
An application of the theory of

self-conjugate di↵erential forms

to the Dirichlet problem for Cimmino

system

Pietro Caramuta Alberto Cialdea

Abstract. In the present paper we find necessary and su�cient conditions for

the solvability of the Dirichlet problem for Cimmino system in simply and multiply

connected domains. Our results hinge on the theory of self-conjugate di↵erential

forms, which are non homogeneous di↵erential forms U such that dU = �U .

Introduction

In paper [6] Dragomir and Lanconelli studied the system (introduced by
Cimmino [4])
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where f

i

: ⌦ ⇢ R4 ! R(i = 0, . . . , 3). Setting u = f

0

+ if

1

and v = f

2

+ if

3

,

Cimmino system (1) can be written in the equivalent form

⇢

u

z

+ v

w

= 0
u

w

� v

z

= 0.

In [6] Dragomir and Lanconelli obtained, among many other results, a nec-
essary condition for the resolubility of the Dirichlet problem for Cimmino
system:
Let ⌦ ⇢ C2 be a bounded domain on which Green’s formula holds and
⌃ its boundary; let f, g 2 L

2(⌦), �,  2 L

2(⌃). If there is a solution
u, v 2 C

1(⌦) \ C

0(⌦) to the boundary value problem

⇢

u

z

+ v

w

= f, u

w

� v

z

= g in ⌦
u = � v =  on ⌃,

(2)
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then (f, g,�, ) satisfies the compatibility relations

Re

⇢

2

Z

⌦

(fh+ gk)dV �
Z

⌃

�

�
⇥

(n
1

+ in

2

)h+ (n
3

+ in

4

)k
⇤

+ [(n
3

+ in

4

)h� (n
1

+ in

2

)k]
 

d�

�

= 0 (3)

for any solution h, k 2 C

1(⌦) \ C

0(⌦) to

h

z

+ k

w

= 0, h

w

� k

z

= 0 in ⌦,

where (n
1

, n

2

, n

3

, n

4

) is the outward unit normal on ⌃.
In the same paper the Authors address the problem whether conditions (3)
are also su�cient for the resolubility of the Dirichlet problem (2).
More recently, Abreu Blaya et al. [1] studied (1) by means of quaternionic
analysis. In particular, they found some di↵erent necessary and su�cient
conditions involving some particular integral operators. From this they de-
duce that (3) are also su�cient when f = g = 0 and ⌦ is a simply connected
domain.
In this paper we study the Dirichlet problem (2) with a di↵erent approach.
We obtain necessary and su�cient conditions for the resolubility of this
problem. In the case of a simply connected domain, we have proved that
there exists a solution of the Dirichlet problem (2) if, and only if, a certain
denumerable set of orthogonality conditions are satisfied. These conditions
involve the data f, g,� and  and a particular system of di↵erential forms
whose coe�cients are harmonic polynomials.
We also extend this result to multiply connected domains.
Our approach is based on the theory of self-conjugate di↵erential forms. Fol-
lowing [3], we say that a non homogeneous di↵erential form U =

P

n

k=0

u

k

,

u

k

being a k-form, is self-conjugate if it is solution of the equation dU = �U ,
where d and � are the di↵erential and the codi↵erential operators respec-
tively.
The paper is organized as follows.
In section 1, we collect some properties of self-conjugate di↵erential forms.
In section 2, we study the Dirichlet problem for the equation dU � �U = F

in simply and multiply connected domains. In particular we give necessary
and su�cient conditions for its solvability.
Hinging on these results, in the last section we find necessary and su�cient
conditions for the resolubility of the Dirichlet problem for the Cimmino sys-
tem. Finally, we remark that our results show that Dragomir-Lanconelli
conditions (3) are not only necessary but also su�cient for the solvability of
(2).

2



1 Definitions and preliminary results

In this section, we introduce some notations and recall some of the basic
facts about di↵erential forms. For more details see, e.g., [7], [8].
A di↵erential form of degree k, or briefly a k-form, on a domain T ⇢ Rn is
a function defined on T whose values are in the k-covectors space of Rn

. In
an admissible coordinate system (x

1

, . . . , x

n

), a k-form u is expressed as

u =
1

k!
u

s1,...,s
k

dx

s1 . . . dxs
k

,

where u

s1,...,s
k

are the components of a k-covector, i.e. the components of a
skew-symmetric covariant tensor.
By C

q

k

(T ) we denote the space of the k-forms whose coe�cients are conti-
nuously up to the order q in a coordinate system of class Cq+1 (and then in
every coordinate system of class Cq+1). Moreover the symbol Lp

k

stands for
the space of all k-forms whose coe�cients are L

p real valued functions.
If u 2 C

0

k

(T ), the adjoint of u is the following (n� k)-form

⇤u =
1

(n� k)!

1

k!
�

1,...,n

s1,...,s
k

,i1,...,i
n�k

u

s1,...,s
k

dx

i1 . . . dxi
n�k

.

We remark that ⇤ ⇤ u = (�1)k(n�k)

u.

If u 2 C

1

k

(T ), the di↵erential of u is the following (k + 1)-form

du =
1

k!

@

@x

j

u

s1,...,s
k

dx

j

dx

s1 . . . dxs
k

,

while the codi↵erential of u is the (k � 1)-form defined as follows

�u = (�1)n(k+1)+1 ⇤ d ⇤ u.

These operators are strictly related to the Laplacian; indeed if u 2 C

2

k

�(d� + �d)u = �u =
1

k!
�u

s1,...,s
k

dx

s1 . . . dxs
k

,

where �u

s1,...,s
k

=
n

X

h=1

@

2

@x

2

h

u

s1,...,s
k

.

These definitions can be immediately extended to non homogeneous di↵e-

rential forms; if U =
n

X

k=0

u

k

, where u

k

is a k-form, we set

dU =
n�1

X

k=0

du

k

, �U =
n

X

k=1

�u

k

, �U =
n

X

k=0

�u

k

.
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Since d

2 = 0 and �

2 = 0, we can write

� = (d� �)2. (4)

We denote by C

k(⌦) the space C

k

0

(⌦) � . . . � C

k

n

(⌦); similarly L

p(⌦) =
L

p

0

(⌦)� . . .�L

p

n

(⌦) is the space composed by k-forms whose coe�cients are
L

p real valued functions defined in ⌦.

Definition 1.1. Let ⌦ ⇢ Rn be an open set and U 2 C

1(⌦); we say that U
is self-conjugate if

dU = �U in ⌦

i.e.
�u

1

= 0, du

k�1

= �u

k+1

(k = 1, . . . , n� 1), du

n�1

= 0.

