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Abstract: The Daytime Approach for gas Flaring Investigation (DAFI), running in Google Earth Engine
(GEE) environment, exploits a Normalized Hotspot Index (NHI), analyzing near-infrared and short-
wave infrared radiances, to detect worldwide high-temperature gas flaring sites (GFs). Daytime Landsat
8—Operational Land Imager (OLI) observations, of 2013-2021, represents the employed dataset. A
temporal persistence criterion is applied to a gas flaring customized NHI product to select the GFs.
It assures the 99% detection accuracy of more intense and stable GFs, with a very low false positive
rate. As a result, the first daytime database and map of GF sites, operating during the last 9 years at
global scale, has been generated. For each site, geographical metadata, frequency of occurrence and time
persistence levels, at both monthly and annual scale, may be examined, through the specific developed
GEE App. The present database will complement/integrate existing gas flaring maps. The joint use of
global scale daytime and nighttime GFs inventories, in fact, will allow for tracking gas flaring dynamics
in a timely manner. Moreover, it enables a better evaluation of GF emissions into the atmosphere. Finally,
the next DAFI implementation on Landsat 9 and Sentinel 2 data will further improve our capabilities in
identifying, mapping, monitoring and characterizing the GFs.
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Gas flaring sites (GFs) have a strong impact on Earth’s system [1-3], since they repre-
sent an important source of greenhouse gas (GHG) emission [4-6].

Controlling anthropogenic GHGs is important to mitigate global warming for human
Academic Editor: Jing Wei sustainable development [7]. Therefore, an accurate investigation of GFs is critical to
evaluate the effects of emission reduction and control measures, as established by the
World Bank’s “Zero Routine Flaring by 2030” initiative [8]. For this reason, it is essential to
identify GFs at global scale and to monitor their operating conditions. However, “on site”
GF measurements are generally scarce, and require extensive costs [9]. In addition, direct
measurements and reports are often handled by the oil companies, and they are generally
not public and thus hard to find and access to [10].

Satellite sensors, providing multispectral data at different spatial and temporal resolu-
tion, are largely used to investigate and monitor gas flaring sites, which are energy-intensive,

heavy pollution industrial sectors, and large heat releasers. However, if on the one hand the
spatial invariance and temporal persistence of GFs favor their discrimination from other
high-temperature features (e.g., forest fires), on the other hand, these sources, operating
under different environmental and climatic conditions, may not always be easy to identify
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such as energy, flaring temperature and flared gas volume (https://eogdata.mines.edu/
products/vnf/global_gas_flare.html, accessed on 26 October 2022) are generally provided
together with the GF’s location.

However, the coarse spatial resolution of VIIRS data (hundred meters) does not enable
an accurate characterization (in terms of location and spatial extent) of these high-temperature
sources, which are highly radiant in the SWIR (short-wave infrared) region [13-15]. Mid-high
(i.e., tens of meters) spatial resolution satellite data, from sensors such as OLI (Operational
Land Imager) and MSI (Multispectral Instrument) may complement VIIRS observations [2]. In-
deed, these sensors are largely used to detect and monitor high-temperature targets, associated
with biomass burning and thermal volcanic activity [2,3,16-20].

More recently, daytime Landsat-8 (L8) OLI and Sentinel-2 (52) MSI data have also been
used to investigate gas flaring sources from space (e.g., [2,3,21]). Hot targets are easier to
identify, in the SWIR band, in nighttime (as performed by VNF) than daylight conditions,
because of the absence of the solar-reflected radiance from the background (e.g., [22]).
Nevertheless, the joint usage of SWIR and NIR (near infrared, ~0.8 pum) bands may enable
an efficient identification of gas flaring sources even in daylight conditions (e.g., [2,21]).
Indeed, a high temperature source significantly increases the SWIR signal measured by
satellite, whereas spectral radiance emitted by very hot targets is mostly insignificant in the
NIR region (e.g., [3,23]).

By taking the aforementioned into account, a fixed threshold applied to a tri-spectral
thermal anomaly index (TAI), exploiting NIR and SWIR S52-MSI reflectance images, was
used to identify offshore gas flaring sites on a global scale, showing a detection reliability
rate (visually determined) of about 88.0% [2]. The TAI also showed a great potential onshore
(overall accuracy of >95% on Texas area), combining MSI and OLI observations [24]. A set
of empirical thresholds, applied to SWIR to NIR ratios (both as reflectance and radiance)
for L8-OLI and S2-MSI scenes, was proposed by [3], and automatically processed within
Convolutional Neural Network and decision tree-based classification methods, showing an
overall accuracy of 97.9% in detecting worldwide hot sources.

