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A B S T R A C T

The paper discusses advances in coupling satellite driven soil water balance model and meteorological forecast
as support for precision smart irrigation use in a case study of an operative farm in the South of Italy where semi-
arid climatic conditions holds. Crop water needs forecast are computed with the intuitive idea of forcing the soil
water balance model with the meteorological model outlooks. Discussion on the methodology approach is
presented, comparing, for a reanalysis period between June and September 2014, the forecast system outputs
with observed soil moisture and crop water needs. Two main issues are here in emphasized: the characteristic of
soil moisture water balance model, that due to its state variables may be directly calibrated and validated using
satellite or near sensing land surface temperatures; the accuracy of those forecast meteorological variables that
are the most important in driving the soil water and energy balance. The soil water balance model performances
are then discussed highlighting the importance of using a model which state variable (the pixel surface equi-
librium temperature) is the same as the data detected by satellite (Land Surface Temperature), so that it can be
used for calibrating and validating soil hydrological parameters. Model outputs are also validated with a
comparison of ground latent and sensible heat fluxes from an eddy covariance station and soil moisture data.
Problems insight into the meteorological modeling, such as temporal and spatial scale, and their influence on soil
moisture forecast are discussed showing on the base of several observation periods the need to increase the
meteorological forcings accuracy for this type of applications.

The obtained results show how the proposed methodology of the forecasting system is able to have a high
reliability in soil moisture forecast correctly providing irrigation suggestion.

1. Introduction

Increasing problems of water scarcity indicate the need for a more
sustainable approach to water resources management especially in
agriculture which is the biggest water consumer: in Europe for around
24% of the total water use, which reaches the 80% in the Southern part
of Europe (EEA, 2009) and about 50% in Italy (Zucaro, 2014). Hence,
there is the need of operational tools for real-time forecast of irrigation
water requirements to promote parsimonious irrigation and a more
accurate water management in case of actual or forecasted drought
periods, that will result in a mitigation of conflicts in water use among
farmers, but also among hydroelectric producers, environmental
agencies, tourist activities.

Literature provides several studies on the optimization of irrigation
water management starting from the FAO Paper 56 based on crop

coefficient (Allen et al., 1998), to water balance modeling and genetic
algorithms for optimizing off-farm irrigation scheduling (D’Urso and
Menenti, 1995; Roerink et al., 1997; Bastiaanssen et al., 2005; Casa
et al., 2009; Ceppi et al., 2014). Different irrigation triggering techni-
ques have been developed in literature based on the deficit between
potential and actual evapotranspiration or on a soil moisture threshold.
The most common approach based on potential ET relies on the
methodology proposed by FAO in 1998 (Allen et al., 1998) which uses
the Penman-Monteith equation and the crop coefficient (D’Urso and
Menenti, 1995). However, Consoli et al. (2014), among others re-
searches, showed that even with a deficit irrigation (e.g. 50% of the
potential evapotranspiration), no changes in crop yield are obtained.
Allen et al. (1998) suggested that irrigation should be applied when the
readily available soil water (RAW) is depleted and irrigate just enough
to get back up to field capacity.
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In the last years, new studies focus on the coupling of meteor-
ological forecasts and hydrological models for irrigation scheduling,
such as the EPIC-PHASE model developed by Cabelguenne et al. (1997),
the real-time scheduled irrigations approach in UK by Gowing and Ejieji
(2001), the Danish warning system eWarning (Jensen and Thysen,
2003), the real-time forecasts for daily evapotranspiration by (Cai et al.,
2007), the PREGI (which is an Italian acronym that means “hydro-
meteorological forecast for irrigation management”) system for irriga-
tion thresholds (Ceppi et al., 2014); the reference evapotranspiration
forecast (Pelosi et al., 2016). However, the effect on hydrological soil
moisture of meteorological forecasts accuracy for agricultural applica-
tions is still an open issue (Venaläinen et al., 2005; Ceppi et al., 2014);
while it has been extensively analyzed for flood forecasts (Kitanidis and
Bras, 1980; Berthet et al., 2009; Zappa et al., 2011; Pappenberger et al.,
2015).

Moreover, thanks to the diffusion of remote sensing data, especially
for vegetation monitoring ((Normalized difference vegetation index)
NDVI, (Leaf area index) LAI), an increasing number of applications for
irrigation management is now available (D’Urso and Menenti, 1995;
Bausch, 1995; Roerink et al., 1997; Bastiaanssen et al., 2000; Belmonte
et al., 2005; D’Urso et al., 2010; Forrest et al., 2012). However, for real
time applications, remote sensing data have some disadvantages due to
the fact that are instantaneous in time, sometimes affected by clouds
cover in the visible and thermal infrared bands, and also only provide
indirect measurement of the variables of interest for water manage-
ment. So the integration of remote sensing data with distributed hy-
drological models is needed for operative water management (Su, 2002;
Jia et al., 2003; Kustas et al., 2004; Anderson et al., 2012; Corbari et al.,
2013).

In the agricultural area, the calibration and validation of distributed
hydrological models become more problematic in respect to basin scale
studies where parameters calibration relies on the comparison between
simulated and observed discharges at the available rivers cross sections
(Refsgaard, 1997; Rabuffetti et al., 2008). At local scale, soil water
balance models can be calibrated and validated against soil moisture
measurements or evapotranspiration data from eddy covariance sta-
tions (Corbari et al., 2011; Ingwersen et al., 2011; Cammalleri et al.,
2012).

