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Deepening the study of a new approximation sequence of positive linear operators 
we introduced and studied in [12], in this paper we disclose its relationship with the 
Markov semigroup (pre)generation problem for a class of degenerate second-order 
elliptic differential operators which naturally arise through an asymptotic formula, 
as well as with the approximation of the relevant Markov semigroups in terms of 
the approximating operators themselves.
The analysis is carried out in the context of the space C (K) of all continuous 
functions defined on an arbitrary convex compact subset K of Rd, d ≥ 1, having non-
empty interior and a not necessarily smooth boundary, as well as, in some particular 
cases, in Lp(K) spaces, 1 ≤ p < +∞. The approximation formula also allows to 
infer some preservation properties of the semigroup such as the preservation of the 
Lipschitz-continuity as well as of the convexity. We finally apply the main results to 
some noteworthy particular settings such as balls and ellipsoids, the unit interval and 
multidimensional hypercubes and simplices. In these settings the relevant differential 
operators fall into the class of Fleming–Viot operators.

© 2017 Elsevier Inc. All rights reserved.

0. Introduction

In [12] we introduced and studied a new sequence (Cn)n≥1 of positive linear operators acting on function 
spaces defined on a convex compact subset K of some locally convex Hausdorff space. Their construction 
depends on a given Markov operator T : C (K) → C (K), a real number a ≥ 0 and a sequence (μn)n≥1 of 
probability Borel measures on K.

✩ The first, second and third authors have been partially supported by Italian INDAM–GNAMPA.
* Corresponding author.

E-mail addresses: francesco.altomare@uniba.it (F. Altomare), mirella.cappellettimontano@uniba.it
(M. Cappelletti Montano), vita.leonessa@unibas.it (V. Leonessa), Ioan.Rasa@math.utcluj.ro (I. Raşa).
http://dx.doi.org/10.1016/j.jmaa.2017.08.034
0022-247X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2017.08.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:francesco.altomare@uniba.it
mailto:mirella.cappellettimontano@uniba.it
mailto:vita.leonessa@unibas.it
mailto:Ioan.Rasa@math.utcluj.ro
http://dx.doi.org/10.1016/j.jmaa.2017.08.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2017.08.034&domain=pdf


154 F. Altomare et al. / J. Math. Anal. Appl. 458 (2018) 153–173
More precisely, for every n ≥ 1, they are defined by setting

Cn(f)(x) =
∫
K

· · ·
∫
K

f

(
x1 + . . . + xn + axn+1

n + a

)
dμ̃T

x (x1) · · · dμ̃T
x (xn)dμn(xn+1)

for every x ∈ K and for every f ∈ C (K), where (μ̃T
x )x∈K is the continuous selection of probability Borel 

measures on K corresponding to T via the Riesz representation theorem.
For particular choices of these parameters and for particular convex compact subsets, such as the unit 

interval or the multidimensional hypercube and simplex, these operators turn into the Kantorovich operators 
and in several of their wide-ranging generalizations.

In [12] we mainly investigated and studied the approximation properties of these operators in the space 
C (K) and, in some cases, in Lp-spaces, 1 ≤ p < +∞.

Under the influence of a series of researches developed during the last two decades, which are concerned 
with the relationship between degenerate differential operators, Markov semigroups and approximation 
processes (see, e.g., [4] and [11]), it has been quite natural to investigate, in the special case when K ⊂ Rd, 
d ≥ 1, whether, by using the theory of one-parameter semigroups, the new approximation process can 
also be used to solve some classes of initial-boundary value problems associated with suitable degenerate 
differential operators as well as to approximate the solutions of such differential problems.

From an operator theoretical point of view this problem corresponds to determine the differential operator 
generated by an asymptotic formula for the approximating operators Cn and to investigate whether it 
(pre)generates a (positive) C0-semigroup which, in turn, can be approximated in terms of suitable iterates 
of them.

In the present setting, assuming that the sequence (μn)n≥1 is weakly convergent to some (probability) 
Borel measure μ on K, then the differential operators which arise through such a method are of the form

V (u)(x) = 1
2

d∑
i,j=1

αij(x) ∂2u

∂xi∂xj
(x) +

d∑
i=1

a(bi − xi)
∂u

∂xi
(x)

(u ∈ C 2(K), x = (x1, . . . , xd) ∈ K), where

αij := T (priprj) − priprj (i, j = 1, . . . , d),

each pri denoting the i-th coordinate function (i = 1, . . . , d), and b = (b1, . . . , bd) ∈ K stands for the 
barycenter of the measure μ. Moreover, the coefficients αij vanish on a subset of the boundary of K which 
contains the extreme points of K.
Under the assumptions that T leaves invariant the continuous affine functions on K and maps polynomials 
into polynomials of at most the same degree, we show, indeed, that (V, C 2(K)) is the pregenerator of a 
Markov semigroup on C (K) which is approximated in terms of suitable iterates of the Cn’s. This semigroup 
is referred to as the limit semigroup of the Cn’s.

Specializing the convex compact set K and the other parameters, we obtain several classes of differential 
operators which are of current interest in the research area of evolution equations. Among them we quote 
the degenerate diffusion operators on balls and ellipsoids ([11], [28]) and the Fleming–Viot type operators 
on the unit interval and on the multidimensional hypercube and simplex ([2], [3], [5], [7], [11], [15], [21], 
[24]).

Our approach allows to study all these particular cases in an unifying manner and also to obtain some 
extensions of the existing generation results.

However, the main feature of the paper rests not only on the study of the generation results for the 
differential operators as above in the framework of convex compact domains with not necessarily smooth 
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boundary, but also on the approximation/representation of the relevant semigroup in terms of constructively 
defined linear positive operators; this kind of approximation allows to infer some preservation properties of 
it, such as the preservation of Lipschitz-continuity as well as of the convexity, which correspond to some 
spatial regularity properties of the solutions of the initial-boundary value differential problems associated 
with the generators.

Finally, in the particular case of the d-dimensional hypercube Qd we show that the limit semigroup can 
be extended to a contraction semigroup on Lp(Qd), 1 ≤ p < +∞, which in turn is approximated by iterates 
of the natural extension of the Cn’s to Lp(Qd).

1. Generalized Kantorovich operators for convex compact subsets

Throughout this section we shall fix a locally convex Hausdorff space X and a convex compact subset K
of X.

We denote by C (K) the space of all real-valued continuous functions on K; C (K) is a Banach lattice if 
endowed with the natural (pointwise) ordering and the sup-norm ‖ · ‖∞.

In particular, if K ⊂ Rd, d ≥ 1, and if it has non-empty interior, we denote by C 2(K) the space of all 
real-valued (continuous) functions on K which are twice-continuously differentiable on the interior int(K)
of K and whose partial derivatives up to the order 2 can be continuously extended to K. For u ∈ C 2(K)
and i, j = 1, . . . , d, we shall continue to denote by ∂u

∂xi
and ∂2u

∂xi∂xj
the continuous extensions to K of ∂u

∂xi

and ∂2u
∂xi∂xj

.
For every i = 1, . . . , d, pri will stand for the i-th coordinate function on K, i.e., pri(x) := xi for every 

x = (x1, . . . , xd) ∈ K.
Moreover, we shall denote by ‖ · ‖2 the Euclidean norm on Rd.
Coming back to an arbitrary convex compact subset K of a locally convex Hausdorff space, let BK be 

the σ-algebra of all Borel subsets of K and M+(K) (resp., M+
1 (K)) the cone of all regular Borel measures 

on K (resp., the cone of all regular probability Borel measures on K).
If μ ∈ M+(K) and 1 ≤ p < +∞, we denote by Lp(K, μ) the space of all (equivalence classes of) 

μ-integrable in the p-th power measurable functions on K; in particular, if μ = λd, λd being the Borel–
Lebesgue measure on K ⊂ Rd, then we shall use the symbol Lp(K) instead of Lp(K, λd).