The Normalized Hotspot Indices (NHI) [25], guarantees a reliable identification and
monitoring of thermal anomalies associated with onshore and offshore gas flaring activity,
by using NIR and SWIR radiances, as demonstrated in [21], where six different test sites
were investigated over time (i.e., 2015-2020).

In this work, a more in-depth analysis of these indices is performed. Moreover, a GF-
customized configuration of NHI, named Daytime Approach for gas Flaring Identification
(DAFI), and the first global GF sites inventory, obtained by analyzing daytime L8-OLI
data collected during 2013-2021, are shown and discussed. Additionally, a Google Earth
Engine (GEE) App, designed and implemented for the interactive analysis of the GF sites,
is described.

The paper is organized as follows:

Section 2 describes the used datasets;
Section 3 explains how the DAFI works;
Sections 4 and 5 detail the results achieved with the proposed method, along with the
website hosting the Earth Engine App;
e  Section 6 concludes the work, discussing current challenges and future research directions.

2. Datasets
2.1. OLI-Landsat 8 Images

In this work, we used the L8 Collection 1 (C1) provided by the USGS (U.S. Geological
Survey) and made available in GEE, which is a cloud-computation platform for processing
large amounts of Earth Observation data [26]. Satellite scenes, placed in all C1 Tiers, were
considered for the time-series processing analysis [27].

L8-OLI scenes, acquired in the NIR (Band 5: 0.85-0.88 pm), SWIR1 (Band 6: 1.57-1.65 pm)
and SWIR2 (2.11-2.29 um) bands, with the best Quality Assessment (QA) accuracy
(QA =9), and a sun elevation greater than zero degrees, were analyzed. A total of ~2.1 million
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scenes (for each band), covering the five continents in the temporal window 1 April 2013-31
December 2021 represents the investigated dataset.

The radiance values, obtained for each pixel, by applying the “ee.Algorithms.
Landsat.calibratedRadiance” method within Earth Engine [28], were used to compute
the DAFI-based metrics.

2.2. Other Datasets
The following additional datasets were used:

(i) High-spatial resolution optical satellite data (up to a few meters, depending on
data sources [2]), from Google Earth and Google Maps, providing spatially detailed
structures and distinguishable marks of different industrial categories (as support
and validation of industrial hotspot classification);

(ii) Global industrial heat sources inventory, from VNF (~750 m) time series to compare
two independent satellite products, operating in opposite solar lighting conditions
(i.e., DAFI by day, and VNF by night). The VNF detections from 2012 to 2021 were
downloaded as KML files from https://eogdata.mines.edu/products/vnf/global
gas_flare.html (accessed on 6 July 2022) and clustered both spatially and temporally,
to enhance their visualization.

3. The DAFI Method

The NHI algorithm was developed by [25] to detect and map volcanic thermal anoma-
lies, through the following normalized indices:

NHIswir = (Lswirz — Lswir1)/ (Lswirz + Lswir1) 1)

NHIswnir = (Lswirt — Lnir) / (Lswirt + Lnir) )

where Lswira, Lswiri, Lnir are the TOA (Top of Atmosphere) radiances (W m Zsr ! pum™1)
measured, for each pixel of the scene, at 2.2 pm, 1.6 pm and 0.8 pm wavelengths, in the
relative OLI/MSI spectral channels. Pixels showing positive values of one or both indices
are flagged as “hot” by NHI [25].

While positive values of the index in Equation (1) enable the identification of hot
targets emitting strongly in the SWIR2 band, positive values of the index in Equation (2)
guarantee a more accurate identification of intense thermal features (e.g., GFs more radiant
in the SWIR1 band), which frequently saturate the OLI/MSI SWIR2 channel.

A further step is used to recover the very intense thermal features, named “Extreme
Pixel”, yielding the SWIR1 band saturation (see [29]).

As previously demonstrated in [25], and following studies (e.g., [29]), the NHI algo-
rithm enables an effective discrimination of hot targets from clouds, the latter leading to
negative values of both indices. Therefore, we did not filter out cloudy images. This is an
important feature of the NHI algorithm, which should guarantee a low false positive rate
at global scale (e.g., [19]), even when GF sites are analyzed. Indeed, cloud detection is an
unresolved issue in the thermal anomaly identification in daylight. If on the one side a
cloud-masking is generally required to filter out clouds in the SWIR bands, on the other
side, gas flaring sites may be undetected if clouds are overestimated; moreover, hot targets
may be mislabeled as clouds in clear-sky conditions (e.g., [2,30]).

