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In this paper, we investigate the internal second, third, and fourth boundary value problems of the three-dimensional
Cosserat elasticity by means of potential theory. The obtained integral representations differ from the classical ones.
These results complete the ones related to the first BVP, which have recently been obtained by the authors. Copyright ©
2014 John Wiley & Sons, Ltd.
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1. Introduction

The main boundary value problems of the Cosserat theory are four. They consist in finding the elastic oscillation state when on
the boundary is given the displacements and rotations in the first problem, the force and couple-stress in the second problem, the
displacements and couple-stresses in the third problem, and the rotations and force-stresses in the fourth problem.

These problems have been studied by means of potential theory (see, e.g., [1, 2] and [3-5] and the reference therein for the first and
second problems in plane, anti-plane deformations and in the bending of plates).

Recently, in [6], we have considered the first problem, and by using an indirect boundary integral method, we have obtained the
solution in the form of a simple layer potential instead of the usual double layer potential. The method we used was introduced for the
first time in [7] for the Dirichlet problem for Laplacian and, later, applied also to other PDEs ([8-13]). It hinges on the theory of reducible
operators (see, e.g., [14,15]) and on the theory of differential forms (see, e.g, [16,17]). We remark that our method uses neither the theory
of pseudodifferential operators nor the concept of hypersingular integral. For a sketch of the method in the simple but significant case
of Laplacian, we refer to [11, Section 2, p. 2].

In the present paper, we consider the other three main problems in the Cosserat theory, and extending the results of Cialdea et al. [6],
we obtain integral representations different from the ones obtained in [2].

We remark that these boundary value problems could be posed in the fractional Sobolev space WH'i”"(Q) (see, e.g., [18, Sec. 14.3,
pp. 483-489]). By means of mapping properties of integral operators and uniqueness theorems (in suitable quotient spaces) for the
boundary value problems considered here and in [6], one could deduce that the potentials we find are the solutions in W1+tl>'p(Q).
However, we have preferred to avoid the related technicalities and focus on the analysis of the integral equations arising from
our ansatz.

2. Preliminary

Throughout this paper, we consider Q as a bounded domain of R? such that its boundary 9Q is a Lyapunov surface T (i.e,, = has a
uniformly Hélder continuous normal field of some exponent / € (0, 1]) and such that R — Q is connected; v(y) = (v1(y), v2(y), v3(¥))
denotes the outward unit normal vector at the pointy = (y,y2,y3) € X.

Given the set of constants A, i, «, &, v, B satisfying the conditions

o, B, uv>0 314+2u>0; 3¢+ 2v>0,
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the homogeneous equation of statics of a Cosserat continuum has the form [2, p. 50]

(n+a)Au+ (A + p —a)grad divu + 2arotw =0 inQ
(v+ B)Aw + (¢ + v — B)grad divw + 2 rot u — 4aw = 0 in Q

—_
—_
f—)

where u = (uq, Uy, u3) is the displacement vector and w = (w1, w,, w3) is the rotation vector. It is convenient to write the basic equations
(1) in a matrix form. To this end, we introduce the block matrix

M M?
= (bt e )
whose entries are (3 x 3)-matrices of differential operators given by

2

=(p+a)fA+A+p—a)

3
9
M; = M = —2a § Sijk P
k=1

M = 8l(v + B)A —4a] + (e + v — B)

aX;anl

0xi 8x,

fori,j = 1,2,3, where §; denotes Kronecker’s symbol and §, is the Levi-Civita's symbol *. Thus, Equation (1) becomes

M7 =0, in Q )
where = (u,w)’ is a six-component column vector.
We denote by T the stress operator [2, p. 59]
T 7@ . o) ) .
T= ( o T(4)) TO = (Tk;) kj=123 i=124, 3)

where
9
Ty = A(divayy + (2M)a—“ + (=) (v ATotu),
v
T®u = 2a(v A u),

a
T®y = e(divu)y + (2v)ai’ +(v—B)(v Aot ).
v
The block matrix of the fundamental solution of the homogeneous system (2) is given by