We denote by A(K) the space of all continuous affine functions on K. For every m ≥ 1, the symbol 
Pm(K) stands for the linear subspace generated by products of m continuous affine functions on K, i.e.,

Pm(K) := span
({

m∏
i=1

hi | h1, . . . , hm ∈ A(K)
})

. (1.1)

Clearly, Pm(K) ⊂ Pm+1(K) and

P∞(K) :=
⋃
m≥1

Pm(K) (1.2)

is a subalgebra of C (K) which separates the points of K and contains the constants; hence, by the Stone–
Weierstrass theorem, it is dense in C (K).

From now on let T : C (K) → C (K) be a Markov operator on C (K), i.e., a positive linear operator on 
C (K) such that T (1) = 1, where the symbol 1 stands for the function of constant value 1 on K. Moreover, 
let (μ̃T

x )x∈K be the continuous selection in M+
1 (K) corresponding to T via the Riesz representation theorem, 

i.e., ∫
f dμ̃T

x = T (f)(x) (f ∈ C (K), x ∈ K). (1.3)

K
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Further, we assume that T satisfies the following condition

T (h) = h for every h ∈ A(K). (1.4)

Fix a ≥ 0 and a sequence (μn)n≥1 in M+
1 (K). Then, for every n ≥ 1, we consider the positive linear 

operator Cn defined by setting

Cn(f)(x)=
∫
K

· · ·
∫
K

f

(
x1 + . . . + xn + axn+1

n + a

)
dμ̃T

x (x1) · · · dμ̃T
x (xn)dμn(xn+1) (1.5)

for every x ∈ K and for every f ∈ C (K).
The operators Cn were introduced in [12], where the authors studied their approximation properties 

as well as some preservation properties. These operators generalize the Kantorovich operators on the unit 
interval, on hypercubes and on simplices together with several wide-ranging extensions of theirs (see [6], [8], 
[12], [14], [16] and the references quoted therein).

Introducing the auxiliary continuous function

In(f)(x) :=
∫
K

f

(
n

n + a
x + a

n + a
t

)
dμn(t) (f ∈ C (K), x ∈ K), (1.6)

for every n ≥ 1, then

Cn(f) = Bn(In(f)), (1.7)

where, for every n ≥1, f ∈C (K) and x ∈K, the operator Bn is defined as

Bn(f)(x) =
∫
K

· · ·
∫
K

f

(
x1 + . . . + xn

n

)
dμ̃T

x (x1) · · · dμ̃T
x (xn). (1.8)

Note that, for every n ≥ 1, Bn is a positive linear operator from C (K) into C (K), Bn(1) = 1 and hence 
‖Bn‖ = 1. Moreover, B1 = T .

The sequence (Bn)n≥1 was introduced in [11, Chapter 3] (see also [4, Chapter 6]) and the Bn’s are called 
the Bernstein–Schnabl operators associated with the Markov operator T . The operators Bn generalize the 
classical Bernstein operators on the unit interval, on multidimensional simplices and hypercubes and they 
share with them several preservation properties which have been investigated in [4] and in [11].

In particular, under assumption (1.4), the sequence (Bn)n≥1 is a (positive) approximation process in 
C (K), i.e., for every f ∈ C (K),

lim
n→∞

Bn(f) = f uniformly on K. (1.9)

Clearly, if a = 0, the operators Cn turn into the Bn’s.
Therefore Cn(f) ∈ C (K) for any n ≥ 1 and the Cn’s are positive linear operators on C (K); hence, each 

Cn is continuous and ‖Cn‖ = 1, since Cn(1) = 1.
Note that assumption (1.4) is not essential in defining the operators Cn, but it’s needed (see [12, Theo-

rem 3.2]) in order to prove that (Cn)n≥1 is an approximation process on C (K), i.e., for every f ∈ C (K),

lim Cn(f) = f uniformly on K. (1.10)

n→∞
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By specifying the Markov operator T , i.e., the family of representing measures (μ̃T
x )x∈K , the parameter 

a ≥ 0 and the sequence of measures (μn)n≥1, we obtain several classes of approximating operators which 
have been investigated in several papers.

For the convenience of the reader, below we show some examples which, among other things, will be 
useful to describe some particular cases where our results have rather striking applications. For additional 
examples we refer to [12, Section 2].

Examples 1.1.
1. Assume K = [0, 1] and consider the Markov operator T1 : C ([0, 1]) → C ([0, 1]) defined by setting

T1(f)(x) := (1 − x)f(0) + xf(1) (1.11)

(f ∈ C ([0, 1]), 0 ≤ x ≤ 1).
The Bernstein–Schnabl operators (1.8) associated with T1 are the classical Bernstein operators

Bn(f)(x) :=
n∑

k=0

(
n

k

)
xk(1 − x)n−kf

(
k

n

)
(1.12)

(n ≥ 1, f ∈ C ([0, 1]), x ∈ [0, 1]).
Fix a ≥ 0 and (μn)n≥1 in M+

1 ([0, 1]); then, from (1.6) and (1.7) we get

Cn(f)(x) =
n∑

k=0

(
n

k

)
xk(1 − x)n−k

1∫
0

f

(
k + as

n + a

)
dμn(s) (1.13)

(n ≥ 1, f ∈ C ([0, 1]), 0 ≤ x ≤ 1).
For particular choices of the measures μn (n ≥ 1) we get more specific examples such as, for instance,

Cn(f)(x) =
n∑

k=0

(
n

k

)
xk(1 − x)n−kf

(
k + bn
n + a

)
(1.14)

(n ≥ 1, f ∈ C ([0, 1]), x ∈ [0, 1]) where a > 0 and, for every n ≥ 1, μn := εbn/a denotes the Dirac measure 
concentrated at bn/a with bn ≤ a. These operators have been first considered in [27].

As another example, we consider a > 0 and two sequences (an)n≥1 and (bn)n≥1 of real numbers satisfying 
0 ≤ an < bn ≤ 1 (n ≥ 1). If we denote by μn the image measure of the Borel–Lebesgue measure λ1 on [0, 1]
under the mapping Tn(x) = (bn − an)x + an (0 ≤ x ≤ 1), then from (1.13) we get

Cn(f)(x) =
n∑

k=0

(
n

k

)
xk(1 − x)n−k

⎛⎜⎜⎝ n + a

a(bn − an)

k+abn
n+a∫

k+aan
n+a

f(t)dt

⎞⎟⎟⎠ (1.15)

These operators have been first considered when a = 1 in the paper [14] to which we refer the reader for 
more details and additional examples.