From (4) it follows that if U is self-conjugate then U is harmonic, i.e. all
the coe�cients of u

k

are harmonic functions.
Such forms generalize the concept of holomorphic functions of one complex
variable. Moreover solutions of the Moisil-Theodorescu system and Fueter
system can be considered as very particular case of self-conjugate di↵erential
forms in R3 and in R4 respectively. Other examples in Rn are given by
harmonic vectors, i.e. vectors (w

1

, . . . , w

n

) such that div(w
1

, . . . , w

n

) =
0, curl(w

1

, . . . , w

n

) = 0, and harmonic forms, i.e. k-form u

k

which are
solutions of du

k

= �u

k

= 0 (see [3]).
In a similar way we have a relation between self-conjugate di↵erential

forms and solutions of the Cimmino system. Indeed a straightforward cal-
culation shows that

Proposition 1.1. Let ⌦ ⇢ R4 be an open set and

U = u

0

+ u

2

+ u

4

,

where

u

0

= f

0

, u

2

= f

1

(dx
1

dx

2

+ dx

3

dx

4

)� f

2

(dx
1

dx

3

+ dx

4

dx

2

)

+ f

3

(dx
1

dx

4

+ dx

2

dx

3

), u

4

= �f

0

dx

1

dx

2

dx

3

dx

4

.

U is self-conjugate in ⌦ if and only if (f
0

, f

1

, f

2

, f

3

) is solution of the Cim-
mino system

8

>

>

>

>

<

>

>

>

>

:

f

0

x1
� f

1

x2
+ f

2

x3
� f

3

x4
= 0

f

0

x2
+ f

1

x1
� f

2

x4
� f

3

x3
= 0

f

0

x3
� f

1

x4
� f

2

x1
+ f

3

x2
= 0

f

0

x4
+ f

1

x3
+ f

2

x2
+ f

3

x1
= 0.

4



Let us consider now the double k-form introduced by Hodge

s

k

(x, y) =
X

j1<...<j

k

s(x� y)dx
j1 . . . dxj

k

dy

j1 . . . dyj
k

,

where

s(x� y) =

8

>

<

>

:

1

2⇡
log |x� y| if n = 2

� 1

(n� 2)!
n

|x� y|2�n if n > 2

(!
n

being the hypersurface measure of the unit sphere of Rn) is the funda-
mental solution of Laplace equation. It satisfies the following identities for
x 6= y :

d

y

s

k

(x, y) = �

x

s

k+1

(x, y), k = 0, . . . , n� 1, (5)

(see [5]) from which one can prove that

8

<

:

�

x

⇤
y

d

y

s

k

(x, y) = 0, �

x

d

y

s

k

(x, y) = 0,

d

x

�

y

s

k

(x, y) = 0, d

x

⇤
y

�

y

s

k

(x, y) = 0,
(6)

(

d

x

⇤
y

d

y

s

k

(x, y) = ��

x

⇤
y

�

y

s

k+2

(x, y),

d

x

d

y

s

k

(x, y) = ��

x

�

y

s

k+2

(x, y).
(7)

Moreover

⇤
x

d

x

s

k

(x, y) = (�1)nk+1 ⇤
y

d

y

s

n�1�k

(x, y), (8)

⇤
x

s

k

(x, y) = (�1)(n�k)k ⇤
y

s

n�k

(x, y). (9)

Let now ⌦ be a regular domain; this means that ⌦ is a bounded domain, its
boundary ⌃ is an orientable (n� 1)-dimensional C1 di↵erentiable manifold
and for any u 2 C

0

n�1

(⌦)\C1

n�1

(⌦) such that du 2 C

0

n

(⌦) the Stokes formula
holds

Z

⌦

du =

Z

+⌃

u.

This implies
Z

⌦

du ^ ⇤v =

Z

+⌃

u ^ ⇤v +
Z

⌦

�v ^ ⇤u 8u 2 C

1

k

(⌦), v 2 C

1

k+1

(⌦).
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If U =
n

X

k=0

u

k

2 C

0(⌦) \ C

1(⌦) is self-conjugate, we may write

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Z

⌦

dv ^ ⇤u
1

=

Z

+⌃

v ^ ⇤u
1

, 8v 2 C

1

0

(⌦)
Z

⌦

[dv ^ ⇤u
k+2

� �v ^ ⇤u
k

] =

Z

+⌃

[u
k

^ ⇤v + v ^ ⇤u
k+2

] ,

8v 2 C

1

k+1

(⌦), k = 0, . . . , n� 2

�
Z

⌦

�v ^ ⇤u
n�1

=

Z

+⌃

u

n�1

^ ⇤v , 8v 2 C

1

n

(⌦).

Theorem 1.1. If ⌦ is a regular domain and U 2 C

0(⌦)\C1(⌦) is such that
dU � �U = F 2 C

0(⌦), then the following Cauchy integral formula holds

�
Z

⌦

[d
y

s

k

(x, y) ^ ⇤F
k+1

(y)� �

y

s

k

(x, y) ^ ⇤F
k�1

(y)] +

+

Z

+⌃



u

k

(y) ^ ⇤
y

d

y

s

k

(x, y)� �

y

s

k

(x, y) ^ ⇤u
k

(y)+

+d

y

s

k

(x, y) ^ ⇤u
k+2

(y)� u

k�2

(y) ^ ⇤
y

�

y

s

k

(x, y)

�

=

=

⇢

u

k

(x) x 2 ⌦
0 x /2 ⌦ (10)

(k = 0, . . . , n), where U =
n

X

k=0

u

k

, F =
n

X

k=0

F

k

, u

k

⌘ 0, k = �2,�1, n +

1, n+ 2;F
k

⌘ 0, k = �1, n+ 1.

This theorem is proved in [3, Th. II] under the hypothesis F = 0. The
same arguments apply to prove the slightly more general Theorem 1.1.
We remark that in the case n = 2 formula (10) gives

� 1

2⇡

Z

⌦

d

⇣

log |z � ⇣| ^ ⇤F
1

(⇣)� 1

2⇡

Z

⌃



u(⇣)
@

@n

⇣

log |z � ⇣|

�v(⇣)
@

@s

⇣

log |z � ⇣|
�

ds

⇣

=

⇢

u(z) z 2 ⌦
0 z /2 ⌦,

1

2⇡

Z

⌦

� ⇤ d
⇣

log |z � ⇣| ^ ⇤F
1

(⇣)� 1

2⇡

Z

⌃



v(⇣)
@

@n

⇣

log |z � ⇣|

+u(⇣)
@

@s

⇣

log |z � ⇣|
�

ds

⇣

=

⇢

v(z) z 2 ⌦
0 z /2 ⌦.