1) 2)
v = (o gy ) *<F 1000

where ¥ (x) = (\I’,ﬁj’) (x)) kj=1,2,3,i=1,...,4arethefollowing (3 x 3)-matrices [2, p. 93]:

1 e~ 1 92 A el _1q
xp“)()_ R L) U S et ;
R 2 Oxedx; | 2(A + 2p) 4u Ix|
1—e oMK

;

U0 =900 = 72 /kpax T

S e—JIXI 1 92 e~ Pkl _g—olxl  o—olxl _1
(4) ki

V. (x) = — ,
e i i

2B +v) |x| T O, 0; LL|x

_ 4ol _ 4o
o=\ aFmerm NP =\ s

*8jkp =1lor Sjkp = —1 depending on whether j, k, p have an even or odd number of transpositions of the numbers 1,2,3 and § ikp = 0 if at least two of three indices
Jj. k,p areequal.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Lemma1
The matrix W (x) defined by (2) can be written as

1 A+3u+a b A+p—a ka}
Ul(x) = — = I+ G,
4= g7 [(u Tttt et ) T
W) = W) = 0(1),
1 e+3v+ B by e+v—p kavi|
WiH(x) = — = I + Dy(x),
¥ = 2 [(v+,8)(s+2v) PRIl AR
where
oK 8y j 1 3% 1+ olxpPe=M —1 + 1o?|x?
Ckf()()=67[_i o ; kaxz]} 7ﬂ+v( Xk;(/ _Skj) e * 2 ;@
Ix| 2rp p+o 2rp(p +a) x| 2rp A\ x| |x|?

8kj 1 1 1 XkXj 5 e*(ﬂxl —1 1 XkXj 5 e—ﬂlx[ -1
D) =| —— — — | — + -] —= - )
4 [2n(ﬁ V) 8 (a u) 2’ | T era R | |

3 x4 1 14 plxe™M —1 4 Zp|x]?
+( X ak,-)[( plx) Ll I 5

8ru |x|?2 8ra Ix|3

1T (1 1 3 /1 1\ xx]|O+oxPe -1+ 1522
==+ )0—— |-+ — % ( i 20" .
8m \a u 8t \a n/ x| Ix|3

The functions C;(x) and Dyj(x) are bounded.

2.1. Basic problems

The basic problems of statics consist in finding a six-component vector % solution of (2) and satisfying one of the following boundary
conditions, where f is an assigned vector function:

e the first internal basic problem or Problem (/)T :
2T =1fy),  Vyes;
e the second internal basic problem or Problem (I :
[T2)" () =f(y), Vyes;

where T is given by (3);
e the third internal basic problem or Problem (/i) :

HZ1 () =f(y),  Vyes,
1= (o5 )
RZ1*(y) = f(y), Vye=E,
U

[RelHy ¥ (x =1 = Hy[R ¥ (y —x)]'. (6)
Let us consider some potential-type integrals:

where

o the fourth internal basic problem or Problem (V) :

where

We observe the following identity

19100 = [ 1,90/~ 0] 00)doy )
7101w = [ - 000)da; @
#9100 = [ 18,¥ -] 00)doy ©
210100 = [ ¥~ 20] ), (10

. ______________________________________________________________________________________________________|
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Integrals (7) and (8) are the double and simple layer potential, respectively. Usually (see, e.g., [2]), the solutions of the problems (/)* —
(IV)T are sought in the form of the potentials (7)-(10), respectively.