Finally, note that, if all the μn are equal to the Borel–Lebesgue measure on [0, 1] and a = 1, then formula 
(1.13) gives the classical Kantorovich operators.
2. Let Qd := [0, 1]d, d ≥ 1, and consider the Markov operator Sd : C (Qd) → C (Qd) defined by

Sd(f)(x) :=
1∑

h1,...,hd=0

f(δh11, . . . , δhd1)xh1
1 (1 − x1)1−h1 · · ·xhd

d (1 − xd)1−hd (1.16)

(f ∈ C (Qd), x = (x1, . . . , xd) ∈ Qd), where δij stands for the Kronecker symbol.



158 F. Altomare et al. / J. Math. Anal. Appl. 458 (2018) 153–173
Fix a ≥ 0 and a sequence (μn)n≥1 in M+
1 (Qd); then, taking (1.7) and [11, (3.1.30)] into account, the 

operators Cn given by (1.5) become

Cn(f)(x) :=
n∑

h1,...,hd=0

d∏
i=1

(
n

hi

)
xhi
i (1 − xi)n−hi

×
∫
Qd

f

(
h1 + as1

n + a
, . . . ,

hd + asd
n + a

)
dμn(s1, . . . , sd)

(1.17)

(n ≥ 1, f ∈ C (Qd), x = (x1, . . . , xd) ∈ Qd).

3. Denote by Kd the canonical simplex in Rd, d ≥ 1, i.e.,

Kd :=
{

(x1, . . . , xd) ∈ Rd |xi ≥ 0 (i = 1, . . . , d) and
d∑

i=1
xi ≤ 1

}
(1.18)

and consider the canonical Markov operator Td : C (Kd) → C (Kd) defined by

Td(f)(x) :=
(

1 −
d∑

i=1
xi

)
f(0) +

d∑
i=1

xif(ei) (1.19)

(f ∈ C (Kd) and x = (x1, . . . , xd) ∈ Kd) where, for every i = 1, . . . , d, ei := (δij)1≤j≤d, δij being the 
Kronecker symbol.

Let a ≥ 0 be fixed and consider a sequence (μn)n≥1 in M+
1 (Kd); by means of (1.7) and [11, (3.1.18)], we 

obtain

Cn(f)(x) :=
n∑

h1,...,hd=0
h1+...+hd≤n

P ∗
n,h(x)

∫
Kd

f

(
h1 + as1

n + a
, . . . ,

hd + asd
n + a

)
dμn(s1, . . . , sd) (1.20)

(n ≥ 1, f ∈ C (Kd) and x = (x1, . . . , xd) ∈ Kd), where, for every n ≥ 1, h = (h1, . . . , hd) ∈ {0, . . . , n}d, 
|h| := h1 + . . . + hd ≤ n and x = (x1, . . . , xd) ∈Kd,

P ∗
n,h(x) := n!

h1! . . . hd!(n− h1 − · · · − hd)!
xh1

1 . . . xhd

d

(
1 −

d∑
i=1

xi

)n−
d∑

i=1
hi

. (1.21)

We end this section with a result which allows us to evaluate the Cn’s on each Pm(K) (see (1.1)), m ≥ 1.
From now on, for any m, q ≥ 1, 1 ≤ q ≤ m, we set

Nm(q) := {(i1, . . . , iq) ∈ {1, . . . ,m}q | ir 	= is for r 	= s} (1.22)

and

Ñm := {((i1, . . . , iq), (j1, . . . , jm−q)) ∈ Nm(q) ×Nm(m− q) | ih 	= jk

for every h = 1, . . . , q, and k = 1, . . . ,m− q}.
(1.23)

Lemma 1.2. Let h1, . . . , hm ∈ A(K), m ≥ 1. Then, for every n ≥ 1,
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Cn

⎛⎝ m∏
j=1

hj

⎞⎠ = 1
(n + a)m

⎡⎣⎛⎝am
∫
K

m∏
j=1

hj dμn

⎞⎠ 1 + nmBn

⎛⎝ m∏
j=1

hj

⎞⎠
+

m−1∑
q=1

aqnm−q
∑

((i1,...,iq),(j1,...,jm−q))∈Ñm

⎛⎝∫
K

hi1 · · ·hiq dμn

⎞⎠Bn

(
hj1 · · ·hjm−q

)⎤⎦ ,
(1.24)

where Bn is defined by (1.8).
Therefore, if

T (Pm(K)) ⊂ Pm(K) for every m ≥ 1, (1.25)

then

Cn(Pm(K)) ⊂ Pm(K) for every n,m ≥ 1. (1.26)

Proof. Fix n, m ≥ 1, h1, . . . , hm ∈ A(K) and x1, . . . , xn+1 ∈ K; then

m∏
j=1

hj

(
x1 + . . . + xn + axn+1

n + a

)

= 1
(n + a)m

m∏
j=1

(
nhj

(
x1 + . . . + xn

n

)
+ ahj(xn+1)

)

= 1
(n + a)m

⎛⎝am
m∏
j=1

hj(xn+1) + nm
m∏
j=1

hj

(
x1 + . . . + xn

n

)

+
m−1∑
q=1

aqnm−q
∑

((i1,...,iq),(j1,...,jm−q))∈Ñm

(
hi1(xn+1) · · ·hiq (xn+1)

× hj1

(
x1 + . . . + xn

n

)
· · ·hjm−q

(
x1 + . . . + xn

n

)))
.

Accordingly, we get (1.24) and this completes the proof of (1.26), since, under assumption (1.25), 
Bn(Pm(K)) ⊂ Pm(K) for every n, m ≥ 1 (see [11, Lemma 4.1.1]). �
2. On the differential operators associated with the Cn’s

In this section we present an asymptotic formula for the operators Cn in the finite-dimensional setting. In 
particular, this asymptotic formula involves an elliptic second-order differential operator which is of concern 
in the study of diffusion problems arising from different areas such as biology, mathematical finance, physics.

From now on, we shall assume that K is a convex compact subset of Rd, d ≥ 1, having non-empty interior 
int(K). Moreover, we fix a Markov operator T on C (K) satisfying (1.4), a ≥ 0 and (μn)n≥1 in M+

1 (K) as 
in Section 1.

In this setting we shall consider a second-order differential operator which is a first-order perturbation of 
the elliptic second-order differential operator WT associated with T , introduced and studied in [9] and [11, 
Chapter 4].
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We begin by recalling the definition of WT , i.e.,

WT (u) := 1
2

d∑
i,j=1

αij
∂2u

∂xi∂xj
(u ∈ C 2(K)), (2.1)

where

αij := T (priprj) − priprj (i, j = 1, . . . , d). (2.2)

The differential operator WT is elliptic and it degenerates on the subset

∂TK := {x ∈ K | T (f)(x) = f(x) for every f ∈ C (K)} (2.3)

which contains the subset of extreme points of K (see [11, (3.1.4)]).
Since M+

1 (K) is weakly compact (see [20]), unless replacing (μn)n≥1 with a suitable subsequence, we 
may assume that it converges weakly to some μ ∈ M+

1 (K), i.e.,

lim
n→∞

∫
K

f dμn =
∫
K

f dμ for every f ∈ C (K). (2.4)

Let b = (b1, . . . , bd) ∈ K be the barycenter of μ, i.e.,∫
K

pri dμ = bi for every i = 1, . . . , d (2.5)

(see, e.g., [4, p. 55]), and let us set

βi := a(bi − pri) (i = 1, . . . , d); (2.6)

then the differential operator we are interested in studying is defined by

VT (u)(x) := WT (u)(x) +
d∑

i=1
βi(x) ∂u

∂xi
(x)

= 1
2

d∑
i,j=1

αij(x) ∂2u

∂xi∂xj
(x) +

d∑
i=1

βi(x) ∂u
∂xi

(x)

(2.7)

(u ∈ C 2(K), x ∈ K).
On account of the explicit examples of operators WT described in [11, Section 4.2], below we can detail 

some examples of the perturbations VT .