Putting f(z) = u(z) + iv(z) we reobtain the classical formula

1

2⇡i

Z

+⌃

f(⇣)

⇣ � z

d⇣ � 1

⇡

Z

⌦

f

⇣

(⇣)

⇣ � z

d⇣ =

⇢

f(z) z 2 ⌦
0 z /2 ⌦.
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2 Main Result

In this section we want to study the boundary behaviour of forms such that
dU � �U = F . We say that U 2 L

1

loc

(⌦) is a weak solution of dU � �U =
F 2 L

1

loc

(⌦) if
Z

⌦

(d�� ��) ^ ⇤U = �
Z

⌦

F ^ ⇤� 8� 2 C̊

1(⌦). (11)

We denote L

1

0

(⌃)� . . .� L

1

n�1

(⌃) by L

1(⌃). Let us introduce the following
spaces:

U =

(

U 2 L

1(⌦) : 9 � =
n�1

X

k=0

�

k

,

e

� =
n�1

X

k=0

e

�

n�k

2 L

1(⌃), F =
n

X

k=0

F

k

2L

1(⌦)

such that
n�1

X

k=0

Z

⌦

dv

k

^ ⇤u
k+1

�
n

X

k=1

Z

⌦

�v

k

^ ⇤u
k�1

�
n

X

k=0

Z

⌦

v

k

^ ⇤F
k

=

=
n�1

X

k=0

Z

+⌃

v

k

^e�
k+1

+
n

X

k=1

Z

+⌃

�

k�1

^⇤v
k

for any V =
n

X

k=0

v

k

2 C

1(Rn)

)

,

(12)

V =

(

U 2 L

1(⌦) : 9 � =
n�1

X

k=0

�

k

,

e

� =
n�1

X

k=0

e

�

n�k

2 L

1(⌃) , F =
n

X

k=0

F

k

2L

1(⌦)

such that �
Z

⌦

[d
y

s

k

(x, y) ^ ⇤F
k+1

(y)� �

y

s

k

(x, y) ^ ⇤F
k�1

(y)] +

+

Z

+⌃



�

k

(y) ^ ⇤
y

d

y

s

k

(x, y)� �

y

s

k

(x, y) ^ ⇤�
k

(y) + d

y

s

k

(x, y) ^ ⇤�
k+2

(y)

��

k�2

(y) ^ ⇤
y

�

y

s

k

(x, y)

�

=

⇢

u

k

(x) x 2 ⌦
0 x /2 ⌦ k = 0, . . . , n

(�
k

⌘ 0, k = �2,�1; e�
k

⌘ 0, k = n+ 1, n+ 2;F
k

⌘ 0, k = �1, n+ 1)
o

.

Roughly speaking the space U is given by the L

1 di↵erential forms so-
lutions of dU � �U = F in ⌦ having L

1 traces in a weak sense (see (11)),
while V is the space of the L

1 forms in ⌦ such that there exist L1 forms on
⌃ for which Cauchy integral formula holds.

Actually these two spaces are equal.

Theorem 2.1. U = V

This theorem is proved in [3, Th. III] in the case F = 0. By a similar
argument, it is possible to prove the slightly more general Theorem 2.1.
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2.1 The Dirichlet problem for the equation dU � �U = F in a

simply connected domain

Lemma 2.1. There exists � > 0 such that if 0 < r < R, with r  �R, the
development

s(x� y) =
1
X

k=0

p

nk

X

h=1

Q

hk

(x)P
hk

(y)

|x|2k�2+n

holds uniformly for |y|  r and |x| � R, where P
hk

and Q

hk

are homogeneous
harmonic polynomials of degree k.

Proof. Fix ⇠ such that |⇠| = 1. Since s is analytic, there exists r

⇠

> 0 such
that

s(t� ⇠) =
1
X

k=0

X

|↵|=k

1

↵!
[D↵

s(⌫)]
⌫=�⇠

t

↵ (13)

uniformly for |t|  r

⇠

.

From the compactness of the unit sphere it is possible to find a finite cover
B

r

⇠

j

(⇠
j

), j = 1, . . . ,m, |⇠
j

| = 1. If we put � = min
j

r

⇠

j

we have that (13)

holds uniformly for |t|  �, for any ⇠ such that |⇠| = 1.
Fix 0 < r < R with r  �R. Observing that

1

|x� y|n�2

=
1

|x|n�2

�

�

�

�

x

|x| �
y

|x|

�

�

�

�

n�2

we have

s(x� y) = |x|2�n

1
X

k=0

X

|↵|=k

1

↵!
[D↵

s(⌫)]
⌫=� x

|x|

✓

y

|x|

◆

↵

,

uniformly for |y|  r, |x| � R.

Since D

↵

s is homogeneous of degree 2� n� |↵|, we have

[D↵

s(⌫)]
⌫=� x

|x|
= |x|n�2+|↵| [D↵

s(⌫)]
⌫=�x

,

and then

s(x� y) =
1
X

k=0

X

|↵|=k

1

↵!
[D↵

s(⌫)]
⌫=�x

y

↵ (14)

uniformly for |y|  r, |x| � R.

We have thus obtained, uniformly for |y|  r, |x| � R.

s(x� y) =
1
X

k=0

p

nk

X

h=1

R

hk

(x)P
hk

(y),
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whereR
1k

(x), . . . , R
p

nk

k

(x) form a basis for the functions [D↵

s(⌫)]
⌫=�x

(|↵| =
k) and P

hk

(y) are homogeneous polynomials of degree k.

Series (14) being a power series in y, we can derive it term by term with
respect to y, obtaining

0 = �
y

s(x� y) =
1
X

k=0

p

nk

X

h=1

R

hk

(x)�P

hk

(y).

Since
p

nk

X

h=1

R

hk

(x)�P

hk

(y)

are homogeneous polynomials of degree k � 2 with respect to y, it follows
that (see, e.g. [2], p.23)

p

nk

X

h=1

R

hk

(x)�P

hk

(y) = 0.

Linearly independence of R
1k

(x), . . . , R
p

nk

k

(x) implies �P

hk

(y) = 0. There-
fore P

hk

(y) are homogeneous harmonic polynomials of degree k.

Moreover, by induction, one can prove that

[D↵

s(⌫)]
⌫=�x

=
Q

↵

(x)

|x|n�2+2|↵| ,

where Q
↵

(x) are homogeneous polynomials of degree |↵|. The left-hand side
being harmonic, we find

�

✓

Q

↵

(x)

|x|n�2+2|↵|

◆

= 0.