In this paper, p indicates a real number such that p €]1, +oo[. We denote by [LP(Z)J (j € N \ {0}) the space of all measurable
vector-valued functions u = (uy,...,u;) such that |u;|P (i = 1,...,j) is integrable over Z. [W”"(E)]’ (j € N\ {0}) is the space of all
measurable vector-valued functions u = (uy,...,u;) such that u; (i = 1,...,J) belongs to the Sobolev space W'?(X). The symbols
PP, RP, and $HH stand for the class of double layer potentials (7) with density in [W"p(E)Jé, the class of potentials (9) with density in
[W”’(E)]3 x [LP(2)]? and the class of potentials (10) with density in [LP(Z)]* x [W'P(Z)], respectively.

Let us consider the following singular integral systems:

T o) + /2 T,9( — 2] ®()do, = f(2); an
T o) + /E HeIR,W(y — 2)] (y)do, = f(2); (12)
+ O(2) + /E R,[H,W(y — 2)] (y)do, = f(2). (13)

The corresponding homogeneous integral equations (f = 0) will be denoted by the same symbols with the subscript 0.
We recall that a complete system of linearly independent solutions of (11); {(p(”) (x)} ,h = 1,...,6 s given by [2, Theorem 2.7,
p. 502]:
¢V(x) = (1,0,0,0,0,0); 9 (x) = (0,—x3,x2,1,0,0);
9@ (x) =(0,1,0,0,0,0); ¢®(x) = (x3,0,—x,0,1,0); (14)
9@ (x) = (0,0,1,0,0,0); ¢© (x) = (—x2,%,0,0,0,1).

The system {go(h) (x)} +h =1,2,3 forms a complete system of linearly independent solutions of (12);" [2, Theorem 2.12, p. 507].
The following result is proved in [6, Theorem 3.1, p. 10] (note that in [6], we have considered the generalized stress operator S, which
includes T as a particular case).

Theorem 1
Let # be the double layer potential (7) with density % = (u,w)’ € [W”"(Z)]6 .We have for any x € Q

il d
G100 = A0+ 5= [ (LW} 0= Den)dos,

0 d ~
I a0 = Fudor () + 5 [ [Byly = 0n) + @030 - )] do,

where du = (duy, duy, dus), do = (dw,, dw,, dws),

ad
A0 = 20,0000 88 [ L[ -0] amornds, v e [BOT,

d
Filg) 00 = 20,(e))x) = 813 /2 —[my-0]ramad e eFOT

1 _ 1V [+ HA+3u+a) 8
H"P(y_x)_4n[ (u+ o) (A + 2u) 2} y—x
Tu+dHHA+pu—a) 1 d ad o
E (M+OC)(A—|—2/¢L) |y—X|37yj|y_X|a|y_X|+(M+$)ij(y X):
2 1 [+wvE+3v+p) 8
H"’(y_x)_4n[ (v + B)(e + 2v) 2] |y—x|+

1 GHvErv=p) 1 0
4r (v+B)(e+2v) |y—x|dy

0
ly = x|5—ly = x| + (x + v)Djp(y — x)
ayp
and

d e Pl 1 d e o1 1 §eobx_g

. ) T (15)
ly—x| 27 ’(y)ayk vy — x| 27 90 |y —x|

Byly =) = 5

Here, S, Cjp, and Dj, are given by (3), (4), and (5), respectively.
Lemma 2
Let # € 9? be adouble layer potential with density ® = (¢, ?) € [W1'2(2)]6. Then
/ EQW, #)dx = [ [#T#]|" do, (16)
Q =

. ______________________________________________________________________________________________________|
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where

f<%'%'>=“:2”zzzzzz, zz[z:; u-hri]
[aa 228@@4”?”232‘1‘2
sl R S-Sl

B Ba)j ow; 3a)j aa)[
+2;[ax ol |

With Z = (u,w), %' = (U, ') six-component vectors and u = (uy, U, U3), 0 = (w1, w2, w3), U’ = (U}, Uy U}), @' = (0], ®), w}).