However for large irrigation districts, where ground measurements
are not representative and available, some approaches based on multi
parameters calibration approach have been developed using remote
sensing data recalling the idea of controlling internal model processes
and variables can be controlled in each pixel of the domain (e.g. soil
moisture (SM), land surface temperature (LST) and evapotranspiration
fluxes (ET)) (Franks and Beven, 1999; Crow et al., 2003; Immerzeel and
Droogers, 2008; Gutmann and Small, 2010; Corbari and Mancini, 2014;
Corbari et al., 2015).

The main objective of this paper is the development of a system for
operative irrigation water management based on the coupling of remote
sensing data, distributed water-energy hydrological model and me-
teorological forecasts. Furthermore, two sub-objectives can be identi-
fied: i) the energy water balance model calibration using satellite data
of land surface temperature, ii) the accuracy of the forecasted meteor-
ological variables and the effects on the hydrological forecast.

Remote sensing data from LANDSAT 8 are used as hydrological
model parameters (leaf area index (LAI), fractional vegetation cover
(fv), albedo), which are used as inputs to hydrological model, and as
model state variable (land surface temperature). The distributed hy-
drological model, Flash–flood Event–based Spatially–distributed rain-
fall–runoff Transformation- Energy Water Balance model (FEST-EWB)
(Mancini, 1990; Corbari et al., 2011), which is based on the energy and
water balance, will be firstly calibrated using LST data from LANDSAT
8. The model will then be applied in real time using meteorological
forecasts from WRF (Weather Research and Forecasting–Advanced
Research WRF) meteorological model based on 8 ensemble members
with 72 h as the forecast horizon provided by Epson Meteo Centre

(EMC)) model for soil moisture forecasts.
This approach is experimented in an asparagus field in Southern

Italy irrigated with drip irrigation where ground measurements of eddy
covariance and soil moisture are collected for model calibration and
validation. The period of analysis is from November 2013 to September
2014.

2. Materials and methods

2.1. Hydrological model and the calibration procedure based on LST

FEST-EWB is a distributed hydrological energy water balance model
that computes all the main processes of the hydrological cycle in each
cell of the domain. A detailed description of the different updates of
FEST-EWB model can be found starting from (Mancini, 1990; Corbari
et al., 2011, 2013).

FEST-EWB model is based on the system of energy-water balances
equations which are written in terms of the LST, so that this model
internal variable can be directly compared with remotely sensed LST.
The model solves the system between energy and mass balance at the
ground surface:

⎧
⎨⎩

= + − − −d SM
dt

P I R PE ET
dz (1)

− − − ={R G H LE dS
dtn (2)

where: SM (-) is the soil water content, P (mm) is the precipitation rate
plus the irrigation rate I (mm), R (mm) is the runoff flux, PE (mm) is the
drainage flux, ET (mm) is the evapotranspiration, dz (mm) is the soil
depth, Rn (Wm−2) is the net radiation, G (Wm−2) is the soil heat flux, H
(Wm−2) is the sensible heat flux, LE (Wm−2) is the latent heat flux, dS/
dt encloses the energy storage terms, such as the photosynthesis flux
and the crop and air enthalpy changes.

In particular ET is linked to the latent heat flux through the latent
heat of vaporization (λ) and the water density (ρw):
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= − ⎡
⎣⎢ +

+
−
+

⎤
⎦⎥

LE
ρ c

γ
e e

f
r r

f
r r

( * )
( )

1
( )

a p
a

v

a c

v

abs s (4)

where ρa is the air density, γ is the psychometric constant (Pa°C−1), fv is
the vegetation fraction and cp is the specific heat of humid air (MJ kg-1

K−1). The saturation vapour pressure (e*) is computed as function of
RET while the vapour pressure (ea) as a function of air temperature. The
canopy resistance (rc) is expressed following (Jarvis, 1976), while the
soil resistance (rs) according to Sun (1982). The aerodynamic resistance
(ra for vegetation and rabs for bare soil) is computed using the model
from Thom (1975).

The energy budget equation is then solved explicitly looking for the
representative equilibrium temperature (RET) which is the land surface
temperature that closes the energy balance of each pixel. In fact, it
includes the heterogeneity of pixel surface, the multi-source emissivity
of land surface temperature and the link with the aerodynamic re-
sistance in the turbulent fluxes estimate. So following the proposed
approach, LST can be seen as a proxy of soil moisture and thus a key
variable in the fluxes estimates.

In particular, the innovative proposed calibration method of the soil
hydraulic and vegetation parameters is based on the minimization of
the differences, pixel by pixel, between the model RET and the remotely
observed LST with a trial and error approach (Corbari and Mancini,
2014; Corbari et al., 2015). This new method improves the actual ca-
libration of distributed hydrologic models which is generally performed
by comparison between simulated and available observed discharges at
limited river cross sections or few local soil moisture measurements.
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This new approach bridges the gap between internal variables of the
process modelling (e.g. SM, ET, LST) and external variables (e.g. dis-
charge measurements), problem already highlighted by Dooge (1986)
thirty years ago, when he encouraged the hydrologic community to
analyse the behaviour of the model internal state variables in addition
to the traditional input-output methods.