It is well known that this implies �Q

↵

= 0. It follows that R

hk

(x) can be

written as
Q

hk

(x)

|x|n�2+2k

, where Q

hk

are homogeneous harmonic polynomials of

degree k. This completes the proof.

Let us denote by w

i1,...,i
k

h

the k�form w

h

dx

i1 . . . dxi
k

, where {w
h

} is a
complete system of homogeneous harmonic polynomials. Such a system can
be obtained by ordering in one sequence the polynomials:

|x|kY k

s

✓

x

|x|

◆

, k = 0, 1, 2, . . . ;

s = 1, . . . , p
nk

; p

nk

= (2k + n� 2)
(k + n� 3)!

(n� 2)!k!
,

where Y

k

1

(!), . . . , Y k

p

nk

(!) is a complete system of (surface) spherical har-
monics of degree k.
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Theorem 2.2. Let ⌦ be a regular domain such that Rn\⌦ is connected. Let

� =
n�1

X

k=0

�

k

,

e

� =
n�1

X

k=0

e

�

n�k

2 L

1(⌃) and F =
n

X

k=0

F

k

2 L

1(⌦) be given forms.

There exists a non homogeneous di↵erential form U 2 L

1(⌦) solution1 of

⇢

dU � �U = F in ⌦

U = � ⇤ U = e

� on ⌃
(15)

if and only if

(�1)(n�1)(k�1)+1

Z

⌦

h

⇤F
k+1

^ dw

i1,...,i
k

h

� ⇤F
k�1

^ �w

i1,...,i
k

h

i

� 1

2

⇢

Z

+⌃

h

�

k

^ ⇤dwi1,...,i
k

h

� �w

i1,...,i
k

h

^ e

�

k

+dw

i1,...,i
k

h

^ e

�

k+2

� �

k�2

^ ⇤�wi1,...,i
k

h

io

= 0 (16)

for any 1  i

1

< . . . < i

k

 n, h = 1, 2, . . . , k = 0, 1, . . . , n (�
k

⌘ 0, k =
�2,�1; e�

k

⌘ 0, k = n+ 1, n+ 2;F
k

⌘ 0, k = �1, n+ 1).

Proof. If there exists U solution of (15), then U 2 U . In particular, taking
V = ��w

i1,...,i
k

h

+dw

i1,...,i
k

h

in (12), we obtain (16). Conversely, let us suppose
that (16) are satisfied. Taking r > max

y2⌃
|y| in Lemma 2.1, the following

development

s(x� y) =
1
X

k=0

p

nk

X

h=1

Q

hk

(x)P
hk

(y)

|x|2k�2+n

(17)

holds uniformly for any y 2 ⌃ and for any x 2 Rn r B, B being a ball of

radius R � r

�

centered at 0. It follows from (16) that

(�1)(n�1)(k�1)+1

Z

⌦

[⇤F
k+1

(y) ^ d

y

[s(x� y)dy
i1 . . . dyi

k

]� ⇤F
k�1

(y) ^ �

y

[s(x� y)dy
i1 . . . dyi

k

]]

�1

2

⇢

Z

+⌃



�

k

(y) ^ ⇤
y

d

y

[s(x� y)dy
i1 . . . dyi

k

]� �

y

[s(x� y)dy
i1 . . . dyi

k

] ^ e

�

k

(y)

+d

y

[s(x� y)dy
i1 . . . dyi

k

] ^ e

�

k+2

(y)� �

k�2

(y) ^ ⇤
y

�

y

[s(x� y)dy
i1 . . . dyi

k

]

��

= 0,

for any x 2 Rn r B. Since Rn r ⌦ is connected this is still true for any

1
In the problem (15) the equation dU � �U = F is considered in the weak sense (11).
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x 2 Rn r ⌦. Then

(�1)(n�1)(k�1)+1

Z

⌦

[⇤F
k+1

(y) ^ d

y

s

k

(x, y)� ⇤F
k�1

(y) ^ �

y

s

k

(x, y)]

� 1

2

⇢

Z

+⌃



�

k

(y) ^ ⇤
y

d

y

s

k

(x, y)� �

y

s

k

(x, y) ^ e

�

k

(y)

+d

y

s

k

(x, y) ^ e

�

k+2

(y)� �

k�2

(y) ^ ⇤
y

�

y

s

k

(x, y)

��

= 0 8x /2 ⌦. (18)

Let us denote by u

k

the left-hand side of (18), when x 2 ⌦. We have

du

k

(x) = (�1)(n�1)(k�1)+1

d

x

⇢

Z

⌦

[⇤F
k+1

(y) ^ d

y

s

k

(x, y)� ⇤F
k�1

(y) ^ �

y

s

k

(x, y)]

�

� 1

2
d

x

⇢

Z

+⌃



�

k

(y) ^ ⇤
y

d

y

s

k

(x, y)� �

y

s

k

(x, y) ^ e

�

k

(y)

+d

y

s

k

(x, y) ^ e

�

k+2

(y)� �

k�2

(y) ^ ⇤
y

�

y

s

k

(x, y)

��

, x 2 ⌦.

Since d

2 = �

2 = 0 and using (5)

du

k

(x) = (�1)(n�1)(k�1)+1

d

x

�

x



Z

⌦

⇤F
k+1

(y) ^ s

k+1

(x, y)

�

� 1

2

⇢

Z

+⌃



�

k

(y) ^ d

x

⇤
y

d

y

s

k

(x, y)� d

x

�

y

s

k

(x, y) ^ e

�

k

(y)

+d

x

d

y

s

k

(x, y) ^ e

�

k+2

(y)� �

k�2

(y) ^ d

x

⇤
y

�

y

s

k

(x, y)

��

, x 2 ⌦. (19)

In a similar way

�u

k+2

(x) = (�1)(n�1)(k�1)

�

x

d

x



Z

⌦

⇤F
k+1

(y) ^ s

k+1

(x, y)

�

� 1

2

⇢

Z

+⌃



�

k+2

(y) ^ �

x

⇤
y

d

y

s

k+2

(x, y)� �

x

�

y

s

k+2

(x, y) ^ e

�

k+2

(y)

+�

x

d

y

s

k+2

(x, y) ^ e

�

k+4

(y)� �

k

(y) ^ �

x

⇤
y

�

y

s

k+2

(x, y)

��

, x 2 ⌦. (20)
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From (19) and (20) it follows

du

k

(x)��u

k+2

(x) = (�1)(n�1)(k�1)+1(d�+�d)