The “Test for Hot Spot Pixels” and the “Test for Extreme Pixels” described in [29],
implemented operationally in GEE, enable the identification of a Hot Pixels (HP) according
to the following criterion:

NHIgwir > 0 OR NHIgwnir > 0 OR Extreme Pixel > 0 =1 (HP)
{ otherwise = 0 (no HP) ®)
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The algorithm (which also includes an initial test on SWIR2 radiance [29]) assigns
the flag “1” (i.e., TRUE) to a pixel when at least one of the three indicators (NHIgynir,
NHIswir, Extreme Pixel) is greater than zero and the flag “0” (i.e., FALSE) is otherwise.
Therefore, for each scene of the satellite collection, the final output is a binary mask, where
“1” means a hot pixel.

This detection scheme was first applied to detect GFs in [21]; in this work, the OLI-
based NHI indices are deeply investigated to develop a gas flaring tailored approach.

From a satellite perspective, gas flaring sources may exhibit a similar spectral behavior
when compared to fires or active lava flows, but differently from them, they are stable/fixed
in space and (mostly) continuously operating in time (except for maintenance/interruption
periods) [31]. Therefore, the binary masks computed for each pixel, at 30 m spatial resolu-
tion, in the globe have been summed up for the given time interval (i.e., 2013-2021), and an
HP temporally cumulative mask obtained. As volcanoes may also experience long-term
activities, a volcanic mask was defined to exclude possible volcanic thermal anomalies from
the performed analyses. A buffer area, with a radius ranging from 3 to 30 km, depending
on the volcanic cone extension, was then applied to the volcanoes listed by the Global
Volcanism Program (https:/ /volcano.si.edu/volcanolist_holocene.cfm, accessed on 1 June
2022). This exclusion map is expected to not affect the sensitivity in GF identification at all,
as gas flares are certainly not installed within (or even close to) active volcanic areas.

The derived values in the cumulative mask were converted in an occurrence frequency
(OF), to weigh the NHI contribution with respect to the number of OLI available images,
depending on the revisit cycle of the satellite [32]. For each pixel, the OF, expressed as a
percentage, is computed as:

OF = Yon N (% @
where N counts all (both cloudy and clear) OLI images acquired in the investigated time period.

To select only stable (in space and time) hot targets, we collected the OF values
retrieved in correspondence with a GF testing dataset (recognizable in Google Earth). A
minimum threshold value of 10% was found and set to identify GFs only.

The final OF raster map was vectorized as a centroid geometry. As a result, 2084 candidate
GF sites were identified (Figure 1). Each site may correspond to a single OLI pixel (30 x 30 m)
or to a cluster of adjacent and contiguous pixels, which satisfy the imposed condition (i.e.,
OF > 10%). To better describe the GF thermal behavior, a 100 m buffer (3-pixel), around the
detected centroids was used to recover the OF maximum value within the cluster. In this way,
a more precise localization of each gas flare site is guaranteed.

© Gas flares (37%)
O Industrial sites (44%)
@ Quarries/Mines (7%)
@ Nude soils (2%)
@ Rooftops (10%) ‘ Google My Maps

Figure 1. Candidate GF sites identified by setting OF > 10% (see text).
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To assess the efficiency of the initial assumption, we performed a careful visual inspec-
tion of the detected GF candidates, by using the high-resolution images available in Google
Earth. The detected centroids were classified into five categories (see Figure 1): gas flares
(37%), industrial sites (44%) (including hotspots related to incineration plants, landfill, gas
power plants, metal processing factories, liquefied natural gas terminals, chemical factories,
wood production factories, wastewater treatment plants, cement factories), quarries/mines
(7%), nude soils (2%, mostly in Australia) and rooftops (10%, mostly distributed in United
States and Japan). While thermal anomalies could also be associated with quarries/mines
(due to sewage/wastewater treatment plants), the last two categories (i.e., nude soils and
rooftops) clearly indicate false positives. Therefore, this classification, retrieved from the
standard NHI configuration did not enable the discrimination of gas flares from other heat
sources (i.e., industrial sites) with a suitable accuracy. Moreover, a few false positives (e.g.,
in correspondence with rooftops) were generated, requiring the use of an ancillary dataset
(e.g., land cover or land use map). Based on those results, we carried out a more in-depth
analysis of the NHI indices. In particular, the HP value (the one computed by summing the
flags “1” over the years 2013-2021), measured for each of the 2084 centroids, was broken
down to weigh each single indicator. Table 1 provides an overview of all possible indicator
combinations, from I to VI. The used notation refers to the HP’s sum over the analyzed
time period, while the subscript describes the indicator used to identify the hotspot (e.g.,
“EP” stands for Extreme Pixel).