The model uses as inputs: 1) meteorological variables (historical
time series or forecasted data), such as air temperature, incoming
shortwave radiation, wind velocity, precipitation, air humidity; 2) soil
parameters in distributed maps, such as the saturated hydraulic con-
ductivity, the field capacity (fc) and wilting point (wp), Brooks-Corey
index, soil depth, residual and saturated soil moisture; 3) vegetation
parameters, such as leaf area index (LAI), vegetation fraction (fv) and
albedo from remote sensing and also vegetation height (hv) and
minimum stomatal resistance (rsmin); 4) the digital elevation model
(DEM) and land use/cover map. Observed ground meteorological data
are interpolated to a regular grid using the inverse distance weighting
technique.

Irrigation is applied in the model as water applied to the surface
contributing to the water budget changes.

FEST-EWB model is run at a spatial resolution of 10m and with a
time step of an hour.

2.2. Irrigation water needs forecast procedure

Irrigation water needs forecast are quantified from the coupled
system between the hydrological model fed with satellite data and the
meteorological forecasts providing real-time and forecasted soil
moisture behavior to trigger irrigation.

The decision criteria in order to plan whether or not to irrigate is
based on the comparison between the forecasted soil moisture and a
water stress threshold (θcrit) below of which the crop begins to suffer for
lack of water. This criterion will determine the correct timing of irri-
gation and the amount of water. In this paper, the reanalysis of three
events is performed simulating a real-time simulation.

The whole procedure is as follow: 1) the hydrological model is run
each day with meteorological forecasts for the forecast horizon of 72 h,
using as initial conditions: i) the soil water content obtained from FEST-
EWB simulation run with observed data of the previous days and, ii) the
vegetation and albedo parameters from LANDSAT data; 2) the fore-
casted soil moisture is compared in each pixel at every time step with
the stress threshold in order to trigger irrigation; 3) every day steps 1)
and 2) are repeated.

The implemented procedure follows the PREGI system applied by
Ceppi et al. (2014), which is here improved with the use of remote

sensing data for the definition of the hydrological model initial condi-
tion.

This stress threshold, below which vegetation is stressed and irri-
gation is need, is a function of the different types of soils and crops, but
also of the vegetation growth stage and of the climatology of the area of
study. The implemented procedure relies on a θcrit which is computed
following the methodology of Allen et al. (1998) in the FAO-56 paper,
based on:

RAW=p TAW (5)

where RAW is the readily available water, defined as field capacity
minus stress threshold; TAW is the total available water, defined as field
capacity minus wilting point; and p is a reduction coefficient depending
on the crop and climatic parameters. For asparagus, p is defined by
Allen et al. (1998) to be equal to 0.45, which it is then corrected for
climatic data to 0.65 following Allen et al. (1998).

Then, θcrit for the specific analyzed field, considering the soil
characteristics, is computed to be equal to 0.27 from:

θcrit = field capacity - p · (field capacity−wilting point) (6)

A surplus threshold can also be identified equal to the field capacity
of the soil.

2.3. Case study area

The area of analysis is an extensive farm located in Southern Italy
near Foggia, in a plain area in Tavoliere delle Puglie (Fig. 1). The farm
is dedicated to fresh vegetables production for department store dis-
tribution. Asparagus, Swiss Chard, Leaf Beet, Savoy Cabbage, Fennel,
Spinach among others are cultivated between September and April
avoiding the hottest season. In fact, this area has a Mediterranean cli-
mate with very hot and dry summer, and temperate winter; so that the
area is characterized by water scarcity. Water is withdrawn from the
deep aquifer with wells and collected in reservoirs increasing the costs
of water. Irrigation is usually performed using drip or sprinkler methods
and is only on demand.

The selected field is cultivated with green asparagus with an areal
extension of about 13 ha. The asparagus, which is a plurennial culti-
vation, in the Puglia region is characterized by the harvesting from
March to June, developing shrubberies for most of the year and cutting
of the shrubberies in January. The period of analysis is from 30
November 2013 to September 2014.

The irrigation is performed with drip irrigation, in order to mini-
mize the water losses. During the analyzed period, three irrigations
have been performed: 10 June, 29 July and 24 August 2014. The

Fig. 1. Location of the area of study in Southern Italy: eddy covariance station installed in the field, drip irrigation system and field dimensions.
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amount of water for each irrigation is fixed at 50mm.

2.3.1. Soil hydraulic properties
Soil pedologic characteristics are available from the granulometric

analysis done on soil samples taken from the field at 5, 10 and 30 cm.
The soil contains 58% clay, 25.1% sand and 16.9% loam and can be
classified as clay soil based on soil texture triangle (Saxton et al., 1986).
From this data, hydraulic soil parameters required for the application of
the hydrological model have been derived using the well-known data-
base of Rawls and Brakensiek (1985). The mean value of the clay class
is then used as first tentative before the calibration: saturated hydraulic
conductivity= 1.1 10−7 m s-1, the field capacity= 0.396, wilting
point= 0.272, Brooks-Corey index= 0.165, residual and saturated soil
moisture (0.09 and 0.48 respectively).

2.4. Ground eddy covariance data

The asparagus field is monitored with a complete eddy covariance
station (Fig. 1). This is equipped with different sensors to measure the
principal mass and energy fluxes, such as net radiation, evapo-
transpiration, sensible and ground heat fluxes, soil temperature, land
surface temperature and soil moisture; and also to measure the prin-
cipal meteorological forcings (air temperature and relative humidity,
wind velocity, precipitation and incoming shortwave radiation). The
station is equipped with: a coupled 3D sonic anemometer and gas
analyzer (Campbell Scientific's IRGASON) at 3m height, a net radio-
meter (CNR1 by Kipp and Zonen) at 3m height, a thermo-hygrometer
and pluviometer; while in the soil a Time domain Reflectomer probe,
two thermocouples and a heat flux plate (HFP01 by Hukseflux).