Examples 2.1.
1. The unit interval. Setting e2(x) := x2 (0 ≤ x ≤ 1) and α = T (e2) − e2, then the differential operator 
(2.7) turns into

VT (u)(x) = α(x)
2 u′′(x) + a(b− x)u′(x) (2.8)

(u ∈ C 2([0, 1]), 0 ≤ x ≤ 1), with a ≥ 0 and b ∈ [0, 1].
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Note that, in this particular case, 0 ≤ α(x) ≤ x(1 − x) for every 0 < x < 1. Conversely, if α ∈ C ([0, 1])
satisfies a similar inequality, then there always exists a Markov operator T on C (K) satisfying (1.4) such 
that α = T (e2) − e2 ([11, Example 4.2.1, 1]).

For instance, if p ∈ C ([0, 1]) is a polynomial of degree not greater than 2 such that 0 ≤ p(x) ≤ x(1−x)
2 (0 ≤

x ≤ 1), and if we consider the Markov operator T (f)(x) := (1 −x −2p(x))f(0) +4p(x)f(1
2) +(x −2p(x))f(1), 

(f ∈ C ([0, 1]), 0 ≤ x ≤ 1), then

VT (u)(x) = x(1 − x) − p(x)
2 u′′(x) + a(b− x)u′(x) (2.9)

(u ∈ C 2([0, 1]), 0 ≤ x ≤ 1).
As another example, given λ ∈ [0, 1], consider the Markov operator T (f)(x) := λ[xf(1) + (1 − x)f(0)] +

(1 − λ)f(x) (f ∈ C ([0, 1]), 0 ≤ x ≤ 1). Then

VT (u)(x) = λ
x(1 − x)

2 u′′(x) + a(b− x)u′(x) (2.10)

(u ∈ C 2([0, 1]), 0 ≤ x ≤ 1).

2. The unit hypercube Qd of Rd, d ≥ 1. Consider the particular case where T = Sd (see (1.16)). Then

VT (u)(x) = 1
2

d∑
i=1

xi(1 − xi)
∂2u

∂x2
i

(x) + a
d∑

i=1
(bi − xi)

∂u

∂xi
(x) (2.11)

(u ∈ C 2(Qd), x = (x1, . . . , xd) ∈ Qd), where b = (b1, . . . , bd) ∈ Qd and a ≥ 0.

3. The canonical simplex Kd of Rd, d ≥ 1. Assume that T = Td (see (1.19)). Then

VT (u)(x)= 1
2

d∑
i=1

xi(1 − xi)
∂2u

∂x2
i

(x) −
∑

1≤i<j≤d

xixj
∂2u

∂xi∂xj
(x) + a

d∑
i=1

(bi − xi)
∂u

∂xi
(x) (2.12)

(u ∈ C 2(Kd), x = (x1, . . . , xd) ∈ Kd), where b = (b1, . . . , bd) ∈Kd and a ≥ 0.

4. Ellipsoids and balls in Rd, d ≥ 2. Assume that the boundary ∂K of K is an ellipsoid, i.e., there exists 
a real symmetric and positive-definite matrix R = (rij)1≤i,j≤d and x = (xi)1≤i≤d ∈ Rd such that

K =

⎧⎨⎩x ∈ Rd | Q(x− x) :=
d∑

i,j=1
rij(xi − xi)(xj − xj) ≤ 1

⎫⎬⎭ . (2.13)

Furthermore, consider a strictly elliptic differential operator

L(u)(x) :=
d∑

i,j=1
cij

∂2u

∂xi∂xj
(x) (2.14)

(u ∈ C 2(int(K)), x ∈ int(K)) associated with a real symmetric and positive-definite matrix C = (cij)1≤i,j≤d

and denote by TL the relevant Poisson operator on C (K), defined by assigning to every f ∈ C (K) the unique 
solution to the Dirichlet problem{

Lu = 0 on int(K), u ∈ C (K) ∩ C 2(int(K));
u = f on ∂K.

(2.15)
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With no loss of generality we also assume that 
d∑

i,j=1
rijcij = 1 (see [11, Remark 4.2.4]).

In this case, the differential operator (2.7) corresponding to T = TL turns into

VT (u)(x) = (1 −Q)(x− x)
2 L(u)(x) + a

d∑
i=1

(bi − xi)
∂u

∂xi
(x) (2.16)

(u ∈ C 2(K), x = (x1, . . . , xd) ∈ K), where b = (b1, . . . , bd) ∈ K and a ≥ 0.
In particular, if K denotes the closed ball (with respect to the Euclidean norm ‖ · ‖2) of center x ∈ Rd

and radius r > 0 and L is the Laplacian Δ, then

VT (u)(x) = r2 − ‖x− x‖2

2d Δ(u)(x) + a
d∑

i=1
(bi − xi)

∂u

∂xi
(x) (2.17)

(u ∈ C 2(K), x ∈ K), where b = (b1, . . . , bd) ∈ K and a ≥ 0.

From now on, for a given x ∈ K, we denote by Ψx ∈ C (K) the function defined by

Ψx(y) := y − x (2.18)

for every y ∈ K, and by dx ∈ C (K) the function defined by

dx(y) := ‖y − x‖2 (y ∈ K). (2.19)

Note that, since for every y = (y1, . . . , yd) ∈ K and i = 1, . . . , d,

(pri ◦ Ψx)(y) = pri(y − x) = yi − xi = pri(y) − xi,

then (see (2.2)), for every x ∈ K and i, j = 1, . . . , d,

αij(x) = T ((pri ◦ Ψx)(prj ◦ Ψx))(x). (2.20)

The link between the differential operator VT and the operators Cn is enlightened by the next result.

Theorem 2.2. Under assumptions (2.4), for every u ∈ C 2(K),

lim
n→∞

n(Cn(u) − u) = VT (u) uniformly on K.

Proof. According to Theorem 1.5.2 of [11] (see also [13, Theorem 3.5]), the claim will be proved if we show 
that, for every i, j = 1, . . . , d,

(a) lim
n→∞

nCn(pri ◦ Ψx)(x) − βi(x) = 0 (see (2.6)) uniformly w.r.t. x ∈ K,
(b) lim

n→∞
nCn((pri ◦ Ψx)(prj ◦ Ψx))(x) − αij(x) = 0 (see (2.2)) uniformly w.r.t. x ∈ K,

(c) sup
n≥1,x∈K

nCn(d2
x)(x) < +∞,

and

(d) lim
n→∞

nCn(d4
x)(x) = 0 uniformly w.r.t. x ∈ K,

where, for a fixed x ∈ K, dx ad Ψx are given by (2.19) and (2.18), respectively.
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We proceed to verify (a). To this end, fix i = 1, . . . , d and x ∈ K; since the function pri ◦ Ψx ∈ A(K), 
according to formula (1.24) for m = 1, we get

Cn(pri ◦ Ψx)(x) = a

n + a

⎡⎣∫
K

(pri ◦ Ψx) dμn

⎤⎦+ n

n + a
(pri ◦ Ψx)(x)