Table 1. Indicator combination contributing to the HP value.

Condition Indicator Combination

I 2021
Yy (HPSWNIR > 0 AND HPswir > 0 AND HPgp > 0)

2013

I 2021
> (HPSWNIR > 0 AND HPgwr = 0 AND HPgp > O)

2013

111 2021
Y (HPswnr > 0 AND HPgpyr > 0 AND HPgp = 0)

2013

v 2021
Y (HPSWNIR > 0 AND HPgwr = 0 AND HPgp = O)

2013

v 2021
Y (HPSWNIR = 0 AND HPgwir > 0 AND HPgp = 0)

2013

VI 2021
Y. (HPswnir = 0 AND HPgyr = 0 AND HPgp > 0)

2013

A hot pixel is then flagged when all the indicators are positive (condition I), two of
them are positive (conditions II-III) or only a single indicator is positive (conditions IV-VI).

By taking into account these conditions, the 2084 centroids were grouped (see second
column of Table 2). Additionally, the single centroid of each condition was attributed to the
corresponding category (e.g., gas flares, industrial sites) after overlapping the centroids on
the very high-resolution images of Google Earth.

Table 2. HP conditions for each identified category (see Figure 1).

Condition Cfon]t;::l}? ijt,)ﬂc(l)il:ﬁ:zg Gas Flares Industrial Sites Q&?:;ZS/ Nude Soils Rooftops
I 329 86% 9% 5% 0% 0%
n 216 99% 1% 0% 0% 0%
il 985 19% 67% 11% 0% 2%
I 135 52% 3% 14% 30% 1%
14 415 1% 56% 2% 0% 41%
VI 4 100% 0% 0% 0% 0%
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Table 2 shows that each condition discriminates GFs from other hot sources (e.g.,
industrial sites) and highly reflective (e.g., rooftops) targets in a different way (see the
third column); the condition VI is not statistically significant, as it refers to 4 sites only
(see the second column). Therefore, if a high confidence level is aimed at, the condition
II (highlighted in grey in Table 2) should be selected. This condition, which takes into
account the peak of thermal emissions at 1.6 um and the possible saturation of SWIR1
channel in presence of gas flaring sources (e.g., [6,11,13]), guarantees an overall detection
reliability around 99%. The latter was estimated by the spatial correspondence with
the centroids with the gas flaring sites, revealed by satellite images at very high-spatial
resolution. Moreover, condition II seems to automatically filter out highly reflective features
(e.g., roofing materials [2,3]). The latter may lead to high radiance values in the SWIR2
band, which may be misinterpreted as hot pixels, generating commission errors (e.g.,
condition V in Table 2). However, it should be pointed out that gas flares operating at
lower temperature (less than 1400 K) may be discarded using the condition II. Indeed, this
condition makes the database biased towards high-temperature gas flaring sources. In
addition, a threshold based on the temporal persistence of the signals may further reduce
the number of detectable GFs.

Consequently, the NHI algorithm was rearranged by developing the “Daytime Ap-
proach for gas Flaring Investigation” (DAFI) method. This method consists of a three-
module cascade shown in Figure 2, where “HP 1, ” refers to hot pixels identified using the
condition II of Table 2. Equation (4) is used to sum up the HPy,j1y values and compute the
OF for each pixel.

Module Criterion Output
Hot Pixel detection
(@) from single OLI NHIgynr>0 OR Extreme Pixel HP g,
image :
i Hot Pixel
Gas flaring site 2021
®) identification from HP i1, >10% OF

Occurrence Frequency =

multi-temporal OLI
2013

tiles

T
+ Gas flaring Site

Low Mid-low
GF long-term OF<15% 15% < OF <20%
(c) persistence level Label
classification Mid-high High
20% < OF < 30% OF = 30%

Figure 2. DAFI conditions for (a) detecting a potential sub-pixel hotspot over the single daytime
OLI image (first module); (b) flagging the pixel as a gas flaring site (second module); (c) assigning a
persistence level using a long-term temporal scale to the GF (third module).

Hence, DAFI works on a single OLI scene searching for hot pixels through the
NHIswnir index and the test on saturated pixels in the SWIR1 band (see module (a)).
This operation was performed for all the scenes of the time series, preserving the “detection
history” of each location. The OF was calculated from the HP g,y masks and the num-
ber of analyzed images, summed in the investigated time window. Pixels showing OF
values > 10% were classified as gas flares (module (b)). Finally, the persistence level of
each GF was computed through a quartiles analysis, which allowed us to define four GF
persistence levels (module (c)), shown in Table 3. The lower the level, the less persistent
the activity.