The eddy covariance station has been installed on 7 November 2013
and the analyzed data are available till 2 September 2014. Data are
stored at high frequency and are available, after all the post-processing
procedure, at 30min.

Turbulent energy fluxes have been corrected applying the whole
range of correction procedures which are now well assessed in the
scientific community (Foken, 2008). The data are analyzed with the
PEC software (Polimi Eddy Covariance) (Corbari et al., 2012) which
encompasses all the instrumental and physical corrections. Corbari
et al. (2012), compared corrected fluxes at high frequency data and at
30min average data showing that low errors can be obtained with
mean absolute daily difference equal to 6.1W m−2 for H and 13.2W
m−2 for LE.

Due to the field dimension (Fig. 1), the footprint analysis of the
turbulent fluxes is needed to correctly consider the fluxes measured
only in the analyzed field. The footprint of a turbulent flux is the source
area of the measured vertical flux and it can be estimated with different
theoretical models. In this study, a two-dimensional footprint model is

used (Detto et al., 2006) based on the original one-dimensional model
of Hsieh et al. (2000).

After the whole correction procedure with PEC and the footprint
analysis, about the 43% of the data have been discarded (Foken, 2008).

The energy budget closure has also been analyzed and an angular
coefficient ((Rn-G) = m (H+LE)) of 0.97 with a R2 of 0.78 is obtained.
A general lack of energy balance closure in eddy covariance measure-
ments is a well-known problem in literature, with values of the closure
ranging between 0.6 and 0.8 (Foken, 2008).

For the calibration / validation of the energy water balance model,
which is intrinsically based on the conservation of energy, the observed
energy budget closure should be kept. So, following the procedure de-
veloped by Twine et al. (2000), latent and sensible heat fluxes, which
usually underestimate the available energy when measured with the
eddy covariance technique, are corrected respecting the Bowen-ratio
method to reach the energy balance closure.

Meteorological forcings for the FEST-EWB model are also taken
from the station in terms of air temperature and relative humidity, wind
velocity, precipitation and incoming shortwave radiation.

2.5. Satellite landsat 7 and landsat 8 data

NASA images from the Landsat 8 Operational Land Imager (OLI)
and Thermal Infrared Sensor (TIRS) and Landsat 7 are used to retrieved
land surface temperature as well vegetation parameters and albedo. A
spatial resolution of 30m is available for the visible bands while 100m
in the thermal infrared ones; while the temporal resolution is of 16
days. The data in the visible range of the electromagnetic spectrum are
atmospherically corrected using the FLASH method (Matthew et al.,
2000), while thermal data with the method developed by Barsi et al.
(2005) (http://atmcorr.gsfc.nasa.gov/). The images are selected during
the analyzed period from December 2013 to the end of August 2014
considering only clear sky days. The dates are reported in Table 1.

The vegetation information from satellite data, needed as input
parameters to the hydrological model, are the vegetation fraction, leaf
area index and albedo.

LAI and fv are computed following the algorithms developed by
Richter and Timmermans (2009), which estimates LAI as a function of
NDVI:

= −
−( )( )

LAI
log 1

0.75

NDVI
0.95

(7)

and the vegetation fraction based on LAI:

= − −f LAI1 exp( 0.5 )v (8)

NDVI maps have been retrieved from the ratio between NIR-RED
over NIR+RED, where RED is the spectral reflectance measured in the
red region of the electromagnetic spectrum and NIR in the near-infrared
region.

Albedo is computed following Liang (2000) for Landsat 7 images
and Ke et al. (2016) for Landsat 8 images.

Land surface temperature, which is used for FEST-EWB model ca-
libration, is retrieved from Landsat 7 and 8 thermal infrared bands,
using a single channel algorithm developed by Jiménez-Muñoz et al.
(2009).

2.6. Meteorological forecasts

Meteorological forecasts are obtained from the Weather Research
and Forecasting–Advanced Research (ARW-WRF) meteorological model
of NCAR (National Center of Atmospheric Research), and are provided
by Epson Meteo Centre (Italy).

The model provides all the meteorological forcings needed to the
hydrological model: rainfall, air temperature and humidity at 2m, wind
speed at 10m and incoming shortwave radiation.

Table 1
Satellite images.

Satellite date Hour (UTC+1)

L8 20 December 2013 10:43
L7 7 February 2014 10:32
L7 18 March 2014 10:38
L8 19 March 2014 10:35
L7 2 April 2014 10:32
L7 5 May 2014 10:38
L8 6 May 2014 10:34
L8 22 May 2014 10:34
L7 30 May 2014 10:32
L8 7 June 2014 10:34
L7 22 June 2014 10:38
L7 8 July 2014 10:38
L8 9 July 2014 10:35
L8 16 July 2014 10:41
L7 17 July 2014 10:32
L8 10 August 2014 10:35
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The spatial resolution is of 0.03° covering the whole area around
Foggia city. This high spatial resolution is obtained through a nesting:
initial and boundary conditions are provided by the global Global
Forecast System (GFS) over the whole italian area with a spatial re-
solution of 12 km. Inside this, a domain area of the Southern Italy at
3 km of spatial resolution with 37 vertical levels. The model version of
this study produces a probabilistic forecast with 8 ensembles. When
running operatively, the simulations are initialized every day at 00:00
UTC and the forecast horizon is equal to 72 h. The meteorological
forecasts are then at hourly scale.