= a

n + a

⎡⎣∫
K

pri(y − x) dμn(y)

⎤⎦ = a

n + a

⎡⎣∫
K

pri dμn − xi

⎤⎦ .
Hence, for any i = 1, . . . , d and x ∈ K,

0 ≤ |nCn(pri ◦ Ψx)(x) − βi(x)|

≤

∣∣∣∣∣∣ na

n + a

∫
K

pri dμn − abi

∣∣∣∣∣∣+
∣∣∣∣axi −

na

n + a
xi

∣∣∣∣
≤ a

∣∣∣∣∣∣ n

n + a

∫
K

pri dμn − bi

∣∣∣∣∣∣+ a

(
1 − n

n + a

)
sup
x∈K

‖x‖2

and we get the required assertion thanks to (2.4) and (2.5).
To prove statement (b) we preliminary notice that, by virtue of formula (1.24) for m = 2 and [11, formula 

(3.2.3)] (see, also, [9, Proposition 3.2]), for every x ∈ K and i, j = 1, . . . , d,

Cn((pri ◦ Ψx)(prj ◦ Ψx))(x) = 1
(n + a)2

×

⎧⎨⎩a2
∫
K

(pri ◦ Ψx)(prj ◦ Ψx) dμn + n2Bn((pri ◦ Ψx)(prj ◦ Ψx))(x)

⎫⎬⎭
= 1

(n + a)2

⎧⎨⎩a2
∫
K

(pri ◦ Ψx)(prj ◦ Ψx) dμn + nαij(x)

⎫⎬⎭ .

Hence, for every x ∈ K,

0 ≤ |nCn((pri ◦ Ψx)(prj ◦ Ψx))(x) − αij(x)|

≤ na2

(n + a)2

∫
K

|(pri ◦ Ψx)(prj ◦ Ψx)| dμn +
(

1 − n2

(n + a)2

)
|αij(x)|

≤ na2

(n + a)2 sup
x∈K

||(pri ◦ Ψx)(prj ◦ Ψx)||∞ +
(

1 − n2

(n + a)2

)
||αij ||∞

and this completes the proof of (b).
Finally, we proceed to verify conditions (c) and (d).
To this end, we first recall that r0 := sup

n≥1,x∈K
nBn(d2

x)(x) < +∞ and lim
n→∞

nBn(d4
x)(x) = 0 uniformly 

w.r.t. x ∈ K ([9, Theorem 4.2]; see also [11, Theorem 4.1.5]).
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Moreover, for every n ≥ 1, q ≥ 2 and x, x1, . . . , xn+1 ∈ K,

dqx

(
x1 + . . . + axn+1

n + a

)
=
∣∣∣∣∣∣∣∣x1 + . . . + axn+1

n + a
− x

∣∣∣∣∣∣∣∣q
2

≤
(

a

n + a

)q

2q−1dqx(xn+1)+
(

n

n + a

)q

2q−1dqx

(
x1 + . . . + xn

n

)
.

Hence

Cn(dqx)(x) ≤
(

a

n + a

)q

2q−1
∫
K

dqx dμn +
(

n

n + a

)q

2q−1Bn(dqx)(x).

Accordingly, for any n ≥ 1 and x ∈ K,

nCn(d2
x)(x) ≤ 2na2

(n + a)2

∫
K

d2
x dμn + 2

(
n

n + a

)2

nBn(d2
x)(x)

≤ 2na2

(n + a)2 ρ(K)2 + 2r0

and

0 ≤ nCn(d4
x)(x) ≤ 8na4

(n + a)4

∫
K

d4
x dμn + 8

(
n

n + a

)4

nBn(d4
x)(x)

≤ 8na4

(n + 1)4 ρ(K)4 + 8
(

n

n + a

)4

nBn(d4
x)(x),

where ρ(K) := sup{||y − x||2 | x, y ∈ K}.
This completes the proof. �

3. The associated Markov semigroup

The main aim of this section is to show that the differential operator (VT , C 2(K)) (see (2.7)) is closable 
and its closure is the generator of a Markov semigroup on C (K) which in turn may be approximated by 
suitable iterates of the operators Cn.

These results allow us to represent the solutions to the initial-boundary value differential problems gov-
erned by such a semigroup in terms of the Cn’s and to deduce some spatial regularity properties of the 
relevant solutions. For unexplained terminology concerning semigroup theory, we refer, e.g., to [11, Chap-
ter 2].

Theorem 3.1. Consider the sequence (Cn)n≥1 of operators as in (1.5) associated with a Markov operator 
T : C (K) → C (K) satisfying (1.4) and (1.25), a ≥ 0 and a sequence (μn)n≥1 of probability Borel measures 
on K such that (2.4) holds true.

Then the differential operator (VT , C 2(K)) defined by (2.7) is closable and its closure (AT , D(AT )) gen-
erates a Markov semigroup (T (t))t≥0 on C (K) such that, if t ≥ 0, f ∈ C (K) and (k(n))n≥1 is a sequence 
of positive integers satisfying lim

n→∞
k(n)/n = t, then

T (t)(f) = lim
n→∞

Ck(n)
n (f) uniformly on K, (3.1)

where each Ck(n)
n denotes the iterate of Cn of order k(n).
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Moreover, P∞(K) (and hence C 2(K) too) is a core for (AT , D(AT )) and T (t)(Pm(K)) ⊂ Pm(K) for 
every t ≥ 0 and m ≥ 1.

Proof. First of all we remark that each subspace Pm(K), m ≥ 1, of C 2(K) is finite dimensional, it is 
invariant under every operator Cn by virtue of Lemma 1.2 and assumptions (1.4) and (1.25), and P∞(K)
is dense in C (K).

Moreover, from Theorem 2.2, we get

lim
n→∞

n(Cn(u) − u) = VT (u) uniformly on K,

for every u ∈ C 2(K), and hence for every u ∈ P∞(K).
Then, from Corollary 2.2.11 of [11], it follows that (VT , C 2(K)) is closable and its closure (AT , D(AT )) is 

the generator of a contraction C0-semigroup (T (t))t≥0 on C (K) such that, for every t ≥ 0 and f ∈ C (K),

T (t)(f) = lim
n→∞

Ck(n)
n (f) uniformly on K

for every sequence (k(n))n≥1 of positive integers such that lim
n→∞

k(n)/n = t. Moreover, P∞(K) is a core for 
(AT , D(AT )).

Formula (3.1) implies that each T (t) is a Markov operator and hence the semigroup is Markovian.
From (1.26) it also follows that, if f ∈ Pm(K) for some m ≥ 1, then Ck

n ∈ Pm(K) for every n, k ≥ 1; 
hence, for every t ≥ 0 and every sequence (k(n))n≥1 of positive integers such that lim

n→∞
k(n)/n = t, we get

T (t)(f) = lim
n→∞

Ck(n)
n (f) ∈ Pm(K),

since Pm(K) is closed, and this completes the proof. �
Remarks 3.2.
1. A simple sequence (k(n))n≥1 to which formula (3.1) can be applied is given by k(n) := [nt], [nt]
denoting the integer part of nt (n ≥ 1).
2. (A saturation result for the operators Cn, n ≥ 1). According to [11, Remark 2.2.12], if u, v ∈ C (K)
and lim

n→∞
n(Cn(u) − u) = v uniformly on K, then u ∈ D(AT ) and AT (u) = v.