Remote Sens. 2022, 14, 6319

7 of 17

Table 3. Criteria of the persistence classes, predicted from the 25th (Q1), 50th (Q2) and 75th (Q3)
quartiles of OFs.

Persistence Level

Low Mid-Low Mid-High High
OF <15% 15% < OF < 20% 20% < OF < 30% OF > 30%
4. Results

The DAFI inventory consists of 1711 high-temperature gas flaring sites, identified over
the period 2013-2021 (see Figure 3).

Onshore = 3%
Offshore = 10%

$°" Onshore = 67%

A 5 Offshore =49%

“ St

Onshore =15%
Offshore =13%

Onshore =13%
Offshore = 25% ° f
GFsPercenlaie bi continent o
® DAFI Gas Flaring sites - =0 0

Figure 3. Distribution of GF sites detected by DAFI (purple dots) among the five continents. The
onshore and offshore percentages computed for each continent is also stated.

The distribution of the global GF sites is spatially concentrated: 1237 points are located
onshore (72%), while the remaining 474 (28%) were flagged offshore. About 70% of the
onshore GFs belongs to Asia (~50%, located in Russian Federation, Iran and Iraq), and
~15% to Africa (Algeria, South Africa) and Americas (United States of America, Mexico,
Venezuela). The distribution of the global offshore GFs is concentrated into the North
Sea (~9%), Gulf of Guinea (~22%), Persian Gulf (~15%) and South China Sea (~20%);
they represent about ~67% of the total [30]. As far as both onshore and offshore GFs
are considered together, the Asia continent is the most populated (Figure 3), followed by
the American and African ones, where GF sites show a quite similar distribution in both
offshore and onshore conditions. Europe and Oceania have a marginal role in terms of oil
and gas facilities (less than ~15% and ~5%, respectively).

The countries more affected by the gas flaring sites, selected as the ones accounting
for at least the 50% of overall continental detections, are listed in Figure 4.

10% 99,
5%
4% 4%
|:| D 2% 2% 2% 2% 2%
1%
| D O O 0O 0o =
= = = = =] 5 ] = o @
8% = = g = 3 == = 8 = e £
ZZ = & = % 3 8 = £ E
Z - = = ZE = £ 2 - :
=g = 2 5 g2 = =
=~ = S
e w

Figure 4. The worldwide countries including the greatest number of detected gas flares. Each
percentage indicates the ratio of the national detections over the total detected gas flares (i.e., 1711).



Remote Sens. 2022, 14, 6319

8of 17

The Russian Federation, Iran and Iraq occupy the podium, accounting for about
40% of the worldwide detected GFs, followed by Algeria, Mexico and USA. These results
are in good agreement with the last report of the Global Gas Flaring Reduction Partner-
ship [8], stating that Russia, Iraq, Iran, the United States, Algeria, Venezuela and Nigeria
are among the top 10 flaring countries. The latter have held this position consistently for
the last 10 years, accounting for roughly two-thirds (65%) of global gas flaring.

Figure 5 shows the distribution of the persistence levels for both onshore and offshore
GFs categories, emphasizing their different behavior in terms of operability.

Persistence Level - Onshore

low 14%

mid-low 41%
.

mid-high 8%

high 22%
(a)

Persistence Level - Offshore

low
mid-low
® mid-high

® high

(b)

Figure 5. OFs distribution among the four persistence classes for the (a) onshore and (b) offshore sites.

In particular, the figure reveals that while the onshore sites have a mid-low persistence,
the marine platforms are the most operational, with about 50% of them belonging to the
high-persistence class.

Flaring may occur in the oil and gas industry for many reasons, ranging from initial
start-up testing of a facility to unplanned equipment malfunctions. The combustion in gas
flares can be almost constant over the time, but can also be very variable, hence the flaring
can be reduced or turned off. Moreover, a gas flare may be located on a sea platform or on
the ground flares with open pits and multiple nozzles, and elevated individual stacks [33].
All these features affect the time duration of the process, which needs to be considered for
detection purposes. Thus, thermal anomalies identified on each site by DAFI have been
temporally disaggregated, on an annual and monthly basis, to acquire some information
about the source type (i.e., continuous or non-continuous flaring). Some examples are
shown in Section 5.

In sum, the DAFI results, retrieved from daytime L8-OLI data, provide an accurate
information about the global distribution, localization and mapping of the most intense
gas flaring sites.