The considered events coincide with the three irrigations performed
during the 2014 season. For the June event the meteorological model is
initialized on 7, 8, 9 and 10 June; for the July event on 26, 27, 28 and
29 July; for the August event on 21, 22, 23 and 24 August 2014.

2.7. Statistical indexes

Different statistical indexes are computed to evaluate the goodness
of hydrological model estimates in terms of RET, soil moisture and
energy fluxes. So the absolute mean bias error (AMBE) and the root
mean square error (RMSE) are computed as follows:

=
∑ −=AMBE

X X
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| |i
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1
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where Xsim
ith is the ith simulated variable by FEST-EWB, Xobs

ith is the
ith measured variable, n the sample size, and Xobs the average observed
variable. The simulated and observed variables are always relative to
the same variable, so that if RET, for example, is computed for LST,
Xsim, Xobs and Xobs are all land surface temperature values.

The absolute (εass) and relative (εrel) errors of forecasted meteor-
ological and hydrological outputs are computed considering the en-
sembles, as follow:
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where x is the simulated variable and y the observed one, μ is the mean
operator, n is the ensembles number.

3. Results

3.1. Satellite data retrieval and validation

Vegetation parameters are retrieved from Landsat 7 and 8 for the
considered period using the available non cloudy images. In Fig. 2(a),
the seasonal dynamic of vegetation is reported showing the variability
of LAI, NDVI and vegetation fraction. The mean value of the analyzed
field is reported. Unfortunately, no ground data of these parameters
have been collected to validate satellite data. However, at least, the
periods of bare soil and vegetation are correctly reproduced, where
from January 2014 till the end of March 2016 there is no vegetation at
all, while during April 2016 till the half of May only the asparagus is
present, and from the end of May to September the asparagus shrubbery
are present.

The accuracy of remote sensing albedo is evaluated against the
ground data measured in continuous at the eddy covariance station by
the net radiometer. In Fig. 2(b), the mean satellite albedo value of the
field is reported showing a good correspondence with ground mea-
surements. An AMBE of 0.014 and a RMSE of 0.02 are obtained con-
firming the good estimates from satellite data.

The reliability of satellite LST estimates is analyzed by comparison
with ground measurements performed at the eddy covariance station.
In Fig. 3, the mean areal estimates from Landsat 7 and Landsat 8 are
reported leading globally to an AMBE value of 1.85 °C and a RMSE of
2.5 °C. If the linear regression between ground (y) and satellite data (x)
is computed, an angular coefficient of 1.01 is obtained with R2 of 0.9.

3.2. Hydrological model calibration and validation

The calibration of soil hydraulic and vegetation parameters is per-
formed through the comparison between RET estimates from FEST-
EWB run in different parameters configurations and LST from Landsat
data. With a trial and error approach, the parameters are modified from
the original values minimizing the difference pixel by pixel between
observed LST and simulated RET. The parameters are modified in the
physical ranges defined by Rawls and Brakensiek (1985). The FEST-
EWB configuration is simplified without computing surface and sub-
surface discharges and without snow dynamics which are considered
not relevant for the area of interest.

The calibration/validation period is from 30 November 2013 to
September 2014. The model is initialized on 30 November 2013 with
the observed ground SM.

The differences between LST from Landsat and RET for each date
are computed iteratively during the calibration process. FEST-EWB with
the original soil / vegetation parameters before calibration generally
overestimates observed satellite values. In Fig. 4(a) the field areal mean
value of FEST-EWB land surface temperature estimates and satellite LST
are reported. RMSE is equal to 5.12 °C and AMBE to 4.32 °C. After the
calibration procedure, a reasonable agreement between RET and
Landsat LST is reached with RMSE of 1.8 °C and AMBE of 1.9 °C.

After the calibration procedure the soil parameters are: saturated
hydraulic conductivity= 1.8 10−7 m s-1, the field capacity= 0.396,
wilting point= 0.272, residual and saturated soil moisture (0.09 and
0.48 respectively). Controllare congruenza

After the calibration process, RET estimates from FEST-EWB are
compared with the continuous in time LST ground data and a RMSE of
2.5 °C and AMBE of 2.1 °C are obtained. In Fig. 4(b), the scatterplot
between calibrated RET and ground LST for the whole period is re-
ported showing the good agreement with R2 of 0.96 and the angular
coefficient of the linear regression forced through the origin between
RET (x) and LST from the station (y) equal to 0.96. These results in-
dicate the general good ability of the model in reproducing the seasonal
variability and the daily cycle of land surface temperature, even though
with higher errors than against satellite data.