Z

⌦

⇤F
k+1

(y) ^ s

k+1

(x, y)

�

=

= (�1)(n�1)(k�1)�

Z

⌦

[⇤F
k+1

(y) ^ �

x

s

k+1

(x, y)] =

= (�1)(n�1)(k�1)�

Z

⌦

2

4

X

j1<...<j

k+1

�

1,...,n

j1,...,j
k+1,r1,...,rn�k�1

F

j1,...,j
k+1(y)dyr1 . . . dyrn�k�1

s(x� y)dy
i1 . . . dyi

k+1

⇤

dx

i1 . . . dxi
k+1 =

= (�1)(n�1)(k�1)

X

j1<...<j

k+1

�

1,...,n

j1,...,j
k+1,r1,...,rn�k�1

�

1,...,n

r1,...,r
n�k�1,i1,...,ik+1

�

Z

⌦

⇥

F

j1,...,j
k+1(y)s(x� y)dy

⇤

dx

i1 . . . dxi
k+1 =

= (�1)(n�1)(k�1)

X

j1<...<j

k+1

�

j1,...,j
k+1

i1,...,i
k+1

(�1)(n�1)(k�1)

�

Z

⌦

⇥

F

j1,...,j
k+1(y)s(x� y)dy

⇤

dx

i1 . . . dxi
k+1 =

=
X

j1<...<j

k+1

�

Z

⌦

⇥

F

j1,...,j
k+1(y)s(x� y)dy

⇤

dx

j1 . . . dxj
k+1 , x 2 ⌦.

Poisson’s formula leads to

du

k

(x)� �u

k+2

(x) =
X

j1<...<j

k+1

F

j1,...,j
k+1(x)dxj1 . . . dxjk+1 = F

k+1

(x).

Analogously, we obtain

du

n�1

(x) = F

n

(x), ��u

1

(x) = F

0

(x), x 2 ⌦.

Therefore U =
n

X

k=0

u

k

, u

k

being defined by (18), satisfies dU � �U = F in ⌦.

Moreover U 2 V, and by Theorem 2.1 the traces of U and ⇤U are � and e

�

respectively, which completes the proof.

2.2 The Dirichlet problem for the equation dU � �U = F in a

multiply connected domain

We consider now a domain ⌦ of the form

⌦ = ⌦
0

\
m

[

j=1

⌦
j

,

12



where ⌦
j

(j = 0, . . . ,m) are bounded connected domains of Rn

, whose
boundaries ⌃

j

are connected Lyapunov surfaces, such that

⌦
j

⇢ ⌦
0

and ⌦
j

\ ⌦
k

= ; j, k = 1, . . . ,m, j 6= k.

For brevity, we shall call such a domain an (m+ 1)-connected domain.

Theorem 2.3. Let ⌦ = ⌦
0

\
S

m

j=1

⌦
j

be an (m+1)-connected domain. Let

� =
n�1

X

k=0

�

k

,

e

� =
n�1

X

k=0

e

�

n�k

2 L

1(⌃) and F =
n

X

k=0

F

k

2 L

1(⌦) be given forms.

There exists a non homogeneous di↵erential form U 2 L

1(⌦) solution of

⇢

dU � �U = F in ⌦

U = � ⇤ U = e

� on ⌃
(21)

if and only if

(�1)(n�1)(k�1)+1

Z

⌦

h

⇤F
k+1

^ dw

i1,...,i
k

h

� ⇤F
k�1

^ �w

i1,...,i
k

h

i

� 1

2

⇢

Z

+⌃

h

�

k

^ ⇤dwi1,...,i
k

h

� �w

i1,...,i
k

h

^ e

�

k

+dw

i1,...,i
k

h

^ e

�

k+2

� �

k�2

^ ⇤�wi1,...,i
k

h

io

= 0 (22)

(�1)(n�1)(k�1)+1

Z

⌦

h

⇤F
k+1

(y) ^ d

y

[|y � x

j |2�n�2k

w

i1,...,i
k

h

(y � x

j)]

� ⇤ F
k�1

(y) ^ �

y

[|y � x

j |2�n�2k

w

i1,...,i
k

h

(y � x

j)]
i

� 1

2

⇢

Z

+⌃



�

k

(y) ^ ⇤
y

d

y

[|y � x

j |2�n�2k

w

i1,...,i
k

h

(y � x

j)]

� �

y

[|y � x

j |2�n�2k

w

i1,...,i
k

h

(y � x

j)] ^ e

�

k

(y)

+ d

y

[|y � x

j |2�n�2k

w

i1,...,i
k

h

(y � x

j)] ^ e

�

k+2

(y)

��

k�2

(y) ^ ⇤
y

�

y

[|y � x

j |2�n�2k

w

i1,...,i
k

h

(y � x

j)]

��

= 0 j = 1, . . . ,m.

(23)

for any 1  i

1

< . . . < i

k

 n, h = 1, 2, . . . , k = 0, 1, . . . , n (�
k

⌘ 0, k =
�2,�1; e�

k

⌘ 0, k = n + 1, n + 2;F
k

⌘ 0, k = �1, n + 1). Here x

j is a fixed
point in ⌦

j

(j = 1, . . . ,m).

Proof. The necessity follows as in Theorem 2.2. Conversely, from (17) and

13



(22) we obtain

(�1)(n�1)(k�1)+1

Z

⌦

[⇤F
k+1

(y) ^ d

y

s

k

(x, y)� ⇤F
k�1

(y) ^ �

y

s

k

(x, y)]

� 1

2

⇢

Z

+⌃



�

k

(y) ^ ⇤
y

d

y

s

k

(x, y)� �

y

s

k

(x, y) ^ e

�

k

(y)

+d

y

s

k

(x, y) ^ e

�

k+2

(y)� �

k�2

(y) ^ ⇤
y

�

y

s

k

(x, y)

��

= 0 8x /2 ⌦
0

. (24)

Applying Lemma 2.1 with 0 < R < min
y2⌃

|y � x

j

|, the following development

s(x� y) = s(x� x

j � (y � x

j)) =
1
X

k=0

p

nk

X

h=1

P

hk

(x� x

j)Q
hk

(y � x

j)

|y � x

j |2k�2+n

(25)

holds uniformly for any y 2 ⌃ and for any x 2 B

j

, B

j

being a ball of radius
r  �R centered at xj .
By (23) and (25) we have

(�1)(n�1)(k�1)+1

Z

⌦

[⇤F
k+1

(y) ^ d

y

s

k

(x, y)� ⇤F
k�1

(y) ^ �

y

s

k

(x, y)]

� 1

2

⇢

Z

+⌃



�

k

(y) ^ ⇤
y

d

y

s

k

(x, y)� �

y

s

k

(x, y) ^ e

�

k

(y)

+d

y

s

k

(x, y) ^ e

�

k+2

(y)� �

k�2

(y) ^ ⇤
y

�

y

s

k

(x, y)

��

= 0 8x 2 B

j

(26)

and since ⌦
j

is connected this is still true for any x 2 ⌦
j

, j = 1, . . . ,m.

