now V1 and V2 be the solutions of (29) with datum f . Then, U D V1�V2 is the solution of the corresponding homogeneous problem.
Because ŒHU �C D 0, from (25), we have that ŒU TU �C D 0 on †. Then, U is a double layer potential whose first three components
are zero. It follows from (16) that E.U , U / D 0. Then, u D a ^ x C b, ! D a, (a, b 2 R3). Because u D 0, we have a D b D 0.

By the symbol Cp, we denote the class of all linear combinations of potentials (10) and (9).

Theorem 3
Given f 2 ŒW1,p.†/�3 � ŒLp.†/�3, the following BVP 8<:

U 2 Cp

MU D 0 in�
ŒHU �C D f on†

(33)

admits a unique solution represented by

U DH CR

�
�

f

2

�
, (34)

where H is the potential (27) and R
	
� f

2



is the potential (9).

Proof
If U is a solution of (33) in the form (34), the boundary condition ŒHU �C D f is equivalent to

HH D f � HR

�
�

f

2

�
.

From the Proposition (1), the third BVP (29) admits a solution ifZ
†

�
f � HR

�
�

f

2

��
 .h/d	 D 0, h D 1, 2, 3,

where
˚
 .h/

�
is a complete system of linearly independent solutions of (13)C0 . In fact,Z

†

HR

�
�

f

2

�
.x/ .h/.x/d	x D

D �

Z
†

�
�

f

2

�
.x/ .h/.x/d	x C

Z
†

 .h/.x/d	x

Z
†

HxŒRy‰.y � x/�0
�
�

f

2
.y/

�
d	y D

D

Z
†

f

2
.x/ .h/.x/d	x �

Z
†

f

2
.y/d	y

Z
†

RyŒHx‰.y � x/�0 .h/.x/d	x D

D

Z
†

f

2
.x/ .h/.x/d	x C

Z
†

f

2
.y/ .h/.y/d	y D

Z
†

f .x/ .h/.x/d	x .

Finally, the uniqueness of the solution follows from the uniqueness of the problem (29).

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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5. Problem .IV/C

In the last section, we represent the solution of the fourth BVP (40) as a potential (9).

Lemma 4
The following singular integral system

�ˆC K2ˆ D f (35)

where f 2 ŒLp.†/�3 �
	

W1,p.†/

3

and

Kˆ.x/ D

Z
†

RxŒHy‰.y � x/�0ˆ.y/d	y

admits a solutionˆ 2 ŒLp.†/�3 �
	

W1,p.†/

3

if, and only if, the following conditionsZ
†

fk.y/d	y D 0, k D 1, 2, 3 (36)

are satisfied.

Proof
Letˆ 2 ŒLp.†/�3 �

	
W1,p.†/


3
. Because H Œˆ� 2

	
W1,p.†/


6
, we have KŒˆ� 2 ŒLp.†/�3 �

	
W1,p.†/


3
.

The system (35) can be rewritten as .�IC K/.ˆC Kˆ/ D f . Consider

� � C K� D f . (37)

Its homogeneous adjoint system is (12)C0 , which has only trivial solutions [2, Theorem 2.10, p. 505]. Then there exists � 2 ŒLp.†/�3 �

ŒW1,p.†/�3 solution of (37) for any f . Consider now

ˆC Kˆ D � . (38)

It admits a solution ˆ 2 ŒLp.†/�3 � ŒW1,p.†/�3 if, and only if, � is orthogonal to every element of (12)�0 . A complete system of linearly
independent solutions of (12)�0

˚
'.h/

�
is given by (14), for h D 1, 2, 3. Then there exists a solution � of (38) if, and only if,Z

†

�.x/'.h/.x/d	x D 0, h D 1, 2, 3. (39)

Keeping in mind (6) and that
˚
'.h/

�
, h D 1, 2, 3, satisfies (12)�0 , we haveZ
†

f .x/'.h/.x/d	x D

Z
†

Œ�IC K��.x/'.h/.x/d	x D

D �

Z
†

�.x/'.h/.x/d	x C

Z
†

'.h/.x/d	x

Z
†

RxŒHy‰.y � x/�0�.y/d	y D

D �

Z
†

�.x/'.h/.x/d	x C

Z
†

�.y/d	y

Z
†

HyŒRx‰.y � x/�0'.h/.x/d	x D

D �

Z
†

�.x/'.h/.x/d	x �

Z
†

�.y/'.h/.y/d	y D

D �2

Z
†

�.x/'.h/.x/d	x .