FEST-EWB model is then validated for the same period by com-
paring the simulated energy and water fluxes (LE, SM, H, Rn) with the
observed ones. In fact, changes in soil hydraulic and vegetation para-
meters lead to modifications not only in the representative equilibrium
temperature but also in its interconnected variables, such as soil
moisture and evapotranspiration. The measured fluxes are compared
with the simulated ones before and after the calibration process
showing the good accuracy reached at the end of the procedure. Soil
moisture is correctly reproduced with a RMSE of 0.04 (Fig. 5(a)).
However, SM observations have a dramatically strong decrease around
the 9 of June due to a prolonged drought period which caused cracks in
the soil, which are not modeled by FEST-EWB. Fig. 5(b) shows the
model performances in terms of net radiation. The agreement is good,
with the coefficient of determination being 0.86, the angular coefficient
0.95, the RMSE 20.9W m−2. Good reproductions are obtained also for
the surface sensible and latent heat fluxes, as shown in Fig. 5(c) and (d).
The agreement is in confirmed for LE by a coefficient of determination
equal to 0.85 and a RMSE of 33.3W m−2, while for H with R2 of 0.76
and RMSE of 32.7W m−2.
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3.3. Irrigation water needs forecast

Following the procedure described in paragraph 2.2, forecasted ir-
rigation water needs are quantified from the coupled system between
the hydrological model fed with satellite data and the meteorological
forecasts for the reanalysis periods of the three selected irrigation
events.

In this paragraph the reliability of the meteorological model is at
first evaluated and then its impact on the hydrological simulations is
analyzed.

3.3.1. Meteorological forecasts reliability
The reliability of the meteorological forecasts is evaluated for all the

three considered periods of analysis by comparison with the observed
data in the studied area, computing εass and εrel from Eq. (11) and (12).

As example, Fig. 6 reports for the ensemble forecasts of 26, 27, 28
and 29 July 2014 for the next 72 h, the observed variable and the eight
modeled ensembles in terms of air temperature and humidity, incoming
shortwave radiation, precipitation and wind speed. A not consistent
performance for all the meteorological forecasts is achieved. In fact, air
temperature differences for the July analysis have a mean value of
2.4 °C which is a quite restrained error in terms of meteorological
forecast. The spread of the eight ensembles is equal to 2.3 °C. However,
during the central diurnal hours of the day, the errors are considerably
higher reaching a mean value of 3 °C. This discrepancy can have a
strong impact on latent heat flux and soil moisture estimates from FEST-
EWB model. Going more in the details of the comparison between ob-
served and forecasted air temperature considering the different forecast
horizons, the forecast reliability doesn’t tend to diminish by increasing
the forecast horizon as usually expected (17). In fact, the errors com-
puted for the first days of forecast for all the July dates, εass is equal to
2.7 °C, decreasing to 2.4 °C for the second days of forecast and to 2.1 °C
for the third days. Generally, for the whole analyzed periods, air tem-
perature behaves similarly to the afore described July dates analyses,
even with lower mean differences between forecasted and observed Ta
equal to 1.2 °C for June and to 1.7 °C for August but with still higher
discrepancies in the central diurnal hours of the day are obtained with
mean error values around 3.5 °C.

The incoming shortwave radiation errors (Fig. 6) during July follow
the behavior of Ta with a mean εass around 103W m-2 but with peaks

Fig. 2. Areal mean of the vegetation parameters (LAI, vegetation fraction and NDVI) (a) and albedo (b) retrieved from LANDSAT 8 / 7 for the satellite acquisition
dates in the analyzed period over the asparagus field.

Fig. 3. Comparison between the areal mean of LST retrieved from LANDSAT 8 /
7 and ground data for the satellite acquisition dates in the analyzed period over
the asparagus field.

Fig. 4. (a) Comparison between calibrated and not calibrated RET from FEST-EWB and LST from Landsat and ground observation for the satellite acquisition dates,
(b) scatterplot between calibrated RET and ground LST for the whole analyzed period.
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during the central hours of the days reaching 170W m-2. The forecast
time horizon seems to not affect the forecast reliability with εass of 96W
m-2, 100W m-2, 88W m-2, respectively for the first, second and third
days of forecast. Particularly high values are found due to local clouds

conditions which are difficulty modeled at the spatial resolution of a
meteorological model.

The air relative humidity has an almost constant mean error over
the different days of forecast equal to 0.15%. The wind velocity has εass

Fig. 5. Comparison between energy fluxes and soil moisture from FEST-EWB before and after the calibration and ground measurements: (a) soil moisture, (b) net
radiation, c) latent heat flux, (d) sensible heat flux, for the whole analyzed period.

Fig. 6. Comparison between observed ground meteorological forcings and ensemble forecasts for the event from 26 to 31 July 2014: (a) air temperature, (b) relative
humidity, (c) incoming shortwave radiation, (d) wind speed, (e) precipitation. The forecast emissions of 26, 27, 28 and 29 July are shown.
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equal to 1.4m s-1, even though with a high variance of around 0.9m s-
1. RH and w seems to be not affected by the daily diurnal cycle.

Precipitation occurred only during the analyzed days during July
and August, with a mean εass equal to 0.21 and 0.4mm, respectively.

All the statistical errors are summarized in Table.2 considering the
events of June, July and August. The three periods are consistent with
similar behaviors. The agreement is generally good for Ta with a mean
εrel of 6.9%, while Rsin, RH and w liable to be inconsistent with ob-
servations with a mean εrel of respectively 24%, 66.7% and 49.6%.
Results concerning precipitation are not considered reliable due to
substantial no precipitation during the three analyzed events.

3.3.2. Soil moisture forecast
The calibrated hydrological model is then run with meteorological

forecasts for the three events of June, July and August to produce en-
sembles forecasts of soil moisture, latent and sensible heat fluxes.