Proof
Let (®x)x=1 be a sequence of functions in [C”’(E)]6 (0 < h < I,/ being the Lyapunov exponent of %) such that &, — @ in [W1'2(2)]6.
Setting

Y@ = | [T,¥x—y)] ®(y)doy,
>

we have that #[®,] € [C"" (§)]6, M#;[®,] = 0and then

/ EWi W) dx = / T do. (17)
Q >

From ®; — ®in [LZ(E)]G, it follows that 7, — # in [LZ(Z)]6 because of [2, Theorem 3.36, p. 211].
é 2 L~
One can check that a%s (Ty\ll)kj x—y)=0 (Ix—1y|2) and 2> ( )k/ x—y) = (Ix—1ylz)’ while aiXsD(x—y) = (Ix—yl) This implies

Hsj(do) — H(dp),  F(dd) — Fg(dD),

d ’
o L[] 0 =x00)ds,

S

0
T / [(T v) ] y —x)O(y)do, —

9 / [5'6 =00 + [(1,97] 0= 0 )| doy, —
>

0X;

ad ’
i | [P0 =0000) + [T97] = x)00)] doy
in L2(2). By applying Theorem 1, we see that V#; — V# in [LZ(Q)]6. Moreover, pecause s (dpy) — H5i(de) (Fj(ddi) — Fg(dD))

alsoin L2(X) [9, Lemma 3.2 and Lemma 3.3], it follows from [6, Lemma 4.3] that T# — T# in [LZ(E)]G. We obtain the claim by letting
k — +o00in(17). O

3. Problem (IN*

In this section, we look for the solution of the second BVP (18) in the form of a double layer potential instead of the simple layer potential.

Theorem 2
Given f € [LP(X)]5, the second BVP

U e DP

M%Z =0 inQ (18)
[T%]" =fons

admits a solution if, and only if,

/ fy)do, =0,  k=1,23;
=
(19

3
/Z ik ) + ) Syifi(y) [ doy =0,  k=1,23.

ij=1

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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The density of double layer potential (7) is given by a simple layer potential (8) % [®], ® € [LP(X)]® being a solution of the singular
integral system
— O+ L=, (20)

where
JO(x) = / T[Y(y —x)]P(y)do,, xeX. 21)
=
Moreover, the solution is determined up to an additive rigid displacement (u, w), whereu =aAx+ b, w = a, (a, be [R3).

Proof
Let # be a double layer potential with density % € [W”’(E)]é. Itis proved in [6, p. 17] that

TH % [Pl|(x) = —D(X) + PP(x), xe€3,

where J is defined in (21). The boundary condition [T“//]"’ = f can be written as in (20). There exists a solution of (18) in the form of a
double layer potential if, and only if, the singular system (20) is solvable. To this end, assume that conditions (19) hold and consider the
following integral system
—y+Jy=*~ (22)
_Because the homogeneous adjoint of (22) (which is (1 1)[)F, see [2, Theorem 2.1, p. 496]) has only the trivial solution [2, Theorem 2.5,
p. 500], there exists a solution y € [LP(X)]® of (22) for any f € [LP(X)]®. We now consider

d+JD=1y, (23)

where y is a solution of (22). In this case, there exists ® € [LP(X)]® solution of (23) if, and only if,
/ y (09" (x)doy =0, (24)
=
where {(p(") (x)} is a complete system of linearly independent solutions of (11);" given by (14). We have
[ foou® o0do, = [ 14 1y 0™ 0o =
= =
=~ [ 009 0do, + [ 9 00dos [ vy~ 0lyde, =
= = =
=~ [ ye0p®0doy+ [ yirdo, [ 1m0 076" c0dor =
= = =
=~ [ w6 00do = [ v6® 1der, =
= b3
— -2 [ yt0e P wdo
=

Then compatibility conditions (24) hold by virtue of (19).
Conversely, if  is a solution of (18), from [6, Lemma 4.3] and Lemma 2, we have