Thus, (39) are equivalent to (36).

Theorem 4
Given f 2 ŒLp.†/�3 � ŒW1,p.†/�3, the fourth BVP 8<:

U 2 Rp

MU D 0 in�
ŒRU �C D f on†

(40)

admits a solution if, and only if, (36) is satisfied. The solution is determined up to an additive rigid translation, that is, an expression of
the type .u,!/, where u D b and ! D 0, b being an arbitrary constant vector.
Moreover, the solution of (40) is represented by a potential (9) RŒƒ�where its density is given by

ƒ.x/ D Hx

Z
†

ŒHy‰.y � x/�0ˆ.y/d	y , x 2 †, (41)

ˆ 2 ŒLp.†/�3 � ŒW1,p.†/�3 being a solution of the singular integral system (35).

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Proof
Letˆ 2 ŒLp.†/�3�

	
W1,p.†/


3
. Because H Œˆ� 2

	
W1,p.†/


6
, we have HH Œˆ� 2

	
W1,p.†/


3
�ŒLp.†/�3 . Then RŒHH Œˆ�� 2

	
W1,p.†/


6
.

We consider a potential U 2 Rp with density (41). The boundary condition ŒRRŒƒ��C D f turns into the system (35). In fact, by
[2, Theorem 1.2, p. 492], we have

RŒHH �.x/ D �2H .x/C

Z
†

ŒHy‰.y � x/�0RH .y/d	y , x 2 �.

It is also known that [2, (1.23), p. 493]�
R

�Z
†

ŒHy‰.y � x/�0ˆ.y/d	y

��C
D ˆ.x/C Rx

Z
†

ŒHy‰.y � x/�0ˆ.y/d	y , x 2 †.

So we have

ŒRRŒHH �.x/�C D

�
R

�
�2H .x/C

Z
†

ŒHy‰.y � x/�0RH .y/d	y

��C
D

D

�
�2RH .x/C Rx

Z
†

ŒHy‰.y � x/�0RH .y/d	y

�C
D

D �2RH .x/C RH .x/C Rx

Z
†

ŒHy‰.y � x/�0RH .y/d	y D

D �RH .x/C Rx

Z
†

ŒHy‰.y � x/�0RH .y/d	y .

Keeping in mind (10),

ŒRRŒHH Œˆ��.x/�C D �Rx

�Z
†

ŒHy‰.y � x/�0ˆ.y/d	y

�
C

Rx

Z
†

ŒHy‰.y � x/�0Ry

�Z
†

ŒHz‰.z � y/�0ˆ.z/d	z

�
d	y D

D �ˆ.x/ � Rx

Z
†

ŒHy‰.y � x/�0ˆ.y/d	y C Rx

Z
†

ŒHy‰.y � x/�0ˆ.y/d	yC

Rx

Z
†

ŒHy‰.y � x/�0Ry

Z
†

ŒHz‰.z � y/�0ˆ.z/d	zd	y D

D �ˆ.x/C

Z
†

RxŒHy‰.y � x/�0
Z
†

RyŒHz‰.z � y/�0ˆ.z/d	zd	y D

D �ˆ.x/C K2ˆ.x/

and thus, because of ŒRR�C D f , we obtain (35). Then there exists a solution of the fourth BVP if, and only if, (35) is solvable. If (36) is
satisfied from Lemma 4, we have the assert.
Conversely, if U D .u,!/ is a solution of (40), from [6, Lemma 4.3] and Lemma 2, we haveZ

†

f .y/'.h/.y/d	y D

Z
†

RU .y/'.h/.y/d	y D

Z
�

E.U .y/,'.h/.y//dy D 0,

(h D 1, 2, 3) because E.U ,'.h// D 0.
Finally, we discuss the uniqueness. Let V1 and V2 be solutions of (40) with datum f . Then, U D V1�V2 is the solution of the correspond-
ing homogeneous problem. Because ŒRU �C D 0, from (25), we have that ŒU TU �C D 0 on †. Then, U is a double layer potential
whose last three components are zero. It follows from (16) that E.U , U / D 0. Then, u D a ^ x C b, ! D a, (a, b 2 R3). Because ! D 0,
we have a D 0.
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Article: MMA_3086

Dear Author,

During the copyediting of your paper, the following queries arose. Please respond to these by annotating
your proofs with the necessary changes/additions.