5. The DAFI Website

The DAFI information can be accessed online, at the website https://sites.google.
com/view/flaringsitesinventory (accessed on 26 October 2022), without any authentication.
Data can be visualized and navigated at two levels: static and dynamic.
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The first level (named “The global gas flaring DAFI map”) allows users to visualize the
spatial distribution of the gas flaring sites, navigating a custom map created using Google
My Maps (Figure 6). By clicking on the single site of interest, the following information
appears on the left-side of the map (Figure 6):

- Continent, region, country;

- GFsite longitude and latitude (in decimal degree format);

- Occurrence Frequency, OF (%);

- Long-term Persistence Level (from low to high, depending on the OF value);
- Shore (gas flare location, classified in onshore and offshore).

@ @\ The DAFI method

€ DzA 0357

DZA_0357

Africa

Northern Africa

Algeria

3.9867923

32.2769871

25

mid-high

on
Gas Flaring Sites
A Onshore

® A Offshore

Figure 6. The global gas flaring DAFI map: onshore (orange flames) and offshore (blue flames) gas
flaring sites. On the left side, a panel summarizing the GF features (e.g., DZA_0357).

An identification code is assigned to each gas flaring site. It consists of the coun-
try acronym (i.e., Alpha-3 country code) followed by a 4-digit progressive number (e.g.,
DZA_0357, see example in Figure 6).

The dynamic characterization of the GF sites runs automatically in GEE. A schematic
picture of the developed DAFI App is shown in Figure 7.

C“'-—'I \.:\ Q  Search places Earth Engine Apps
Daytime Approach for Gas Flaring Investigation X3 ' " g Mappa satellite
(04FD)

The DAFI provides the first global map of hotspots celated to
gas flacing activity, detected by processing daytime i
observations acquired by L8/OLI sensor in between re >
2021.

For each detected gas flase, the GEE Agpp provides

3) the semponl proSles of infased rdiances (NIR-B3, SWIR1-B§
1) the temponl wend of GF cecorrence frequency, annually aggregaced

o) the temponl trend of GF occorrence fequency, monthly aggregated

1) Choose the ID of GF to inspect from the map

Open the map

2) Select or write the 6F ID

Select a value... &

Es. ITA_0886 Start DAFT analysis

Fox any inguisies, please connact Masiagia Facvolo (marapia firvolo at
ima eneit) or Nicola Genzano (sicela genzane at ueibasic

Gas Flaring Sites

Onshoze

B Ofishoze

Scorcatoie da tastiera | Immagini 82022 NASA TerraMetrics | 1000 km

Contact: mariapia.faruolo @ imaa.cnrit

Figure 7. DAFI GEE App picture.
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By approaching this level, named “The DAFI App for gas flaring thermal investiga-
tion”, two steps are required to investigate the gas flaring source:

(1) Choose the gas flare to inspect.

(2) Run the DAFI to get the GF behavior. As previously mentioned, by exploring the map,
users can select the gas flare of interest. By directly obtaining the ID number (in the
drop-down menu) or copying/tasting it from the map the time series of SWIR1 and
NIR radiances, measured over the selected GF site, is displayed. Thermal anomalies
that are aggregated both in terms of years and months (i.e., OF value during a given
calendar year/month), can be visualized through line charts, highlighting the periods
in which the thermal activity was dominant, increased or declined at site level. Each
graph can be downloaded in CSV, SVG or PNG format.

Some examples of the tool outputs are shown below and refer to both onshore and
offshore sites (Figure 6). The criterion adopted to select them is the following;:

e  GF sites belonging to the same persistence category but located in different countries;
e  GF sites located in the same country but showing different persistence category.

This analysis may provide interesting information about differences/similarities in the
GF dynamics and thermal behavior. For each site, a picture displaying the GF-affected area
(white circle), with the thermally anomalous pixels, depicted in different colors according
to their OF value, is shown, along with the annual and monthly temporal profile chart of
the GF occurrence.

Figure 8 displays the GF sites belonging to the first aforementioned category (i.e.,
mid-high): DZA_0313 and RUS_1310.
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Figure 8. Features of the selected onshore GF sites, labeled as (a) DZA_0313 and (c) RUS_1310,
retrieved from the DAFI GEE tool; the insets summarize the GF geographic information, along
with its long-term persistence category. The (b) annual and (d) monthly temporal persistence for
DZA_0313 (purple line) and RUS_1310 (purple dashed line).

Figure 8 shows that some differences characterize the GFs sites within the same
long-term persistence class. The Algerian gas flare (DZA_0313), with a 12-pixel cluster
(Figure 8a), seems to operate with an increasing trend (with percentages of occurrence lower
than 22%) up to 2019, where the peak is recorded (~61%), followed by a reduced continuity
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in the next two years (see Figure 8b, purple line). The Russian site (RUS_1310), composed
by three pixels (Figure 8c), shows a quite stable flaring activity between 2013-2018, apart
from a slight peak recorded in 2015 (Figure 8b, purple dashed line), while it halves in the
following years. Additionally, at the monthly scale, the OFs distribution of the two sites
follows an opposite trend, which is a convex trend for the Algerian flare and quite concave
for the Russian one (see Figure 8d).