[ F1)o ™ (y)doy = / T% 9)p™ (y)do, = f E (), 6™ (y)dy = 0,
> > Q

because E(%,¢™) = 0 (as one can be verified by a straightforward calculation).
Finally, we pass to discuss the uniqueness. Let ¥; and ¥ be solutions of (18) with datum f. Then, % = ¥; — #; is the solution of the
corresponding homogeneous problem. We observe that

UTH =uTOUu+TP0) + 0T®w,  onz, (25)

where % = (U, w). Becausa_[T%]"‘ = 0, it follows from (16) that E(%, %) = 0.Then,u =aAx+ b,w = a,(a, b € R3). O

4. Problem (IIn*

Here, we solve the third BVP (29) by means of the potential .7 (10). In this case, we need an additional term to .7 (34). We start by a
lemma.

Lemma 3
We have that
HARZR T = —® + 120, @ e [WP(E)] x [LP(D)P

where

Lb(x) = / HyR,W(y — ) ®(y)do,, x €T (26)

b3}

|
Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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ARA[D]) () = /E [H¥(y — ) RZ[®](y)doy, x € Q 27)
and Z[®] is given by (9).

Proof
Let ® € [W'P(S)]’ x [LP(2)]* .Because Z[®] € [W'P(£)]°, we have RZ[®] € [LP(S)]° x [W'?(£)]’ . Then s [RZ[®]] € [W'P(£)]°.
From [2, Theorem 1.2, p. 492], we have
L%mgmn=z@uy+/fmww—xwﬂyuw@, XeqQ.
>

It is also known that [2, (1.24), p. 493]
+
[H (/ [RyW(y —x)]/cb(y)doy)} =—-dx) + HX/ [RyW(y — x)] ®(y)doy, X € X. (28)
= =
So we have
+
[H%[R%’](x)]"‘ = [H (Zﬁ(x) +/ [Ry\I/(y—x)]’H%’(y)day)] =
=
+
= [ZH%(X) + HX/ [RyW(y—x)]’H%(y)day} =
=
= 2HZ(x) — HZ(x) + HX/ Ry (y — %) HZ(y)doy, =
=
= HZ(x) + HX/ [RyW (y — X)) HZ (y)do,.
=
Keeping in mind (9), (28), and (26)
W%%%@mm+=mLmew—m@wmd+
Hy / [R,W(y — x)]'Hy [ / IR (z —y)]’cb(z)doz} do, =
= =
=—®(x) + HX/ [RyW(y — X)) ®(y)do, — HX/ [RyW(y — X)) ®(y)doy, +
= =
HX/ [Ry\IJ(y—x)]/Hy/ [R,¥(z — y)]' ®(2)do,do, =
= =

= —O(x) + / He Ry (y — x)]’ / Hy[R, ¥ (z — y)] ®(z)do,do, =
b)) )
= —®(x) + L2D(x).

O
Proposition 1
Given f € [W'P(2)]? x [LP(Z)]3, the third BVP
U € HP
M%Z =0 inQ (29)
H#Z)T =fonx
admits a unique solution represented by the potential (27) if the following conditions
/ fo)y® (x)doy =0, h=1,2,3 (30)
=

are satisfied, {/} being a complete system of linearly independent solutions of (1 3)5". Moreover, the density of (27) is given by the
potential RZ[®], where ® € [W"”(E)]3 x [LP(2)]? satisfies the following singular integral system

— O+ 12D =f GB1

L being given by (26).