In particular, if lim
n→∞

n(Cn(u) − u) = 0 uniformly on K, then u ∈ D(AT ) and AT (u) = 0.
3. In [10] and in [11, Section 4.3] condition (1.25) is carefully analyzed and several examples are furnished. 
In particular, all the Markov operators (1.11), (1.16) and (1.19) as well as the Poisson operator considered 
in Example 2.1.4 verify (1.25). Accordingly, Theorem 3.1 applies to the differential operator (2.8) (with 
α(x) = x(1 − x), 0 ≤ x ≤ 1), (2.11), (2.12), (2.16) and (2.17).

Let us now consider the Cauchy problem associated with the operator (AT , D(AT )) defined in Theo-
rem 3.1, namely ⎧⎪⎪⎨⎪⎪⎩

∂u

∂t
(x, t) = AT (u(·, t))(x) x ∈ K, t ≥ 0;

u(x, 0) = u0(x) u0 ∈ D(AT ), x ∈ K.

(3.2)

Since (AT , D(AT )) generates a Markov semigroup, such a Cauchy problem admits a unique solution 
u : K× [0, +∞[→ R given by u(x, t) = T (t)(u0)(x) for every x ∈ K and t ≥ 0 (see, e.g., [26, Chapter A-II]). 
Hence, by Theorem 3.1, such a solution may be approximated in terms of suitable iterates of the Cn’s, i.e.,
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u(x, t) = T (t)(u0)(x) = lim
n→∞

C [nt]
n (u0)(x), (3.3)

where the limit is uniform with respect to x ∈ K.
Moreover, AT coincides with the elliptic second-order differential operator VT defined by (2.7) on C 2(K).
Therefore, if u0 ∈ Pm(K), then u(x, t) is the unique solution of the Cauchy problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u

∂t
(x, t) = 1

2
d∑

i,j=1
αij(x)∂

2u(x, t)
∂xi∂xj

+ a
d∑

i=1
(bi − xi)

∂u(x, t)
∂xi

x ∈ K, t ≥ 0;

u(x, 0) = u0(x) x ∈ K

and u(·, t) ∈ Pm(K) for every t ≥ 0.
By investigating some preservation properties of the operators Cn, by means of formula (3.3) we may 

infer some spatial regularity properties of the solutions u, i.e., properties of the functions u(·, t), t ≥ 0.
Below we show some results in this direction which are revolved around an analysis on the Cn’s we carried 

out in [12, Section 5].
For a given norm ‖ · ‖ on Rd and for every M ≥ 0 and 0 < α ≤ 1 we denote by Lip(M, α) the class of 

all Hölder continuous functions f on K with exponent α and constant M , i.e., such that |f(x) − f(y)| ≤
M‖x − y‖α for every x, y ∈ K.

Corollary 3.3. Under the same assumptions of Theorem 3.1, if T (Lip(1, 1)) ⊂ Lip(1, 1) and u0 ∈ Lip(M, 1)
for some M ≥ 0, then u(·, t) ∈ Lip(M, 1) for every t ≥ 0.

Proof. In [12, Proposition 5.1] we proved that Cn(Lip(M, 1)) ⊂ Lip(M, 1) for every n ≥ 1, provided that 
T (Lip(1, 1)) ⊂ Lip(1, 1). By iterating this inclusion, since Lip(M, 1) is closed under uniform norm, we get 
the result by applying (3.3). �
Remark 3.4. The operators T1, Sd and Td defined by (1.11), (1.16) and (1.19), respectively, verify the 
hypotheses of Corollary 3.3 which then applies to the context of the Examples 2.1.1, 2.1.2 and 2.1.3.

We pass now to present some results ensuring the convexity of u(·, t), t ≥ 0. To this end, for a given 
f ∈ C (K), we set

Δ(f ;x, y) := B2(f)(x) + B2(f)(y) − 2
∫∫
K2

f

(
s + t

2

)
dμ̃T

x (s)dμ̃T
y (t) (3.4)

for every x, y ∈ K, where the operator B2 is defined as in (1.8).
Then, under suitable assumptions on the sign of the quantity (3.4), taking [12, Theorem 5.4] into account, 

we may infer some information about the convexity of u(·, t), as the next result shows.

Corollary 3.5. Suppose that T satisfies the following assumptions:

(c1) T maps continuous convex functions into (continuous) convex functions;
(c2) Δ(f ; x, y) ≥ 0 for every convex function f ∈ C (K) and for every x, y ∈ K.

If u0 ∈ D(AT ) is convex, then u(·, t) is convex for every t ≥ 0.
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Remark 3.6. Conditions (c1) and (c2) are discussed in detail in [11, Remark 3.4.4 and Examples 3.4.5–3.4.11]. 
In the case of the unit interval they are satisfied for T = T1 and when T is the Bernstein operator (1.12) of 
order n ≥ 1 (see [1] and [23] for some recent advances).

The next result is concerned with the simplex Kd and the Markov operator Td. As we showed in [12, 
Corollary 5.6], the relevant operators Cn defined by (1.20) preserve continuous axially convex functions, i.e., 
those continuous functions which are convex on each segment parallel to a segment joining two vertices of 
the simplex.

The class of such functions is closed under the uniform norm and hence, again by (3.3), we get the 
following further result.

Corollary 3.7. If K = Kd denotes the canonical simplex of Rd, d ≥ 1, and T = Td (see (1.19)), by referring 
to the differential operator (2.12) and to the solution u(·, t) of the relevant Cauchy problem, then u(·, t) is 
axially convex for every t ≥ 0, provided that u0 ∈ D(AT ) is axially convex.

Remarks 3.8.
1. The differential operators (2.11) and (2.12) are particular cases of the so-called Fleming–Viot operators 
which appear in the theory of Fleming–Viot processes involved in the description of a stochastic process 
associated with a diffusion approximation of a gene frequency model in population genetics. Their generators 
have been object of several papers. For more details we refer to [11, Subsection 2.3.4 and Section 5.8, together 
with the relevant Notes and Comments]. In particular, in [11, Section 5.8] an approximation of the semigroup 
(T (t))t≥0 in terms of other sequences of positive operators is also discussed.
2. In the context of Example 2.1.4 the differential operator (2.17) is referred to as a diffusion operator 
which describes analytically a strong Markov process with continuous path in K (see [28] for more details). 
Moreover, in [28] the domain D(ATL

) is described in terms of the so-called Ventcel’ boundary conditions.

We deepen now the previous results in the particular case where K = [0, 1]; in this setting it is possible 
to explicitly describe the domain D(AT ) which, as recalled by (3.2), consists of all initial data for which the 
Cauchy problem (3.2) has a unique solution given by (3.3).

Consider a Markov operator T : C ([0, 1]) → C ([0, 1]) such that T (e1) = e1 and which not necessarily 
maps polynomials into polynomials of the same degree and set

α := T (e2) − e2, (3.5)

where ei(x) := xi (0 ≤ x ≤ 1, i = 1, 2). Then

0 ≤ α(x) ≤ x(1 − x) (0 ≤ x ≤ 1). (3.6)

In [11, Example 4.2.1, 1] we pointed out that, conversely, if α ∈ C ([0, 1]) satisfies (3.6), then it can 
constructively be furnished a Markov operator T on C ([0, 1]) such that T (e1) = e1 and α = T (e2) − e2.