From (24) and (26) it follows

(�1)(n�1)(k�1)+1

Z

⌦

[⇤F
k+1

(y) ^ d

y

s

k

(x, y)� ⇤F
k�1

(y) ^ �

y

s

k

(x, y)]

� 1

2

⇢

Z

+⌃



�

k

(y) ^ ⇤
y

d

y

s

k

(x, y)� �

y

s

k

(x, y) ^ e

�

k

(y)

+d

y

s

k

(x, y) ^ e

�

k+2

(y)� �

k�2

(y) ^ ⇤
y

�

y

s

k

(x, y)

��

= 0 8x /2 ⌦. (27)

If we denote by u

k

the left-hand side of (27) when x 2 ⌦ and we proceed as
in Theorem 2.2, we obtain the result.

3 The Dirichlet problem for the Cimmino system

Theorem 2.3 provides necessary and su�cient conditions for the solvability of
the Dirichlet problem (21). After a lemma characterizing the self-conjugate
2-forms in R4

, in Theorem 3.1 we consider (21) with the data chosen in

14



a certain way. For such data we obtain the relevant necessary and su�-
cient conditions for the resolubility of the corresponding Dirichlet problem.
Moreover we prove that the solution U has a particular structure (see (32)
below). Theorem 3.2 will show that the problem considered in Theorem 3.1
is equivalent to the Dirichlet problem for Cimmino system.

Lemma 3.1. Let us consider a 2-form defined in an open set ⌦ ⇢ R4

. Then
u

2

= ⇤u
2

if and only if there exist f
1

, f

2

and f

3

such that

u

2

= f

1

(dx
1

dx

2

+dx

3

dx

4

)�f

2

(dx
1

dx

3

+dx

4

dx

2

)+f

3

(dx
1

dx

4

+dx

2

dx

3

). (28)

Proof. Let u
2

=
1

2
u

jk

dx

j

dx

k

be a 2-form. Therefore

⇤u
2

=
1

4
u

jk

�

1234

jkpq

dx

p

dx

q

=
1

4
u

pq

�

1234

pqjk

dx

j

dx

k

.

If u
2

= ⇤u
2

we have u
jk

=
1

2
u

pq

�

1234

pqjk

and then u

12

= u

34

, u

13

= �u

24

, u

14

=

u

23

. Putting u

12

= f

1

, u

13

= �f

2

and u

14

= f

3

we obtain (28). Conversely,
if u

2

is defined as in (28), a straightforward computation shows that u

2

=
⇤u

2

.

Theorem 3.1. Let ⌦ = ⌦
0

\
S

m

j=1

⌦
j

⇢ R4 be an (m+1)-connected domain.

Let � = (�
0

, 0,�
2

, 0), e� = (��

0

, 0,�
2

, 0) 2 L

1(⌃) and F = F

1

� ⇤F
1

2
L

1(⌦) be given forms, where F

1

= �

k

dx

k

. There exists a non homogeneous
di↵erential form U 2 L

1(⌦) solution of

⇢

dU � �U = F in ⌦

U = � ⇤ U = e

� on ⌃
(29)

if and only if

Z

⌦

⇤F
1

(y) ^ dw

h

(y)� 1

2

Z

+⌃

[�
0

(y) ^ ⇤dw
h

(y) + dw

h

(y) ^ �

2

(y)] = 0;

Z

⌦

⇤F
1

(y)^d
y

[|y�x

j |�2

w

h

(y�x

j)]�1

2

⇢

Z

+⌃

h

�

0

(y) ^ ⇤
y

d

y

[|y � x

j |�2

w

h

(y � x

j

)]

+d

y

[|y � x

j |�2

w

h

(y � x

j)] ^ �

2

(y)
⇤

�

= 0, j = 1, . . . ,m; (30)
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Z

⌦

h

F

1

(y) ^ dw

i1,i2
h

(y)� ⇤F
1

(y) ^ �w

i1,i2
h

(y)
i

�1

2

⇢

Z

+⌃

h

�

2

(y) ^ ⇤dwi1,i2
h

(y)

��w

i1,i2
h

(y) ^ �

2

(y) + dw

i1,i2
h

(y) ^ ��

0

(y)� �

0

(y) ^ ⇤�wi1,i2
h

(y)
i

�

= 0;
Z

⌦

h

F

1

(y) ^ d

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]� ⇤F
1

(y) ^ �

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]
i

�1

2

⇢

Z

+⌃



�

2

(y) ^ ⇤
y

d

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]� �

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)] ^ �

2

(y)

+d

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)] ^ ��

0

(y)� �

0

(y) ^ ⇤
y

�

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]

��

= 0,

j = 1, . . . ,m, (31)

for any 1  i

1

< i

2

 4, h = 1, 2, . . . . Here x

j is a fixed point in ⌦
j

(j = 1, . . . ,m).
Moreover the solution U can be written as

U = u

0

+ u

2

+ u

4

,

u

0

= f

0

, u

2

= f

1

(dx
1

dx

2

+ dx

3

dx

4

)� f

2

(dx
1

dx

3

+ dx

4

dx

2

)

+ f

3

(dx
1

dx

4

+ dx

2

dx

3

), u

4

= �f

0

dx

1

dx

2

dx

3

dx

4

. (32)

Proof. In the present case, formulas (22) and (23) become

Z

⌦

⇤F
1

(y) ^ dw

h

(y)� 1

2

Z

+⌃

h

�

0

(y) ^ ⇤dw
h

(y) + dw

h

(y) ^ e

�

2

(y)
i

= 0;

Z

⌦

⇤F
1

(y)^d
y

[|y�x

j |�2

w

h

(y�x

j)]�1

2

⇢

Z

+⌃

h

�

0

(y) ^ ⇤
y

d

y

[|y � x

j |�2

w

h

(y � x

j

)]

+d

y

[|y � x

j |�2

w

h

(y � x

j)] ^ e

�

2

(y)
i

�

= 0, j = 1, . . . ,m;