As example, in Fig. 7, the ensemble forecasts initialized on 26, 27,
28 and 29 July 2014 for the next 72 h are reported for the eight FEST-
EWB modeled ensembles in terms of soil moisture, LE and H and the
same variables simulated by FEST-EWB using observed meteorological
forcings. This comparison allows computing only the effect of the me-
teorological errors on the hydrological forecasts (without the hydro-
logical model uncertainties) and how they are propagated into the

models chain. Latent and sensible heat fluxes estimates have mean
discrepancies of respectively 24.6W m−2 (εrel 42%) and 49W m−2 (εrel
77%). In particular, these errors are enhanced during the central
diurnal hours of the day, where the differences reach 100W m−2 for LE
and 150W m−2 for H. This behavior is related to the high errors of the
forecasted air temperature and incoming shortwave radiation during
the central diurnal hours. The spread of ensembles forecasts of H and LE
are 83 and 33W m-2 respectively, reaching values of 193 and 69W m-2
between 10 a.m. and 3 pm during the day. These hours of the day are
mostly affecting water stress.

LST behavior follows energy fluxes dynamics with εass equal to
6.2 °C and the ensemble spreads to 4.2 °C.

Soil moisture forecasts seems to be less affected by the meteor-
ological forecasts discrepancies of Ta and Rsin than the latent and
sensible heat fluxes, with a mean εrel over the whole analyzed July
period equal to 10.2% and εass to 0.03. SM is instead more and directly
affected by differences in precipitation forecasts, as shown in Fig. 7
where SM dynamic changes when precipitation occurs (Fig. 6). The
spread of SM ensembles forecasts is equal to 0.03.

All the statistical errors are summarized in Table 3 considering the
events of June, July and August. The three periods are consistent be-
tween each others with similar behaviors, showing high errors on LE
and H estimates and small errors on SM.

Table 2
Statistical errors of meteorological forecasts.

εass Ta (°C) (εrel (%)) εass Rsin (W m-2) (εrel (%)) εass RH (-) (εrel (%)) εass w (m s-1) (εrel (%)) εass P (mm) (εrel (%))

7 – 12 June 2014 All the period 1.18 (4.7) 58.5 (18) 0.09 (20.7) 1.2 (33) 0 (-)
I days of forecast 1.21 57.1 0.09 0.94 0
II days of forecast 1.24 59.3 0.09 1.13 0
III days of forecast 1.11 62.1 0.08 1.36 0

26 - 31 July 2014 All the period 2.37 (10.1) 103 (35) 0.15 (23) 1.4 (58) 0.21 (7)
I days of forecast 2.7 132.3 0.15 1.37 0.27
II days of forecast 2.46 96.3 0.15 1.44 0.25
III days of forecast 2.06 88.3 0.14 1.41 0.12

21 - 26 August 2014 All the period 1.51 (5.9) 55.3 (20) 0.12 (23) 1.7 (58) 0.04 (2)
I days of forecast 1.8 59.3 0.12 1.76 0.07
II days of forecast 1.46 58.1 0.12 1.62 0.03
III days of forecast 1.34 51.5 0.12 1.66 0.02

Fig. 7. Comparison between SM, LE, H and RET simulated from FEST-EWB run with observed meteorological forcings and with the ensemble forecasts for the event
from 26 to 31 July 2014: (a) soil moisture, (b) latent heat flux, (c) sensible heat flux, (d) land surface temperature. The forecast emissions of 26, 27, 28 and 29 July
are shown.
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Into the hydrological model, as expected, due to its high non line-
arity, the meteorological forcings errors are not linearly propagated. In
fact, the energy fluxes and LST estimates are strongly affected by the
differences between meteorological forecasts and observations due to
their instantaneous response to external forcings. Instead, soil moisture,
which has a slow dynamic especially during dry periods, doesn’t have a
daily cycle resulting less affected by meteorological forcings variability.
This is particularly true over short periods of analysis, as in this paper
where only seven days are considered. An immediate effect on SM is
visible only when precipitation is forecasted.

3.4. Irrigation scheduling

FEST-EWB model is then run for the three reanalysis periods in the
real time configuration, in order to understand the reliability of the
whole developed methodology for water savings. Hence, to demon-
strate the benefits of the methodology based on coupled hydro-

meteorological system, two types of simulation are compared: 1) the
farmer follows the advice provided by the satellite-hydro-meteor-
ological forecasts knowing with 72 h in advance if the stress threshold is
overpassed and the irrigation is needed (e.g. smart irrigation), and 2)
the farmer performs the irrigation based on its own experience (e.g.
simulation with observed meteorological and irrigation data).

Fig. 8 shows how the soil moisture conditions would have evolved
following or not the meteo-hydrological forecasts between 7–12 June
2014. In particular, the forecasted soil moistures with the two types of
irrigation are reported as the mean of the 8 ensembles, together with
the stress and surplus thresholds and the wilting point. The FEST-EWB
simulation, under the assumption that no irrigation occurred, is in-
cluded as well. According to the forecast of the 7 June shown in
Fig. 8(a), SM goes below the irrigation threshold at the beginning of 9
June, hence the smart irrigation is triggered. The forecasts of the fol-
lowing days confirm the need of the irrigation since soil moisture
otherwise would have been continuously lying below the stress
threshold since no significant rainfall was predicted. The meteo-hy-
drological system performed well without consequent high risk of
compromising the crops.