Furthermore, fix a ≥ 0 and b ∈ [0, 1] and let (μn)n≥1 be an arbitrary sequence of probability Borel 
measures on [0, 1] satisfying (2.4) and (2.5). Therefore, from Theorem 2.2 it follows that

lim
n→∞

n(Cn(u) − u) = VT (u) uniformly on [0, 1] (3.7)

for every u ∈ C 2([0, 1]), where (see (2.8))

VT (u)(x) = α(x)
u′′(x) + a(b− x)u′(x) (0 ≤ x ≤ 1).
2
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We now consider the differential operator

ZT (u)(x) = α(x)
2 u′′(x) + a(b− x)u′(x) (0 < x < 1) (3.8)

defined for every u ∈ C 2(]0, 1[), and set

DM (ZT ) :=

⎧⎨⎩u ∈ C ([0, 1]) ∩ C 2(]0, 1[) | lim
x→0+

x→1−

ZT (u)(x) ∈ R

⎫⎬⎭ , (3.9)

DVM (ZT ) :=
{
u ∈ DM (ZT ) | lim

x→0+
ZT (u)(x) = 0

}
(3.10)

and

DMV (ZT ) :=
{
u ∈ DM (ZT ) | lim

x→1−
ZT (u)(x) = 0

}
. (3.11)

For every u ∈ C ([0, 1]) belonging to such domains, ZT (u) can be continuously extended to [0, 1] and this 
extension will still be denoted by ZT (u).

From now on we shall assume that

(i) 0 < α(x) for each 0 < x < 1;
(ii) α is differentiable at 0 and at 1 and α′(0) 	= 0 	= α′(1);
(iii) the function

r(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ab

2α′(0) if x = 0;

a(b− x)x(1 − x)
2α(x) if 0 < x < 1;

−a(b− 1)
2α′(1) if x = 1

(3.12)

is Hölder continuous at 0 and at 1.

Condition (iii) is satisfied, for instance, if α is differentiable in [0, 1].
Furthermore, assume a > 0 and set

D(ZT ) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

DM (ZT ) if ab ≥ 1
2α

′(0) and a(b− 1) ≤ 1
2α

′(1);

DMV (ZT ) if a ≥ 1
2α

′(0) and b = 1;

DVM (ZT ) if a ≥ −1
2α

′(1) and b = 0.

(3.13)

Thus, ZT is a linear operator from D(ZT ) into C ([0, 1]). Moreover,

ZT = VT on C 2([0, 1]) ∩D(ZT ). (3.14)

Theorem 3.9. Under assumptions (i)–(iii), assume further that a > 0 and that one of the following state-
ments holds true:
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(1) ab ≥ 1
2α

′(0) and a(b − 1) ≤ 1
2α

′(1);

(2) a ≥ 1
2α

′(0) and b = 1;

(3) a ≥ −1
2α

′(1) and b = 0.

Then (ZT , D(ZT )) is the generator of a Markov semigroup (T (t))t≥0 on C ([0, 1]) and C 2([0, 1]) ∩D(ZT )
is a core for (ZT , D(ZT )). Moreover, the approximation formula (3.1) holds true for every t ≥ 0 and for 
every sequence (k(n))n≥1 of positive integers such that k(n)/n → t.

Finally, (ZT , D(ZT )) coincides with the closure of (VT , C 2([0, 1]) ∩ D(ZT )). In particular, under the 
hypothesis (1), (ZT , DM (ZT )) coincides with the closure of (VT , C 2([0, 1])).

Proof. The first part of the result follows from Theorems 5.7.7 and 5.7.13 of [11]. The second part is a 
consequence of (3.7), (3.14) and Corollary 2.2.3 of [11] (see, also [11, Remark 2.2.4, 2]).

Finally, from (3.14) it also turns out that (VT , C 2([0, 1]) ∩D(ZT )) is closable and its closure (BT , D(BT ))
satisfies D(BT ) ⊂ D(ZT ) and ZT = BT on D(BT ). Accordingly, from Proposition 2.1.7 of [11], part (g), we 
actually infer that (ZT , D(ZT )) = (BT , D(BT )). �
Remarks 3.10.
1. If a = 0, then the differential operator (VT , C 2([0, 1])) is closable and its closure coincides with the 
differential operator (ZT , DV (ZT )), where

DV (ZT ) :=

⎧⎨⎩u ∈ DM (ZT ) | lim
x→0+

x→1−

ZT (u)(x) = 0

⎫⎬⎭ . (3.15)

Moreover, (ZT , DV (ZT )) generates a Markov semigroup on [0, 1] which can be approximated by iterates of 
Bernstein–Schnabl operators associated with T (see [11, Section 4.5]).
2. A special case of Theorem 3.9, part (1), has been previously obtained in [15, Section 3]. Moreover, in 
the particular case where α(x) = x(1 −x) (0 ≤ x ≤ 1), the generation properties of the differential operator 
(2.8) have been largely studied in several other papers (see, e.g., [17], [18], [19], [24]).

In [18, Theorem 3.3], among other things, the authors showed that, in the case (1) of Theorem 3.9, i.e., 
ab ≥ 1

2 and a(1 − b) ≥ 1
2 , for every f ∈ C ([0, 1]),

lim
t→+∞

T (t)(f) = 1
B(γ + 1, δ + 1)

1∫
0

xγ(1 − x)δf(x) dx (3.16)

uniformly on [0, 1], where γ = 2ab − 1, δ = 2a(1 − b) − 1 and B(γ + 1, δ + 1) :=
∫ 1
0 tγ(1 − t)δ dt denotes the 

familiar Euler beta function.
In the case (2) (resp. (3)) of Theorem 3.9, i.e., a ≥ 1

2 and b = 1 (resp. b = 0), then, on account of 
Theorem 4.2 of [14], it follows that, for every f ∈ C ([0, 1]),

lim
t→+∞

T (t)f = f(1) uniformly on [0, 1]

(resp. lim
t→+∞

T (t)f = f(0) uniformly on [0, 1]).
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4. Generation results in Lp-spaces

We end this paper by presenting some generation results in Lp-spaces, 1 ≤ p < +∞, in the setting of the 
hypercube Qd of Rd.

Thus, assume that K = Qd and, given a ≥ 0, for every h = (h1, . . . , hd) ∈ {0, . . . , n}d and n ≥ 1, set

Qn,h(a) :=
d∏

i=1

[
hi

n + a
,
hi + a

n + a

]
⊂ Qd; (4.1)

then ⋃
h∈{0,...,n}d

Qn,h(a) = Qd.