Z

⌦

h

F

1

(y) ^ dw

i1,i2
h

(y)� ⇤F
1

(y) ^ �w

i1,i2
h

(y)
i

�1

2

⇢

Z

+⌃

h

�

2

(y) ^ ⇤dwi1,i2
h

(y)

��w

i1,i2
h

(y) ^ e

�

2

(y) + dw

i1,i2
h

(y) ^ e

�

4

(y)� �

0

(y) ^ ⇤�wi1,i2
h

(y)
i

�

= 0;
Z

⌦

h

F

1

(y) ^ d

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]� ⇤F
1

(y) ^ �

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]
i

�1

2

⇢

Z

+⌃



�

2

(y) ^ ⇤
y

d

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]� �

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)] ^ e

�

2

(y)

+d

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)] ^ e

�

4

(y)� �

0

(y) ^ ⇤
y

�

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]

��

= 0,

j = 1, . . . ,m, 1  i

1

< i

2

 4;
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�
Z

⌦

F

1

(y)^�w1234

h

(y)+
1

2

Z

+⌃

h

�w

1234

h

(y) ^ e

�

4

(y) + �

2

(y) ^ ⇤�w1234

h

(y)
i

= 0;

�
Z

⌦

F

1

(y)^�
y

[|y�x

j |�2

w

1234

h

(y�x

j)]+
1

2

⇢

Z

+⌃

h

�

y

[|y � x

j |�2

w

1234

h

(y � x

j

)] ^ e

�

4

+�

2

^ ⇤
y

�

y

[|y � x

j |�2

w

1234

h

(y � x

j)]

��

= 0, j = 1, . . . ,m.

By means of the particular expression of � and e

�, the previous conditions
can be written as

Z

⌦

⇤F
1

(y) ^ dw

h

(y)� 1

2

Z

+⌃

[�
0

(y) ^ ⇤dw
h

(y) + dw

h

(y) ^ �

2

(y)] = 0;

Z

⌦

⇤F
1

(y)^d
y

[|y�x

j |�2

w

h

(y�x

j)]�1

2

⇢

Z

+⌃

h

�

0

(y) ^ ⇤
y

d

y

[|y � x

j |�2

w

h

(y � x

j

)]

+d

y

[|y � x

j |�2

w

h

(y � x

j)] ^ �

2

(y)
⇤

�

= 0, j = 1, . . . ,m; (33)

Z

⌦

h

F

1

(y) ^ dw

i1,i2
h

(y)� ⇤F
1

(y) ^ �w

i1,i2
h

(y)
i

�1

2

⇢

Z

+⌃

h

�

2

(y) ^ ⇤dwi1,i2
h

(y)

��w

i1,i2
h

(y) ^ �

2

(y) + dw

i1,i2
h

(y) ^ ��

0

(y)� �

0

(y) ^ ⇤�wi1,i2
h

(y)
i

�

= 0;
Z

⌦

h

F

1

(y) ^ d

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]� ⇤F
1

(y) ^ �

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]
i

�1

2

⇢

Z

+⌃



�

2

(y) ^ ⇤
y

d

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]� �

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)] ^ �

2

(y)

+d

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)] ^ ��

0

(y)� �

0

(y) ^ ⇤
y

�

y

[|y � x

j |�6

w

i1,i2
h

(y � x

j)]

��

= 0,

j = 1, . . . ,m, 1  i

1

< i

2

 4;

�
Z

⌦

F

1

(y)^�w1234

h

(y)+
1

2

Z

+⌃

⇥

�w

1234

h

(y) ^ ��

0

(y) + �

2

(y) ^ ⇤�w1234

h

(y)
⇤

= 0;

�
Z

⌦

F

1

(y)^�
y

[|y�x

j |�2

w

1234

h

(y�x

j)]+
1

2

⇢

Z

+⌃

h

�

y

[|y � x

j |�2

w

1234

h

(y � x

j

)] ^ ��

0

+�

2

^ ⇤
y

�

y

[|y � x

j |�2

w

1234

h

(y � x

j)]

��

= 0, j = 1, . . . ,m. (34)
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In view of the equality �w

1234

h

(y) = � ⇤ dw
h

(y), we find

�
Z

⌦

F

1

(y)^�w1234

h

(y)+
1

2

Z

+⌃

⇥

�w

1234

h

(y) ^ ��

0

(y) + �

2

(y) ^ ⇤�w1234

h

(y)
⇤

=

=

Z

⌦

F

1

(y) ^ ⇤dw
h

(y) +
1

2

Z

+⌃

[⇤dw
h

(y) ^ �

0

(y) + �

2

(y) ^ dw

h

(y)] =

=

Z

⌦

⇤F
1

(y) ^ ⇤dw
h

(y) +
1

2

Z

+⌃

[�
0

(y) ^ ⇤dw
h

(y) + dw

h

(y) ^ �

2

(y)] .

By a similar argument we deduce that (33) are equivalent to (34).
Keeping in mind Theorem 2.3, the first part of the theorem is proved.
By the Cauchy integral formula we obtain

u

0

(x) =

Z

⌦

⇤F
1

(y) ^ d

y

s

0

(x, y)� 1

2

Z

+⌃



�

0

(y) ^ ⇤
y

d

y

s

0

(x, y) + d

y

s

0

(x, y) ^ �

2

(y)

�

,

u

1

(x) =0,

u

2

(x) =

Z

⌦

[F
1

(y) ^ d

y

s

2

(x, y)� ⇤F
1

(y) ^ �

y

s

2

(x, y)]� 1

2

Z

+⌃



�

2

(y) ^ ⇤
y

d

y

s

2

(x, y)

� �

y

s

2

(x, y) ^ �

2

(y)� d

y

s

2

(x, y) ^ �

0

(y)� �

0

(y) ^ ⇤
y

�

y

s

2

(x, y)

�

,

u

3

(x) =0,

u

4

(x) =

Z

⌦

�F

1

(y) ^ �

y

s

4

(x, y)� 1

2

Z

+⌃



�

y

s

4

(x, y) ^ �

0

(y)� �

2

^ ⇤
y

�

y

s

4

(x, y)

�

.