In Fig. 9, the forecasted ensembles mean of SM for the event of
26–29 July is shown together with the ensembles mean of the pre-
cipitation forecast. SM initial condition on 26 July is slightly over the
irrigation threshold, while the SM simulated with observed meteor-
ological data slightly falls below the threshold on 27 July. The soil
moisture forecasts issued on 26, 27 and 28 July confirm a SM constantly
above the stress threshold due to a forecasted rainfall. Only with the
simulation initialized on 29 July, SM falls below the stress threshold
and a smart irrigation is needed. In this case, according to the observed

Table 3
Statistical errors of SM, LE and H forecasts from FEST-EWB.

εass SM (-)
(εrel (%))

εass LE (W m-2)
(εrel (%))

εass H (-) (εrel
(%))

7 – 12 June 2014 All the
period

0.03 (9.7) 23.2 (25.2) 50.4 (73.4)

26 - 31 July 2014 All the
period

0.03 (10) 24.9 (41) 50 (77.2)

21 - 26 August
2014

All the
period

0.02 (8.1) 50.4 (207) 55.5 (99.8)

Fig. 8. Soil moisture forecasts from FEST-EWB issued on: (a) 7, (b) 8, (c) 9 and (d) 10 June 2014 with and without irrigation. Soil moisture simulated with observed
meteorological forcings is also shown along with wilting point, field capacity and stress threshold. Observed and forecasted precipitation are reported, as well as
observed irrigation and the smart irrigation.
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SM values, the irrigation really occurred on 29 July and it shouldn’t
have been avoided, as also confirm by the meteo-hydrological system
which performed correctly. Hence, the real irrigation and the smart one
coincide.

In Fig. 10, soil moisture dynamic is reported either following or not
the meteo-hydrological forecasts between 22–27 August 2014. Due to
the almost absence of rainfall, simulated SM with forecasted and ob-
served meteorological data are similar and are falling below the stress
threshold on 24 August. The irrigation has been really performed on
this date. Hence, the system advice was correct.

These comparisons allowed computing the performances of the
whole implemented system. It is interesting to note that the three ir-
rigations that actually took place never raised the soil water content
above the surplus threshold, showing already a general parsimonious
water management by the farmer.

4. Discussion and conclusion

The paper discussed advances in coupling satellite driven soil water
balance model and meteorological forecast as support for smart farming
and in particular efficient irrigation for an operative farm in the South
of Italy where semi-arid climatic conditions hold from November 2013
to September 2014.

The results show that operative applications of parsimonious irri-
gation are feasible by integrating satellite data for hydrological model
state update and parameterization and meteorological forecasts, im-
proving the management of the irrigation scheduling.

In particular, the reliability of the developed tool has been discussed
analyzing two main issues: the calibration of the FEST-EWB energy

water balance model with satellite or near sensing land surface tem-
peratures; the accuracy of meteorological forecast and their effect on
the soil moisture forecast.

Remote sensing data of LAI, fractional cover, albedo and land sur-
face temperature have been retrieved from LANDSAT 8 with good ac-
curacy respect to ground data. The results showed that FEST-EWB soil
surface parameters calibration should be done with satellite LST in soil
controlled ET fluxes, if the hydrological model has LST as principal
state variable. After the calibration procedure, RMSE between RET and
LANDSAT LST is equal to 1.8 °C and AMBE to 1.9 °C. These errors are
acceptable according to literature (Jia et al., 2003; Cammalleri et al.,
2012). The accuracy of remotely sensed LST should be also considered
due to the retrieval algorithm, to the definition of satellite LST over
heterogeneous area and to the atmospheric correction.

Then, the paper showed that reliable soil moisture forecasts can be
obtained with a mean relative error of less than 10%, even though the
accuracy of the forecasted meteorological variables is lower especially
for air temperature and incoming shortwave radiation whose relative
error can reach 30%. This may be related to the high non linearity of
the hydrological model processes that allow that the meteorological
forcings errors are not linearly propagated. This is particularly true for
soil moisture, which has a slow dynamic and doesn’t have a daily cycle.
An immediate effect on SM is only visible when precipitation is fore-
casted. Instead, energy fluxes and LST estimates are strongly affected by
the differences between meteorological forecasts and observation due
to their instantaneous response to external forcings. Moreover, the
hydrological model forced by the WRF forecasts performs well when
there are essentially no precipitation events (June and August cases).
That is, the calibration of vegetation, albedo, and LST improves the

Fig. 9. Soil moisture forecasts from FEST-EWB issued on (a) 26, (b) 27, (c) 28 and (d) 29 July 2014 with and without irrigation. Soil moisture simulated with
observed meteorological forcings is also shown along with wilting point, field capacity and stress threshold. Observed and forecasted precipitation are reported, as
well as observed irrigation and the smart irrigation.
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initial conditions and the representation of the water and energy ex-
changes during dry down periods so that the modeling system performs
well during these times. However, during periods that feature rain
events (July), where soil moisture is controlled primarily by the loca-
tion and timing of the rain events, the errors in the WRF precipitation
forecasts make the system less reliable.

SM forecast was reasonably satisfactory and the results showed how
combing meteorological and hydrological model that were correctly
calibrated, it was possible to get reliable SM forecasts for up to 3 days,
and this helped farmers to properly decide irrigation scheduling.
However, the definition of stress threshold that regulates the irrigation
timing should be probably defined with confidence bands to consider
the uncertainty embedded in the whole modeling procedure.

Finally, the developed methodology has been shown for a single
field, but due to the intrinsic characteristic of the satellite data, hy-
drological model and meteorological forecast to be distributed in space,
this approach can be exported to larger areas from a single farm to
irrigation consortium for managing water resources.
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