Moreover, assume that all the μn coincide with the Borel–Lebesgue measure λd on Qd.
In such a case the operators Cn in (1.17) are well defined on L1(Qd) and, for every n ≥ 1, f ∈ L1(Qd)

and x = (x1, . . . , xd) ∈ Qd,

Cn(f)(x) =
n∑

h1,...,hd=0

d∏
i=1

(
n

hi

)
xhi
i (1 − xi)n−hi

∫
Qd

f

(
h + au

n + a

)
du (4.2)

and, if a > 0,

Cn(f)(x) =
n∑

h1,...,hd=0

d∏
i=1

(
n

hi

)
xhi
i (1 − xi)n−hi

(
n + a

a

)d ∫
Qn,h(a)

f(v) dv. (4.3)

In particular, if d = 1, then (4.2) turns into

Cn(f)(x) =
n∑

h=0

(
n

h

)
xh(1 − x)n−h

1∫
0

f

(
h + as

n + a

)
ds (4.4)

and, if a > 0,

Cn(f)(x) =
n∑

h=0

(
n

h

)
xh(1 − x)n−h

(
n + a

a

) h+a
n+a∫
h

n+a

f(t) dt (4.5)

(n ≥ 1, f ∈ L1([0, 1]), x ∈ [0, 1]).
The sequence (Cn)n≥1 is an approximation process in Lp-spaces, 1 ≤ p < +∞. In fact, as it was shown 

in [12, Theorem 4.1], for every n ≥ 1, 1 ≤ p < +∞ and f ∈ Lp(Qd),

‖Cn(f)‖p ≤ M1/p‖f‖p

where

M := sup
(

n + a

a(n + 1)

)d

, (4.6)

n≥1
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and, for every f ∈ Lp(Qd) and 1 ≤ p < +∞,

lim
n→∞

Cn(f) = f in Lp(Qd). (4.7)

The operator VSd
associated with the Markov operator Sd on Qd defined by (1.16), according to (2.5), is 

given by

VSd
(u)(x) = 1

2

d∑
i=1

xi(1 − xi)
∂2u

∂x2
i

(x) + a

d∑
i=1

(
1
2 − xi

)
∂u

∂xi
(x) (4.8)

(a ≥ 0, u ∈ C 2(Qd), x = (x1, . . . , xd) ∈ Qd), since the barycenter of λd on Qd is b = (1/2, . . . , 1/2).
Sd satisfies (1.4) and (1.25), so that, by Theorem 3.1, (VSd

, C 2(Qd)) is closable and its closure 
(ASd

, D(ASd
)) generates a Markov semigroup (T (t))t≥0 on C (Qd) such that, for every t ≥ 0 and for every 

sequence (k(n))n≥1 of positive integers satisfying k(n)/n → t, one has that, for every f ∈ C (K),

T (t)(f) = lim
n→∞

Ck(n)
n (f) uniformly on Qd. (4.9)

The next result shows that, if a ≥ 1, the semigroup (T (t))t≥0 may be extended to a positive contraction 
semigroup on Lp(Qd) and that the representation formula (4.9) extends to Lp(Qd).

Theorem 4.1. Consider the sequence (Cn)n≥1 defined by (4.3) along with a parameter a ≥ 1. Then, for every 
p ≥ 1, (T (t))t≥0 extends to a positive contraction C0-semigroup (T̃ (t))t≥0 on Lp(Qd).

Moreover, the generator (Ã, D(Ã)) of the semigroup (T̃ (t))t≥0 is an extension of (ASd
, D(ASd

)) and 
C 2(Qd) is a core for (Ã, D(Ã)), so that (Ã, D(Ã)) is the closure of (VSd

, C 2(Qd)) in Lp(Qd) as well.
Finally, if t ≥ 0 and if (k(n)n≥1 is a sequence of positive integers such that lim

n→∞
k(n)/n = t, then for 

every f ∈ Lp(Qd),

lim
n→∞

Ck(n)
n (f) = T̃ (t)(f) in Lp(Qd). (4.10)

Proof. The proof is similar to that one of Theorem 3.4 of [7], so that here we only sketch some details for 
the sake of clarity.
First of all, we notice that, taking (4.6) into account, if a ≥ 1, then ‖Cn‖Lp,Lp ≤ 1 for any n ≥ 1.

Fix now t ≥ 0 and consider an arbitrary sequence (k(n))n≥1 of positive integers such that k(n)/n → t. 
Then, for every f ∈ C (Qd),

‖T (t)f‖p = lim
n→∞

‖Ck(n)
n (f)‖p ≤ ‖f‖p.

Therefore, there exists a unique linear continuous extension T̃ (t) : Lp(Qd) → Lp(Qd) of T (t). Moreover, 
‖T̃ (t)‖Lp,Lp ≤ 1 for every t ≥ 0.

For every t ≥ 0 the operator T̃ (t) is positive and the family (T̃ (t))t≥0 is a strongly continuous semigroup.
Let (Ã, D(Ã)) be the generator of (T̃ (t))t≥0. Then, it is easily seen that D(ASd

) ⊂ D(Ã) and Ã = ASd

on D(ASd
). Moreover, D(ASd

) is a core for (Ã, D(Ã)), since

T̃ (t)(D(ASd
)) = T (t)(D(ASd

)) ⊂ D(ASd
)

for every t ≥ 0 (see, e.g., [22, Chapter II, Proposition 1.7]).
As a consequence, thanks also to Theorem 3.1, C 2(Qd) is a core for (Ã, D(Ã)).
Finally, formula (4.10) follows from (4.9). �
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Remarks 4.2.
1. In the special case d = 1 and a = 1, Theorem 4.1 has been already proven in [25, Theorem 1], with 
a completely different method. Moreover, in the same paper a representation of the semigroup in terms of 
the Legendre polynomials is also given.
2. The differential operator (VSd

, C 2(Qd)) falls within a more general class of second-order differential 
operators which have been investigated in [11, Chapter 5] (see, also, [5, Section 4, formula (4.1) and Exam-
ple 2.2, 2]). In particular, in [11, Section 5.6] it has already been shown that (VSd

, C 2(Qd)) is closable and 
its closure is the generator of a Markov semigroup on C (Qd) which can be approximated, as in (4.9), by 
iterates of modified Bernstein–Schnabl operators. However, in general, these approximating operators are 
not defined on Lp(Qd), so that formula (4.10) doesn’t apply for them.
3. The generation properties of the operator (VSd

, C 2(Qd)) in the space Lp(Qd) have been also investigated 
in [24, Theorem 2.5] (see also [7]). In particular, it is shown that the semigroup (T̃ (t))t≥0 is analytic and a 
description of the domain D(Ã) in terms of weighted Sobolev spaces is given.

Finally, in [18, Theorem 3.1] it is shown that, if a = 1, then for every f ∈ C (Qd) (resp., f ∈ Lp(Qd), 1 ≤
p < +∞)

lim
t→+∞

T (t)(f) =
∫
Qd

f(x) dx uniformly on Qd (4.11)

(resp., lim
t→+∞

T̃ (t)(f) =
∫
Qd

f(x) dx in Lp(Qd)). (4.12)

A result similar to Theorem 4.1 in the context of the simplex Kd should be highly interesting because 
of the importance of the generation properties of the Fleming–Viot type operators, like (2.12), in Lp(Kd)
(see, e.g., [2], [21]). However, it seems that the approach we follow to derive Theorem 4.1 does not work 
in Lp(Kd), mainly because the relevant operators defined by (1.20) are not contractive on Lp(Kd) (see [12, 
Theorem 5.4]). Nevertheless, the differential operator (2.12) generates a contraction semigroup (T̃ (t))t≥0 on 
Lp(Kd) (see, e.g., [2, pp. 1259–1260]) which extends the semigroup (T (t))t≥0 on C (Kd) given by Theorem 3.1.

So, it seems that, in order to approximate the semigroup (T̃ (t))t≥0 by iterates of positive operators as 
in (4.10), it is necessary to replace the operators Cn with other approximating operators like Bernstein–
Durrmeyer type ones (see [2, Section 2]).
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