Proof
Assume that (30) hold. The system (31) can be rewritten as (—/ + L)(® + L®) =f.Lety € [W”"(E)]3 x [LP(2)]? be a solution of

—y+Lly=f
. ______________________________________________________________________________________________________|
Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Such a solution does exist, because its homogeneous adjoint system (13);” has no eigensolutions [2, Theorem 2.10, p. 505]. The
following system

P+LDP=y

admits solution if and only if

/ Yy ®(x)do, =0, h=1,23, 32)
>

where {1//(")} forms a complete system of linearly independent solutions of (13);’. Keeping in mind (6) and that 1//”') satisfies (13);’,

we have
/ F00y ™ (), = / [+ Ly 0y ® (odo, =
> >
_ f Y 60y ® (x)dos, + f ¥ ® (x)do, [ HylR, W (y — x)]'y(y)day =
> > >
_ / Y (0¥ ™ ()doy + / Y (y)do, / Ry [HeU(y — )]y ()doy =
> > >
_ f y 60y ® (x)dos, — / Y)Y ™ (y)do, =
> >
=-2 ™ (x)doy.
[E y (0¥ ™ (0)do
Then, (32) is satisfied by virtue of (30).

Let now 7] and 75 be the solutions of (29) with datum f. Then, % = #;—73 is the solution of the corresponding homogeneous problem.
_Because [HZ]T = 0, from (25), we have that [# T%]t = 0on X. Then, % is a double layer potential whose first three components

are zero. It follows from (16) that E(%, %) = 0.Then,u = a Ax + b,w = a,(a,b € R3).Because u = 0, we havea = b = 0. O
By the symbol €P, we denote the class of all linear combinations of potentials (10) and (9).

Theorem 3
Given f € [W'P(2)]? x [LP(Z)]3, the following BVP

U € ¢P

MZ =0 inQ (33)

H#ZT=fonx
admits a unique solution represented by

f
v=ir+a|-7] (4

where 7 is the potential (27) and % [—{ ] is the potential (9).

Proof
If % is a solution of (33) in the form (34), the boundary condition [H#% ] = f is equivalent to

HA =f—HZ |:—£i|

From the Proposition (1), the third BVP (29) admits a solution if

[(f—Hﬁ[—i])l//(h)d(r:O, h=1,23,
s 2

where {w(”)} is a complete system of linearly independent solutions of (1 3)(')". In fact,

[ [ re-
= —/2 (—g) 0y P (x)doy + /2 tlf(h’(X)dox/ZHx[Ry\y(y—x)]’ (_g(y)) do, =
= [ 500y o [ Srdoy [ Avty 019 o, =
= /E g(x)w““ (x)doy + /E g(y)w(“) (y)do, = /E F60u ™ (x)do.

Finally, the uniqueness of the solution follows from the uniqueness of the problem (29). O

. ______________________________________________________________________________________________________|
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5. Problem (IV)*

In the last section, we represent the solution of the fourth BVP (40) as a potential (9).

Lemma 4
The following singular integral system

— O+ KD=f (35)
where f € [[P(2)]? x [WW(E)]3 and

KD(x) = /E Ry[H, W (y — x)] B(y)da,

admits a solution @ € [LP(Z)]* x [W”"(E)]3 if, and only if, the following conditions

/ fuy)do, = 0, k=1,2,3 (36)
>

are satisfied.
Proof
Let @ € [LP(2)] x [W'P(2)]’ Because #[®] € [W'P(5)]°, we have K[®] € [LP(2)] x [W'2(2)] .
The system (35) can be rewritten as (—/ + K)(® + K®) = f. Consider
—y+Ky=*H. (37)
Its homogeneous adjoint system is (12)5", which has only trivial solutions [2, Theorem 2.10, p. 505]. Then there exists y € [LP(Z)]® x

[W'P(2)]? solution of (37) for any f. Consider now
O+KD =y, (38)

It admits a solution ® € [LP(Z)]® x [W'P(2)]? if, and only if, y is orthogonal to every element of (12); . A complete system of linearly
independent solutions of (12);” {¢™} is given by (14), for h = 1,2,3.Then there exists a solution y of (38) if, and only if,