By looking at the selected offshore gas flaring sites, both are classified as mid-high
persistence objects (Figure 9), located in the Caspian Sea (TKM_1518, Figure 9a) and Persian
Gulf (ARE_0041, Figure 9c), 30 km and 70 km from the Turkmen and United Arab Emirates
shores. Both the marine platforms, part of a flaring sites archipelago, are clearly visible
from space.

Annually-based persistence

—TKM_1518 ==-=-ARE_0041

TKM_1518
Latitude (°): 39.46

Longitude (°): 52.81

Country: Turkmenistan

Continent: Asia

Shore: Off

Occurrence Frequency (%): 2143
Long-term Persistence Level: mid-high

Occurence Frequency

2018 2019 2020 2021

(b)

Annually-based persistence

—TKM_1518 ===ARE_0041

ARE_0041
Latitude (°): 24.83
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Country: United Arab Emirates i
Continent: Asia d S 0.0
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Occurrence Frequency (%): 26.13
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Occurence Frequency

2018 2010 2020 201

Figure 9. Features of the selected onshore GF sites, labeled as (a) TKM_1518 and (c¢) ARE_0041,
retrieved from the DAFI GEE tool; the insets summarize the GF geographic information, along
with its long-term persistence category. The (b) annual and (d) monthly temporal persistence for
TKM_1518 (purple line) and ARE_0041 (purple dashed line).

The oil and gas platform in the Caspian Sea has not been operational since 2017 (purple
line in Figure 9b), with an unstable operation in the previous years. The gas flaring has been
routinely practiced at the ARE_0041 (purple dashed line in Figure 9b) from 2014 to 2020,
with two peaks in 2016 and 2018. As the previous one, it stopped in 2021. At a monthly
scale (Figure 9d), the two sites work over the whole 12-month period (except in March for
TKM_1518), with a higher persistence level for the Arab platform in most of the months
(higher than 10%).

Regarding the second category detailed above, the Iraqi sites, IRQ_0795 and IRQ_0766,
flagged, respectively, as high and low long-term persistence sources (the cluster size likely
reflects this), are represented in Figure 10a,c.
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Figure 10. Features of the selected onshore GF sites, labeled as (a) IRQ_0795 and (c) IRQ_0766,
retrieved from the DAFI GEE tool; the insets summarize the GF geographic information, along with
its long-term persistence category. The (b) annual and (d) monthly temporal persistence for IRQ_0795
(purple line) and IRQ_0766 (purple dashed line).

As highlighted by the line chart in Figure 10b, the level of annual persistence is
significantly different between the two sites over the analyzed years (with a mean bias
of 50%). Moreover, observing the IRQ_0795 “high” source, its persistence is gradually
increasing during the first four years (2013-2016), with a growth rate of over 70% (the peak
is reached in 2016, around 83%) (Figure 10b, purple line). Since 2016, the level declines for
touching the starting one in 2018, when a new rise is recorded. IRQ_0766 appears quite
stable, with OF percentages ranging from 5% to 20% over the years 20132019, with a
peak of 30% in 2020 (Figure 10b, purple dashed line). The monthly profiles of the Iraqi
sites” occurrences (Figure 10d) indicate that the gas flaring activity mainly occurs between
September and February/March. As expected, the most intense levels (more than 50% on
average) can be observed in correspondence with the “high” source.

Figure 10d puts in evidence the same concave trend also characterizing the Algerian
and Russian sites (see Figure 8d). Further investigations are required to better explain
those observations.

6. Conclusions

DAFI uses a temporal persistence criterion, applied to a customized NHI-based indica-
tor, to identify the GF sites which were active over the last nine years (i.e., 2013-2021). This
way, DAFI is capable of detecting very intense and persistent gas flaring sources, allowing
for a deep characterization, in terms of temporal dynamics (at both annual and monthly
scale) and spatial spreading of hot pixels at the local scale.

As a final result, the first global map of high-temperature gas flaring sites based on
daytime OLI-L8 observations was produced. A GF detection reliability of 99% was achieved
by setting the 10% threshold persistence.