� If you intend to annotate your proof electronically, please refer to the E-annotation guidelines.
� If you intend to annotate your proof by means of hard-copy mark-up, please refer to the proof mark-

up symbols guidelines. If manually writing corrections on your proof and returning it by fax, do
not write too close to the edge of the paper. Please remember that illegible mark-ups may delay
publication.

Whether you opt for hard-copy or electronic annotation of your proofs, we recommend that you provide
additional clarification of answers to queries by entering your answers on the query sheet, in addition to
the text mark-up.

Query No. Query Remark

Q1 AUTHOR: Please check presentation of reference 7, 8.

Q2 AUTHOR: If reference 11 has now been published online, please add
relevant year/DOI information. If this reference has now been published in
print, please add relevant volume/issue/page/year information.

Q3 AUTHOR: Please provide full journal title for reference 14.

symbol
Callout
We have checked these references. The corrections are annotated in the paper. 



 

USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION  

 
Required software to e-Annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 7.0 or 
above). (Note that this document uses screenshots from Adobe Reader X) 
The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/uk/reader/ 
 

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:  

 

 
 
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Replace (Ins) Tool – for replacing text. 

 

Strikes a line through text and opens up a text 
box where replacement text can be entered. 

How to use it 

 Highlight a word or sentence. 

 Click on the Replace (Ins) icon in the Annotations 
section. 

 Type the replacement text into the blue box that 
appears. 

This will open up a panel down the right side of the document. The majority of 
tools you will use for annotating your proof will be in the Annotations section, 
pictured opposite. We’ve picked out some of these tools below: 

2. Strikethrough (Del) Tool – for deleting text. 

 

Strikes a red line through text that is to be 
deleted. 

How to use it 

 Highlight a word or sentence. 

 Click on the Strikethrough (Del) icon in the 
Annotations section. 

 

 

3. Add note to text Tool – for highlighting a section 
to be changed to bold or italic. 

 

Highlights text in yellow and opens up a text 
box where comments can be entered. 

How to use it 

 Highlight the relevant section of text. 

 Click on the Add note to text icon in the 
Annotations section. 

 Type instruction on what should be changed 
regarding the text into the yellow box that 
appears. 

4. Add sticky note Tool – for making notes at 
specific points in the text. 

 

Marks a point in the proof where a comment 
needs to be highlighted. 

How to use it 

 Click on the Add sticky note icon in the 
Annotations section. 

 Click at the point in the proof where the comment 
should be inserted. 

 Type the comment into the yellow box that 
appears. 
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For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: 

5. Attach File Tool – for inserting large amounts of 
text or replacement figures. 

 

Inserts an icon linking to the attached file in the 
appropriate pace in the text. 

How to use it 

 Click on the Attach File icon in the Annotations 
section. 

 Click on the proof to where you’d like the attached 
file to be linked. 

 Select the file to be attached from your computer 
or network. 

 Select the colour and type of icon that will appear 
in the proof. Click OK. 

6. Add stamp Tool – for approving a proof if no 
corrections are required. 

 

Inserts a selected stamp onto an appropriate 
place in the proof. 

How to use it 

 Click on the Add stamp icon in the Annotations 
section. 

 Select the stamp you want to use. (The Approved 
stamp is usually available directly in the menu that 
appears). 

 Click on the proof where you’d like the stamp to 
appear. (Where a proof is to be approved as it is, 
this would normally be on the first page). 

7. Drawing Markups Tools – for drawing shapes, lines and freeform 
annotations on proofs and commenting on these marks. 

Allows shapes, lines and freeform annotations to be drawn on proofs and for 
comment to be made on these marks.. 

How to use it 

 Click on one of the shapes in the Drawing 
Markups section. 

 Click on the proof at the relevant point and 
draw the selected shape with the cursor. 

 To add a comment to the drawn shape, 
move the cursor over the shape until an 
arrowhead appears. 

 Double click on the shape and type any 
text in the red box that appears. 