/E Y™ (x)doy =0, h=1,23. 39)
Keeping in mind (6) and that {¢ "}, h = 1,2, 3, satisfies (12)5, we have
/E F009 ™ (X)doy = /E (=1 + Kly (0™ (X)dor, =
—— [ ywe®e0das + [ ¢ do, [ Rt w—01 y9)de, =
=~ [y w00 ® oo+ [ y0rdoy [ MRy~ 2076 ode =
== [Lr@00® codos ~ [ ye® 1de, =

=2 [ 7009 dor
=

Thus, (39) are equivalent to (36). O
Theorem 4
Given f € [LP(2)]? x [W'P(2)]?, the fourth BVP

U € RP

MZ =0 inQ (40)

R%|T =fonx

admits a solution if, and only if, (36) is satisfied. The solution is determined up to an additive rigid translation, that is, an expression of
the type (u, w), where u = band w = 0, b being an arbitrary constant vector.
Moreover, the solution of (40) is represented by a potential (9) Z[A] where its density is given by

A =H, [ Iy -0 00)ds,  xe, (@)
=
® € [LP(D)] x [W'P(Z)]? being a solution of the singular integral system (35).

. ______________________________________________________________________________________________________|
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Proof

Let @ € [LP(S)P x[W'P ()]’ Because #[D] € [W'P()]°, we have H#[®] € [W'P(S)]’ x[LP(2)]* . Then Z[HA[®]] € [W'P(£)]°.
We consider a potential % € %" with density (41). The boundary condition [RZ[A]]T = f turns into the system (35). In fact, by
[2, Theorem 1.2, p. 492], we have

RHA)(x) = —27(x) + / [H,W(y — )/ RA(y)do,,  x € Q.
)

Itis also known that [2, (1.23), p. 493]

+
[R (/ [Hy\IJ(y—x)]/d>(y)day):| = d(x) + RX/ [H¥(y —x)]®(y)ds,  x € =.
)] )]

So we have

R0 = R (-2 + [ [Hy‘P(y—x)]’R%(y)doy)]+ -

+
- [—ZR%(X) + Ry / [Hy‘IJ(y—x)]’R,%ﬂ(y)day} =
)]
= —2RHA(x) + R (X) + Ry / [H,W(y — x)'RA (y)doy =
>

= —RIA(x) + RX/ [H,¥(y —x)]’ij(y)day.
=
Keeping in mind (10),
[RZHA[P)|(0)] T = —Ry [ /E [HyW(y —X)]/Q(Y)dffy] +

Re /E [H,W(y — x)]'R, [ /E [H,W(z y)]’<I>(z)daz] do, =

=—®(x) — RX/ [Hy ¥ (y —x)]) ®(y)doy, + RX/ [Hy ¥ (y — x)]' ®(y)do,+
= b

Ry /E[Hy\IJQ/—x)]’Ry/E[Hzlll(z—y)]/é(z)dazday =

= —Ox) + /E RelH, ¥ (y — X))’ /Z Ry [H,¥(z — y)] ®(2)do,do, =
= —O(x) + K2D(x)

and thus, because of [RZ]+ = f, we obtain (35). Then there exists a solution of the fourth BVP if, and only if, (35) is solvable. If (36) is
satisfied from Lemma 4, we have the assert.
Conversely, if 7 = (u, w) is a solution of (40), from [6, Lemma 4.3] and Lemma 2, we have

/ F()o™ ()doy = / R (1)p™ (y)do, = [ E ), 0™ (y))dy = 0,
> > «Q

(h = 1,2,3) because E(%, ™) = 0.

Finally, we discuss the uniqueness. Let #; and 5 be solutions of (40) with datum f. Then, %7 = ¥; —#; is the solution of the correspond-
ing homogeneous problem. Beecause [R7%]1 = 0, from (25), we have that [# T%]T = 0on Z. Then, % is a double layer potential
whose last three components are zero. It follows from (16) that E(%, %) = 0.Then,u = aAXx + b,w = a,(a,b € R®).Because w = 0,
we havea = 0. O
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