It should be pointed out that DAFI information is not exhaustive, owing to the im-
posed restrictions (see Section 3). Indeed, while commission errors, associated only with
other industrial plants, are negligible and do not represent an issue, the GF database
mainly includes the high-temperature gas flares operating in time. In particular, missed
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detections may occur in the presence of mid-low intensity flares (e.g., GF operating at
lower temperatures, and emitting more strongly in the SWIR2 than SWIR1 band) and/or of
extremely recent (or presently dismissed) flares, which do not meet the selected criteria
(i.e., OF slightly less than 10%). Both factors may affect the completeness of the GF dataset.
Moreover, these cases may be further emphasized in case of cloud cover, which hinders
or masks the gas flare signals (especially the less intense ones). Moreover, the temporal
investigation of the GF occurrence frequency may be misunderstood in geographic areas
where clouds persist in some months of the year. In such a case, a measured null (or very
small) value of OF maynot be directly related to the gas flare operational features but to the
cloud coverage, preventing an effective gas flare site characterization in time domain.

Despite those limitations, the DAFI global daytime map may provide additional
information about GFs when integrated with the nighttime VIIRS observations. Figure 11
displays the spatial distribution of the GFs from the nighttime VNF method, independently
provided by the EOG, and the daytime DAFI one.

Figure 11. DAFI (purple dots) and VNF (pink dots) gas flaring sites detections.

A general satisfying spatial agreement between daytime and nighttime GF datasets is
evident, with the flaring regions identified by DAFI which are also captured by VNF. How-
ever, the different spatial resolution, revisit interval, acquisition time and spectral bands
used by the two methods make a point-by-point comparison between them impracticable
(and even out of the scope of this work). On the other hand, their integration may represent
an added value in terms of detection, monitoring and characterization capabilities of GF
from space. Indeed, daytime and nighttime observations, if integrated, by increasing the
temporal sampling, may allow for a more effective identification of the GFs. Moreover,
the different GF typology and characteristics may be better revealed when different spec-
tral/spatial and temporal domains are investigated. A visual investigation of DAFI and
VNF maps has revealed relative performance and limitations, as put in evidence by some
examples reported in Figure 12 showing;:

o  The higher sensitivity of OLI to small-scale hot targets, undetected by VIIRS (e.g.,
Figure 12a);

o  The greater spatial accuracy offered by OLI than VIIRS in localizing and mapping the
GF areas, useful information for accurately characterizing the site in terms of flared
volumes and GHG emissions (Figure 12b);

o  The lower sensitivity of DAFI than VNF in detecting some GFs because of the selected
persistence threshold (Figure 12c) (shale oil/gas included).
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Figure 12. Some examples of gas flares: (a) identified by DAFI, not by VNF; (b) identified by both;
(c) identified by VNEF, not by DAFI (because of OF < 10%).

Figure 12 clearly shows the advantage of a gas flaring mapping from a complementary
satellite-based inventory.

The current DAFI map will be updated annually to follow the GF spatiotemporal
dynamics. While the aforementioned limitations probably led to an underestimation of
gas flares in this study, they will be likely (at least partially) overcome by exporting DAFI
on additional satellite data at mid-high spatial resolution. In particular, the DAFI porting
on Landsat 9 and Sentinel 2A /B (at 20m spatial resolution) data is under development,
by taking into account the preliminary outcomes shown in [21]. The combination of
Sentinel-2A /B MSI and L8/9 OLI/OLI-2 data would guarantee an increased frequency of
observation, up to a revisit time of 1-3 days [34-37], with a positive impact on the detection
sensitivity. The OF percentage levels lower than 10% will also be explored using L9 and 52
collections. Moreover, the different behavior of the onshore and offshore sites, observed
by applying the long-term persistence class, will be better analyzed, evaluating the DAFI
performance in recognizing hot pixels over different areas. Estimates of the radiative
power, for each gas flare, will be also performed and made available on the DAFI website.
This metric will be crucial to carefully retrieve both the volume of gas flared and the CO,
equivalent emissions by each identified GF over one calendar year/month.

Given the growing international focus on global methane emissions, and acknowl-
edging the important role the oil and gas industry could play towards achieving climate
goals [8], a global overview of the GF sites, as exhaustive as possible, becomes crucial for
monitoring the countries’ progress in decarbonization strategies [8].

Considering that bottom-up emission inventories for the oil and gas industry are
often fragmentary, due to challenges in quantifying the emissions from gas flaring or to
incomplete reporting by individual companies, satellite-based observations may then be
offering a valuable alternative to independently acquire more complete, accurate and timely
emission estimates [7].

A global GF emissions scenario that is as exhaustive as possible may help govern-
ments and operators in tracking commitments and efforts in oil-producing countries to
abate flaring, as well as in conducting air quality monitoring for better understanding of
exposures, and reducing potential human health impacts [31,38].
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