Then the solution of (29) is U = u

0

+ u

2

+ u

4

. On the other hand,

⇤u
0

(x) =

Z

⌦

⇤F
1

(y) ^ ⇤
x

d

y

s

0

(x, y)� 1

2

Z

+⌃



�

0

(y) ^ ⇤
x

⇤
y

d

y

s

0

(x, y) + ⇤
x

d

y

s

0

(x, y) ^ �

2

(y)

�

,

⇤u
1

(x) =0,

⇤u
2

(x) =

Z

⌦

h

F

1

(y) ^ ⇤
x

d

y

s

2

(x, y)� ⇤F
1

(y) ^ ⇤
x

�

y

s

2

(x, y)
i

� 1

2

Z

+⌃



�

2

(y) ^ ⇤
x

⇤
y

d

y

s

2

(x, y)

� ⇤
x

�

y

s

2

(x, y) ^ �

2

(y)� ⇤
x

d

y

s

2

(x, y) ^ �

0

(y)� �

0

(y) ^ ⇤
x

⇤
y

�

y

s

2

(x, y)

�

,

⇤u
3

(x) =0,

⇤u
4

(x) =

Z

⌦

�F

1

(y) ^ ⇤
x

�

y

s

4

(x, y)� 1

2

Z

+⌃



⇤
x

�

y

s

4

(x, y) ^ �

0

(y)� �

2

^ ⇤
x

⇤
y

�

y

s

4

(x, y)

�

.
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By (5)-(9), we have

⇤
x

⇤
y

�

y

s

4

(x, y) = d

y

s

0

(x, y),

⇤
x

�

y

s

4

(x, y) = � ⇤
y

d

y

s

0

(x, y),

⇤
x

⇤
y

d

y

s

2

(x, y) = � ⇤
x

⇤
x

d

x

s

1

(x, y) = �d

x

s

1

(x, y) = ��

y

s

2

(x, y),

� ⇤
x

�

y

s

2

(x, y) = ⇤
x

⇤
y

d

y

⇤
y

s

2

(x, y) = ⇤
y

d

y

⇤
y

⇤
x

s

2

(x, y) = ⇤
y

d

y

s

2

(x, y),

⇤
y

�

y

s

2

(x, y) = � ⇤
y

⇤
y

d

y

⇤
x

s

2

(x, y) = ⇤
x

d

y

s

2

(x, y),

⇤
x

⇤
y

�

y

s

2

(x, y) = � ⇤
y

⇤
y

d

y

⇤
y

⇤
y

s

2

(x, y) = d

y

s

2

(x, y).

In conclusion the coe�cients satisfy u

0

= � ⇤ u
4

and u

2

= ⇤u
2

. Lemma 3.1
completes the proof.

Theorem 3.2. Let ⌦ ⇢ C2 be a regular domain and ⌃ its boundary. Let
f, g 2 L

1(⌦) and F,G 2 L

1(⌃). Conditions (30) and (31) are necessary and
su�cient for the resolubility of the boundary value problem for Cimmino
system

⇢

u

z

+ v

w

= f, u

w

� v

z

= g in ⌦
u = F v = G on ⌃.

(35)

Proof. If we put u = f

0

+ if

1

, v = f

2

+ if

3

, f = 1

2

(�
1

+ i�

2

), g = 1

2

(�
3

+ i�

4

),
F = F

0

+ iF

1

and G = G

0

+ iG

1

, (35) is equivalent to
8

>

>

>

>

<

>

>

>

>

:

f

0

x1
� f

1

x2
+ f

2

x3
� f

3

x4
= �

1

f

0

x2
+ f

1

x1
� f

2

x4
� f

3

x3
= �

2

in ⌦
f

0

x3
� f

1

x4
� f

2

x1
+ f

3

x2
= �

3

f

0

x4
+ f

1

x3
+ f

2

x2
+ f

3

x1
= �

4

f

0

= F

0

f

1

= F

1

f

2

= G

0

f

3

= G

1

on ⌃

(36)

Let us consider the 2-form defined on ⌃

�

2

= F

1

(dx
1

dx

2

+ dx

3

dx

4

)�G

0

(dx
1

dx

3

� dx

2

dx

4

)�G

1

(dx
1

dx

4

+ dx

2

dx

3

)

and set

� = (F
0

, 0,�
2

, 0), e

� = (�F

0

, 0,�
2

, 0), F = F

1

� ⇤F
1

, (37)

with F

1

= �

k

dx

k

. Let U be the solution of the Dirichlet problem (29) with
these data. As in Proposition 1.1, and keeping in mind (32), one can show
that (f

0

, f

1

, f

2

, f

3

) satisfies the problem (36). Conversely, if (f
0

, f

1

, f

2

, f

3

)
is solution of (36), then the non homogeneous di↵erential form U given by
(32) is solution of (29).
By Theorem 3.1, conditions (30) and (31) are necessary and su�cient for
the solvability of (29). The problems (29) (with data (37)), (35) and (36)
being equivalent, we get the result.
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Remark 3.1. Finally we remark that our results show that Dragomir and
Lanconelli conditions are not only necessary, but also su�cient. Indeed, in
[6], it is proved that

Re

⇢

2

Z

⌦

(fh+ gk)dV �
Z

@⌦

�

F

⇥

(n
1

+ in

2

)h+ (n
3

+ in

4

)k
⇤

+G [(n
3

+ in

4

)h� (n
1

+ in

2

)k]} d�
�

= 0 (38)

for any h, k 2 C

1(⌦) \ C

0(⌦) such that

h

z

+ k

w

= 0, h

w

� k

z

= 0 in ⌦

are necessary conditions for solving (35). If we show that (38) implies (30)
and (31), we can conclude that (38) is not only necessary but also su�cient
for the solvability of (35). Let us consider the first of (30); it can be written
as

Z

⌦



�

1

@w

h

@y

1

+ �

2

@w

h

@y

2

+ �

3

@w

h

@y

3

+ �

4

@w

h

@y

4

�

dy

� 1

2

Z

+⌃

✓

F

0

@w

h

@y

1

+ F

1

@w

h

@y

2

�G

0

@w

h

@y

3

+G

1

@w

h

@y

4

◆

n

1

+

✓

F

0

@w

h

@y

2

� F

1

@w

h

@y

1

+G

0

@w

h

@y

4

+G

1

@w

h

@y

3

◆

n

2

+

✓

F

0

@w

h

@y

3

+ F

1

@w

h

@y

4

+G

0

@w

h

@y

1

�G

1

@w

h

@y

2

◆

n

3

+

✓

F

0

@w

h

@y

4

� F

1

@w

h

@y

3

�G

0

@w

h

@y

2

�G

1

@w

h

@y

1

◆

n

4

�

d� = 0.

(39)

If we put h

0

=
@w

h

@y

1

, h

1

=
@w

h

@y

2

, k

0

=
@w

h

@y

3

, k

1

=
@w

h

@y

4

, we have that (38)

implies (39). In a similar way, it is possible to prove that (38) implies (30)
and (31).
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